Coastal Wetlands Planning, Protection and Restoration Act

Wetland Value Assessment Methodology

Coastal Marsh Community Models

Prepared by:

Environmental Work Group

Point of Contact:
Kevin J. Roy
U.S. Fish and Wildlife Service
646 Cajundome Blvd., Suite 400
Lafayette, LA 70506
(337) 291-3120
kevin_roy@fws.gov

January 2007
WETLAND VALUE ASSESSMENT METHODOLOGY

Coastal Marsh Community Models

I. Introduction

The coastal marsh models were initially developed after passage of the CWPPRA during 1990 and were first used for evaluating candidate projects in 1991. The following sections describe the process and assumptions used in the initial development of those models. Since their initial development, these models have undergone several revisions including the omission of certain variables, modifications to the Suitability Index graphs, and modifications to the Habitat Suitability Index formulas.

These models were developed to determine the suitability of marsh and open water habitats in the Louisiana coastal zone. These models were designed to function at a community level and therefore attempt to define an optimal combination of habitat conditions for all fish and wildlife species utilizing coastal marsh ecosystems.

II. Variable Selection

Variables for the coastal marsh models were selected through a two-part procedure. The first involved a listing of environmental variables thought to be important in characterizing fish and wildlife habitat in coastal marsh ecosystems. The second part of the selection procedure involved reviewing variables used in species-specific HSI models published by the U.S. Fish and Wildlife Service. Review was limited to HSI models for those fish and wildlife species known to inhabit Louisiana coastal wetlands, and included models for 10 estuarine fish and shellfish, 4 freshwater fish, 12 birds, 3 reptiles and amphibians, and 3 mammals (Table 1). The number of models included from each species group was dictated by model availability.

Selected HSI models were then grouped according to the marsh type(s) used by each species. Because most species are not restricted to one marsh type, most models were included in more than one marsh type group. Within each wetland type group, variables from all models were then grouped according to similarity (e.g., water quality, vegetation, etc.). Each variable was evaluated based on 1) whether it met the variable selection criteria; 2) whether another, more easily measured/predicted variable in the same or a different similarity group functioned as a surrogate; and 3) whether it was deemed suitable for the WVA application (e.g., some freshwater fish model variables dealt with riverine or lacustrine environments). Variables that did not satisfy those conditions were eliminated from further consideration. The remaining variables, still in their similarity groups, were then further eliminated or refined by combining similar variables and/or culling those that were functionally duplicated by variables from other models (i.e., some variables were used frequently in different models in only slightly different format).
Table 1. HSI Models Consulted for Variables for Possible Use in the Coastal Marsh Models

<table>
<thead>
<tr>
<th>Estuarine Fish and Shellfish</th>
<th>Birds</th>
<th>Mammals</th>
</tr>
</thead>
<tbody>
<tr>
<td>pink shrimp</td>
<td>white-fronted goose</td>
<td>mink</td>
</tr>
<tr>
<td>white shrimp</td>
<td>clapper rail</td>
<td>muskrat</td>
</tr>
<tr>
<td>brown shrimp</td>
<td>great egret</td>
<td>swamp rabbit</td>
</tr>
<tr>
<td>spotted seatrout</td>
<td>northern pintail</td>
<td></td>
</tr>
<tr>
<td>Gulf flounder</td>
<td>mottled duck</td>
<td></td>
</tr>
<tr>
<td>southern flounder</td>
<td>American coot</td>
<td></td>
</tr>
<tr>
<td>Gulf menhaden</td>
<td>marsh wren</td>
<td></td>
</tr>
<tr>
<td>juvenile spot</td>
<td>snow goose</td>
<td></td>
</tr>
<tr>
<td>juvenile Atlantic croaker</td>
<td>great blue heron</td>
<td></td>
</tr>
<tr>
<td>red drum</td>
<td>laughing gull</td>
<td></td>
</tr>
<tr>
<td>Reptiles and Amphibians</td>
<td>red-winged blackbird</td>
<td></td>
</tr>
<tr>
<td>bullfrog</td>
<td>roseate spoonbill</td>
<td></td>
</tr>
<tr>
<td>slider turtle</td>
<td></td>
<td></td>
</tr>
<tr>
<td>American alligator</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Variables selected from the HSI models were then compared to those identified in the first part of the selection procedure to arrive at a final list of variables to describe wetland habitat quality. That list includes six variables for each marsh type: 1) percent of the wetland covered by emergent vegetation, 2) percent of the open water covered by aquatic vegetation, 3) marsh edge and interspersion, 4) percent of the open water area \(\leq 1.5 \) feet deep, 5) salinity, and 6) aquatic organism access.

III. Suitability Index Graph Development

A variety of resources was utilized to construct each SI graph, including the HSI models from which the final list of variables was partially derived, consultation with other professionals and researchers outside the EnvWG, published and unpublished data and studies, and personal knowledge of EnvWG members. An important "non-biological" constraint on SI graph development was the need to insure that graph relationships were not counter to the purpose of the CWPPRA, that is, the long term creation, restoration, protection, or enhancement of coastal vegetated wetlands. That constraint was most operative in defining SI graphs for Variable \(V_1 \) (percent emergent marsh). The process of SI graph development was one of constant evolution, feedback, and refinement; the form of each SI graph was decided upon through consensus among EnvWG members.

The Suitability Index graphs were developed according to the following assumptions.

Variable \(V_1 \) - Percent of wetland area covered by emergent vegetation. Persistent emergent vegetation plays an important role in coastal wetlands by providing foraging, resting, and
breeding habitat for a variety of fish and wildlife species; and by providing a source of detritus and energy for lower trophic organisms that form the basis of the food chain. An area with no emergent vegetation (i.e., shallow open water) is assumed to have minimal habitat suitability in terms of this variable, and is assigned an SI of 0.1.

Optimal vegetative coverage is assumed to occur at 100 percent (SI=1.0). That assumption is dictated primarily by the constraint of not having graph relationships conflict with the CWPPRA's purpose of long term creation, restoration, protection, or enhancement of vegetated wetlands. The EnvWG had originally developed a strictly biologically-based graph defining optimal habitat conditions at marsh cover values between 60 and 80 percent, and sub-optimal habitat conditions outside that range. However, application of that graph, in combination with the time analysis used in the evaluation process (i.e., 20-year project life), often reduced project benefits or generated a net loss of habitat quality through time with the project. Those situations arose primarily when: existing (baseline) emergent vegetation cover exceeded the optimum (> 80 percent); the project was predicted to maintain baseline cover values; and without the project the marsh was predicted to degrade, with a concurrent decline in percent emergent vegetation into the optimal range (60-80 percent). The time factor aggravated the situation when the without-project degradation was not rapid enough to reduce marsh cover values significantly below the optimal range, or below the baseline SI, within the 20-year evaluation period. In those cases, the analysis would show net negative benefits for the project, and positive benefits for letting the marsh degrade rather than maintaining the existing marsh. Coupling that situation with the presumption that marsh conditions are not static, and that Louisiana will continue to lose coastal emergent marsh; and taking into account the purpose of the CWPPRA, the EnvWG decided that, all other factors being equal, the models should favor projects that maximize emergent marsh creation, maintenance, and protection. Therefore, the EnvWG agreed to deviate from a strictly biologically-based habitat suitability index graph for V1 and established optimal habitat conditions at 100 percent marsh cover.

Variable V2 - Percent of open water area covered by aquatic vegetation. Fresh and intermediate marshes often support diverse communities of floating-leaved and submerged aquatic plants that provide important food and cover to a wide variety of fish and wildlife species. A fresh/intermediate open water area with no aquatics is assumed to have low suitability (SI=0.1). Optimal conditions (SI=1.0) are assumed to occur when 100 percent of the open water is dominated by aquatic vegetation. Habitat suitability may be assumed to decrease with aquatic plant coverage approaching 100 percent due to the potential for mats of aquatic vegetation to hinder fish and wildlife utilization; to adversely affect water quality by reducing photosynthesis by phytoplankton and other plant forms due to shading; and contribute to oxygen depletion spurred by warm-season decay of large quantities of aquatic vegetation. The EnvWG recognized, however, that those effects were highly dependent on the dominant aquatic plant species, their growth forms, and their arrangement in the water column; thus, it is possible to have 100 percent cover of a variety of floating and submerged aquatic plants without the above-mentioned problems due to differences in plant growth form and stratification of plants through the water column. Because predictions of which species may dominate at any time in the future
would be tenuous, at best, the EnvWG decided to simplify the graph and define optimal conditions at 100 percent aquatic cover.

Brackish marshes also have the potential to support aquatic plants that serve as important sources of food and cover for several species of fish and wildlife. Although brackish marshes generally do not support the amounts and kinds of aquatic plants that occur in fresh/intermediate marshes, certain species, such as widgeon-grass, and coontail and milfoil in lower salinity brackish marshes, can occur abundantly under certain conditions. Those species, particularly widgeon-grass, provide important food and cover for many species of fish and wildlife. Therefore, the \(V_2 \) Suitability Index graph in the brackish marsh model is identical to that in the fresh/intermediate model.

Some low-salinity saline marshes may contain beds of widgeon-grass and open water areas behind some barrier islands may contain dense stands of seagrasses (e.g., *Halodule wrightii* and *Thalassia testudinum*). However, saline marshes typically do not contain an abundance of aquatic vegetation as often found in fresh/intermediate and brackish marshes. Open water areas in saline marshes typically contain sparse aquatic vegetation and are primarily important as nursery areas for marine organisms. Therefore, in order to reflect the importance of those open water areas to marine organisms, a saline marsh lacking aquatic vegetation is assigned a SI=0.3. It is assumed that optimal coverage of aquatic plants occurs at 100 percent.

Variable \(V_3 \) - Marsh edge and interspersion. This variable takes into account the relative juxtaposition of marsh and open water for a given marsh:open water ratio, and is measured by comparing the project area to sample illustrations (refer to pages 31-32) depicting different degrees of interspersion. Interspersion is assumed to be especially important when considering the value of an area as foraging and nursery habitat for freshwater and estuarine fish and shellfish; the marsh/open water interface represents an ecotone where prey species often concentrate, and where post-larval and juvenile organisms can find cover. Isolated marsh ponds are often more productive in terms of aquatic vegetation than are larger ponds due to decreased turbidity, and, thus, may provide more suitable waterfowl habitat. However, interspersion can be indicative of marsh degradation, a factor taken into consideration in assigning suitability indices to the various interspersion classes.

A relatively high degree of interspersion in the form of stream courses and tidal channels (Interspersion Class 1) is assumed to be optimal (SI=1.0); streams and channels offer interspersion, yet are not indicative of active marsh deterioration. Areas exhibiting a high degree of marsh cover are also ranked as optimal, even though interspersion may be low, to avoid conflicts with the premises underlying the SI graph for variable \(V_1 \). Without such an allowance, areas of relatively healthy, solid marsh, or projects designed to create marsh, would be penalized with respect to interspersion. Numerous small marsh ponds (Interspersion Class 2) offer a high degree of interspersion, but are also usually indicative of the beginnings of marsh break-up and degradation, and are therefore assigned a more moderate SI of 0.6. Large ponds and other open water areas with little surrounding marsh (Interspersion Classes 3 and 4) offer lower
interspersion values and usually indicate advanced stages of marsh loss, and are thus assigned SIs of 0.4 and 0.2, respectively. The lowest expression of interspersion, Class 5, is characterized by very small marsh islands (i.e., less then 5% emergent marsh) or areas made up entirely of open water. Class 5 is assumed to be least desirable and is assigned an SI=0.1.

Variable V₄ - Percent of open water area ≤ 1.5 feet deep in relation to marsh surface.
Shallow water areas are assumed to be more biologically productive than deeper water due to a general reduction in sunlight, oxygen, and temperature as water depth increases. Also, shallower water provides greater bottom accessibility for certain species of waterfowl, better foraging habitat for wading birds, and more favorable conditions for aquatic plant growth. Optimal open water conditions in a fresh/intermediate marsh are assumed to occur when 80 to 90 percent of the open water area is less than or equal to 1.5 feet deep. The value of deeper areas in providing drought refugia for fish, alligators and other marsh life is recognized by assigning an SI=0.6 (i.e., sub-optimal) if all of the open water is less than or equal to 1.5 feet deep.

Shallow water areas in brackish marsh habitat are also important. However, brackish marsh generally exhibits deeper open water areas than fresh marsh due to tidal scouring. Therefore, the SI graph is constructed so that lower percentages of shallow water receive higher SI values relative to fresh/intermediate marsh. Optimal open water conditions in a brackish marsh are assumed to occur when 70 to 80 percent of the open water area is less than or equal to 1.5 feet deep.

The SI graph for the saline marsh model is similar to that for brackish marsh, where optimal conditions are assumed to occur when 70 to 80 percent of the open water area is less than or equal to 1.5 feet deep. However, at 100 percent shallow water, the saline graph yields an SI= 0.5 rather than 0.6 as for the brackish model. That change reflects the increased abundance of tidal channels and generally deeper water conditions prevailing in a saline marsh due to increased tidal influences, and the importance of those tidal channels to estuarine organisms.

Variable V₅ - Salinity. It is assumed that periods of high salinity are most detrimental in a fresh/intermediate marsh when they occur during the growing season (defined as March through November, based on dates of first and last frost contained in Natural Resource Conservation Service soil surveys for coastal Louisiana). Therefore, mean salinity during the growing season (March-November) is used as the salinity parameter for the fresh/intermediate marsh model. Optimal conditions in fresh marsh are assumed to occur when mean salinity during the growing season is 0.5 parts per thousand (ppt) or less. Optimal conditions in intermediate marsh are assumed to occur when mean salinity during the growing season is 2.5 ppt or less.

For the brackish and saline marsh models, average annual salinity is used as the salinity parameter. The SI graph for brackish marsh is constructed to represent optimal conditions when salinities are between 0 ppt and 10 ppt. The EnvWG acknowledges that average annual salinities below 5 ppt will effectively define a marsh as fresh or intermediate, not brackish. However, the SI graph makes allowances for lower salinities to account for occasions when there is a trend of
decreasing salinities through time toward a more intermediate condition. Implicit in keeping the graph at optimum for salinities less than 5 ppt is the assumption that lower salinities are not detrimental to a brackish marsh. However, average annual salinities greater than 10 ppt are assumed to be progressively more harmful to brackish marsh vegetation. Average annual salinities greater than 16 ppt are assumed to be representative of those found in a saline marsh, and thus are not considered in the brackish marsh model.

The SI graph for the saline marsh model is constructed to represent optimal salinity conditions at between 0 ppt and 21 ppt. The EnvWG acknowledges that average annual salinities below 10 ppt will effectively define a marsh as brackish, not saline. However, the suitability index graph makes allowances for lower salinities to account for occasions when there is a trend of decreasing salinities through time toward a more brackish condition. Implicit in keeping the graph at optimum for salinities less than 10 ppt is the assumption that lower salinities are not detrimental to a saline marsh. Average annual salinities greater than 21 ppt are assumed to be slightly stressful to saline marsh vegetation.

Variable V₆ - Aquatic organism access. Access by aquatic organisms, particularly estuarine-dependent fishes and shellfishes, is considered to be a critical component in assessing the quality of a given marsh system. Additionally, a marsh with a relatively high degree of access by default also exhibits a relatively high degree of hydrologic connectivity with adjacent systems, and therefore may be considered to contribute more to nutrient exchange than would a marsh exhibiting a lesser degree of access. The SI for V₆ is determined by calculating an "access value" based on the interaction between the percentage of the project area wetlands considered accessible by aquatic organisms during normal tidal fluctuations, and the type of man-made structures (if any) across identified points of ingress/egress (bayous, canals, etc.). Standardized procedures for calculating the Access Value have been established (refer to pages 33-36). It should be noted that access ratings for man-made structures were determined by consensus among EnvWG members and that scientific research has not been conducted to determine the actual access value for each of those structures. Optimal conditions are assumed to exist when all of the study area is accessible and the access points are entirely open and unobstructed.

A fresh marsh with no access is assigned an SI=0.3, reflecting the assumption that, while fresh marshes are important to some species of estuarine-dependent fishes and shellfish, such a marsh lacking access continues to provide benefits to a wide variety of other wildlife and fish species, and is not without habitat value. An intermediate marsh with no access is assigned an SI=0.2, reflecting that intermediate marshes are somewhat more important to estuarine-dependent organisms than fresh marshes. The general rationale and procedure behind the V₆ Suitability Index graph for the brackish marsh model is identical to that established for the fresh/intermediate model. However, brackish marshes are assumed to be more important as habitat for estuarine-dependent fish and shellfish than fresh/intermediate marshes. Therefore, a brackish marsh providing no access is assigned an SI of 0.1. The Suitability Index graph for aquatic organism access in the saline marsh model is the same as that in the brackish marsh model.
IV. Habitat Suitability Index Formulas

In developing the HSI formulas, the EnvWG recognized that the primary focus of the CWPPRA is on vegetated wetlands, and that some marsh protection strategies could have adverse impacts to aquatic organism access. Therefore, the EnvWG made an *a priori* decision to emphasize variables V_1, V_2, and V_6 by grouping them together, when possible, and weighting them greater than the remaining variables. Weighting was facilitated by treating the grouped variables as a geometric mean. Variables V_3, V_4, and V_5 were grouped to isolate their influence relative to V_1, V_2, and V_6.

For all marsh models, V_1 receives the strongest weighting. The relative weights of V_1, V_2, and V_6 differ by marsh model to reflect differing levels of importance for those variables between the marsh types. For example, the amount of aquatic vegetation was deemed more important in a fresh/intermediate marsh than in a saline marsh, due to the relative contributions of aquatic vegetation between the two marsh types in terms of providing food and cover. Therefore, V_2 receives more weight in the fresh/intermediate HSI formula than in the saline HSI formula. Similarly, the degree of aquatic organism access was considered more important in a saline marsh than a fresh/intermediate marsh, and V_6 receives more weight in the saline HSI formula than in the fresh/intermediate formula. As with the Suitability Index graphs, the Habitat Suitability Index formulas were developed by consensus among the EnvWG members.

For several years, 1991 through 1996, the EnvWG utilized one HSI formula specific to each marsh type. However, it was noted that variables V_2 and V_4, which characterize open water areas only, often resulted in an “artificially inflated” HSI when those variable values were optimal (i.e., $SI = 1.0$) and open water comprised a very small portion of the project area. For example, Project Area A contains 90 percent marsh and 10 percent open water. Project Area B contains 10 percent marsh and 90 percent open water. Assume the open water in each project area is completely covered by submerged aquatic vegetation and is entirely less than 1.5 feet in depth. Under those conditions, the Suitability Index values for V_2 and V_4 would equal 1.0 for both project areas even though open water only accounts for 10 percent of Project Area A. The EnvWG has commonly referred to this as a “scaling” problem; the Suitability Index values for V_2 and V_4 are not “scaled” in respect to the proportion of the project area they characterize. This allows those variables to contribute disproportionately to the HSI in instances when open water constitutes a small portion of the project area.

The EnvWG acknowledged that the scaling problem presented a flaw in the WVA methodology resulting in unrealistic HSI values for certain project areas and eventually resulting in inflated wetland benefits for those projects. During 1996 and 1997, Dr. Gary Shaffer assisted the EnvWG in developing potential solutions to the scaling problem. After several unsuccessful attempts to develop a single HSI formula for each marsh type which scaled the Suitability Index values for V_2 and V_4 based on the ratio of marsh to open water, the EnvWG decided to develop a “split” model for each marsh type. The split model utilizes two HSI formulas for each marsh type; one HSI formula characterizes the emergent habitat within the project area and another HSI
formula characterizes the open water habitat. The HSI formula for the emergent habitat contains only those variables important in assessing habitat quality for marsh (i.e., V_1, V_3, V_5, and V_6). Likewise, the open water HSI formula contains only those variables important in characterizing the open water habitat (i.e., V_2, V_3, V_4, V_5, and V_6). Individual HSI formulas were developed for marsh and open water habitats for each marsh type.

As with the development of a single HSI model for each marsh type, the split models follow the same conventions for weighting and grouping of variables as previously discussed.

V. Benefit Assessment

As previously discussed, the marsh models are split into marsh and open water components and an HSI is determined for both. Subsequently, net AAHUs are also determined for the marsh and open water habitats within the project area. Net AAHUs for the marsh and open water habitat components must be combined to determine total net benefits for the project.

The primary focus of the CWPPRA is on vegetated wetlands. Therefore, in order to place greater emphasis on wetland benefits to marsh, a weighted average of the net benefits (net AAHUs) for marsh and open water is calculated with the marsh AAHUs weighted proportionately higher than the open water AAHUs. The weighted formulas to determine net AAHUs for each marsh type are shown below:

- Fresh Marsh: $\frac{2.1(\text{Marsh AAHUs}) + \text{Open Water AAHUs}}{3.1}$
- Brackish Marsh: $\frac{2.6(\text{Marsh AAHUs}) + \text{Open Water AAHUs}}{3.6}$
- Saline Marsh: $\frac{3.5(\text{Marsh AAHUs}) + \text{Open Water AAHUs}}{4.5}$
WETLAND VALUE ASSESSMENT COMMUNITY MODEL

Fresh/Intermediate Marsh

Vegetation:
Variable V_1 Percent of wetland area covered by emergent vegetation.
Variable V_2 Percent of open water area covered by aquatic vegetation.

Interspersion:
Variable V_3 Marsh edge and interspersion.

Water Depth:
Variable V_4 Percent of open water area ≤ 1.5 feet deep, in relation to marsh surface.

Water Quality:
Variable V_5 Mean high salinity during the growing season (March through November).

Aquatic Organism Access:
Variable V_6 Aquatic organism access.

HSI Calculations:

$\text{Marsh HSI} = \left[\frac{3.5 \times (SIV_1^5 \times SIV_6^{1/6}) + (SIV_3 + SIV_5)/2}{4.5} \right]$

$\text{Open Water HSI} = \left[\frac{3.5 \times (SIV_2^3 \times SIV_6^{1/4}) + (SIV_3 + SIV_4 + SIV_5)/3}{4.5} \right]$
Variable V_1 Percent of wetland area covered by emergent vegetation.

Suitability Graph

Line Formula

$$SI = (0.009 \times \%)+ 0.1$$
FRESH/INTERMEDIATE MARSH

Variable V_2 Percent of open water area covered by aquatic vegetation.

Suitability Graph

Line Formula

$$SI = (0.009 \times \%) + 0.1$$
Variable V_3 Marsh edge and interspersion.

Suitability Graph

Instructions for Calculating the SI for Variable V_3:

1. Refer to pages 31-32 for examples of the different interspersion classes.

2. Estimate percent of project area in each class. If the entire project area is solid marsh, assign interspersion Class 1. Conversely, if the entire project area is open water, assign interspersion Class 5.
Variable V_4 Percent of open water area ≤ 1.5 feet deep, in relation to the marsh surface.

Line Formulas

If $0 \leq \% < 80$, then $SI = (0.01125 \times \%) + 0.1$

If $80 \leq \% \leq 90$, then $SI = 1.0$

If $\% > 90$, then $SI = (-0.04 \times \%) + 4.6$
Variable V₅ Mean high salinity during the growing season (March to November).

Suitability Graph

Line Formulas

Fresh Marsh
- If $0 < \text{ppt} \leq 0.5$, then $\text{SI} = 1.0$
- If $\text{ppt} > 0.5$, then $\text{SI} = (-0.20 \times \text{ppt}) + 1.10$

Intermediate Marsh
- If $0 < \text{ppt} \leq 2.5$, then $\text{SI} = 1.0$
- If $\text{ppt} > 2.5$, then $\text{SI} = (-0.20 \times \text{ppt}) + 1.50$
Variable V_6 Aquatic organism access.

Suitability Graph

Line Formulas

- Fresh Marsh: $SI = (0.7 \times \text{Access Value}) + 0.3$
- Intermediate Marsh: $SI = (0.8 \times \text{Access Value}) + 0.2$

NOTE: Access Value = $P \times R$, where "$P" = percentage of wetland area considered accessible by estuarine organisms during normal tidal fluctuations, and "$R" = Structure Rating.

Refer to pages 33-36 for complete information on calculating the Access Value.
WETLAND VALUE ASSESSMENT COMMUNITY MODEL

Brackish Marsh

Vegetation:
Variable V_1 Percent of wetland area covered by emergent vegetation.
Variable V_2 Percent of open water area covered by aquatic vegetation.

Interspersion:
Variable V_3 Marsh edge and interspersion.

Water Depth:
Variable V_4 Percent of open water area \leq 1.5 feet deep, in relation to marsh surface.

Water Quality:
Variable V_5 Average annual salinity.

Aquatic Organism Access:
Variable V_6 Aquatic organism access.

HSI Calculations:

Marsh $HSI = \left[\{3.5 \times \left(SIV_1^5 \times SIV_6^{1.5} \right)^{1/6.5} \} + \left(SIV_3 + SIV_5 \right)/2 \right] / 4.5$

Open Water $HSI = \left[\{3.5 \times \left(SIV_2^3 \times SIV_5^2 \right)^{1/5} \} + \left(SIV_3 + SIV_4 + SIV_5 \right)/3 \right] / 4.5$
BRACKISH MARSH

Variable V_1 Percent of wetland area covered by emergent vegetation.

Suitability Graph

Line Formula

$$SI = (0.009 \times \%) + 0.1$$
Variable V_2 Percent of open water area covered by aquatic vegetation.

Suitability Graph

Line Formula

$$SI = (0.009 \times \%) + 0.1$$
BRACKISH MARSH

Variable V₃ Marsh edge and interspersion.

Instructions for Calculating SI for Variable V₃:

1. Refer to pages 31-32 for examples of the different interspersion classes.

2. Estimate the percent of project area in each class. If the entire project area is solid marsh, assign interspersion Class 1. Conversely, if the entire project area is open water, assign interspersion Class 5.
BRACKISH MARSH

Variable V_4 Percent of open water area \leq 1.5 feet deep, in relation to marsh surface.

Line Formulas

If $0 \leq \% < 70$, then $SI = (0.01286 \times \%) + 0.1$

If $70 \leq \% \leq 80$, then $SI = 1.0$

If $\% > 80$, then $SI = (-0.02 \times \%) + 2.6$
Variable V_5 Average annual salinity.

Suitability Graph

![Graph showing suitability index varying with salinity](image)

Line Formulas

If $0 \leq \text{ppt} \leq 10$, then $SI = 1.0$

If $\text{ppt} > 10$, then $SI = (-0.15 \times \text{ppt}) + 2.5$
BRACKISH MARSH

Variable V_6 Aquatic organism access.

Suitability Graph

![Graph showing the suitability index as a function of access value](image)

Line Formula

\[SI = (0.9 \times \text{Access Value}) + 0.1 \]

Note: Access Value = P * R, where "P" = percentage of wetland area considered accessible by estuarine organisms during normal tidal fluctuations, and "R" = Structure Rating.

Refer to pages 33-36 for complete information on calculating the Access Value.
WETLAND VALUE ASSESSMENT COMMUNITY MODEL

Saline Marsh

Vegetation:
Variable V_1 Percent of wetland area covered by emergent vegetation.
Variable V_2 Percent of open water area covered by aquatic vegetation.

Interspersion:
Variable V_3 Marsh edge and interspersion.

Water Depth:
Variable V_4 Percent of open water area \leq 1.5 feet deep, in relation to marsh surface.

Water Quality:
Variable V_5 Average annual salinity.

Aquatic Organism Access:
Variable V_6 Aquatic organism access.

HSI Calculation:

$$Marsh \ HSI = \left[\frac{3.5 \times (SIV_1^3 \times SIV_6^{(1/4)}) + (SIV_3 + SIV_5)/2}{4.5} \right]$$

$$Open \ Water \ HSI = \left[\frac{3.5 \times (SIV_2 \times SIV_6^{2.5})^{(1/3.5)} + (SIV_3 + SIV_4 + SIV_5)/3}{4.5} \right]$$
Variable V_1 Percent of wetland area covered by emergent vegetation.

Suitability Graph

Line Formula

$SI = (0.009 \times \%) + 0.1$
Variable V_2 Percent of open water area covered by aquatic vegetation.

Line Formula

$$SI = (0.007 \times \%) + 0.3$$
SALINE MARSH

Variable V_3 Marsh edge and interspersion.

Suitability Graph

Instructions for Calculating SI for Variable V_3:

1. Refer to pages 31-32 for examples of the different interspersion classes.

2. Estimate percent of project area in each class. If the entire project area is solid marsh, assign an interspersion Class 1. Conversely, if the entire project area is open water, assign an interspersion Class 5.
SALINE MARSH

Variable V_4 Percent of open water area ≤ 1.5 feet deep, in relation to marsh surface.

Suitability Graph

Line Formulas

If $0 \leq \% < 70$, then $SI = (0.01286 \times \%) + 0.1$

If $70 \leq \% \leq 80$, then $SI = 1.0$

If $\% > 80$, then $SI = (-0.025 \times \%) + 3.0$
Variable V_5 Average annual salinity.

Suitability Graph

Line Formulas

If $9 \leq \text{ppt} \leq 21$, then $SI = 1.0$

If $\text{ppt} > 21$, then $SI = (-0.067 \times \text{ppt}) + 2.4$
SALINE MARSH

Variable V₆ Aquatic organism access.

Suitability Graph

Line Formula

\[SI = (0.9 \times \text{Access Value}) + 0.1 \]

Note: Access Value = P * R, where "P" = percentage of wetland area considered accessible by estuarine organisms during normal tidal fluctuations, and "R" = Structure Rating.

Refer to pages 33-36 for complete information on calculating the Access Value.
Marsh Edge and Interspersion Classes

Interspersion Class 1

Interspersion Class 2
Marsh Edge and Interspersion Classes

Interspersion Class 3

Interspersion Class 4
Procedure for Calculating Access Value

1. Determine the percent (P) of the wetland area accessible by estuarine organisms during normal tidal fluctuations for baseline (TY0) conditions. P may be determined by examination of aerial photography, knowledge of field conditions, or other appropriate methods.

2. Determine the Structure Rating (R) for each project structure as follows:

<table>
<thead>
<tr>
<th>Structure Type</th>
<th>Structure Rating</th>
</tr>
</thead>
<tbody>
<tr>
<td>Open system</td>
<td>1.0</td>
</tr>
<tr>
<td>Rock weir set at 1ft below marsh level (BML), w/ boat bay</td>
<td>0.8</td>
</tr>
<tr>
<td>Rock weir with boat bay</td>
<td>0.6</td>
</tr>
<tr>
<td>Rock weir set at ≥ 1 ft BML</td>
<td>0.6</td>
</tr>
<tr>
<td>Slotted weir with boat bay</td>
<td>0.6</td>
</tr>
<tr>
<td>Open culverts</td>
<td>0.5</td>
</tr>
<tr>
<td>Weir with boat bay</td>
<td>0.5</td>
</tr>
<tr>
<td>Weir set at ≥ 1 ft BML</td>
<td>0.5</td>
</tr>
<tr>
<td>Slotted weir</td>
<td>0.4</td>
</tr>
<tr>
<td>Flap-gated culvert with slotted weir</td>
<td>0.35</td>
</tr>
<tr>
<td>Variable crest weir</td>
<td>0.3</td>
</tr>
<tr>
<td>Flap-gated variable crest weir</td>
<td>0.25</td>
</tr>
<tr>
<td>Flap-gated culvert</td>
<td>0.2</td>
</tr>
<tr>
<td>Rock weir</td>
<td>0.15</td>
</tr>
<tr>
<td>Fixed crest weir</td>
<td>0.1</td>
</tr>
<tr>
<td>Solid plug</td>
<td>0.0001</td>
</tr>
</tbody>
</table>

For each structure type, the rating listed above pertains only to the standard structure configuration and assumes that the structure is operated according to common operating schedules consistent with the purpose for which that structure is designed. In the case of a "hybrid" structure or a unique application of one of the above-listed types (including unique or "non-standard" operational schemes), the WVA analyst(s) may assign an appropriate Structure Rating between 0.0001 and 1.0 that most closely approximates the relative degree to which the
structure in question would allow ingress/egress of estuarine organisms. In those cases, the rationale used in developing the new Structure Rating shall be documented.

3. Determine the Access Value. Where multiple openings equally affect a common "accessible unit", the Structure Rating (R) of the structure proposed for the "major" access point for the unit will be used to calculate the Access Value. The designation of "major" will be made by the Environmental Work Group. An "accessible unit" is defined as a portion of the total accessible area that is served by one or more access routes (canals, bayous, etc.), yet is isolated in terms of estuarine organism access to or from other units of the project area. Isolation factors include physical barriers that prohibit further movement of estuarine organisms, such as natural levee ridges, and spoil banks; and dense marsh that lacks channels, trenasses, and similar small connections that would, if present, provide access and intertidal refugia for estuarine organisms.

Access Value should be calculated according to the following examples (Note: for all examples, P for TY0 = 90%. That designation is arbitrary and is used only for illustrative purposes; P could be any percentage from 0% to 100%):

a. One opening into area; no structure.

 Access Value = P
 = .90

b. One opening into area that provides access to the entire 90% of the project area deemed accessible. A flap-gated culvert with slotted weir is placed across the opening.

 Access Value = P * R
 = .90 * .35
 = .32

c. Two openings into area, each capable by itself of providing full access to the 90% of the project area deemed accessible in TY0. Opening #2 is determined to be the major access route relative to opening #1. A flap-gated culvert with slotted weir is placed across opening #1. Opening #2 is left unaltered.

 Access Value = P
 = .90

Note: Structure #1 had no bearing on the Access Value calculation because its presence did not reduce access (opening #2 was determined to be the major access route, and access through that route was not altered).
d. Two openings into area. Opening #1 provides access to an accessible unit comprising 30% of the area. Opening #2 provides access to an accessible unit comprising the remaining 60% of the project area. A flap-gated culvert with slotted weir is placed across #1. Opening #2 is left open.

\[
\text{Access Value} = \text{weighted avg. of Access Values of the two accessible units} = \frac{[P_1*R_1] + [P_2*R_2]}{(P_1+P_2)}
\]

\[
= \frac{[.30*0.35] + [.60*1.0]}{(.30+.60)}
\]

\[
= (.11 + .60)/.90 = .71/.90 = .79
\]

Note: \(P_1 + P_2 = .90\), because only 90 percent of the study area was determined to be accessible at TY0.

e. Three openings into area, each capable of providing full access to the entire area independent of the others. Opening #3 is determined to be the major access route relative to openings #1 and #2. Opening #1 is blocked with a solid plug. Opening #2 is fitted with a flap-gated culvert with slotted weir, and opening #3 is left open.

\[
\text{Access Value} = P
\]

\[
= .90
\]

Note: Structures #1 and #2 had no bearing on the Access Value calculation because their presence did not reduce access (opening #3 was determined to be the major access route, and access through that route was not altered).

f. Three openings into area, each capable of providing full access to the entire area independent of the others. Opening #2 is determined to be the major access route relative to openings #1 and #3. Opening #1 is blocked with a solid plug. Opening #2 is fitted with a flap-gated culvert with slotted weir, and opening #3 is fitted with a fixed crest weir.

\[
\text{Access Value} = P * R_2
\]

\[
= .90 * .35
\]

\[
= .32
\]

Note: Structures #1 and #3 had no bearing on the Access Value calculation because their presence did not reduce access. Opening #2 was determined beforehand to be the major access route; thus, it was the flap-gated culvert with slotted weir across that opening that actually served to limit access.

g. Three openings into area. Opening #1 provides access to an accessible unit comprising 20% of the area. Openings #2 and #3 provide access to an accessible unit
comprising the remaining 70% of the area, and within that area, each is capable by itself of providing full access. However, opening #3 is determined to be the major access route relative to opening #2. Opening #1 is fitted with an open culvert, #2 with a flapgated culvert with slotted weir, and #3 with a fixed crest weir.

Access Value = \(\frac{[P_1*R_1] + [P_2*R_3]}{(P_1+P_2)}\)

\[= \frac{(.20*.5)+[.70*.35]}{(.20+.70)}\]
\[= (.10 + .25)/.90\]
\[= .35/.90\]
\[= .39\]

h. Three openings into area. Opening #1 provides access to an accessible unit comprising 20% of the area. Opening #2 provides access to an accessible unit comprising 40% of the area, and opening #3 provides access to the remaining 30% of the area. Opening #1 is fitted with an open culvert, #2 a flap-gated culvert with slotted weir, and #3 a fixed crest weir.

Access Value = \(\frac{[P_1*R_1]+[P_2*R_2]+[P_3*R_3]}{(P_1+P_2+P_3)}\)

\[= \frac{(.20*.5)+[.40*.35]+[.30*.1]}{(.20+.40+.30)}\]
\[= (.10+.14+.03)/.90\]
\[= .27/.90\]
\[= .30\]