

Geotechnical Investigation Data Report New Orleans Landbridge Shoreline Stabilization & Marsh Creation Project (PO-169) New Orleans, Louisiana S&ME Project No. 458517006

PREPARED FOR

Providence Engineering and Environmental Group LLC 1201 Main Street <u>Bat</u>on Rouge, Louisiana 70802

PREPARED BY

S&ME, Inc. 2736 O'Neal Lane, Suite A Baton Rouge, Louisiana 70816

October 24, 2017

October 24, 2017

Providence Engineering and Environmental Group LLC 1201 Main Street Baton Rouge, Louisiana 70802

Attention: Mr. Gary J. Leonards, P.E.

Reference: Geotechnical Investigation Data Report New Orleans Landbridge Shoreline Stabilization and Marsh Creation (PO-169) New Orleans, Louisiana S&ME Project No. 458517006

Dear Mr. Leonards:

S&ME, Inc. (S&ME) has completed a subsurface exploration for the New Orleans Landbridge Shoreline Stabilization and Marsh Creation (PO-169) project, in New Orleans, Louisiana. Our services were provided pursuant to S&ME's proposal, as authorized by the Coastal Protection and Restoration Authority (CPRA) under the CPRA and Providence Engineering and Environmental Services LLC (Providence Engineering) Engineering IDIQ Contract No. 2503-15-19 dated October 29, 2014, Task 4. The purpose of our services was to explore the subsurface conditions for the PO-169 project and provide geotechnical engineering recommendations for shoreline stabilization and marsh creation design. This geotechnical investigation data report (GIDR) presents our understanding of the project, field exploration methods, and laboratory testing results. Engineering analyses and recommendations will be provided in a separate Geotechnical Engineering Report at a later date.

S&ME appreciates the opportunity to be of service to Providence Engineering. Please contact us if you have any questions.

Sincerely,

S&ME, Inc.

Venu Tammineni, P.E. Senior Engineer

Senior Reviewer: Kyle Murrell, P.E.

Gerald J. Hauske, P.E. Principal Engineer

Table of Contents

1.0	Project Information1
2.0	Site Conditions1
3.0	Field Exploration and Laboratory Testing1
3.1	Field Exploration1
3.2	Laboratory Testing4
4.0	CPT Sounding Results
5.0	Limitations

List of Tables

Table 1, Soil Boring Location Summary	2
Table 2, CPT Sounding Location Summary	3

Appendices

Appendix I – Figures and Survey Information Appendix II –Soil Borings Logs and CPT Sounding Logs Appendix III – Laboratory Testing Results

1.0 Project Information

The project is located in Region 1, Pontchartrain Basin, Orleans Parish flanking U.S. Highway 90 along the east shore of Lake Pontchartrain and areas surrounding Lake St. Catherine.

Approximately 169 acres of marsh will be created and an additional 109 acres nourished using borrow material dredged from areas within Lakes Pontchartrain and St. Catherine. Earthen containment dikes will be constructed around four separate marsh creation areas to retain sediment during placement of hydraulic fill. The lake shorelines will be enhanced with an embankment stabilization berm to add additional protection from wind induced wave fetch. No water control structures are currently planned for the project. A map showing the project vicinity is included in Figure 1, and field exploration test locations completed for the project are shown on Figure 2 under Appendix I.

All vertical elevations in this report are referenced in feet to the North American Vertical Datum of 1988 (NAVD88), Geoid 12A. The horizontal datum is NAD83 State Plane, U.S. Feet.

2.0 Site Conditions

The project area was predominantly open water with areas of emergent marsh at the time of the July 2017 field exploration. During the reconnaissance site visit, S&ME observed a delineation adjacent to U.S. Highway 90 between higher elevation, fresh water vegetation and lower elevation, salt/brackish water vegetation species. S&ME also observed a variation in the vegetation from south to north along the marsh creation cell adjacent to Lake Pontchartrain. In the remaining cells, the vegetation was predominantly salt/brackish water vegetation. Based on survey information provided to S&ME and measurements at the field exploration locations, the water depth typically varied from 1.3 feet to 4.6 feet within the marsh creation areas and from 5.6 to 16 feet in the borrow areas.

Based on information provided by CPRA and that available on the National Pipeline Mapping System public viewer site, there are no known pipelines identified in the proposed marsh creation areas and borrow areas. However, we recommend CPRA complete a thorough utility search in the area prior to the final design.

3.0 Field Exploration and Laboratory Testing

3.1 Field Exploration

Field exploration program for the project included drilling and soil sampling at 8 locations in the marsh creation areas with depths varying from 30 to 50 feet below existing mudline and 7 locations in the proposed borrow areas to a depth of 20 feet below existing mudline. In addition to the soil borings, cone penetration test (CPT) soundings were completed at 20 locations in the marsh creation areas. The planned termination depth for the soundings was 30 feet below existing mudline. However, due to sand layers, the CPT soundings refused at depths varying from 18 feet to 30 feet below existing mudline. Field exploration locations and depths were provided by

CPRA. Soil borings and CPT sounding locations were staked and surveyed by Providence Engineering, and a magnetometer survey was also completed by Providence Engineering to clear a 30 feet radius at each soil boring and CPT sounding location prior to mobilization of drilling equipment to site. S&ME probed around each boring and CPT sounding to check for any utilities and underground obstructions prior to performing the explorations.

The borings and soundings were completed in open water with water depths varying from approximately 1.3 feet to 4.6 feet in the marsh creation areas and approximately 5.6 feet to 16 feet in the borrow areas. CPT soundings were performed by S&ME personnel from June 14 through June 16, 2017, using an airboat mounted Geoprobe rig. Soil borings in the marsh creation areas were completed from July 12 through July 14, 2017, using a drill rig mounted on tracked amphibious platform, and borrow area soil borings were performed on July 17, 2017, using a pontoon mounted drill rig. All soil borings were sampled continuously for the top 20 feet, and then at 5-foot centers to the respective boring completion depths. Surveyed mudline elevations provided by Providence Engineering at the soil boring locations in the marsh creation areas varied from elevation (El.) -0.5 feet to El. -3.8 feet, and the borrow areas varied from El. -5.1 feet to El. -15.47 feet. Mudline elevations at the CPT sounding locations varied from El. -0.2 feet to El. -3.8 feet.

Soil borings were drilled using wet rotary methods. Soil sampling was performed using thin-walled tube samples (ASTM D1587) in cohesive and semi-cohesive soil and Standard Penetration Test (SPT) (ASTM D1586) in cohesionless soil. In cohesive and semi-cohesive soil, a thin-walled tube sampler was hydraulically pushed into the ground approximately 24 inches per specimen using an Osterberg piston sampler. Split-spoon samples were collected for cohesionless soil with a 24 inch split-spoon that was driven approximately 18 inches. Blow counts were recorded for each 6-inch increment, and the number of blows to penetrate the last 12 inches is considered as the SPT N-value. Soil borings were grouted upon completion in accordance with Louisiana DNR requirements.

Immediately upon recovery, each sample was classified in the field by our sub-consultant's (APS Engineering and Testing, LLC (APS)) field representative based on soil exposed on both ends of the thin-walled tube. Each thin-walled tube was then sealed and stored/transported by APS in a vertical position to their laboratory in Baton Rouge, Louisiana. Thin-walled tubes were secured bottom down during transportation to minimize sample disturbance. A summary of soil boring locations, depths, and mudline elevations is presented in Table 1.

	Termination Depth	Survey Information Provided by Providence Engineering					
Location	(feet, Below Mudline)	Mudline Elevation (feet)	Northing	Easting			
B-1	20	-11.5	608845	3779541			
B-2	20	-15.5	608270	3778170			
B-3	20	-9.4	608081	3779456			
B-4	20	-13.4	602294	3787979			
B-5	20	-6.1	601458	3788752			
B-6	20	-5.1	600622	3789411			
B-7	30	-2.4	606513	3783587			

Table 1, Soil Boring Location Summary

	Termination Depth	Survey Information Provided by Providence Engineering						
Location	(feet, Below Mudline)	Mudline Elevation (feet)	Northing	Easting				
B-8	50	-3.8	604802	3783260				
B-9	30	-1.5	607836	3785708				
B-10	30	-1.4	605056	3786442				
B-11	50	-2.8	603025	3785971				
B-17	30	-0.5	601597	3792182				
B-18	50	-2.4	599857	3792698				
B-19	30	-0.6	595460	3778113				
B-20	20	-6.0	595459	3779694				

CPT soundings were conducted using GeoProbe direct push equipment and VERTEK cones, rods, and data collection software. The push unit was mounted to a single-engine airboat. CPT soundings were conducted in general accordance with applicable ASTM standards using a 1.75-inch or 1.44-inch diameter piezo-cone with a pore pressure transducer. The CPT sensor was pushed into the subgrade at a rate of approximately 2 centimeters per second collecting tip pressure, side friction pressure, and pore pressure at one second intervals for the entire depth of the sounding. Additional specifications for S&ME's cone penetrometer are provided in the "Cone Penetrometer-Specifications" sheets in Appendix II. A summary of CPT sounding locations, termination depths and mulline elevations is presented in Table 2.

	Termination Depth	Termination Depth Survey Information Provided 1					
Location	(feet, Below Mudline)	Mudline Elevation (feet)	Northing	Easting			
C-1	20.1	-1.8	607736	3782769			
C-2	17.3	-2.9	607039	3783159			
C-3	17.1	-2.4	605814	3783274			
C-4	19.3	-3.8	604802	3783260			
C-5	19.4	-2.1	604432	3782868			
C-6	20.0	-2.4	603699	3782502			
C-7	21.5	-2.0	607051	3785539			
C-8	20.7	-3.6	606805	3786683			
C-9	22.9	-2.9	605777	3786685			
C-10	18.5	-1.4	605056	3786442			
C-11	19.0	0.4	604832	3785822			

Table 2, CPT Sounding Location Summary

	Termination Depth	Survey Information Provided by Providence Engineering					
Location	(feet, Below Mudline)	Mudline Elevation (feet)	Northing	Easting			
C-12	27.0	-2.4	603932	3786290			
C-13	29.7	-2.8	603025	3785971			
C-14	19.1	0.1	602284	3791077			
C-15	21.9	-0.7	602409	3793703			
C-16	22.7	-0.2	601225	3791302			
C-17	18.2	-1.8	601311	3793410			
C-18	20.4	-2.4	600602	3792094			
C-19	22.4	-1.9	600467	3793197			
C-20	24.4	-2.5	599857	3792698			

In addition to the soil borings and CPTs completed by S&ME for the project, there are existing United States Army Corps of Engineers (USACE) soil borings (B-3U, B-5U, B-6U, 1-RU, B-8U, B-8-AU, X-12-U, and X-14-U) within and in the vicinity of the project area boundaries as shown in Figure 2 under Appendix I. Soil boring information for USACE soil borings B-3U, B-5U, B-6U, and B-8U was provided by CPRA and is included in Appendix II.

3.2 Laboratory Testing

Soil samples obtained during the field exploration were packaged and transported to a soil mechanics laboratory for extrusion, examination and classification by a geotechnical engineer in order to confirm the field descriptions of the soil strata. Upon extrusion, soil samples were classified visually in general accordance with the Unified Soil Classification System (ASTM D2488). S&ME assigned testing for representative soil samples based on information in the extrusion logs to aid in soil classification and determine the engineering properties of the soils. The laboratory testing program included compressive strength determination (ASTM D2166/D2850), Atterberg Limits (ASTM D4318), moisture content (ASTM D2216), organic content (ASTM D2974), specific gravity (ASTM D854) and soil gradation (ASTM D422) tests. Laboratory test results are presented on the soil boring logs in Appendix II at the depth of the individually tested soil sample. Stress-strain plots, gradation charts, and consolidation test data are provided in the Appendix III.

Based on discussion and collaboration with CPRA, S&ME prepared a composite soil sample from the soil samples obtained in the Lake Pontchartrain borrow area borings (B-1, B-2, and B-3) and a second composite soil sample from Lake St. Catherine borrow area borings (B-4, B-5, & B-6). Based on discussion with CPRA, soil boring B-20 was not used in preparing composite samples. Two settling column tests were completed on the composite soil samples at SCTCS Group LLC (SCTCS) by Dr. William M. Moe, Ph.D, P.E., with assistance from CPRA and S&ME. The SCTCS report titled "Settling Properties of Fine-Grained Sediments Which May be Hydraulically Dredged: New Orleans Landbridge Shoreline Stabilization & Marsh Creation Project (PO-169)" for settling column tests is included in Appendix III. A total of two low-stress consolidation tests were completed on the composite soil samples. A report provided by APS for the low stress consolidation tests is included in Appendix III.

4.0 CPT Sounding Results

Data obtained using CPT equipment is interpreted to a soil behavior type using the tip resistance, local sleeve friction, and pore pressure measurements. The CPT data is used to determine soil stratigraphy and to estimate soil parameters such as preconsolidation stress, friction angle, and undrained shear strength. Dissipation tests were also performed at selected depths by recording pore pressure readings with time. Pore pressure readings and dissipation tests are used to determine the piezometric head as well as a soil's coefficient of consolidation and hydraulic conductivity. A total of six dissipation tests were completed for the project. However, due to very soft soils and soil layering, only three locations yielded curves from which coefficient of consolidation values can be estimated. See Appendix III for dissipation test results.

CPT sounding information was processed using Dataforensic's RapidCPT add-in to the soil data presentation software gINT. Soil stratigraphy was identified using Robertson and Campanella's non-normalized soil behavior type (SBT) charts. Due to the variation of soil properties across the site, the non-normalized SBT charts are providing a better correlation relative to normalized SBT charts for this project site. CPT sounding logs are provided in Appendix II.

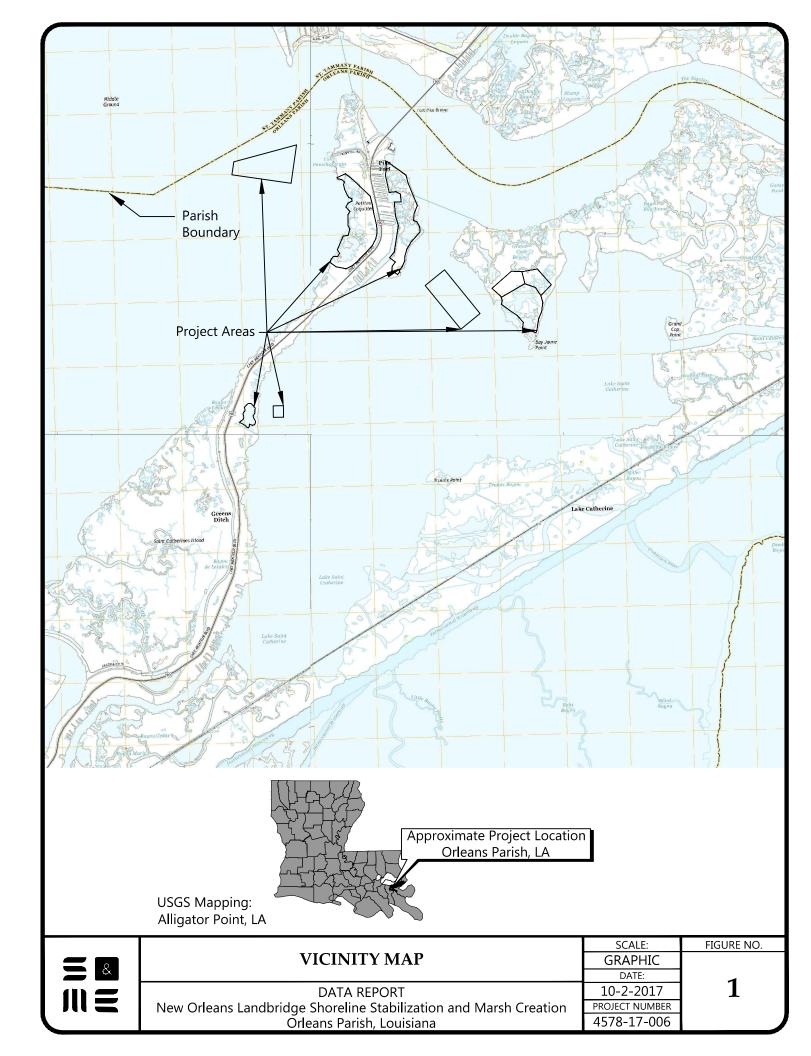
Shear strength versus depth plots are being prepared for the CPT soundings and will be provided in the Geotechnical Engineering Report at a later date.

5.0 Limitations

This GIDR has been prepared in accordance with generally accepted geotechnical engineering practice for specific application to this project. The information contained in this GIDR is based on applicable standards of our practice in this geographic area at the time this report was prepared. No other representation or warranty, either express or implied, is made.

We relied on project information given to us to develop scope of services and prepare this report. Subsurface conditions can vary widely between explored areas. Some variations may not become evident until construction. Soil samples that were not altered by laboratory testing will be retained for 60 days from the date of this report and then will be discarded.

Unless specifically noted otherwise, our field exploration program did not include an assessment of regulatory compliance, environmental conditions or pollutants, or the presence of any biological materials (mold, fungi, and bacteria). If there is a concern about these items, other studies should be performed. S&ME can provide a proposal and perform these services, if requested. No warranty or other conditions expressed or implied should be understood.


Appendices

Appendix I – Figures and Survey Information

Figure 1 – Vicinity Map

Figure 2 - Field Exploration Location Plan

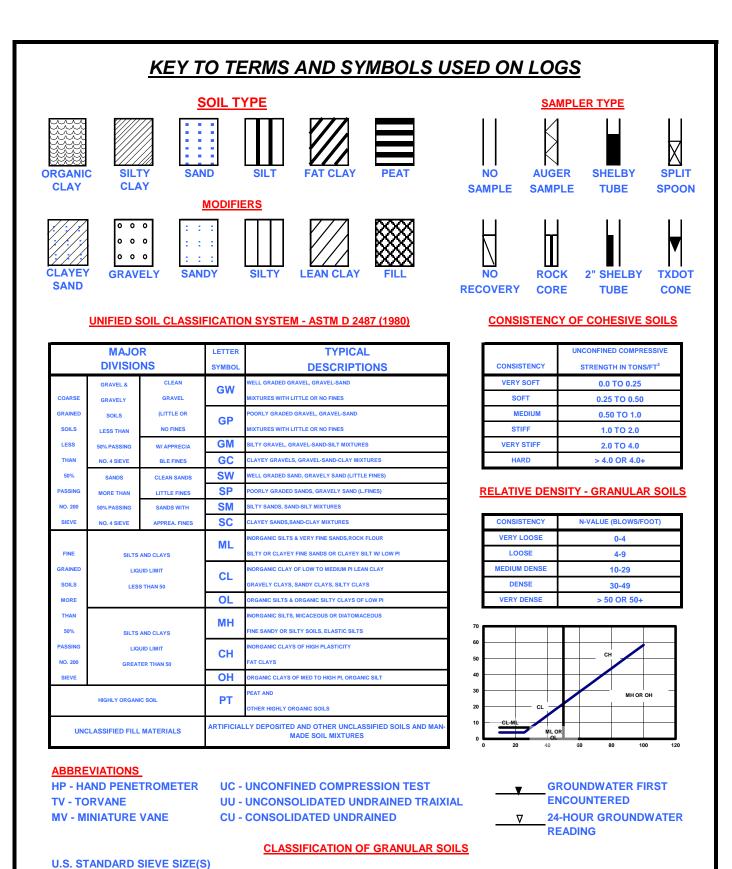
Survey Information from Providence Engineering and Environmental Services LLC

No. 1			1		SK ME
	Care and the second sec	Location	Termination Depth (feet, Below Mudline)	Northing	Easting
		B-1	20	608845	3779541
		B-2	20	608270	3778170
		B-3	20	608081	3779456
	1 miles	B-4	20	602294	3787979
	Chef Menteur Highway	B-5	20	601458	3788752
÷ ×	(Hwy 90)	B-6	20	600622	3789411
		B-7	30	606513	3783587
	R.G. X-12-U	B-8	50	604802	3783260
	X-14-U	B-9	30	607836	3785708
		B-10	30	605056	3786442
Lake Pontchartrain		B-11	50	603025	3785971
		B-17	30	601597	3792182
		B-18	50	599857	3792698
	8-8-AU B-8U	B-19	30	595460	3778113
		B-20	20	595459	3779694
		C-1	20.1	607736 607039	3782769 3783159
<u>6</u> 3		C-2 C-3	17.3 17.1	605814	3783274
		C-3	17.1	604802	3783260
		1	19.4	604432	3782868
		C-6	20	603699	3782502
		C-7	21.5	607051	3785539
		C-8	20.7	606805	3786683
		C-9	22.9	605777	3786685
		C-10	18.5	605056	3786442
i i i i i i i i i i i i i i i i i i i	— Approximate	C-11	19	604832	3785822
.870	Pipeline Location	C-12	27	603932	3786290
and the second sec		C-13	29.7	603025	3785971
		C-14	19.1	602284	3791077
NO.	Lake St. Catherine	C-15	21.9	602409	3793703
		C-16	22.7	601225	3791302
		C-17	18.2	601311	3793410
		C-18	20.4	600602	3792094
	Logond	C-19	22.4	600467	3793197
4 B- 19 B- 201	Legend	C-20	24.4	599857	3792698
	Resource Agency Containment Dike Alignment				
	Proposed S&ME Containment Dike Alignment				
	Approximate Soil Boring Locations				12 24
	↓ ^{C-1} Approximate CPT Locations	1000	425	and the second	1
				24	N I W
		- Alert	A	1	Sec. V
	 Notes Field Exploration Locations are Referenced to NAD83, Louisiana South State Plane Zone 1702, US Feet Aerial Imagery Recorded in 2017 Approximate Pipeline Location based on information from National Pipeline Mapping System website using public view. Actual location will need to be confirmed. 				
			and a second		10 mm

		SCALE:	FIGURE NO.
	Field Exploration Location Plan	1:3000	
		DATE:	•
m =	Data Report	10-2-2017	2
	New Orleans Landbridge Shoreline Stabilization and Marsh Creation	PROJECT NUMBER	
	Örleans Parish, Louisiana	4585-17-006	

NEW ORLEANS LANDBRIDGE PO 169 HORIZONTAL DATUM: NAD83 STATE PLANE, US. FEET. VERTICAL DATUM: NAVD88 (GEIOD 12A) REFERENCE CONTROL CRMSPO SM25

PT. NUM	NORTHING	EASTING	ELEVATION (FT.)	DESCRIPTION	WATER DETPTH (FT.)	DATE
2	618174.14	3792271.06	6.34	CRMSPO SM 25		
20	606513.00	3783587.00	-2.40	B7	3.2	6/13/2017
21	604802.00	3783260.00	-3.80	B8	4.6	6/13/2017
22	607836.00	3785708.00	-1.50	B9	2.4	6/13/2017
23	605056.00	3786442.00	-1.40	B10	2.2	6/13/2017
24	601597.00	3792182.00	-0.50	B17	1.3	6/13/2017
25	600602.00	3792094.00	-2.40	B18	3.2	6/13/2017
26	595460.00	3778113.00	-0.60	B19	1.6	6/13/2017
27	607736.00	3782769.00	-1.80	C1	2.6	6/13/2017
28	607039.00	3783159.00	-2.90	C2	3.7	6/13/2017
29	605814.00	3783274.00	-2.39	C3	3.2	6/13/2017
30	604802.00	3783260.00	-3.80	C4	4.6	6/13/2017
31	604432.00	3782868.00	-2.10	C5	2.9	6/13/2017
32	603699.00	3782502.00	-2.40	C6	3.2	6/13/2017
33	607051.00	3785539.00	-2.00	C7	2.9	6/13/2017
34	606805.00	3786683.00	-3.60	C8	4.5	6/13/2017
35	605777.00	3786685.00	-2.90	C9	3.8	6/13/2017
36	605056.00	3786442.00	-1.40	C10	2.3	6/13/2017
37	604832.00	3785822.00	0.40	C11	1.3	6/13/2017
38	603932.00	3786290.00	-2.40	C12	3.2	6/13/2017
39	603025.00	3785971.00	-2.80	C13	3.7	6/13/2017
40	602284.00	3791077.00	0.10	C14	1.3	6/13/2017
41	602409.00	3793703.00	-0.70	C15	1.9	6/13/2017
42	601225.00	3791302.00	-0.20	C16	1.4	6/13/2017
43	601311.00	3793410.00	-1.80	C17	3.0	6/13/2017
44	600602.00	3792094.00	-2.40	C18	3.6	6/13/2017
45	600467.00	3793197.00	-1.90	C19	3.1	6/13/2017
46	599857.00	3792698.00	-2.50	C20	3.7	6/13/2017
150	608845.00	3779541.00	-11.51	B1	12.1	7/10/2017
151	608270.00	3778170.00	-15.47	B2	16.0	7/10/2017
152	608081.00	3779456.00	-9.39	B3	10.0	7/10/2017
153	602294.00	3787979.00	-13.41	B4	13.9	7/10/2017
154	601458.00	3788752.00	-6.08	B5	6.6	7/10/2017
155	600622.00	3789411.00	-5.09	B6	5.6	7/10/2017
156	595459.00	3779694.00	-6.00	B20	6.3	7/10/2017


Appendix II–Soil Borings Logs and CPT Sounding Logs

Legend to Soil Classification and Symbols

Soil Boring Logs

CPT Sounding Logs

Cone Penetrometer-Specifications

3/4" 40 200 4 10 6" 3" BOUL GRAVEL SAND SILT OR CLAY CLAY **COBBLES** -DERS COARSE FINE COARSE MEDIUM FINE 152 76.2 19.1 4.76 0.42 0.074 0.002 2.0 **GRAIN SIZE IN MM**

km

BORING NO.: B-1

PROJECT: New Orleans Landbridge Marsh Creation PROJECT LOCATION: Orleans Parish, Louisiana BORING LOCATION: N608845.00 E3779541.00 DATE DRILLED:7/17/2017 WATER DEPTH: 12.10 feet GEOL/ENGR: MB/SA

PROJECT NO.: 1706-G038 METHOD: MUD DRILLING BORING ELEVATION: -11.51 feet DATE COMPLETED: 07/17/2017 WATER LEVEL DATE: 07/17/2017 DRILLER: CZ

DEPTH (FEET)	SAMPLE	TORVANE (PSF)	Moisture Content (%)	LL	PI	Symbol	MATERIAL CLASSIFICATION			
		100	35	47	31		Very Loose Gray Clayey Sand (SC) @ 0'-2': -200 = 32.10%			
		100	42	30	11		Very Loose Gray Clayey Sand (SC) @ 2'-4': -200 = 47.50% - 3" of Wood at mid sample			
- 5 -		100	92	91	71		Very Soft Gray Fat Clay (CH) with Fine Sand Pockets & Organics			
		100	60	46	28		Very Soft Gray Lean Clay (CL) with Fine Sand			
		150	65				Very Soft Gray Lean Clay (CL) with Fine Sand @ 8'-10': -200 = 65.90%			
		100	65	79	60		Very Soft Gray Fat Clay (CH)			
		100	84				Very Soft Gray Fat Clay (CH)			
- 15 -		150	55	75	56		Very Soft Gray Fat Clay (CH) with Sand Lenses			
		100	88				Very Soft Gray Fat Clay (CH) with traces of Fine Sand			
		100	72	125	98		Very Soft Gray Fat Clay (CH) with Fine Sand Lenses			
							Boring terminated @ 20 feet Boring grouted upon completion Elevation: NAVD 88			
	25 COMMENTS: Shelby Tube									
	APS Engineering and Testing, LLC									

BORING NO.: B-2

PROJECT: New Orleans Landbridge Marsh Creation
PROJECT LOCATION: Orleans Parish, Louisiana
BORING LOCATION: N608270.00 E3778170.00
DATE DRILLED:7/17/2017
WATER DEPTH:16.00 feet
GEOL/ENGR: MB/SA

PROJECT NO.: 1706-G038 METHOD: MUD DRILLING BORING ELEVATION: -15.47 feet DATE COMPLETED: 07/17/2017 WATER LEVEL DATE: 07/17/2017 DRILLER: CZ

DEPTH (FEET)	SAMPLE	TORVANE (PSF)	Moisture Content (%)	LL	PI	Symbol	MATERIAL CLASSIFICATION		
		50	44	31	8		Very Soft Gray Sandy Lean Clay (CL)		
		100	40				Very Loose Gray Silty Sand (SM) with Clay Pockets @ 2'-4': -200 = 31.30%		
		100	34				Very Loose Gray Silty Sand (SM) with Clay Pockets @ 4'-6': -200 = 37.50%		
		150	50				Very Loose Gray Silty Sand (SM) with Clay Pockets @ 6'-8': -200 = 47.50%		
		100	44	32	14		Very Soft Sandy Silty Clay (CL) @ 8'-10': -200 = 42.70%		
— 10 — 		150	34	77	61		Very Loose Gray Clayey Sand (SC) transitioned to Sandy Clay @ 10'-12': -200 = 28.70% Atterbergs Performed		
		200	34				Very Loose Gray Silty Clayey Sand (SM) @ 12'-14': -200 = 30.70%		
 - 15 -		150	38				Very Loose Gray Silty Sand (SM) transitioned to Clayey Sand (SC) @ 14'-16': -200 = 30.10%		
		200	152	45	28		Very Loose Gray Clayey Sand (SC) @ 16'-18': -200 = 26.80% Intermittent Clay Layers - Atterbergs Performed		
		100	79				Very Loose Gray Sandy Silt (ML) with Clay Lenses @ 18'-20': -200 = 64.50%		
- 20 - 							Boring terminated @ 20 feet Boring grouted upon completion Elevation: NAVD 88		
	COMMENTS:								
Shelby	Tube			-AF	PS I	End	gineering and Testing, LLC		

BORING NO.: B-3

PROJECT: New Orleans Landbridge Marsh Creation PROJECT LOCATION: Orleans Parish, Louisiana BORING LOCATION: N608081.00 E3779456.00 DATE DRILLED:7/17/2017 WATER DEPTH: 10.00 feet GEOL/ENGR: MB/SA

PROJECT NO.: 1706-G038 METHOD: MUD DRILLING BORING ELEVATION: -9.39 feet DATE COMPLETED: 07/17/2017 WATER LEVEL DATE: 07/17/2017 DRILLER: CZ

	DEPTH (FEET)	SAMPLE	TORVANE (PSF)	Moisture Content (%)	LL	ΡI	Symbol	MATERIAL CLASSIFICATION	
_				39				Soft Gray Silty Clay (CL-ML)	
_	_	-	200	34				Very Loose Gray Silty Sand (SM) @ 2'-4': -200 = 35.20%	
_	5 —	_	150	36				Very Loose Gray Silty Sand (SM) @ 4'-6': -200 = 37.00%	
_	_	_	150	31				Very Loose Gray Silty Sand (SM) @ 6'-8': -200 = 34.20% transitioned to Fat Clay (CH)	
_	- 10 -		150	105	107	81		Very Soft Gray Fat Clay (CH)	
_	-	-	150	98	89	66		Very Soft Gray Fat Clay (CH) transitioned to 8" Sand	
_	_	-	200	29				Very Loose Gray Silty Sand (SM) @ 12'-14': -200 = 12.40% transitioned to Gray Clay	
_	15 —	-	150	106	73	51		Very Soft Gray Fat Clay (CH) with Fine Sand Lenses	
_	_	-	100	28	119	96		Very Soft Gray Fat Clay (CH) with Sand Lenses transitioned to Silty Sand (SM) @ 16'-18': -200 = 10.00%	
_	- 20 -		150	51				Very Loose Gray Silty Sand (SM) @ 18'-20': -200 = 39.50% transitioned to Gray Clay with Sand Lenses	
_	_	-						Boring terminated @ 20 feet Boring grouted upon completion Elevation: NAVD 88	
_	-								
	COMMENTS: Shelby Tube								
					-AF	PS	Eng	gineering and Testing, LLC	

BORING NO.: B-4

PROJECT: New Orleans Landbridge Marsh Creation **PROJECT LOCATION:** Orleans Parish, Louisiana **BORING LOCATION:** N602294.00 E3787979.00 **DATE DRILLED:**7/17/2017 **WATER DEPTH:** 13.90 feet **GEOL/ENGR:** MB/SA

PROJECT NO.: 1706-G038 METHOD: MUD DRILLING BORING ELEVATION: -13.41 feet DATE COMPLETED: 07/17/2017 WATER LEVEL DATE: 07/17/2017 DRILLER: CZ

DEPTH (FEET)	SAMPLE	TORVANE (PSF)	Moisture Content (%)	LL	PI	Symbol	MATERIAL CLASSIFICATION
		100	116	102	80		Very Soft Gray Fat Clay (CH) with Fine Sand Pockets
		100	89	93	69		Very Soft Gray Fat Clay (CH) with Fine Sand Lenses
 _ 5 _		150	61				Very Soft Gray Fat Clay (CH) with Fine Sand Lenses
		250	59	69	47		Very Soft to Soft Gray Fat Clay (CH) with traces of Fine Sand
		150	87				Very Soft Gray Fat Clay (CH) with Fine Sand Lenses
10 		250	59	54	27		Very Soft to Soft Tan & Gray Fat Clay (CH) - with traces of Organics
		400	33				Soft Tan & Gray Fat Clay (CH) - with 5" of Silty Clay (CL-ML) at the bottom
 - 15 -		500	33	64	43		Soft Tan & Gray Fat Clay (CH) - with Silt Pockets and Lenses at the bottom 5"
		350	35	85	59		Soft Tan & Gray Fat Clay (CH) with Fine Sand lenses
		400	33	66	42		Soft Tan & Gray Fat Clay (CH)
— 20 — 							Boring terminated @ 20 feet Boring grouted upon completion Elevation: NAVD 88
	ENTS	;					
Shelby	Tube						
				-AF	PSI	Eng	gineering and Testing, LLC

BORING NO.: B-5

PROJECT: New Orleans Landbridge Marsh Creation PROJECT LOCATION: Orleans Parish, Louisiana BORING LOCATION: N601458.00 E3788752.00 DATE DRILLED:7/17/2017 WATER DEPTH: 6.60 feet GEOL/ENGR: MB/SA

PROJECT NO.: 1706-G038 METHOD: MUD DRILLING BORING ELEVATION: -6.10 feet DATE COMPLETED: 07/17/2017 WATER LEVEL DATE: 07/17/2017 DRILLER: CZ

DEPTH (FEET)	SAMPLE	TORVANE (PSF)	Moisture Content (%)	LL	PI	Symbol	MATERIAL CLASSIFICATION
							Very Soft Gray Fat Clay (CH)
		40	70	62	44		
						<u>II</u>	- with traces of Sand & Organics at the bottom
		100					Very Soft Gray Fat Clay (CH)
		100	148	140	103		- with Organics at the bottom 4"
							Very Soft Gray Fat Clay (CH) with Organics
_ 5 _		150	55	65	45		transitioned to Gray Lean Clay (CL)
							Very Soft Gray Lean Clay (CL) with Fine Sand Pockets
		150	44	39	15		
							Very Soft Gray Lean Clay (CL)
			45				
- 10 -							- with traces of Fine Sand at the bottom
10							Very Soft Gray Fat Clay (CH)
		200	54	61	42		- with traces of Fine Sand at the bottom
	-						Very Soft Gray Lean Clay (CL)
		150	56	47	28		very cont only (or)
		150	50	47	20		
							Medium Stiff Gray Fat Clay (CH) with Sand & Shell Pockets
- 15 -		600	37	69	50		
							transitioned to Tan & Gray Fat Clay (CH)
							Medium Stiff to Soft Gray Fat Clay (CH) with traces of Shells
		500	51				
						\mathcal{H}	Soft Tan & Gray Fat Clay (CH)
		450	46				
		-50	0				
- 20 -							Boring terminated @ 20 feet
	-						Boring grouted upon completion Elevation: NAVD 88
	1						
	-						
- 25 -							
СОММ							
Shelby	y Tube						
						_	
I				-AF	S	Eng	gineering and Testing, LLC

BORING NO.: B-6

PROJECT: New Orleans Landbridge Marsh Creation **PROJECT LOCATION:** Orleans Parish, Louisiana **BORING LOCATION:** N600622.00 E3789411.00 **DATE DRILLED:**7/17/2017 **WATER DEPTH:** 5.60 feet **GEOL/ENGR:** MB/SA

PROJECT NO.: 1706-G038 METHOD: MUD DRILLING BORING ELEVATION: -5.09 feet DATE COMPLETED: 07/17/2017 WATER LEVEL DATE: 07/17/2017 DRILLER: CZ

GEOL	<u>'ENGR: MB/</u>	<u>5</u> A		1		DRILLER: UZ
DEPTH (FEET)	H TORVANE W (PSF)	Moisture Content (%)	LL	PI	Symbol	MATERIAL CLASSIFICATION
	25	109	69	51		Very Soft Dark Gray Fat Clay (CH)
	50	90	63	42		Very Soft Dark Gray Fat Clay (CH)
_ 5 _	100	69	45	23		Very Soft Gray Lean Clay (CL) with traces of Organics - with Pockets of Fine Sand
	100	45	44	22		Very Soft Gray Lean Clay (CL) with Sand Pockets
 10 _	200	56	67	47		Very Soft Gray Fat Clay (CH) - with Shells
	150	61	71	51		Very Soft Gray Fat Clay (CH) with Pockets of Shell Fragments at the top
	200	51	66	46		Very Soft Gray Fat Clay (CH) with Pockets of Shells - traces of Silt at the bottom
— 15 —	200	51	52	33		Very Soft Gray Fat Clay (CH) - with 5" of Fine Sand at the bottom
	300	58				Soft Gray Fat Clay (CH) - with 5" of Fine Sand at the bottom
	450	33				Soft Tan & Gray Fat Clay (CH) with traces of Fine Sand
						Boring terminated @ 20 feet Boring grouted upon completion Elevation: NAVD 88
COMMEN		1	1	1		
	upe					
l			-AF	S	Eng	gineering and Testing, LLC

BORING NO.: B-7

PROJECT: New Orleans Landbridge Marsh Creation **PROJECT LOCATION:** Orleans Parish, Louisiana BORING LOCATION: N606513.00 E3783587.00 **DATE DRILLED:**7/12/2017 **WATER DEPTH: 3.20** feet **GEOL/ENGR:** SP/SA

PROJECT NO.: 1706-G038 **METHOD:** MUD DRILLING **BORING ELEVATION:** -2.40 feet **DATE COMPLETED:** 07/12/2017 **WATER LEVEL DATE:** 07/12/2017 DRILLER: CZ

	ENGR: SF/S	<u> </u>	1	1	-	DINLLEN, CE
DEPTH (FEET)	Standard Penetration (Blows/Ft.) or Penetrometer (TSF)	Moisture Content (%)	Dry Unit Weight (PCF)	LL	PI	MATERIAL CLASSIFICATION
		146	36			Soft Gray Fat Clay (CH) - with Organics @ 0'-2': C = 303 psf @ 0.71 psi confining pressure
_		81	55			Soft Gray Fat Clay (CH) - with Organic Pockets @ 2'-4': C = 261 psf @ 1.26 psi confining pressure
5 —		63	65	100	70	Soft Gray Fat Clay (CH) @ 4'-6': C = 301 psf @ 1.80 psi confining pressure
-		71	61			Very Soft Gray Fat Clay (CH) @ 6'-8': C = 140 psf @ 1.88 psi confining pressure @ 6'-8':- 200: 57.60% transitioned to Sand at the bottom
- 10 —	0.25	41				Gray Sand @ 8'-10': - 200: 95.80% transitioned to Gray Clay with Sand
-		66	63	63	41	Very Soft Gray Fat Clay (CH) @ 10'-12': C = 206 psf @ 3.87 psi confining pressure
_	0.25	57				Very Soft Gray Fat Clay (CH)
15 —		39	74			Very Soft Gray Clay with Fine Sand @ 14'-16': C = 158 psf @ 5.03 psi confining pressure
_		28	97	44	25	Stiff Gray Lean Clay (CL) with Fine Sand @ 16'-18': C = 1037 psf @ 5.75 psi confining pressure
		29				Gray Silty Sand (SM) @ 18'-20': -200 = 29.80%
		29				
 25		35				Gray Poorly Graded Sand with Clay (SP-SC) @ 23'-25': -200 = 9.40%
30	6-7-9					Medium Dense Gray Silty Sand (SM) - with traces of Clay @28'-30': -200 = 25.10%
						Boring terminated @ 30 feet Boring grouted upon completion Elevation: NAVD 88
	N					
Shelby T	ube S	Split Spoon				
			-APS	S En	gir	eering and Testing, LLC

PROJ PROJ BORI DATE WATI	iec Iec Ng E Df Er I	T LOCA	Orleans TION: ON: N 7/12/20 :3.20 fe	Orlea 6065)17	ans I	Paris	Marsh Creation h, Louisiana 3783587.00
DEPTH (FEET)	SAMPLE	Moisture Content (%)	Dry Unit Weight (PCF)	LL	PI	Symbol	MATERIAL CLASSIFICATION
		68 61	61 67	102	75		Very Soft Gray Clay - with Organics @ 0-2: C = 189 psf @ 0.44 psi confining pressure Very Soft Gray Fat Clay (CH) @ 2-4: Organics = 4.60% @ 2-4: C = 239 psf @ 1.51 psi confining pressure Tested for Consolidation & Specific Gravity Boring terminated @ 4 feet Boring grouted upon completion Elevation: NAVD 88
COMME Shelby		:		<u> </u>	AF	PS I	Engineering and Testing, LLC

BORING NO.: B-8

PROJECT: New Orleans Landbridge Marsh Creation PROJECT LOCATION: Orleans Parish, Louisiana BORING LOCATION: N604802.00 E3783260.00 **DATE DRILLED:**7/12/2017 **WATER DEPTH:** 4.60 feet GEOL/ENGR: SP/SA

PROJECT NO.: 1706-G038 **METHOD:** MUD DRILLING **BORING ELEVATION:** -3.80 feet **DATE COMPLETED:** 07/12/2017 **WATER LEVEL DATE:** 07/12/2017 DRILLER: CZ

	ENGR. SF/S	DA		1		_	
DEPTH (FEET)	Standard Penetration (Blows/Ft.) or Penetrometer (TSF)	Moisture Content (%)	Dry Unit Weight (PCF)	LL	PI	Symbol	MATERIAL CLASSIFICATION
		145 61	33 66				Very Soft Gray Organic Clay (OH) @ 0'-2': Organics = 22.10% @ 0'-2': C = 92 psf @ 0.03 psi confining pressure
		49	70	94	66		Very Soft Gray Fat Clay (CH) @ 2'-4': C = 199 psf @ 1.23 psi confining pressure Soft Gray Fat Clay (CH)
		46	75				@ 4'-6': C = 380 psf @ 1.86 psi confining pressure Very Soft Gray Fat Clay (CH)
		30	87	43	24		@ 6'-8': C = 203 psf @ 2.48 psi confining pressure Very Soft Gray Lean Clay (CL)
— 10 — 	0.25	48	101				@ 8'-10': -200: 85.90% @ 8'-10': C = 273 psf @ 2.87 psi confining pressure
		58	69				Tested for Consolidation & Specific Gravity Very Soft Gray Fat Clay (CH)
	1.00	27					Very Soft Gray Fat Clay (CH) - with Shells
		25	97	36	18		@ 12'-14': C = 174 psf @ 1.20 psi confining pressure Medium Stiff Gray Clay
- 20 -	3-4-6	24					Stiff Gray Lean Clay (CL) with Fine Sand @ 16'-18': C = 1107 psf @ 5.82 psi confining pressure Tested for Consolidation & Specific Gravity
							Stiff to Medium Stiff Gray Clay
 		31	88				Very Soft Gray Clay 23'-25': C = 210 psf @ 8.08 psi confining pressure
		07					Madium Stiff Cray Clay
- 30 -	1-2-3	27					Medium Stiff Gray Clay - with Fine Sand
	2-2-2	34		41	22		Medium Stiff Gray Lean Clay (CL)
 _ 40 _	7-8-10	27					Medium Dense Gray Clayey Sand (SC) @ 38.50'-40': -200 = 15.70%
 		40	81				Medium Stiff Gray Clay @ 43'-45': C = 602 psf @ 15.02 psi
	0.25	32					Very Soft Gray Clay
— 50 —	0.20	52					4.50" of Fine Sand
							Boring terminated @ 50 feet Boring grouted upon completion Elevation: NAVD 88
Shelby T		Split Spoon					
				_			
1			-APS	En	ıgır	neel	ring and Testing, LLC

BORING NO.: B-9

Standard

PROJECT: New Orleans Landbridge Marsh Creation **PROJECT LOCATION:** Orleans Parish, Louisiana **BORING LOCATION:** N607836.00 E3785708.00 **DATE DRILLED:**7/13/2017 **WATER DEPTH:**2.40 feet **GEOL/ENGR:** MB/SA

PROJECT NO.: 1706-G038 METHOD: MUD DRILLING BORING ELEVATION: -1.50 feet DATE COMPLETED: 07/13/2017 WATER LEVEL DATE: 07/13/2017 DRILLER: CZ

DEPTH (FEET)	SAMPLE	Standard Penetration (Blows/Ft.) or Penetrometer (TSF)	Moisture Content (%)	Dry Unit Weight (PCF)	LL	PI	MATERIAL CLASSIFICATION
			90	50	158	131	Very Soft Gray Fat Clay - with Organics @ 0'-2': C = 150 psf @ 0.58 psi confining pressure
			62	62			Very Soft Gray Clay - with Organics @ 2'-4': C = 156 psf @ 1.23 psi confining pressure
- 5 -			36	84	41	20	Very Soft Gray Lean Clay (CL) @ 4'-6': C = 191 psf @ 1.73 psi confining pressure
			54	68	89	64	Soft Gray Fat Clay (CH) @ 6'-8': C = 401 psf @ 2.42 psi confining pressure
			38				Very Soft Gray Clay - with Fine Sand
— 10 — 	-		29	93			Very Loose Gray Silty Sand (SM) @ 10'-12': -200: 45.00% @ 10'-12': C = 133 psf @ 3.59 psi confining pressure
		3-2-1	27				Very Loose Gray Silty Sand (SM) @ 12'-14': -200 = 29.50%
- 15 -			22				Gray Poorly Graded Sand with Clay (SP-SC) @ 14'-16': -200: 11.40%
		3-2-3	33				Medium Stiff Gray Sandy Fat Clay (CH) @ 16'-18': -200: 51.20%
 - 20	-		33	88	65	43	Medium Stiff Gray Fat Sandy Clay (CH) @ 18'-20': -200: 65.30% @ 18'-20': C = 966 psf @ 6.36 psi confining pressure
 - 25 -	-		34	88			Medium Stiff Gray Fat Clay (CH) - with Fine Sand Pockets @ 23'-25': C = 515 psf @ 8.00 psi confining pressure
 - 30 -		4-3-5	25				Loose Gray Poorly Graded Sand with Clay (SP-SC) @ 28.5'-30': -200: 10.90%
	-						Boring terminated @ 30 feet Boring grouted upon completion Elevation: NAVD 88
- 35 - COMM	ENTS		Split Spoon				
	y iude	\boxtimes	φια σμούπ		-		
				-APS	En	gir	eering and Testing, LLC

BORING NO.: B-10

PROJECT: New Orleans Landbridge Marsh Creation PROJECT LOCATION: Orleans Parish, Louisiana BORING LOCATION: N605056.00 E3786442.00 **DATE DRILLED:**7/16/2017 WATER DEPTH: 2.20 feet GEOL/ENGR: MB/SA

PROJECT NO.: 1706-G038 **METHOD:** MUD DRILLING **BORING ELEVATION:** -1.40 feet **DATE COMPLETED:** 07/16/2017 **WATER LEVEL DATE:** 07/16/2017 DRILLER: CZ

Here Bit Standard Penetration (Blows/Ft.) or Penetrometer (TSF) Moisture (%) Dry Unit (PCF) LL PI Top E Top E MATERIAL CLASSIFICATION -
- - 262 21 @ 0'-2: Organics = 18.20% - - - @ 0'-2: C = 72 psf @ 0.55 psi confining pressure - - - 144 36 - 144 36 @ 2'-4': Organics = 26.10% @ 2'-4': C = 193 psf @ 1.17 psi confining pressure
144 36 @ 2'-4': Organics = 26.10% @ 2'-4': C = 193 psf @ 1.17 psi confining pressure
- 5 - 82 54 Very Soft Gray Clay - with traces of Organics @ 4'-6': C = 238 psf @ 1.77 psi confining pressure
72 59 Very Soft Gray Clay - with traces of Organics @ 6'-8': C = 240 psf @ 2.46 psi confining pressure
- - 47 77 - 10 - <td< td=""></td<>
46 64 40 23 Soft Gray Lean Clay (CL) @ 10'-12': C = 267 psf @ 3.63 psi confining pressure
48 72 55 39 Very Soft Gray Fat Clay (CH) (12'-14': C = 162 psf @ 4.44 psi confining pressure Tested for Consolidation
- 15 - 38 86 Soft Gray Clay - - 38 86 @ 14'-16': C = 492 psf @ 5.15 psi confining pressure - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - </td
31 Tan & Gray Clay
- - 32 88 67 52 Stiff Gray Fat Clay (CH) - 20 - - 18'-20': C = 1250 psf @ 6.45 psi confining pressure
Gray Clayey Sand (SC) @ 23'-25': -200: 12.70%
Boring terminated @ 30 feet Boring grouted upon completion Elevation: NAVD 88
Shelby Tube Split Spoon
APS Engineering and Testing, LLC

BORING NO.: B-11

Standard

PROJECT: New Orleans Landbridge Marsh Creation **PROJECT LOCATION:** Orleans Parish, Louisiana **BORING LOCATION:** N603025.00 E3785971.00 **DATE DRILLED:**7/14/2017 **WATER DEPTH:**3.70 feet **GEOL/ENGR:** MB/SA

PROJECT NO.: 1706-G038 METHOD: MUD DRILLING BORING ELEVATION: -2.80 feet DATE COMPLETED: 07/14/2017 WATER LEVEL DATE: 07/14/2017 DRILLER: CZ

DEPTH (FEET)	SAMPLE	Standard Penetration (Blows/Ft.) or Penetrometer (TSF)	Moisture Content (%)	Dry Unit Weight (PCF)	LL	PI	Symbol	MATERIAL CLASSIFICATION
			235	24	248	183		Very Soft Black Organic Clay (OH) @ 0'-2': Organics = 26.00%
			170	31			Ŵ	@ 0'-2': C = 172 psf @ 0.51 psi confining pressure Very Soft Gray Clay with Organics
			67	55				@ 2'-4': 136 psf @ 1.16 psi confining pressure Very Loose Gray Clayey Silt (ML)
			49	75	42	20		@ 4'-6': C = 175 psf @ 1.66 psi confining pressure Soft Gray Lean Clay (CL) with Fine Sand Pockets
		0.25	42					@ 6'-8': C = 304 psf @ 2.64 psi confining pressure
- 10 -			62	66	65	47		Very Soft Gray Fat Clay (CH) @ 10'-12': C = 119 psf @ 3.77 psi confining pressure
			55	67				Wery Soft Gray Fat Clay (CH) @ 12'-14': C = 138 psf @ 4.52 psi confining pressure
			37	88				Very Soft Gray Fat Clay (CH)
			31	91	58	37		@ 14'-16': C = 236 psf @ 5.09 psi confining pressure Stiff Tan & Gray Fat Clay (CH)
		1.00	32	102				@ 16'-18': C = 1599 psf @ 5.66 psi confining pressure Medium Stiff to Soft Tan & Gray Clay
- 20 -								
							Щ	Soft Tan & Gray Fat Clay (CH)
			32	90				@ 23'-25': C = 408 psf @ 8.05 psi confining pressure
			33	82	33	9		Soft Tan & Gray Lean Clay (CL) with Fine Sand Lenses @ 28'-30': C = 395 psf @ 9.75 psi confining pressure
- 30 -								Tested for Consolidation
		1-1-1	37					Very Soft Gray Silty Clay (CL-ML) - with Fine Sand
	-							
		5-7-8	33		30	14		Very Stiff Gray Lean Clay (CL) with Fine Sand Pockets
- 40 -	\frown	3-1-0						
	-							
		5-5-6	35					Stiff Gray Silty Clay (CL-ML)
	-							
		2-5-7	32					Stiff Gray Silty Clay (CL-ML)
- 50 -	\square	2-0-1						Boring terminated @ 50 feet
	-							Boring grouted upon completion Elevation: NAVD 88
	-							
Shelb	y Tube		Split Spoon					
				-APS	Fn	ain	eel	ring and Testing, LLC
						3		

BORING NO.: B-17

PROJECT: New Orleans Landbridge Marsh Creation **PROJECT LOCATION:** Orleans Parish, Louisiana **BORING LOCATION:** N601597.00 E3792182.00 **DATE DRILLED:**7/14/2017 **WATER DEPTH:**1.30 feet **GEOL/ENGR:** MB/SA

Т

PROJECT NO.: 1706-G038 METHOD: MUD DRILLING BORING ELEVATION: -0.50 feet DATE COMPLETED: 07/14/2017 WATER LEVEL DATE: 07/14/2017 DRILLER: CZ

DEPTH (FEET)	SAMPLE	Standard Penetration (Blows/Ft.) or Penetrometer (TSF)	Moisture Content (%)	Dry Unit Weight (PCF)	LL	PI	Symbol	MATERIAL CLASSIFICATION
	-		312 158	32	143	113		Grayish Black Clay - with Organics Very Soft Gray Organic Clay (OH) @ 2'-4': C = 93 psf @ 1.21 psi confining pressure
			100	32	143	113		Very Soft Gray Fat Clay (CH)
5 			100	46				@ 4'-6': C = 51 psf @ 1.76 psi confining pressure Very Soft Gray Fat Clay (CH)
			129	39				- with shells @ 6'-8': C = 88 psf @ 2.53 psi confining pressure
		0.25	61	82				Very Soft Gray Fat Clay (CH)
— 10 — — -			43	78				Very Soft Gray Fat Clay (CH) @ 10'-12': C = 185 psf @ 3.80 psi confining pressure
			146	36	133	108		Very Soft Gray Fat Clay (CH) @ 12'-14': C = 202 psf @ 4.51 psi confining pressure
		0.25	73					Very Soft Gray Fat Clay (CH)
			40	81				Very Soft Gray Fat Clay (CH) @ 16'-18': C = 110 psf @ 6.08 psi confining pressure
 - 20	-		24	100	43	28		Stiff Gray Lean Clay (CL) - with Fine Sand @ 18'-20': C = 1542 psf @ 6.37 psi confining pressure Tested for Consolidation
 - 25 -	-		47	72				Medium Stiff Gray Fat Clay (CH) @23'-25': C = 875 psf @ 8.05 psi confining pressure
 - 30 	-	1.50	40					Medium Stiff Gray Clay transitioned to Clayey Silt (ML) Boring terminated @ 30 feet Boring grouted upon completion Elevation: NAVD 88
 - 35 COMMI		:						
Shelby	y Tube							
				-APS	En	igin	nee	ring and Testing, LLC————

BORING NO.: B-18

Standard

PROJECT: New Orleans Landbridge Marsh Creation **PROJECT LOCATION:** Orleans Parish, Louisiana **BORING LOCATION:** N600602.00 E3792094.00 **DATE DRILLED:**7/17/2017 **WATER DEPTH:**3.20 feet **GEOL/ENGR:** MB/SA

PROJECT NO.: 1706-G038 METHOD: MUD DRILLING BORING ELEVATION: -2.40 feet DATE COMPLETED: 07/17/2017 WATER LEVEL DATE: 07/17/2017 DRILLER: CZ

DEPTH (FEET)	SAMPLE	Standard Penetration (Blows/Ft.) or Penetrometer (TSF)	Moisture Content (%)	Dry Unit Weight (PCF)	LL	PI	Symbol	MATERIAL CLASSIFICATION
			226 136	22 38	299	237		Very Soft Black Organic Clay (OH) @ 0'-2': Organics = 35.80 % @ 0'-2': C = 57 psf @ 0.57 psi confining pressure
			130	30	96	61		Tested for Consolidation & Specific Gravity Very Soft Black & Gray Clay with Organics
		0.05			30		H	@ 2'-4': C = 58 psf @ 1.27 psi Very Soft Gray Fat Clay (CH) with Fine Sand at the bottom
		0.25	61	78			\mathcal{W}	@ 4-6': C = 63 psf @ 1.87 psi confining pressure Very Soft Gray Fat Clay (CH)
- 10 -			64	65	44	22		Very Soft Gray Lean Clay (CL) with Shells @ 8'-10': C = 147 psf @ 3.10 psi confining pressure
			64	62				Very Soft Gray Lean Clay (CL) with Fine Sand Pockets
		0.25	64					@ 10'-12': C = 117 psf @ 3.82 psi confining pressure Very Soft Gray Fat Clay (CH)
			61	67				Very Soft Gray Clay with Fine Sand @ 14'-16': C = 120 psf @ 5.05 psi confining pressure
		0.25	45					Very Soft Gray Lean Clay (CL) - with 5" of Fine Sand
 20 _	_		39	81	55	36		Soft Gray Fat Clay (CH) @ 18'-20': C = 254 psf @ 6.53 psi confining pressure
		1-1-1	59					Soft & Gray Lean Clay (CL) with Fine Sand Lenses
 - 30 -	-		33	89	59	41		Medium Stiff Gray Fat Clay (CH) - with Fine Sand pockets @ 28'-30': C = 887 psf @ 9.78 psi confining pressure
	-		28	96				Stiff Gray Fat Clay (CH) @ 33'-35': C = 1496 psf @ 11.44 psi confining pressure
 - 40 -		0.25	44					Very Soft Gray Lean Clay (CL)
	\ge	7-12-28	29					Dense Gray Clayey Sand (SC) @ 43'-45': -200: 12.10 %
		5-4-5	25					Loose Gray Poorly Graded Sand with Clay (SP-SC)
— 50 — — -							<u>ESKZ</u>	@ 48.50'-50': -200: 10.50% Boring terminated @ 50 feet Boring grouted upon completion Elevation: NAVD 88
COMMI Shelby	-		Split Spoon		<u> </u>			
				-APS	En	igir	nee	ring and Testing, LLC

BORING NO.: B-19

Standard

PROJECT: New Orleans Landbridge Marsh Creation **PROJECT LOCATION:** Orleans Parish, Louisiana **BORING LOCATION:** N595460.00 E3778113.00 **DATE DRILLED:**7/14/2017 **WATER DEPTH:**1.60 feet **GEOL/ENGR:** MB/SA

PROJECT NO.: 1706-G038 METHOD: MUD DRILLING BORING ELEVATION: -0.60 feet DATE COMPLETED: 07/14/2017 WATER LEVEL DATE: 07/14/2017 DRILLER: CZ

DEPTH (FEET)	SAMPLE	Standard Penetration (Blows/Ft.) or Penetrometer (TSF)	Moisture Content (%)	Dry Unit Weight (PCF)	ш	PI	Symbol	MATERIAL CLASSIFICATION
			142	36	118	86		Very Soft Gray Fat Clay (CH) - with 6" of Organics at the bottom @ 0'-2': C = 197 psf @ 0.59 psi confining pressure
			84	54				Soft Gray Fat Clay (CH) - with 3" of Organics at the top @ 2'-4': C = 492 psf @ 1.27 psi confining pressure
- 5 -			44	77	94	68		Medium Stiff Gray Fat Clay (CH) @ 4'-6': C = 585 psf @ 1.84 psi confining pressure
		0.25	57					Very Soft Gray Fat Clay (CH) with Traces of Organics
			52	70				Soft Gray Fat Clay (CH) @ 8'-10': C = 332 psf @ 3.15 psi confining pressure transitioned to Silty Clay (CL-ML)
			46	74				@ 10'-12': C = 169 psf @ 3.84 psi confining pressure
		0.25	53					transitioned to Silty Sand (SM) Very Soft Gray Fat Clay (CH)
- 15 -			49	73	70	51		Very Soft Gray Fat Clay (CH) - with 5" of Shells at the bottom @ 14'-16': C = 240 psf @ 5.15 psi confining pressure
		0.25	48					Very Soft Gray Lean Clay (CL) with Fine Sand Pockets Soft Gray Clay Lean Clay (CL)
			34	83				@ 18'-20': C =309 psf @ 6.50 psi confining pressure transitioned to Silty Sand (SM)
	-							Soft Crowlean Clay (CL) with Fina Sand Dealysta
 - 25 -			38	87	27	9		Soft Gray Lean Clay (CL) with Fine Sand Pockets @ 23'-25': C = 342 psf @ 8.17 psi confining pressure
	-							
			23	98				Medium Stiff Gray Lean Clay (CL) @ 28'-30': C = 829 psf @ 9.89 psi confining pressure
								Boring terminated @ 30 feet Boring grouted upon completion Note: -200 tests performed on intermittent sand layers/lenses Elevation: NAVD 88
COMM		S:						
Shelby	y Tube							
				-APS	En	gir	nee	ring and Testing, LLC

BORING NO.: B-20

PROJECT: New Orleans Landbridge Marsh Creation PROJECT LOCATION: Orleans Parish, Louisiana BORING LOCATION: N595459.00 E3779694.00 DATE DRILLED:7/17/2017 WATER DEPTH: 6.30 feet GEOL/ENGR: MB/SA

PROJECT NO.: 1706-G038 METHOD: MUD DRILLING BORING ELEVATION: -6.00 feet DATE COMPLETED: 17/2017 WATER LEVEL DATE: 07/17/2017 DRILLER: CZ

DEPTH (FEET)	SAMPLE	TORVANE (PSF)	Moisture Content (%)	LL	PI	Symbol	MATERIAL CLASSIFICATION
		50	105	83	63		Very Soft Dark Gray Fat Clay (CH) - with Organics
		200	77	83	59		- with traces of wood at the bottom Very Soft Gray Fat Clay (CH) with Pockets of Organics
_ 5 _		250	99	146	108		Soft Dark Gray Fat Clay (CH) with traces of roots
		150	45	38	20		Very Soft Dark Gray Lean Clay (CL) with Fine Sand transitioned to Gray Fat Clay (CH)
		150	96	95	70		Very Soft Gray Fat Clay (CH) @ 8'-10': Organics = 3.70%
— 10 — — -		150	51	51	34		Very Soft Gray Fat Clay (CH) - with Shells at the bottom transitioned to Lean Clay (CL)
		200	38				Very Soft Gray Lean Clay (CL) with Shells
- 15 -		150	83	83	60		Very Soft Gray Fat Clay (CH) @ 14'-16': Organics = 3.10%
		150	37				Very Soft Gray Lean Clay (CL) with Fine Sand
		150	43				Very Soft Gray Lean Clay (CL) with Fine Sand
- 20 - 	-						Boring terminated @ 20 feet Boring grouted upon completion Elevation: NAVD 88
	-						
COMMENTS: Shelby Tube							
				-AF	۶	En	gineering and Testing, LLC

MVN-1968-526_B-3U.TXT 89^44'00.762" (U) zz 30^08'47.065" BOR. B-3U (MVN-1968-526) STA. 155+4Ò 50 FT. RT OF B/L WATER TABLE N/A FT. Date: 03/19/1968 GROUND EL. 2.2 0.0 1.0 59 1.0CH SISSO DGRBR WD RT SIFOX 1.0 2.0 31 2.0ML DGRBR CS RT SIF 2.0 3.0 77 3.0CH VSOGR BR WD SI SIF 77 19 3.0 4.7 70 CH SS VSOGR DGR SI SIF 4.7 5.7 50 5.7CH SS VSOGR DGR SI SIF 79 29 5.7 6.8 6.8SM GR CS SI SIF 6.8 8.3 8.3SP F GR CS SI SIF 8.3 9.3 49 9.3CL SS VSOGR DGR SI SIF 9.3 10.5 49 CH SS VSOGR DGR SI SIF 10.5 11.6 63 11.6CH 70 18 SS VSOGR DGR SI SIF 11.6 13.0 71 CH SISSO GR BK WD 13.0 14.0 95 299 96123 33 135 CH SISSO GR BK WD CC SL 14.0 15.0 84 99 26 CH SISSO GR BK WD CC 327108 78 25 15.0 16.3 62 CH SISSO GR 157 16.3 17.3 42 17.3CH SISSO GR 17.3 18.3 58 CH SS SO GR SI SIF 18.3 19.3 61 SS VSOGR CH SIF 19.3 20.3 40 20.3CH SS SO GR WD SI SIF 50 16 20.3 21.4 36 CL SS SO GR SIF 21.4 22.6 37 22.6CL 37 20 SS SO GR 22.6 24.6 24.6SM GR CS SI SIF 24.6 25.7 27 25.7СН SISVSTGN 25.7 26.8 32 26.8CL SISVSTGN 26.8 28.3 28.3SM S CS GN 28.3 30.5 25 30.5ML GN CS 30.5 32.1 SM GN 32.1 33.3 33.3SM GN BR .0970 33.3 34.7 34.7SP F GN Page 1

MVN-1968-526_B-3U.TXT

34.7	36.1	SM		GN				
36.1	37.1	SM		GN				
37.1	38.6	SM		GN	CS			
38.6	40.0	SM		GR				
40.0	41.0	SM		GR				
41.0	42.5	SM		GR				
42.5	44.5	SM		GR	S	CS		
44.5	46.3	46.3SM		GR	S	CS		
46.3	47.7 3	0 ML		GR	WD	CS		
47.7	48.7 3	3 48.7ML		GR	WD	CS		
48.7	50.6	50.6SP	F	GR				.0830
50.6	52.0	SM		GR	S			
52.0	53.0	SM		GR	S			
53.0	54.6	SM		GR	S			
54.6	56.1	SM		GR				
56.1	57.2	SM		GR				
57.2	58.6	58.6SM		GR				
58.6	61.0	SP	F	GR				.0820
61.0	62.4	SP	F	GR				
62.4	63.6	SP	F	GR				
63.6	64.6	SP	F	GR				.0850
64.6	66.2	SP	F	GR				
66.2	67.7	67.7SP	F	GR			36	.0910
67.7	69.3	69.3NS						
69.3	72.3	SP	F	GR			39	
72.3	77.3	SP	F	GR	SI	=	95	.0820
77.3	80.0	80.0SP	F	GR	SI	=	73	
999.9								

999.9

MVN-1968-526_B-5U.TXT 89^44'06.526" (U) zz 30^09'31.871" BOR. B-5U (MVN-1968-526) STA. 202+8Ò BASE LINE WATER TABLE N/A FT. Date: 03/19/1968 GROUND EL. .7 0.0 1.1137 CH O VSOGR DBR 1.1 2.1231 CH 0 VSODGRDBR WD RT 2.1 3.3372 CH **0 VSODBR** WD 3.3 4.6 92 4.6CH 115 32 O VSOGR BR WD RT 4.6 5.6 61 CH SISVSOGR WD 231104 87 27 51 5.6 6.8 63 CH SIS M GR WD 96 22 6.8 8.3 42 8.3CH SISSO GR BR WD RT 8.3 9.3 33 9.3ML GR BR CS WD 9.3 10.7 50 CH SISSO GR BR WD RT 10.7 12.0 67 SISSO GR 70 24 CH 0X 12.0 13.0 69 378106 72 21 CH SISSO GR 125 13.0 14.7 66 CH SISSO GR 14.7 16.0 68 16.0CH 79 27 SISSO GR BR 16.0 17.0 17.0SI SIF 366115 53 18 17.0 18.4 49 176 CH SS SO GR SIF 18.4 19.6 34 19.6CH SS M GR DGR SI SIFOX 19.6 20.6 25 20.6СН 45 15 SISVSTGNG 0X 20.6 21.6 26 21.6CH SS VSTGN 0X 21.6 22.8 24 22.8CL SS VSTGN 0X 22.8 24.0 27 ML GR GN OX CC SI SLF 24.0 25.0 27 ML GR GN 25.0 26.7 28 26.7ML GR GN 26.7 28.2 28.2SM GR T CS 28.2 29.2 29 CS OX ML GR 29.2 30.4 31 ML GR Т 0X 30.4 31.5 25 31.5ML GR 31.5 33.2 CS SM GR Т 33.2 34.6 34.6SM GR Т S Page 1

MVN-1968-526_B-5U.TXT

356

423

34.6 36.1 4	7 36.1CH	SISST GR		1193118 58 22
36.1 37.4 3	1 37.4СН	SS M GR BRG		
37.4 38.7 3	3 СН	SIS M BRG		
38.7 40.4 3	3 40.4CH	SIS M GR		
40.4 41.8 2	9 41.8CL	SISST GR		
41.8 42.9 3	7 42.9СН	SISST GR		1358117 49 21
42.9 44.6	44.6SM	GR	CS	
44.6 46.6	ML	GR	CS	
46.6 48.7	48.7ML	GR	CS	
48.7 51.0	51.0NS			
51.0 52.5	SM	GR		
52.5 54.3	SM	GR	S	
54.3 56.3	SM	GR	CS SI SIF	
56.3 57.4	57.4SM	GR	CS SI SIF	
57.4 58.7 2	8 CL	SS M GR		
58.7 60.4 2	9 60.4CL	SS M GR		
60.4 61.5	61.5SM	GR		
61.5 62.8 2	8 62.8ML	GR	CS	
62.8 64.1	SM	GR	CS	
64.1 66.6	SM	GR	S	
66.6 70.0	SM	GR	S	
70.0 71.0	SM	GR	S	
71.0 74.6	SM	GR	S	
74.6 76.3	76.3SM	GR	CS	
76.3 78.2 2	8 78.2CH	SS ST GR		
78.2 81.1	SM	GR		
81.1 82.1	82.1SM	GR	S	
999.9				

MVN-1968-526_B-6U.TXT zz 30^09'09.482" 89^44'25.163" (U) BOR. B-6U (MVN-1968-526) STA. 210+30 ON B/L WATER TABLE N/A FT. Date: 05/08/1968 GROUND EL. .5 1.5PT 0.0 1.5396 VSODBRGR CS WD RT 1.5 3.2252 3.2CH 0 VSODGRDBR WD RT 3.2 4.7 72 CH SISSO GR WD 4.7 5.7 60 82 18 WD CH SISSO GR 5.7 6.7 51 CH SISVSOGR WD 243114 65 23 62 6.7 7.7 52 CH SISSO GR WD 7.7 8.7 55 92 26 CH SISSO GR BR 8.7 9.7 49 SISSO GR BR CH 9.7 10.7 48 10.7CH 259107 61 19 102 SISSO GR BR 10.7 11.7 37 11.7CL SISSO GR BR 40 16 11.7 13.0 66 CH SISSO GR WD 13.0 14.1 65 CH SISSO GR 14.1 16.4 68 70 17 CH SISSO GR 16.4 17.4 52 CH SISSO DGR SI SIF 17.4 18.4 49 283108 54 14 179 CH SISSO DGR SI SIF 18.4 19.4 49 CH SISSO LGR OX 47 18 19.4 20.4 27 SISST GR Y CH 20.4 23.3 27 CH SISVSTGR 0X 23.3 24.3 34 24.3СН SISSO GR WD OX CC 24.3 26.6 39 26.6ML LGR 0X 26.6 27.6 33 27.6CL SS SO GR T 27.6 28.6 34 28.6CH SIS M LGR OX 28.6 33.4 29 ML GR BR CS SIF 33.4 34.4 27 34.4ML CS CC OX GR 34.4 35.7 40 35.7CH SS M GR CC OX 551115 55 17 351 35.7 37.6 37.6SM GR SIFCS 37.6 40.0 40.0NS 40.0 41.5 41.5SM GR Page 1

MVN-1968-526_B-6U.TXT

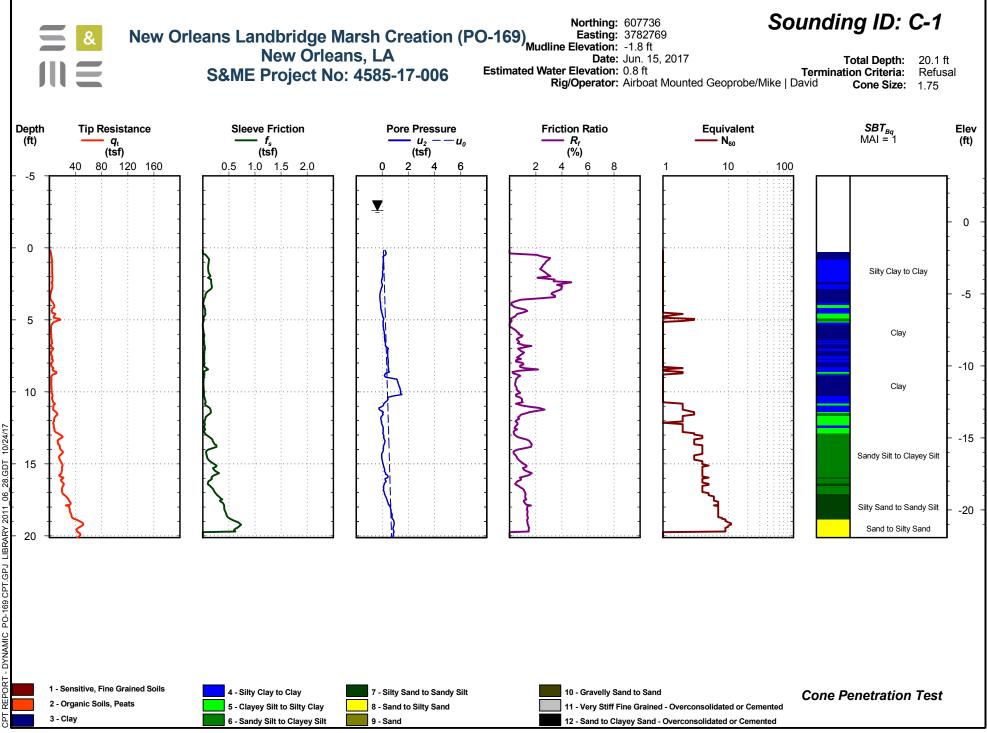
41.5 42.5 29 42.	.5CL	M GR		
42.5 43.7 28 43.	.7ML	GR	WD	
43.7 47.0	SM	GR	CS	
47.0 59.8 59.	.8SM	GR		
59.8 63.5 27 63.	.5CL	M GR		21
63.5 64.8 64.	.8SM	GR		
64.8 67.3 33 67.	.3CH SIS	M GR		
67.3 69.5	SP F	GR		50
69.5 73.3	SP F	GR		
73.3 78.3	SP F	GR		50
78.3 83.3	SP F	GR		94
83.3 89.0 89.	.0SP F	GR		90
89.0 92.0 38 92.	OCH SS	M GR		36
92.0 94.5 94.	.5SP F	GR		
94.5153.0 153.	.OSM	GR		50
153.0154.0 49154.	OCH SISV	STGR		
999.9				

.0830

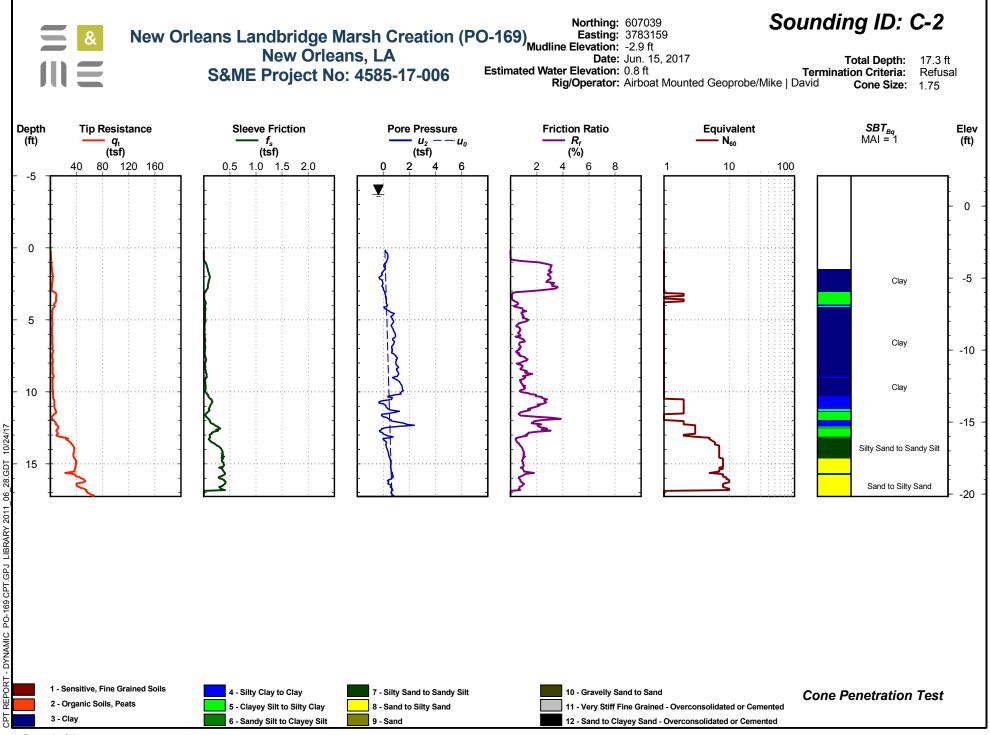
MVN-1968-526_B-7U.TXT zz 30^09'16.639" 89^44'25.616" (U) BOR. B-7U (MVN-1968-526) STA. 217+50 ON B/L WATER TABLE N/A FT. Date: 02/29/1968 GROUND EL. 1 0.0 1.0 79 1.0CH VSODGRBR RT 1.0 2.0363 CH O VSODBR 2.0 3.0335 CH **0 VSODBR** 3.0 4.0130 4.0CH O VSODBR 4.0 5.0 75 CH SISVSOGR DGR RT 125 99 87 30 45 5.0 6.0 61 CH SIS M GR WD 6.0 7.0 63 103 25 CH SIS M GR DGR WD 7.0 8.0 68 8.0CH SISVSOGR DGR 8.0 9.6 34 9.6ML BRG WD CS 9.6 10.8 55 283108 65 25 101 CH SISSO GR BR 10.8 12.0 62 12.0CH 233103 62 29 115 SISVSOGR BR SL 12.0 13.0 42 ML GR BR CS 13.0 14.5 44 14.5ML GR BR CS 14.5 15.7 75 15.7CH SISSO GR BR WD CC 15.7 16.7 68 84 30 CH SS SO GR BR SI SIF 16.7 18.7 49 18.7CH WD CC SIFSL 225109 49 17 176 SS SO DGR 18.7 19.7 27 19.7CL SS VSTGN GR OX SI SIF 19.7 20.7 31 CH SS ST GN GR OX CC 20.7 21.7 29 21.7СН SS VSTGNG 54 19 21.7 22.7 24 22.7CL VSTGNG S 22.7 25.4 25 25.4ML GNG CS 25.4 26.7 SM BR 26.7 28.3 28.3SM GR Y S 28.3 29.3 .0800 TR M SP F GR BR 29.3 30.5 30.5SP F GR BR TR M 30.5 31.5 33 ML GR BR 31.5 32.5 26 32.5ML GR BR 32.5 33.5 36 CH SS ST GR BR Page 1

MVN-1968-526_B-7U.TXT

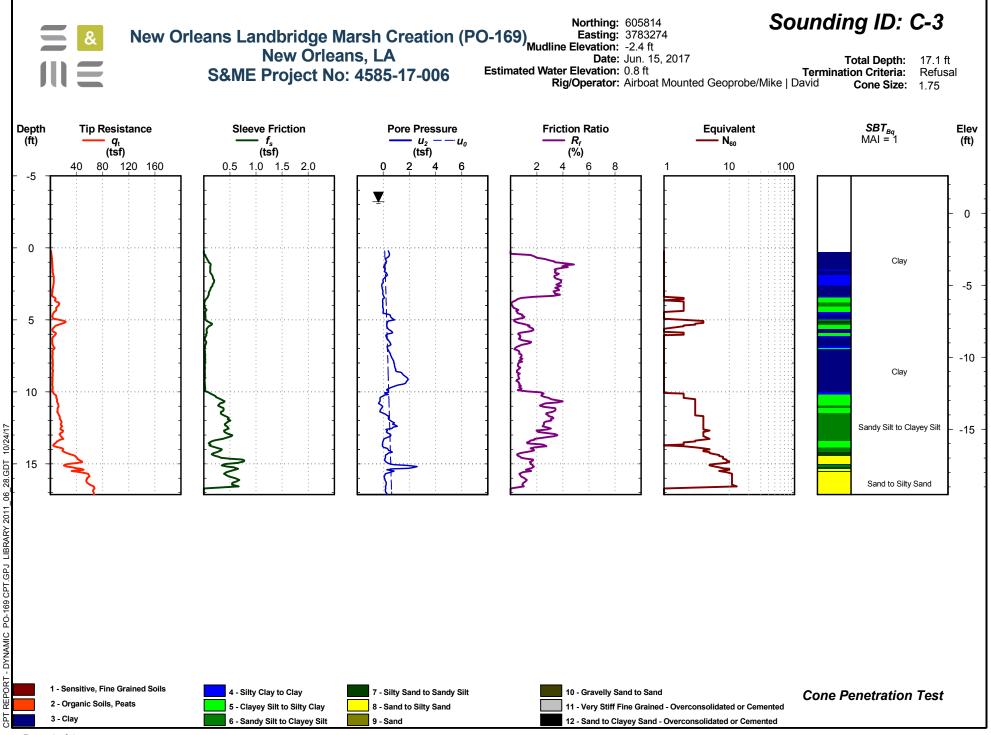
33.5 34.7 30	34.7СН	SS ST	GR						
34.7 37.4 31	37.4ML		GR	CS					
37.4 39.0	39.0NS								
39.0 40.0	SM		GR						
40.0 42.6	42.6SM		GR						
42.6 44.2	44.2SP	F	GR	SIF				.0770	
44.2 46.6	SM		GR	S					
46.6 48.4	SM		GR	S					
48.4 49.4	49.4SM		GR						
49.4 50.6 45	50.6СН	SS M	GR	SL			605113	58 22	499
50.6 52.4 33	СН	SIS M	GR	SL			661121	52 22	517
52.4 53.4 28	53.4CH	SISST	GR						
53.4 54.7 27	54.7ML		GR						
54.7 56.3 29	56.3CL	SS M	GR						
56.3 58.7 28	58.7ML		GR	CS					
58.7 60.1	SM		GR						
60.1 62.5	SM		GR	S					
62.5 64.0	64.0SM		GR	S					
64.0 65.0	SP	F	GR	TR	Μ				
65.0 66.5	66.5SP	F	GR	TR	М			.0750	
66.5 68.4	68.4SM		GR	S					
68.4 70.3	70.3NS								
70.3 72.0	SP	F	GR			26			
72.0 73.7	73.7SP	F	GR	TR	М	26		.0800	
73.7 77.7	77.7NS								
77.7 78.7	78.7SP	F	GR	CS		36			
78.7 80.3	80.3NS								
80.3 82.0	SP	F	GR			33			
82.0 85.7	SP	F	GR	TR	М	37		.0820	
85.7 90.7	SP	F	GR			82			
90.7 95.7	SP	F	GR			46			
					_				

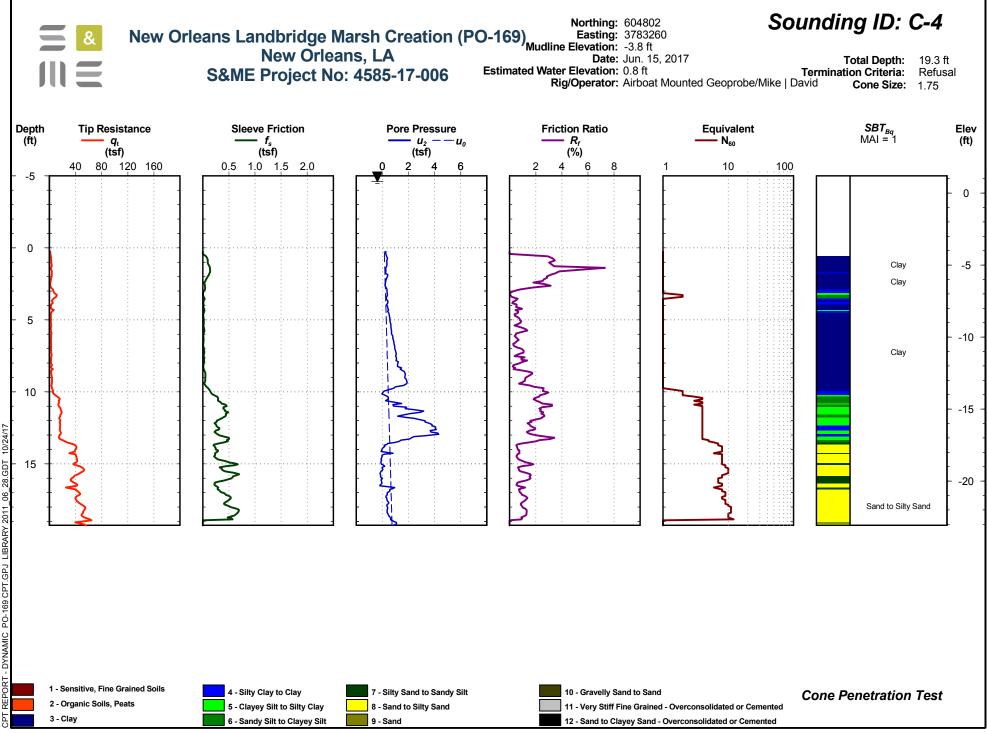

				MVN-1968	-526_	B-7U.TXT		
95.7100.7	SP	F	GR		М	-	78	.1100
100.7104.7	SP	F	GR					
104.7110.7	110.7SP	F	GR	TR	М			.0870
110.7115.7	115.7NS							
115.7120.7	SP	F	GR					
120.7130.8	130.8SP	F	GR				85	
130.8135.8	135.8SM		GR	S			98	
135.8140.7	SP	F	GR				91	
140.7145.7	SP	F	GR	CS			83	
145.7149.5	149.5SP	F	GR	М		1	.00	
999.9								

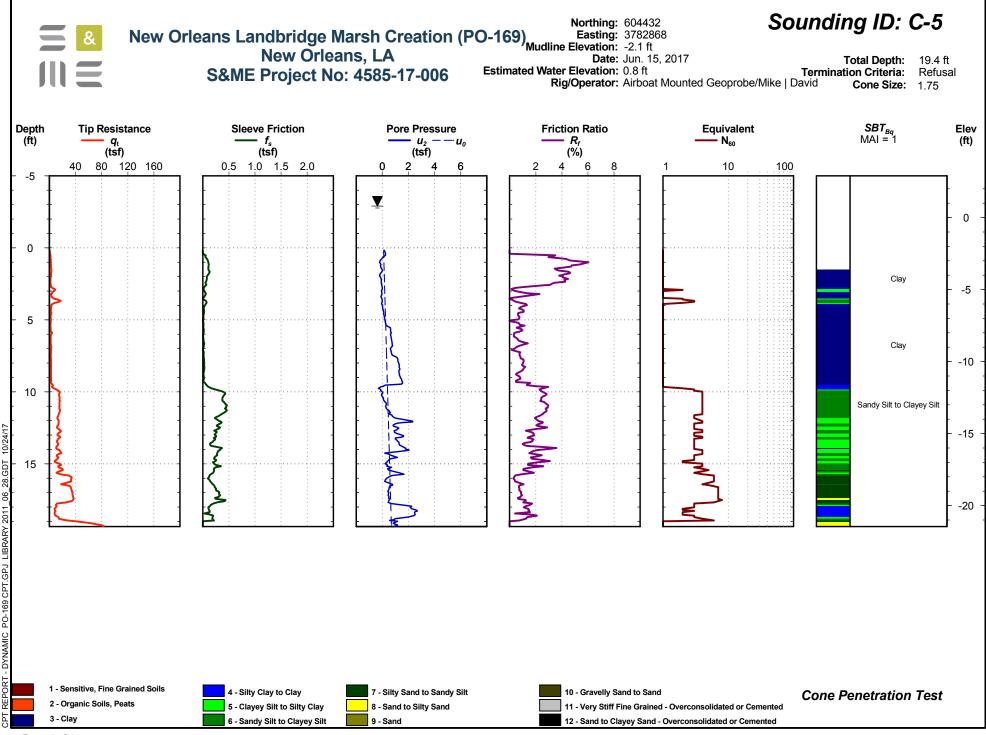
MVN-1968-526_B-8U.TXT ZZ 30^09'16.639" 89^44'25.616" (U) BOR. B-8U (MVN-1968-526) STA. 217+50 420 FT. RT. OF B/L WATER TABLE N/A FT. Date: 02/27/1968 GROUND EL. 1.2 0.0 1.1 74 1.1CH SISSO DGRBR O WD 1.1 2.9313 2.9PT SO DGRDBR 2.9 4.1109 CH SISVSOGR DGR 0 4.1 5.4 87 93 32 CH SISVSOGR WD 5.4 6.5 56 CH SISVSOGR DGR RT O 245107 69 23 56 60 6.5 8.5 43 8.5CH SISSO GR O WD OX CC 8.5 9.5 30 9.5ML GR CS WD 9.5 10.7 50 60 22 SISSO GR BR CH OX 10.7 12.2 49 12.2CH 63 23 SISSO GR 12.2 14.5 45 14.5CL SISSO GR BR 14.5 15.9 76 15.9CH SISVSOGR BR 81 27 SIF 15.9 17.0 50 CH SS SO GR WD CC SIF 17.0 18.0 49 WD CC SIF 336113 49 19 47 176 CH SS SO GR 18.0 19.0 36 CH SS M GR LGR 0X 19.0 21.2 29 21.2CH 46 19 SS VSTLGRGN 21.2 22.6 SM LGR CS 22.6 24.4 S SM GR 24.4 26.4 SM GR S 26.4 28.6 GR GN SM S 28.6 30.0 GR SM 30.0 32.3 32.3SM S GNG 32.3 33.3 SP F GNG 33.3 34.3 34.3SP .0800 F GNG 34.3 39.0 39.0NS 39.0 40.2 SM GR S 40.2 41.2 SM GR S 41.2 42.2 42.2SM S GR .0990 42.2 43.2 F SP GR

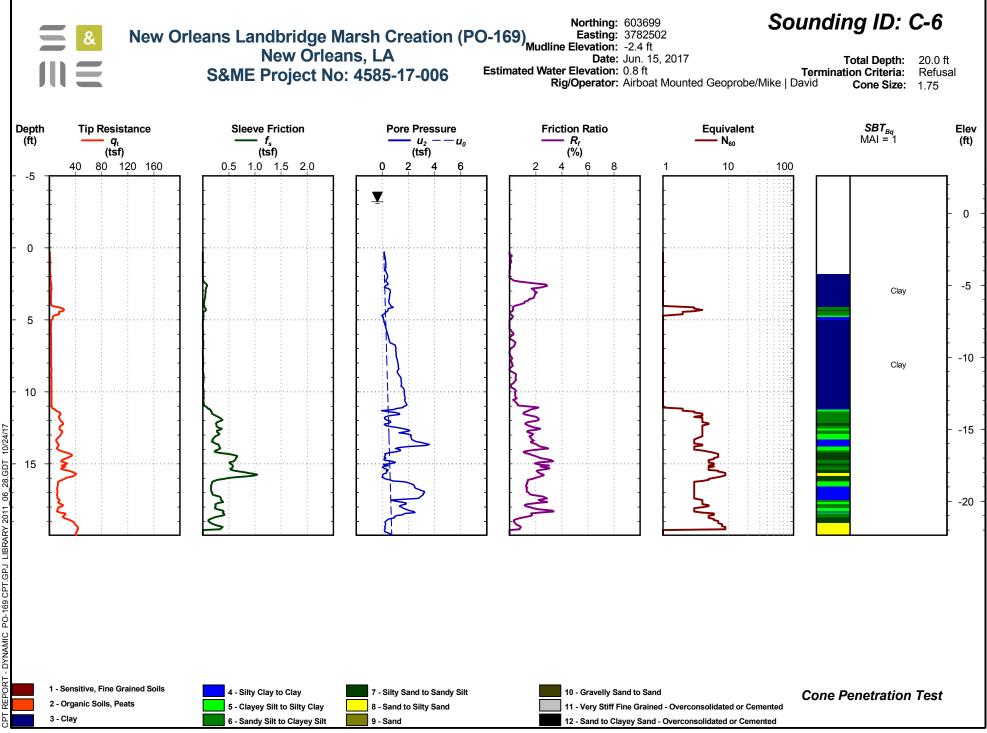

MVN-1968-526_B-8U.TXT

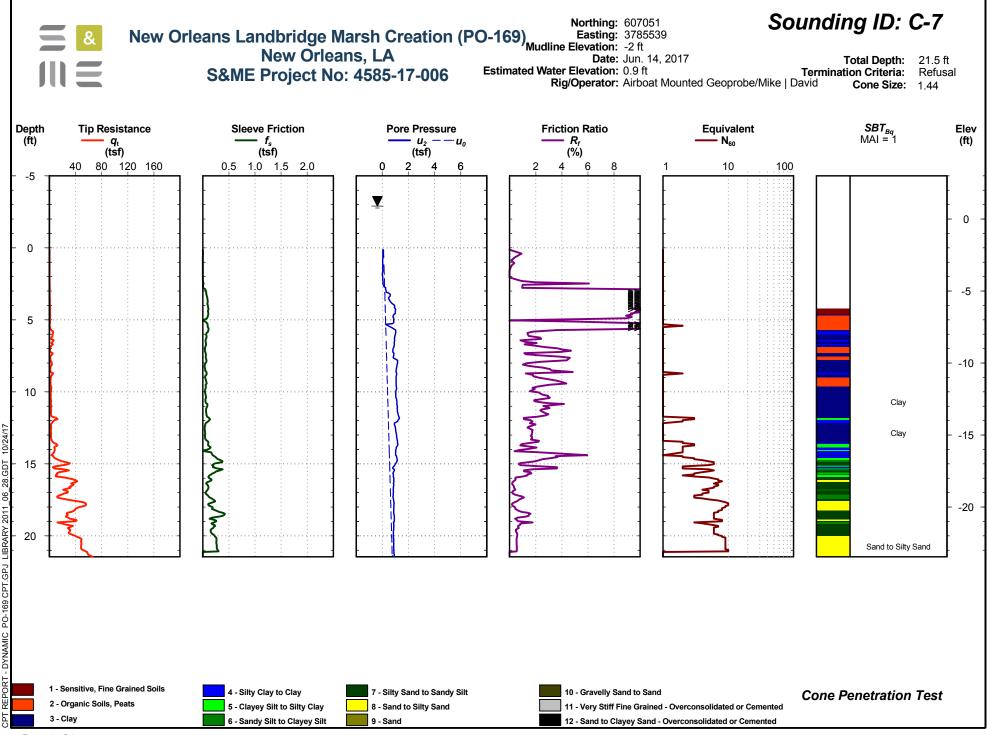
43.2 44.2	SP	F	GR			
44.2 45.2	SP	F	GR			.0900
45.2 47.7	SP	F	GR			
47.7 48.7	SP	F	GR			.0850
48.7 49.9	SP	F	GR			
49.9 51.5	SP	F	GR			.1300
51.5 52.5	SP	F	GR			
52.5 53.5	SP	F	GR			.1200
53.5 54.7	54.7SP	F	GR			
54.7 59.0	59.0NS					
59.0 61.3	SP	F	GR		34	
61.3 63.5	SP	F	GR	TR M	49	.0810
63.5 66.0	SP	F	GR		46	
66.0 69.8	SP	F	GR	CS TR M	42	.0860
69.8 74.8	SP	F	GR	CS SIF	65	
74.8 79.8	SP	F	GR		67	.0830
79.8 84.8	SP	F	GR		78	
84.8 89.8	SP	F	GR		40	
89.8 94.9	SP	F	GR		50	.0890
94.9 99.5	99.5SP	F	GR		39	

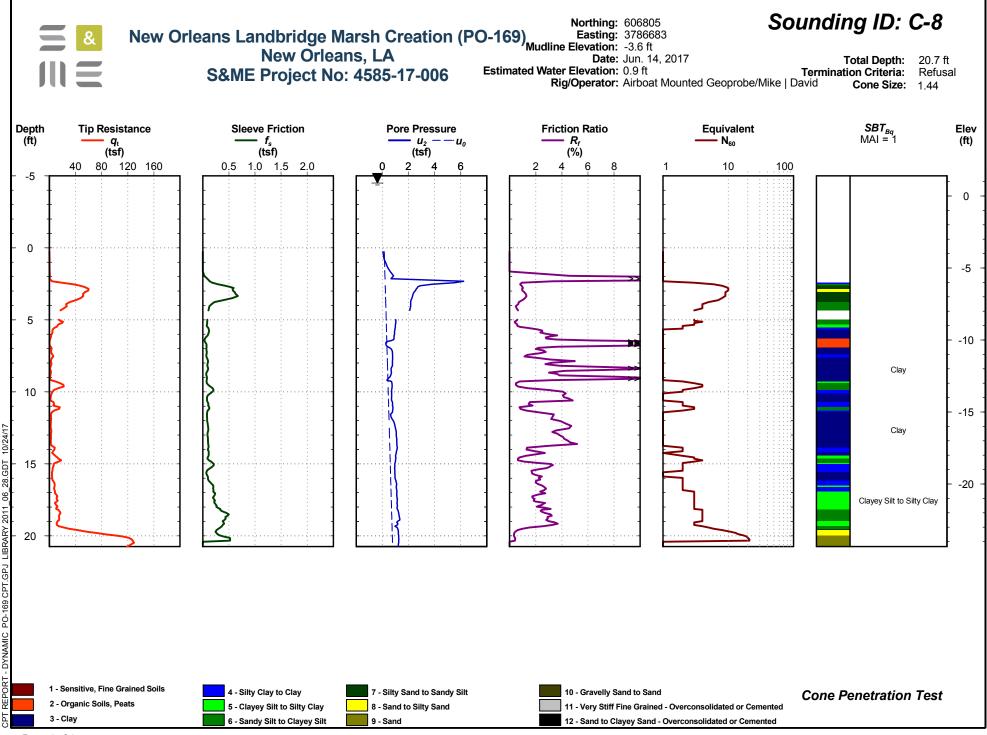

999.9

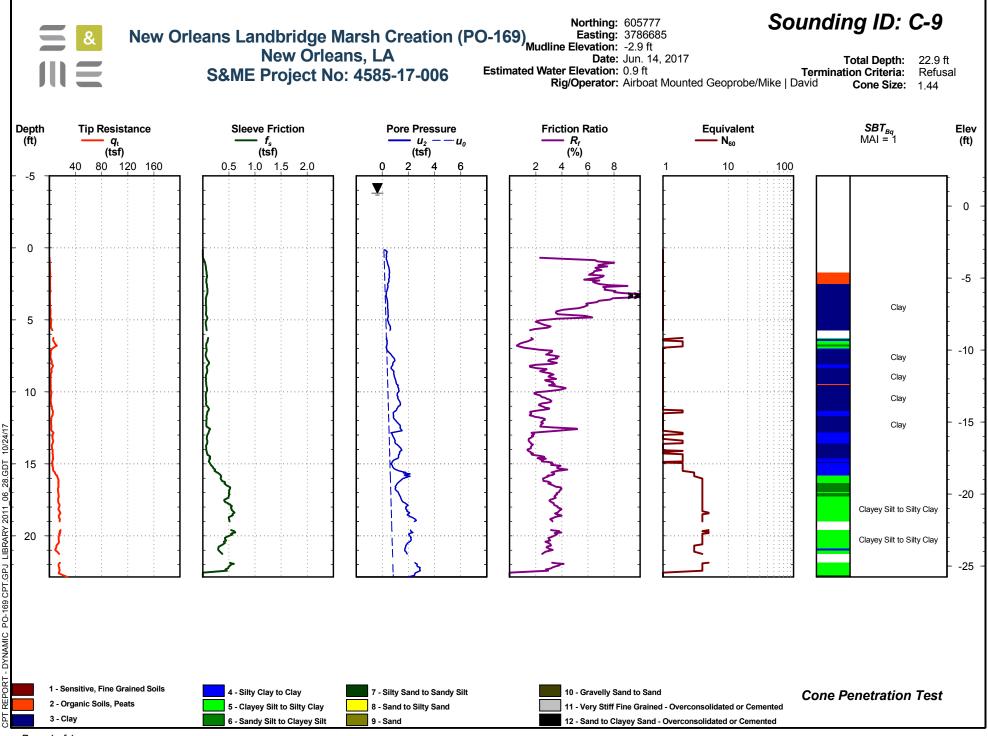

Electronic Filename: S15U1712C.DAT

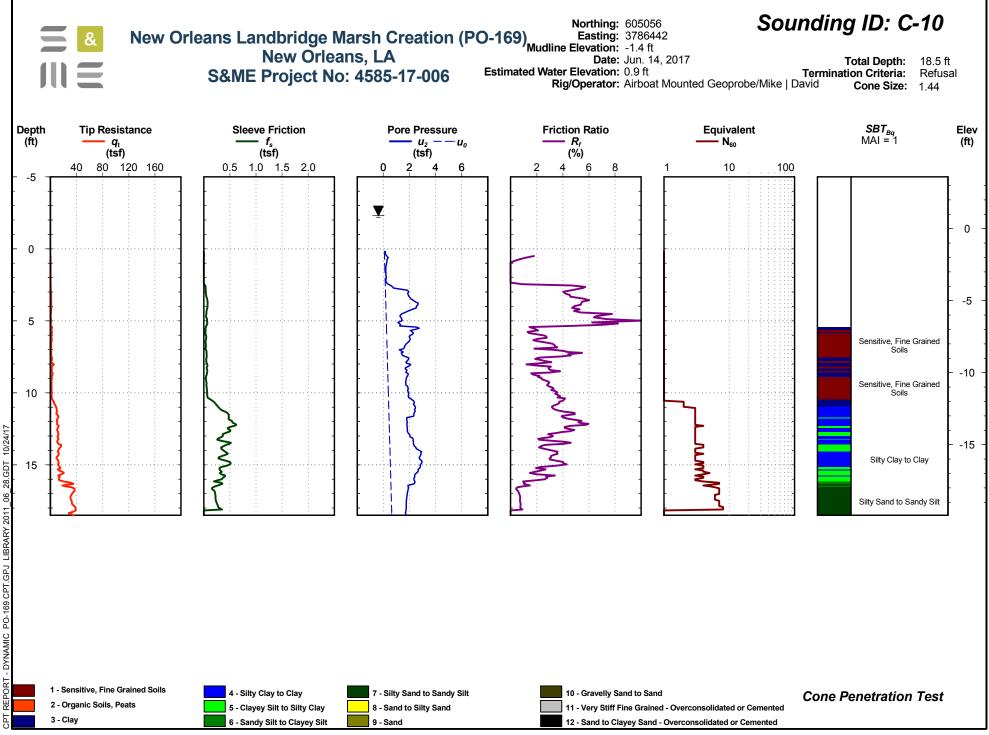

Electronic Filename: S15U1707C.DAT

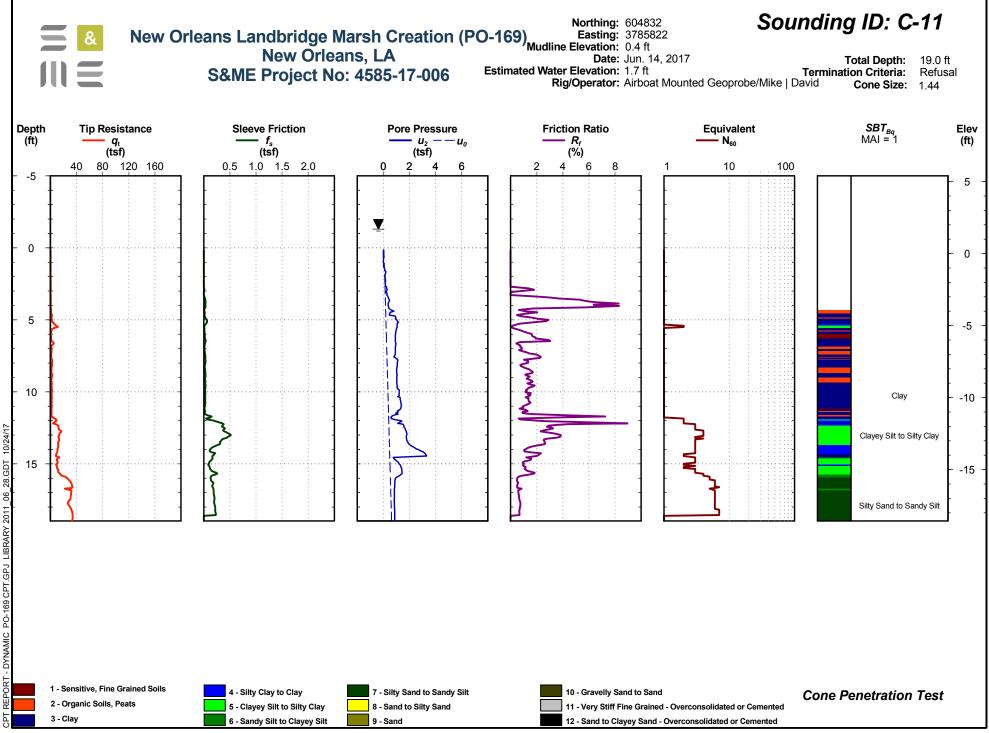

Electronic Filename: S15U1708C.DAT

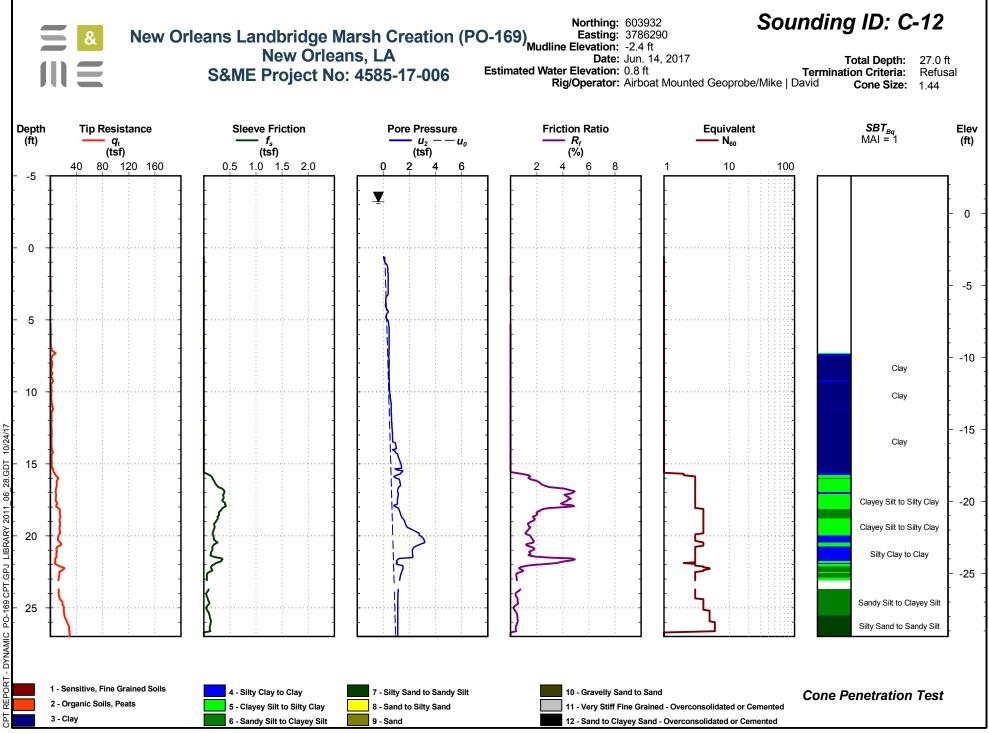

Electronic Filename: S15U1711C.DAT

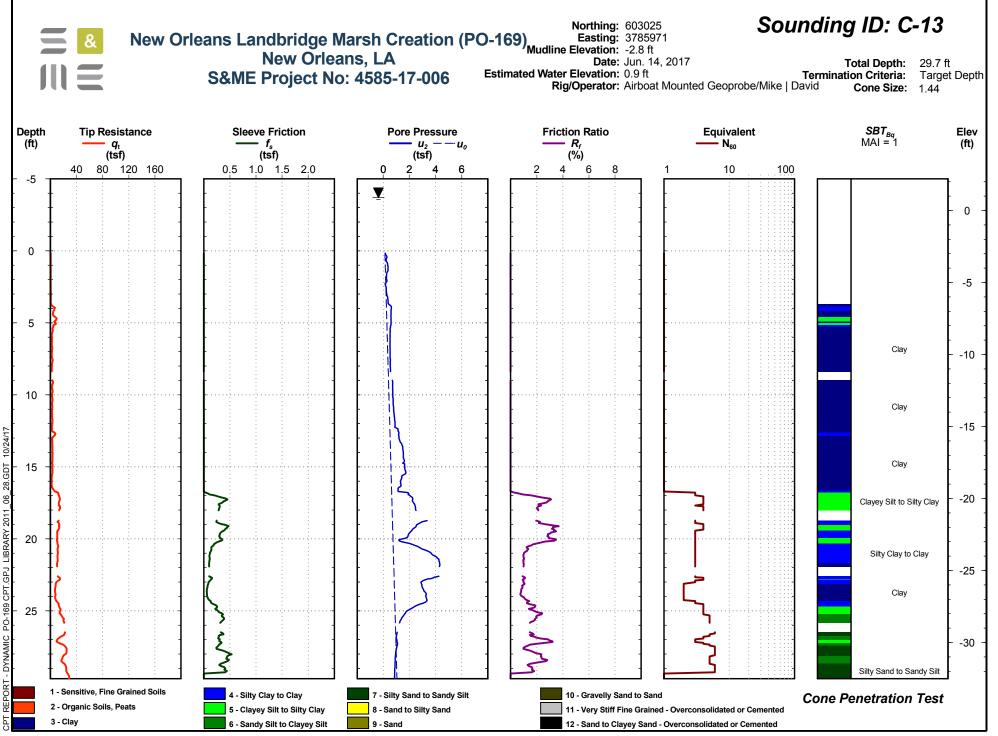

Electronic Filename: S15U1709C.DAT

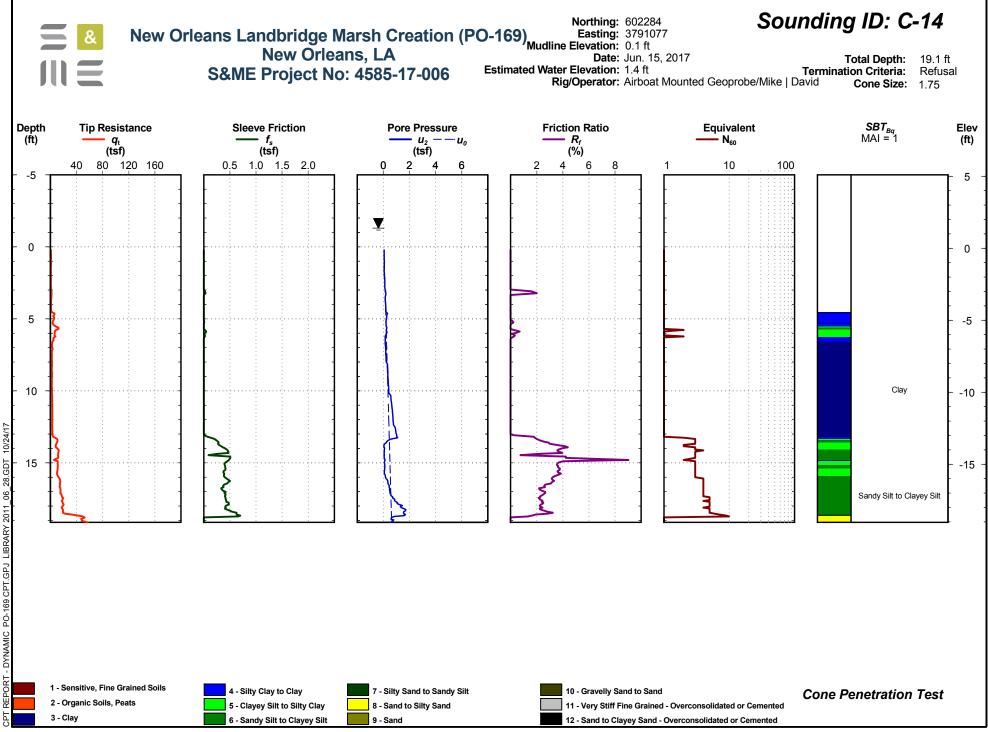

Electronic Filename: S15U1710C.DAT

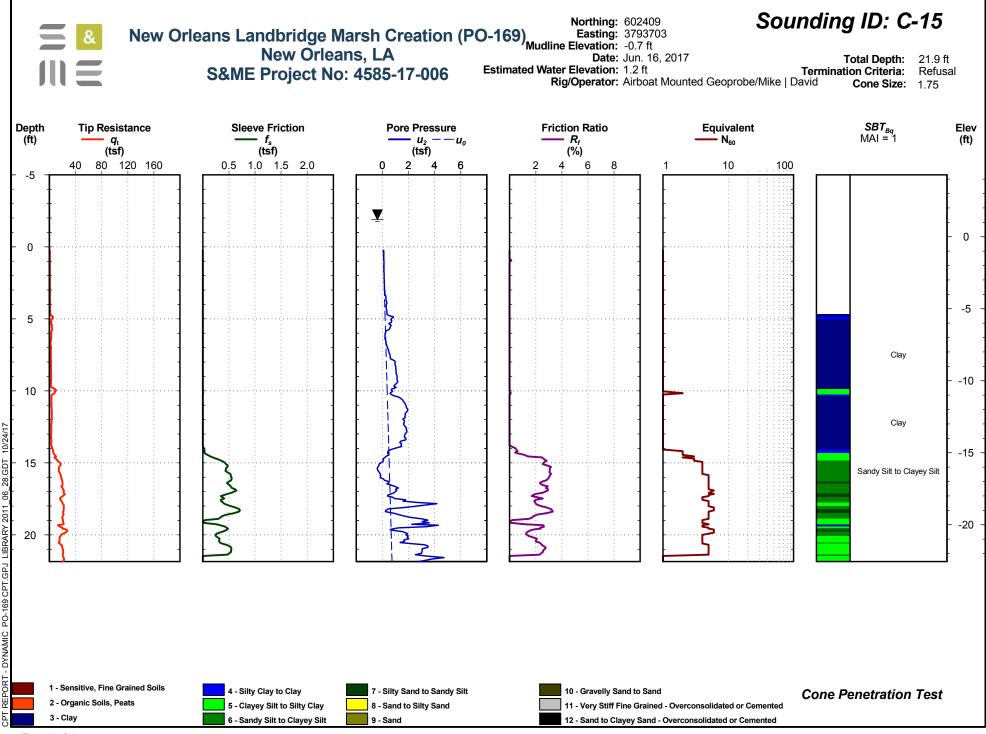

Electronic Filename: S14U1708C.DAT

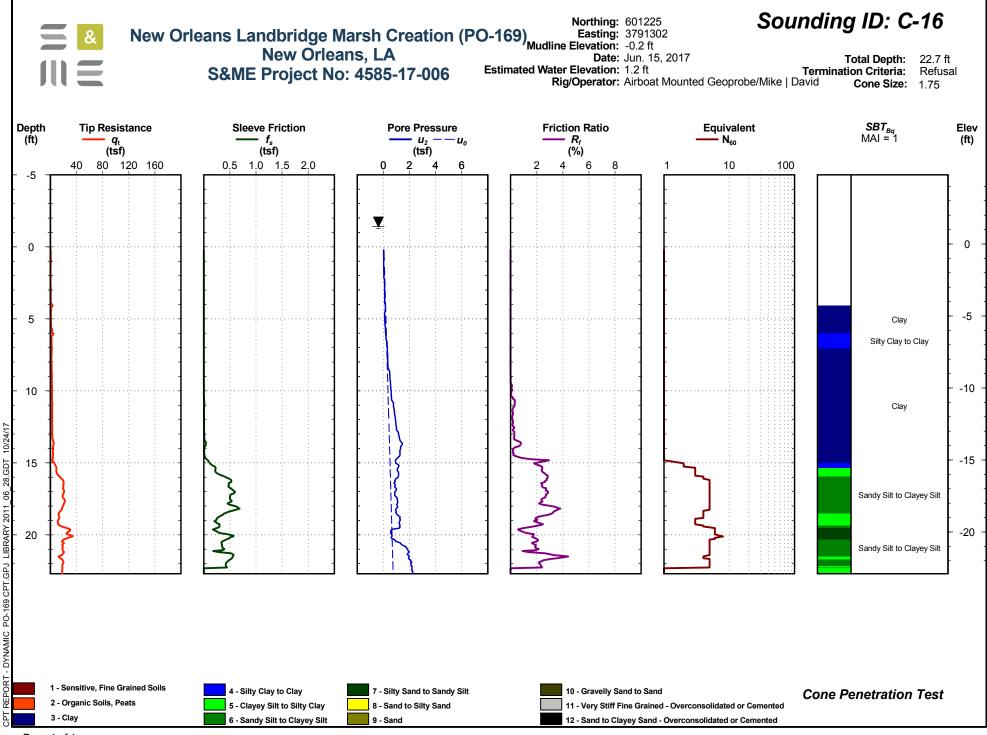

Electronic Filename: S14U1704C.DAT

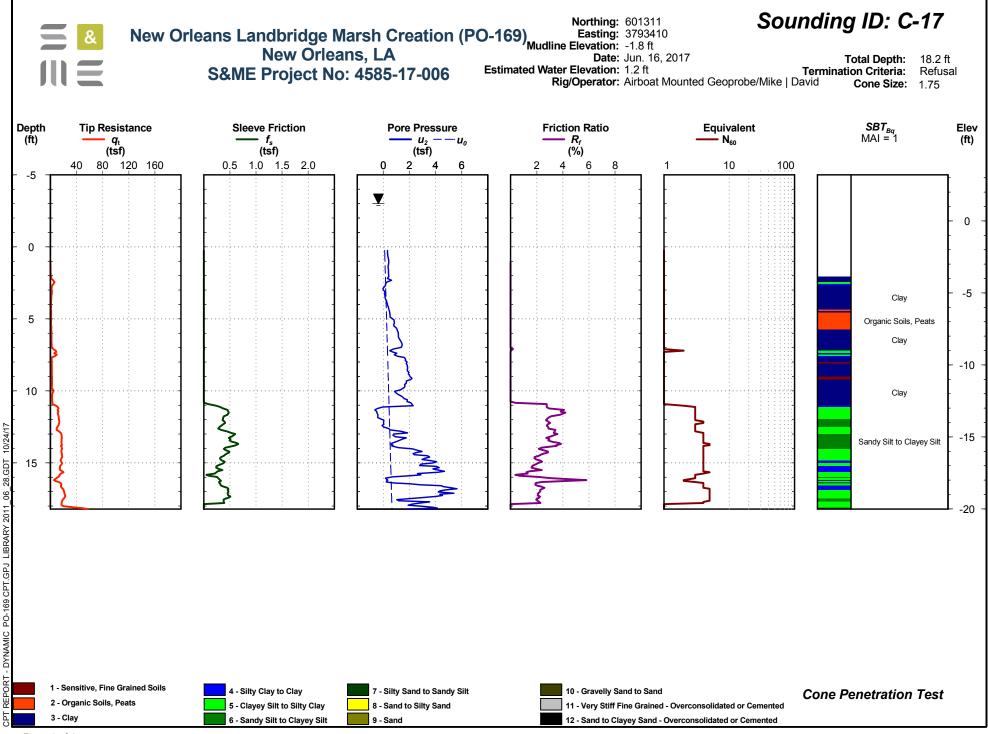

Electronic Filename: S14U1701C.DAT

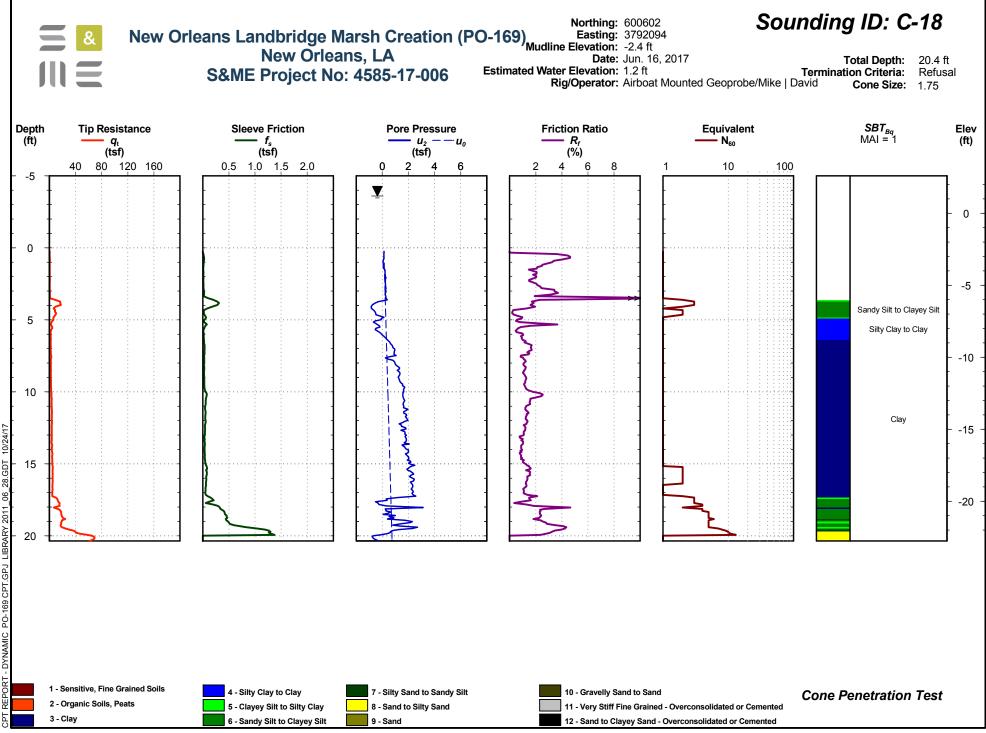

Electronic Filename: S14U1706C.DAT

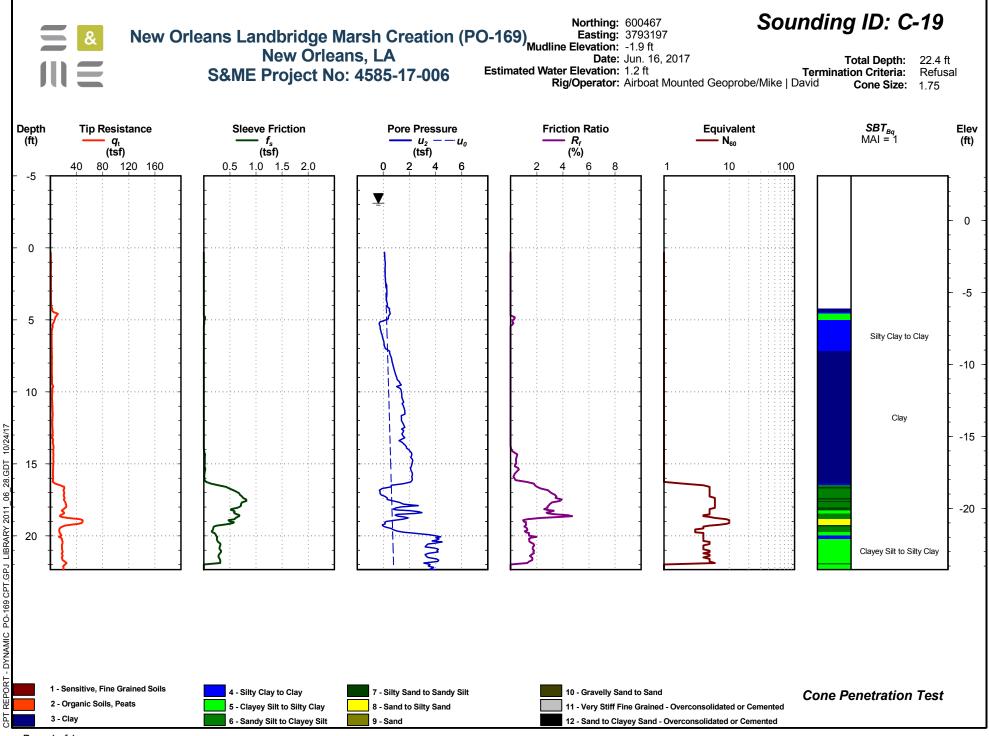

Electronic Filename: S14U1707C.DAT

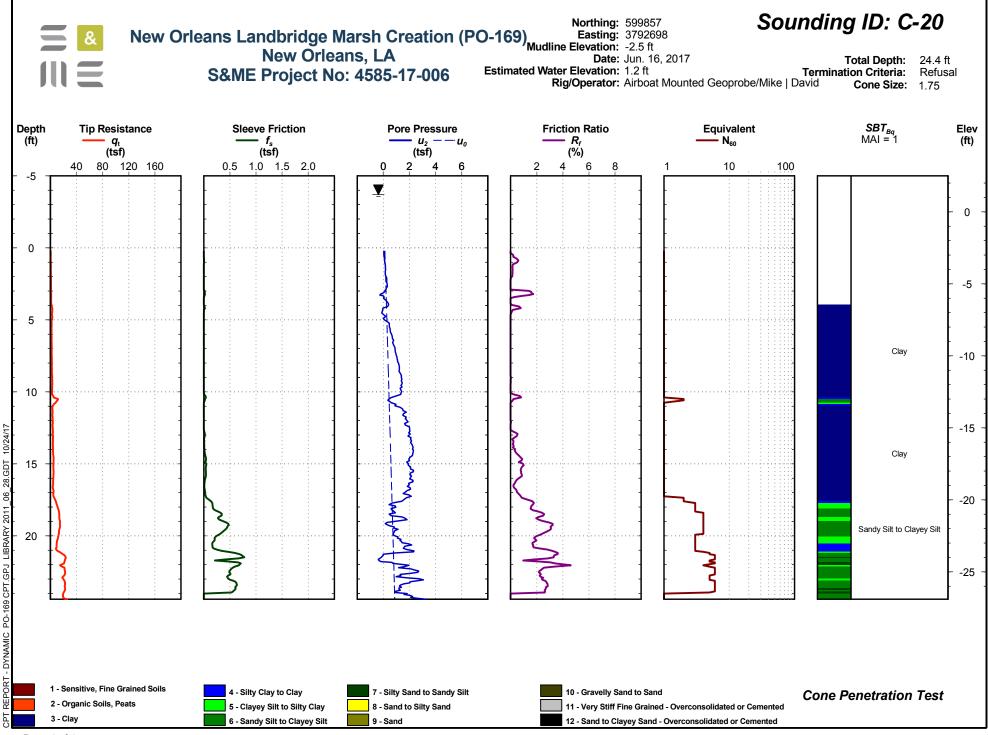

Electronic Filename: S14U1702C.DAT


Electronic Filename: S14U1703C.DAT


Electronic Filename: S15U1714C.DAT


Electronic Filename: S16U1705C.DAT


Electronic Filename: S15U1713C.DAT


Electronic Filename: S16U1703C.DAT

Electronic Filename: S16U1701C.DAT

Electronic Filename: S16U1704C.DAT

Electronic Filename: S16U1702C.DAT

Cone Penetrometer Specifications

S&ME's CPT equipment consists of a VERTEK seismic system using 10-cm² cone, designed for a 10 ton loading. This cone system is capable of measuring tip resistance, sleeve friction, pore pressure, inclination, and/or seismic waves (S-and P-waves). As the cone is advanced into the soil at a rate of 2 cm/s, data is collected every second and displayed on screen allowing "real time" verification.

VERTEK'S cone combines high load capacity with sensitive resolution by decoupling the tip and sleeve load cells (i.e., sensing each strain gage bridge independently). Independent measurement of each load cell and accurate temperature compensation results in a higher degree of accuracy in friction sleeve measurement (when compared to subtraction type cones). Subtraction type cones measure the tip resistance and total load (tip and sleeve resistance) and computes sleeve friction by subtracting the tip resistance from the total.

For pore pressure measurement, we use silicon oil and pre-saturate our porous filters. Silicon oil has a higher viscosity than other saturation mediums (i.e., water or glycerin); thus, our porous filters remain saturated for longer periods of time. Pore pressure readings are continuously monitored during penetration. Where zones of high pore pressures are developed, dissipation tests can be performed by monitoring and recording pore pressure readings with time. Pore pressure readings and dissipation tests can be used to determine the piezometric head as well as a soil's coefficient of consolidation and hydraulic conductivity. The seismic cone can be used to quickly and accurately measure shear and compression wavespeed profiles while performing a standard CPT test. Our seismic system uses VERTEK'S specially designed triaxial velocity gauges for monitoring, software modules for data acquisition and interpretation, and special heavy duty trigger assemblies. Seismic information can be obtained during a CPT test simply by pausing at the desired depth.

Cone Specifications						
Dimensions						
Cone Base Area	10 cm ²					
Sleeve Area	150 cm ²					
Range and Accuracy						
Tip Load Cell						
Range	20,000 lbs					
Overload Capacity	150 %					
Accuracy (FSO)	0.5 %					
Sleeve Load Cell						
Range	4,400 lbs					
Overload Capacity	150 %					
Accuracy (FSO)	0.5 %					
Pore Pressure Transducer						
Range	1,000 psi					
Burst Pressure	200 %					
Accuracy (FSO)	1.0 %					
Inclinometer						
Range	15 degrees					

Cone Penetrometer Specifications

S&ME's CPT equipment consists of a VERTEK seismic system using 15-cm² cone, designed for a 25 ton loading. This cone system is capable of measuring tip resistance, sleeve friction, pore pressure, inclination, and/or seismic waves (S-and P-waves). As the cone is advanced into the soil at a rate of 2 cm/s, data is collected every second and displayed on screen allowing "real time" verification.

VERTEK'S cone combines high load capacity with sensitive resolution by decoupling the tip and sleeve load cells (i.e., sensing each strain gage bridge independently). Independent measurement of each load cell and accurate temperature compensation results in a higher degree of accuracy in friction sleeve measurement (when compared to subtraction type cones). Subtraction type cones measure the tip resistance and total load (tip and sleeve resistance) and computes sleeve friction by subtracting the tip resistance from the total.

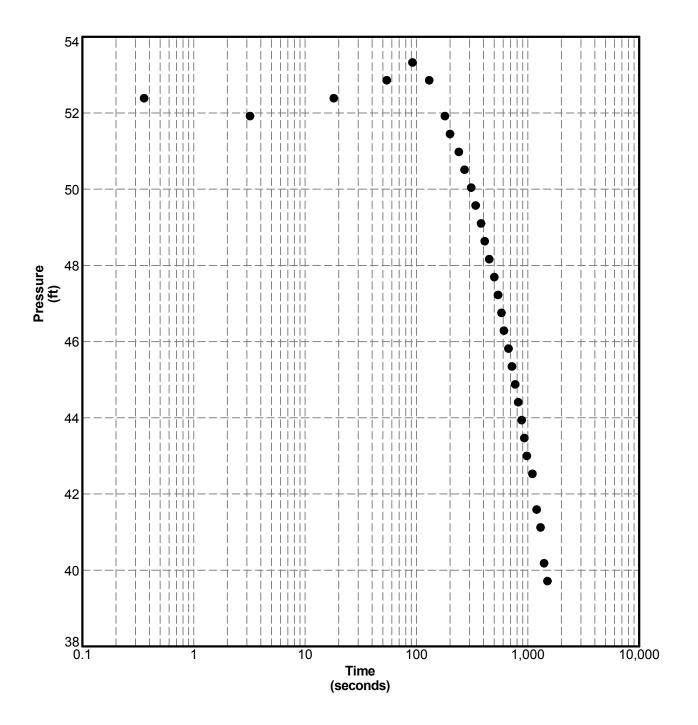
For pore pressure measurement, we use silicon oil and pre-saturate our porous filters. Silicon oil has a higher viscosity than other saturation mediums (i.e., water or glycerin); thus, our porous filters remain saturated for longer periods of time. Pore pressure readings are continuously monitored during penetration. Where zones of high pore pressures are developed, dissipation tests can be performed by monitoring and recording pore pressure readings with time. Pore pressure readings and dissipation tests can be used to determine the piezometric head as well as a soil's coefficient of consolidation and hydraulic conductivity. The seismic cone can be used to quickly and accurately measure shear and compression wavespeed profiles while performing a standard CPT test. Our seismic system uses VERTEK'S specially designed triaxial velocity gauges for monitoring, software modules for data acquisition and interpretation, and special heavy duty trigger assemblies. Seismic information can be obtained during a CPT test simply by pausing at the desired depth.

Cone Specifications						
Dimensions						
Cone Base Area	15 cm ²					
Sleeve Area	225 cm ²					
Range and Accuracy						
Tip Load Cell						
Range	50,000 lbs					
Overload Capacity	150 %					
Accuracy (FSO)	0.5 %					
Sleeve Load Cell						
Range	10,000 lbs					
Overload Capacity	150 %					
Accuracy (FSO)	1.0 %					
Pore Pressure Transducer						
Range	1,000 psi					
Burst Pressure	200 %					
Accuracy (FSO)	1.0 %					
Inclinometer						
Range	15 degrees					

Appendix III– Laboratory Testing Results

CPT Dissipation Test Results

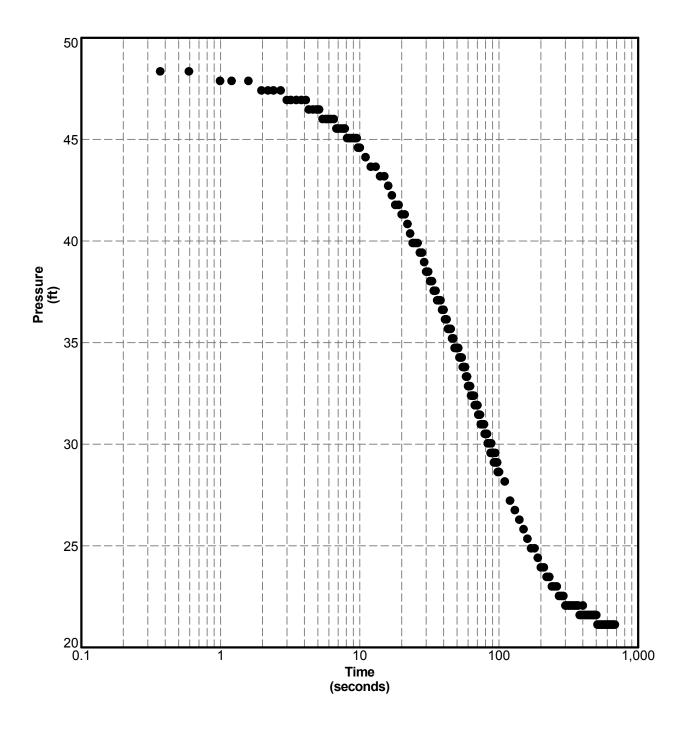
Results from APS Engineering and Testing, LLC


Low Stress Consolidation Test Results Report Dated October 20, 2017

Settling Column Test Report SCTCS Group LLC: Settling Properties of Fine-Grained Sediments Which May be Hydraulically Dredged: new Orleans Landbridge Shoreline Stabilization & Marsh Creation Project (PO-169)

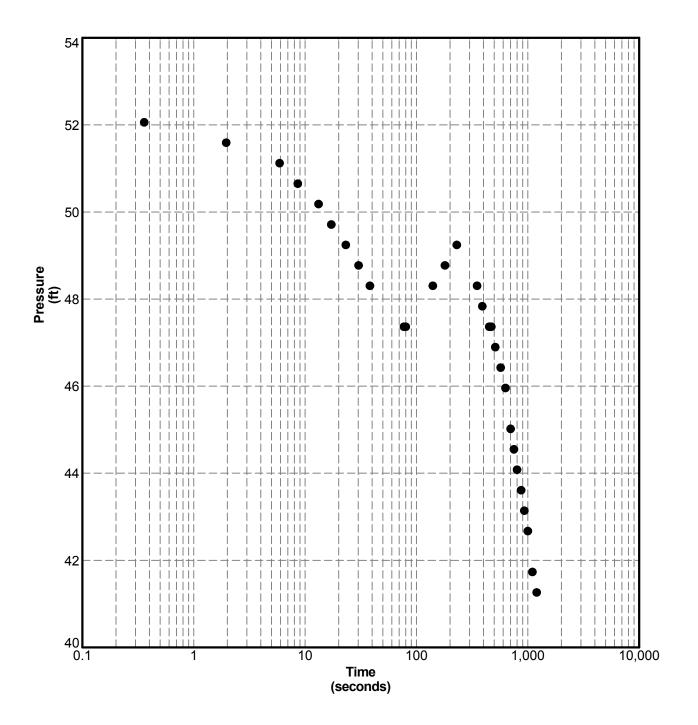
Project No: 4585-17-006

Date: Jun. 15, 2017 Estimated Water Depth: 4.6 ft Rig/Operator: Mike | David Total Depth: 19.3 ft Termination Criteria: Target Depth Test Depth: 8.6 ft



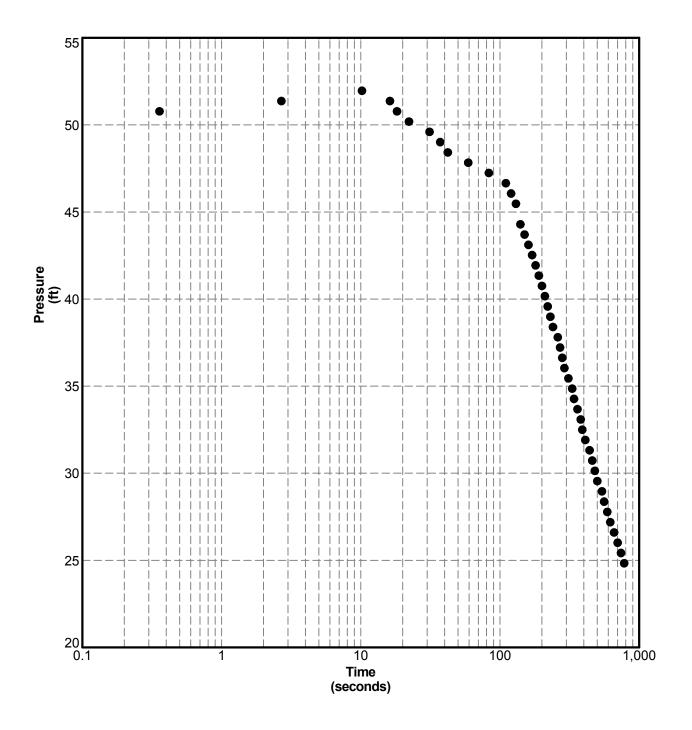
Project No: 4585-17-006

Date:Jun. 15, 2017Estimated Water Depth:2.9 ftRig/Operator:Mike | David


Total Depth:19.4 ftTermination Criteria:Target DepthTest Depth:14.1 ft

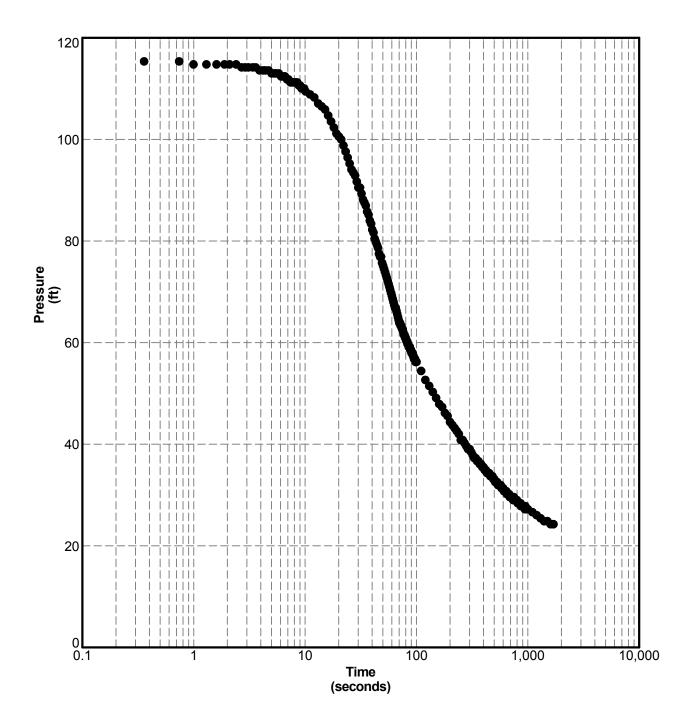
Project No: 4585-17-006

Date: Jun. 15, 2017 Estimated Water Depth: 3.2 ft Rig/Operator: Mike | David Total Depth:20.0 ftTermination Criteria:Target DepthTest Depth:10.9 ft



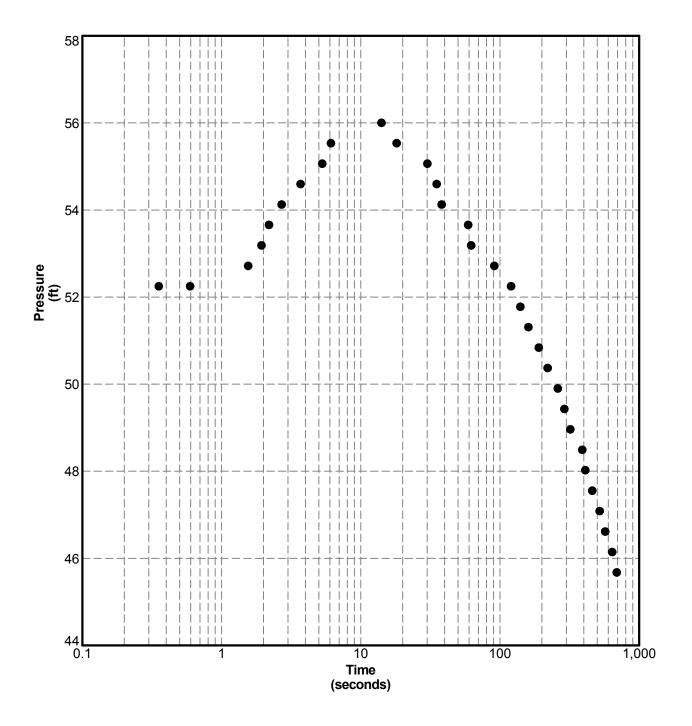
Project No: 4585-17-006

Date:Jun. 14, 2017Estimated Water Depth:3.8 ftRig/Operator:Mike | David

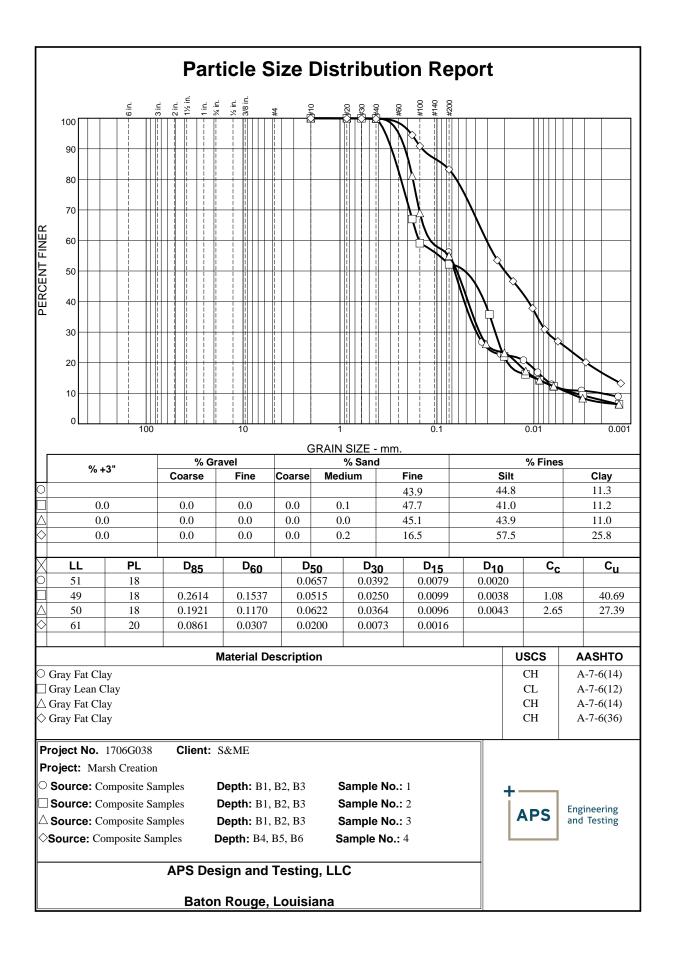

Total Depth:22.9 ftTermination Criteria:Target DepthTest Depth:12.6 ft

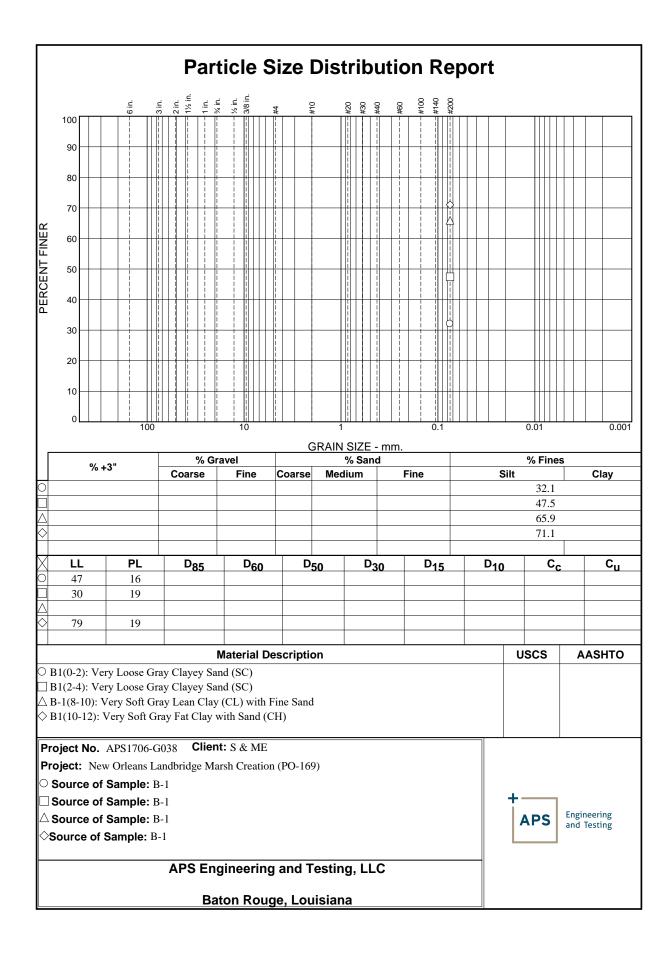
Project No: 4585-17-006

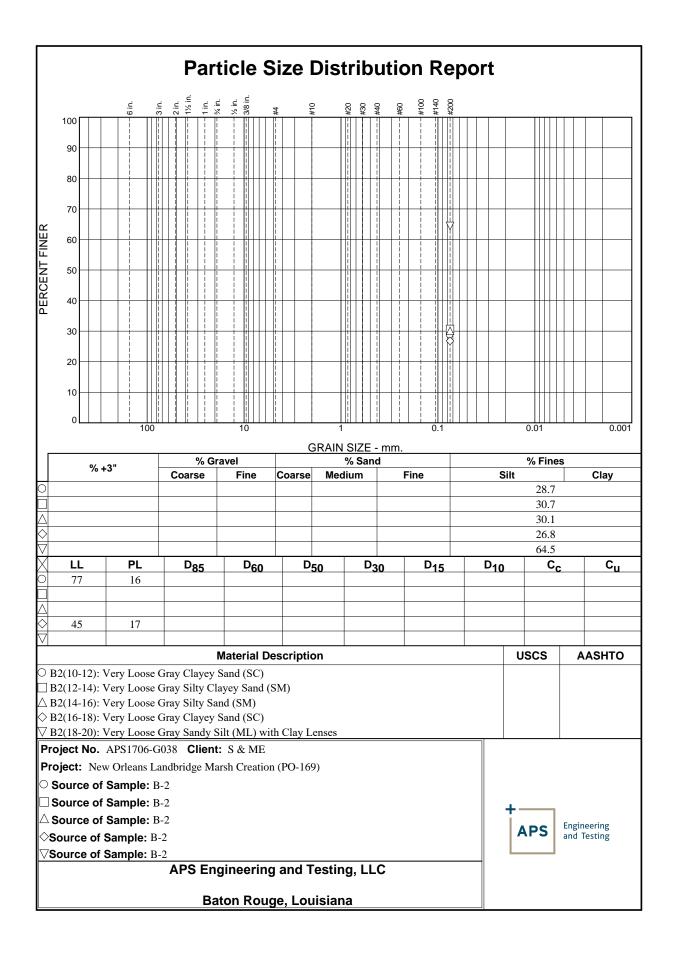
Date: Jun. 14, 2017 Estimated Water Depth: 1.3 ft Rig/Operator: Mike | David Total Depth: 19.0 ft Termination Criteria: Target Depth Test Depth: 14.5 ft

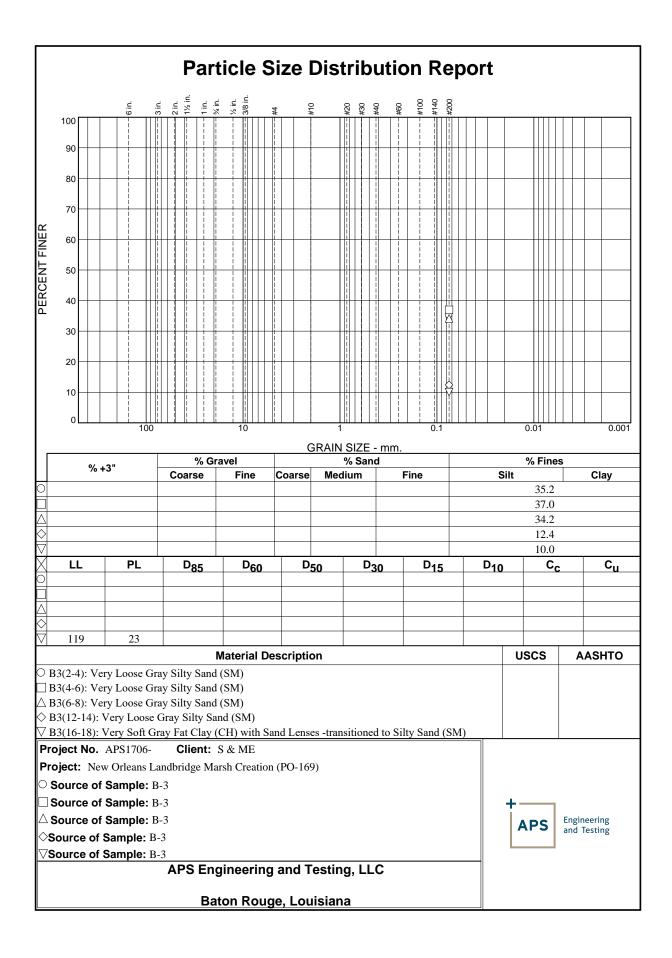

C-11

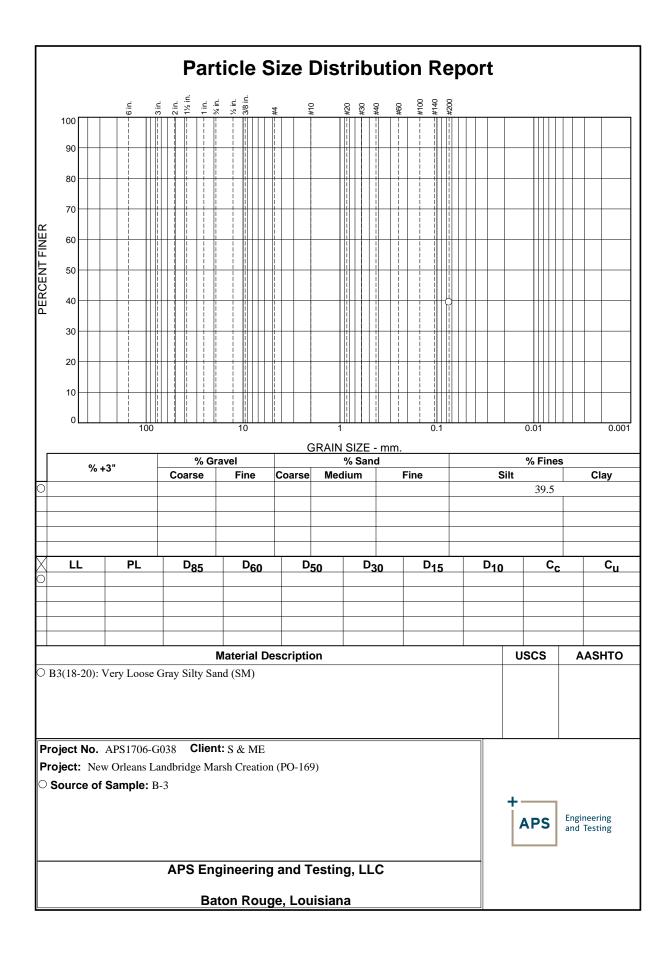
Project No: 4585-17-006

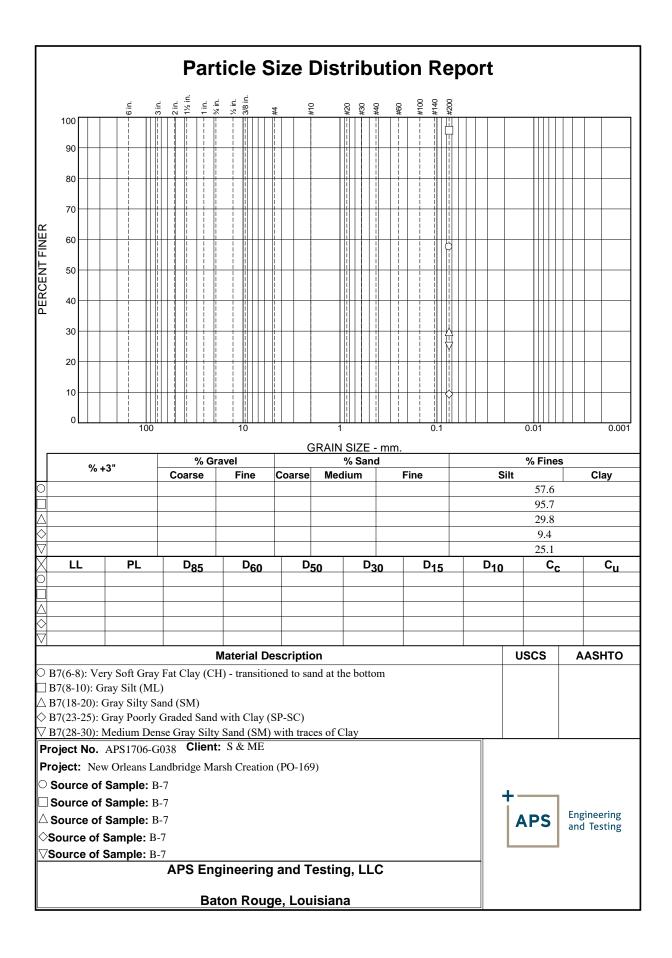

Date:Jun. 16, 2017Estimated Water Depth:3.6 ftRig/Operator:Mike | David

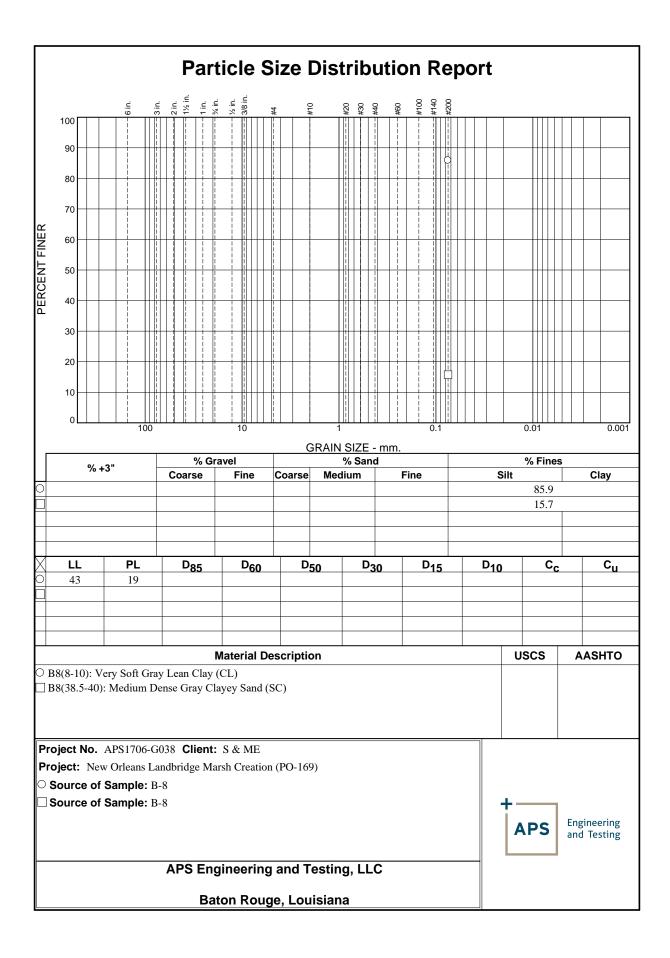

Total Depth:20.4 ftTermination Criteria:Target DepthTest Depth:10.3 ft

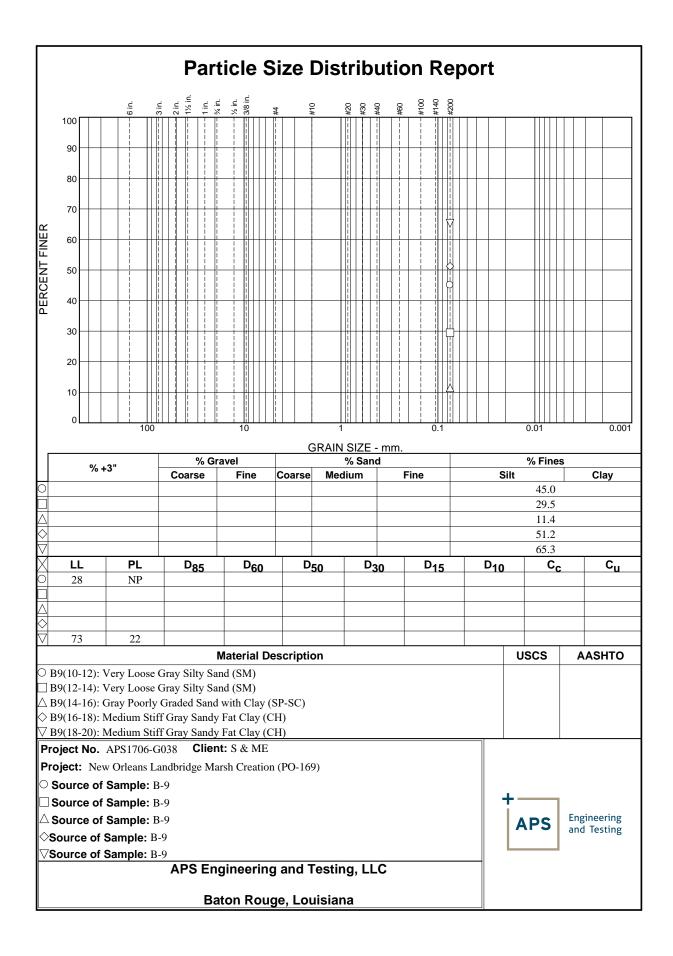

C-18

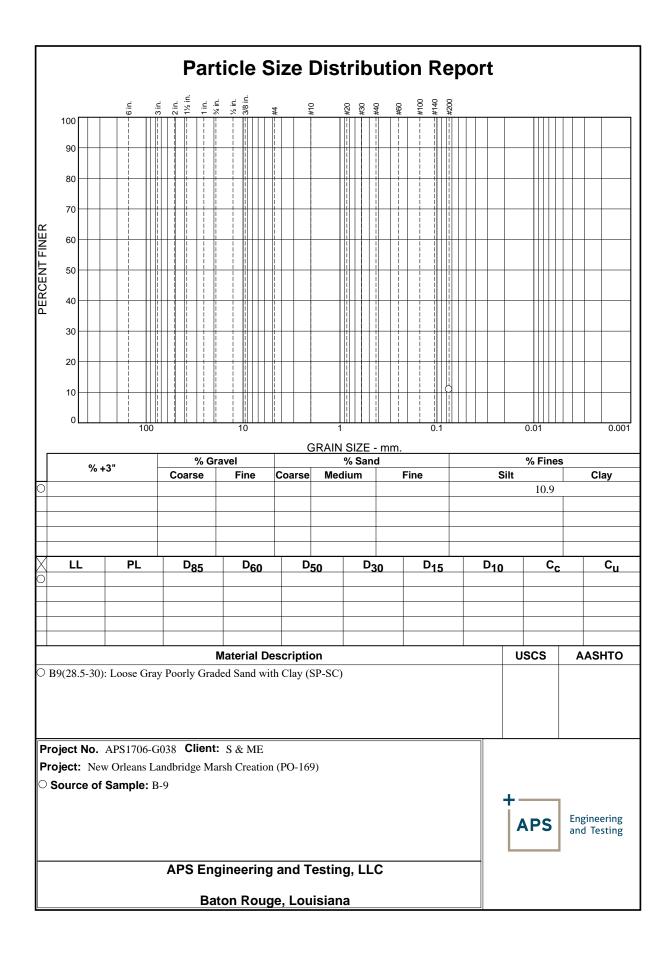

Hydrometers & Sieve Results

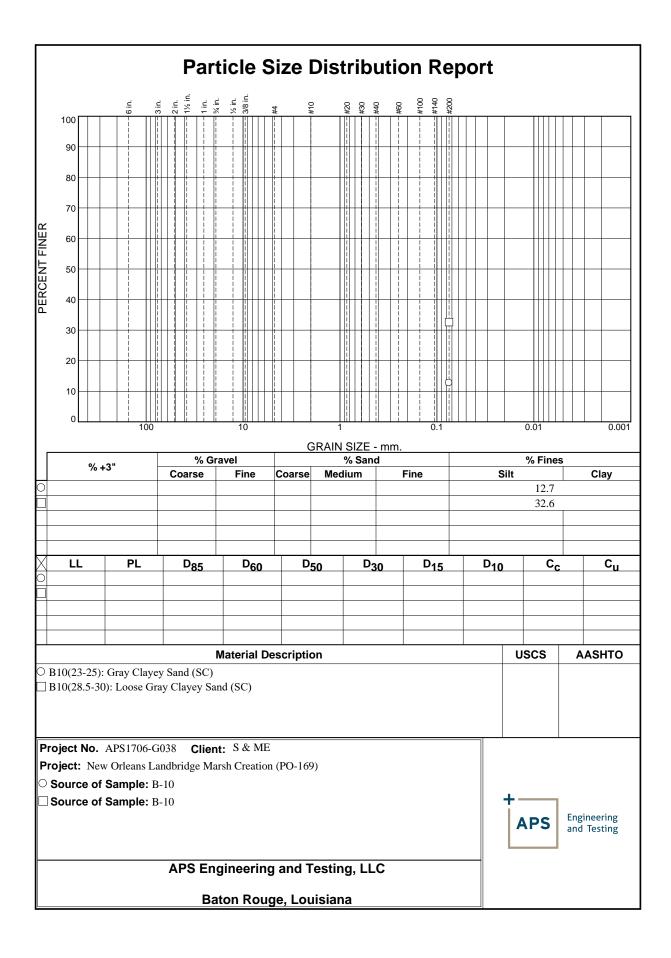


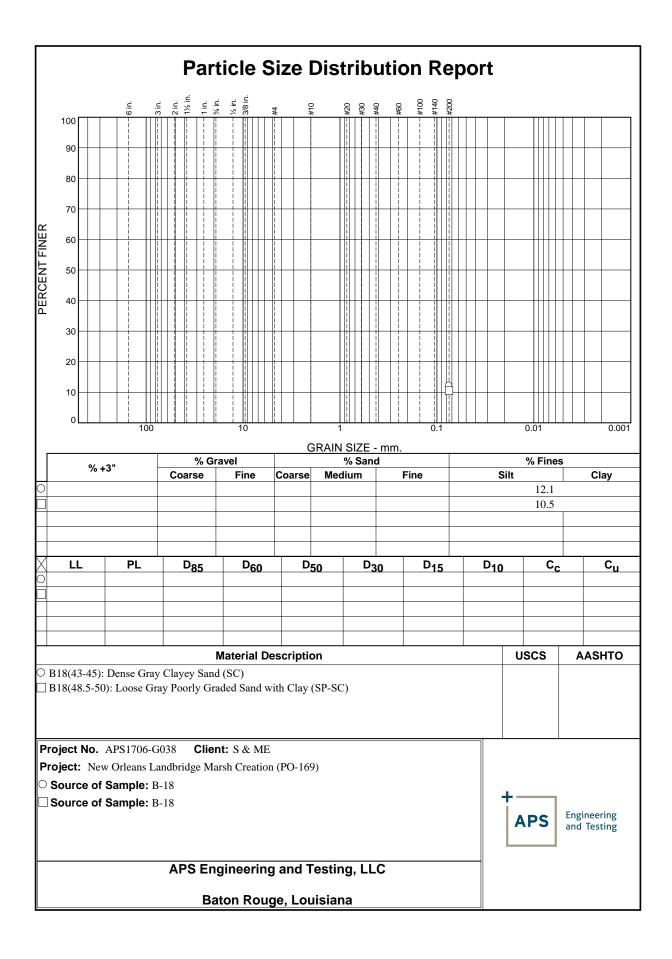


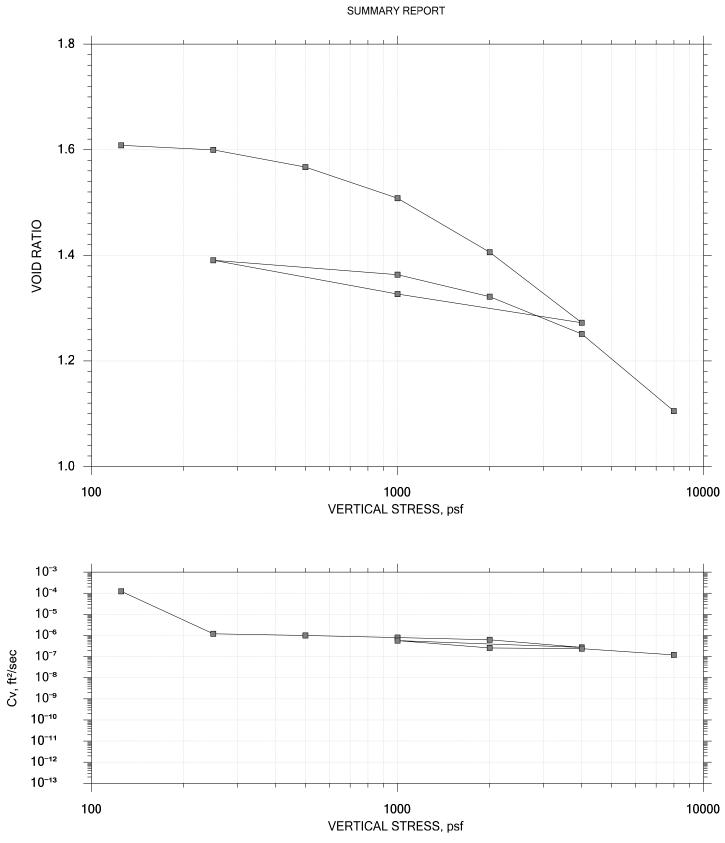






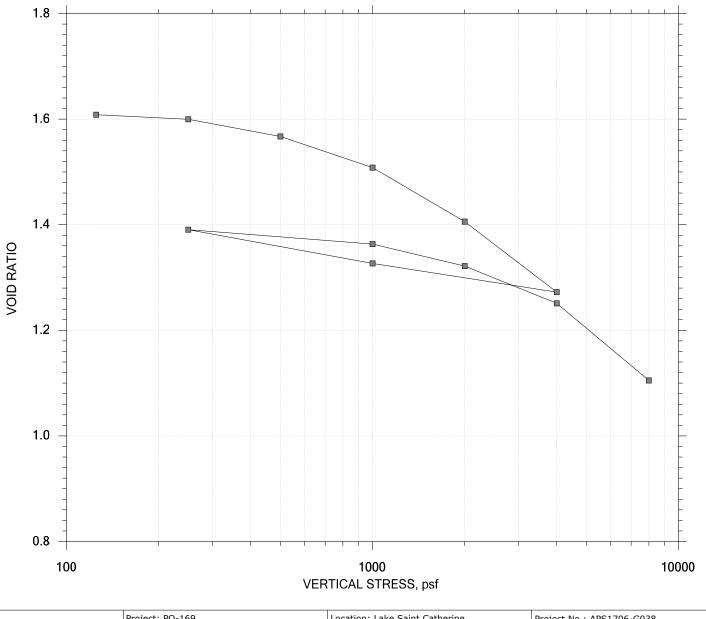






Specific Gravity & Consolidation

Specific Gravity of Soils by ASTM D854


Boring ID	Sample ID	Depth	Visual Description	Specific Gravity	Comment
B-8	5	8-10 ft	Soft Gray lean clay	2.65	LL = 43 PI = 24
B-8	9	16-18 ft	Stiff Gray lean clay	2.65	LL = 36 PI = 18
B-11	1	0-2 ft	Soft black & brown organic clay	2.61	LL =248 PI = 183 Organic = 26.00%
B-18	1	0-2 ft	Soft black & brown clay	2.17	LL =299 PI = 237 Organic = 35.80%

Notes: Specific Gravity performed by using method A (moist specimens) of ASTM D854 Moisture Content determined by ASTM D2216.

		Project: PO-169	Location: Lake Saint Catherine	Project No.: APS1706-G038
±	-	Boring No.: B-7A	Tested By: SA	Checked By: SE
APS	Engineering		Test Date: 7/28/17	Elevation: N/A
APS	and Testing	Depth: 2-4 ft	Sample Type: intact	
	-	Description: Very Soft Gray Clay		
		Displacement at End of Increment		

SUMMARY REPORT

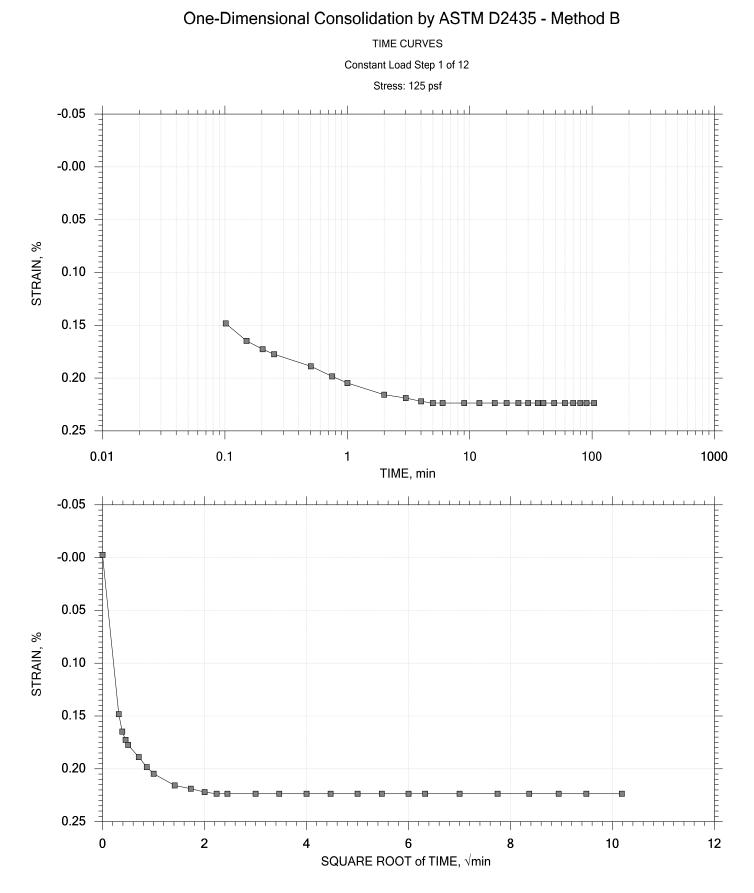
		Project: PO-169	Location: Lake Saint Catherine	Project No.: APS1706-G038
+		Boring No.: B-7A	Tested By: SA	Checked By: SE
APS	Engineering		Test Date: 7/28/17	Elevation: N/A
	and Testing	Depth: 2-4 ft	Sample Type: intact	
		Description: Very Soft Gray Clay		
		Displacement at End of Increment		

Project: PO-169 Boring No.: B-7A Sample No.: 2 Location: Lake Saint Catherine Tested By: SA Test Date: 7/28/17 Sample Type: intact

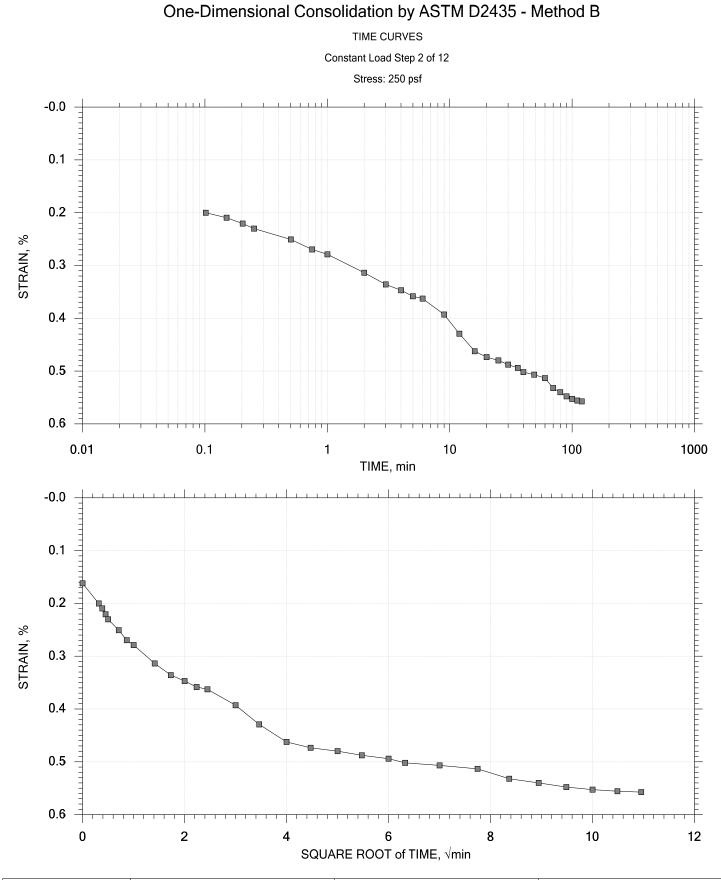
Soil Description: Very Soft gray clay

Estimated Specific Gravity: 2.76 Initial Void Ratio: 1.61 Final Void Ratio: 1.19	Liquid Limit:10 Plastic Limit:2 Plasticity Inde	27	Specimen Diameter Initial Height: 1 Final Height: 0.84 After Conso	.00 in 4 in
	Trimmings	Specimen+Ring	Specimen+Ring	Trimmings
Container ID	a32	RING	sh-15	sh-15
Wt. Container + Wet Soil, gm	99.380	142.44	129.65	129.65
Wt. Container + Dry Soil, gm	68.710	92.930	92.930	92.930
Wt. Container, gm	16.980	8.1600	8.1600	8.1600
Wt. Dry Soil, qm	51.730	84.770	84.770	84.770
Water Content, %	59.29	58.41	43.32	43.32
Void Ratio		1.61	1.19	
Degree of Saturation, %		99.68	100.00	
Dry Unit Weight, pcf		65.789	78.413	

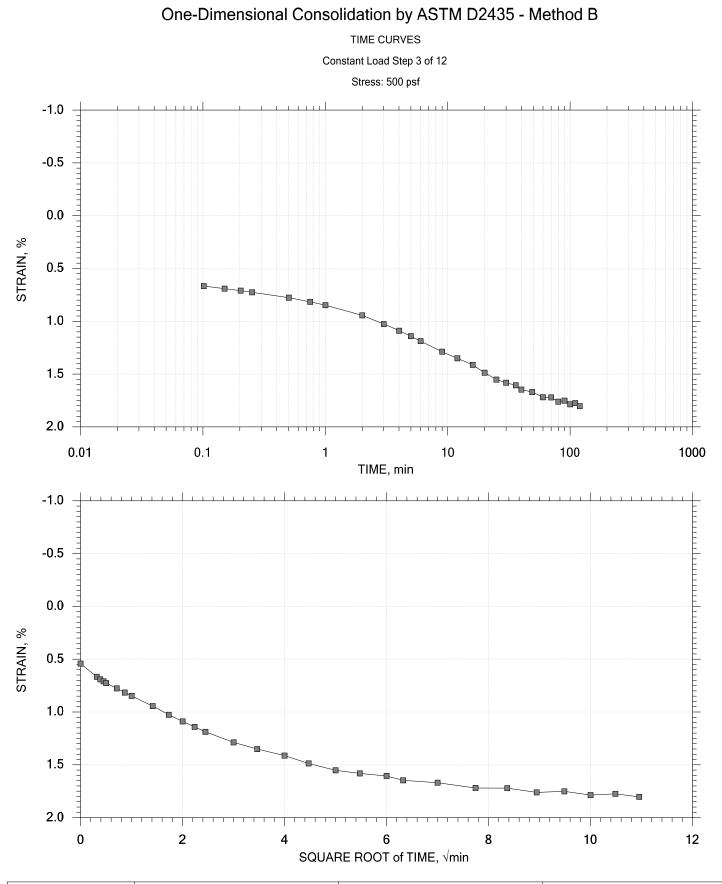
Note: Specific Gravity and Void Ratios are calculated assuming the degree of saturation equals 100% at the end of the test. Therefore, values may not represent actual values for the specimen.

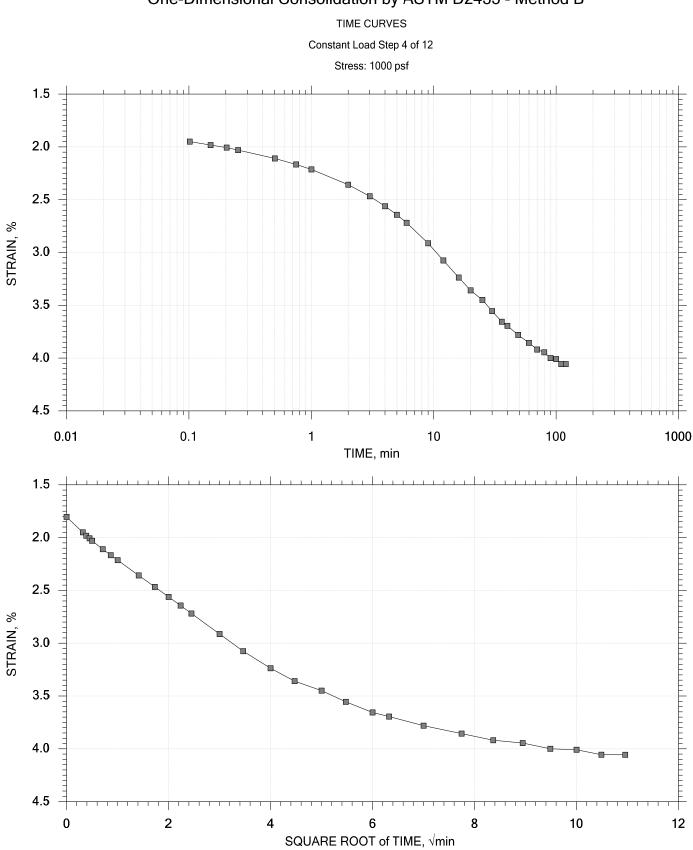

Project: PO-169 Boring No.: B-7A Sample No.: 2

Location: Lake Saint Catherine Tested By: SA Test Date: 7/28/17 Sample Type: intact Project No.: APS1706-G038 Checked By: SE Depth: 2-4 ft Elevation: N/A

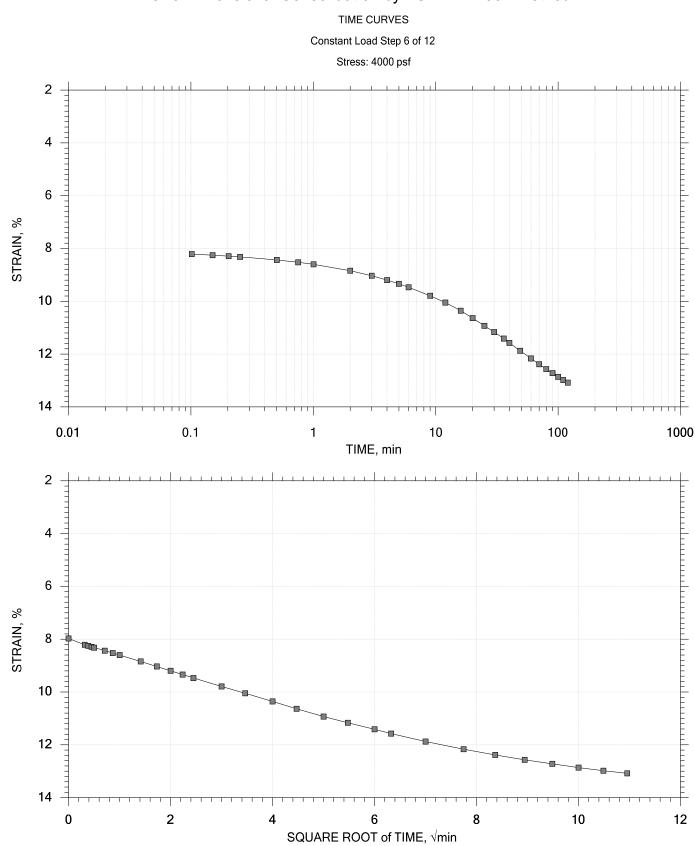

Soil Description: Very Soft gray clay

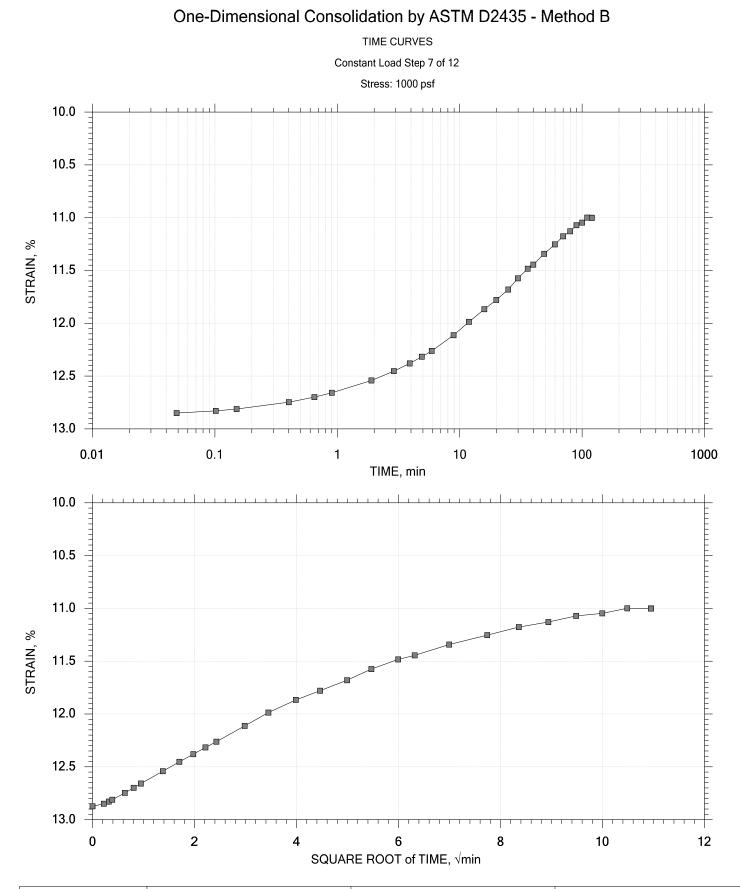
Displacement at End of Increment

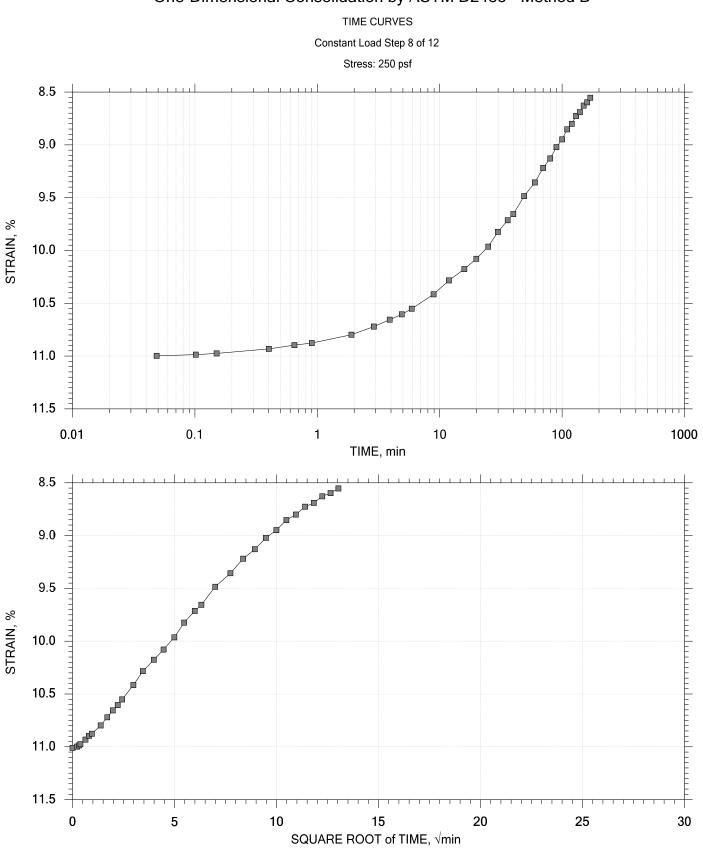

	Applied	Final	Void	Strain	Sq.Rt				
	Stress	Displacement	Ratio	at End	Т90	Cv	Mv	k	
	psf	in		8	min	ft²/sec	1/psf	cm/sec	
1	125.	0.002236	1.61	0.224	0.238	1.03e-004	1.79e-005	3.49e-006	
2	250.	0.005573	1.60	0.557	23.852	1.02e-006	2.67e-005	5.19e-008	
3	500.	0.01803	1.57	1.80	24.164	9.92e-007	4.98e-005	9.40e-008	
4	1.00e+003	0.04057	1.51	4.06	22.260	1.04e-006	4.51e-005	8.91e-008	
5	2.00e+003	0.07970	1.41	7.97	32.571	6.65e-007	3.91e-005	4.96e-008	
6	4.00e+003	0.1308	1.27	13.1	68.420	2.87e-007	2.56e-005	1.40e-008	
7	1.00e+003	0.1100	1.33	11.0	61.252	3.10e-007	6.94e-006	4.09e-009	
8	250.	0.08554	1.39	8.55	160.284	1.25e-007	3.26e-005	7.74e-009	
9	1.00e+003	0.09597	1.36	9.60	35.684	5.68e-007	1.39e-005	1.50e-008	
10	2.00e+003	0.1119	1.32	11.2	78.745	2.50e-007	1.59e-005	7.58e-009	
11	4.00e+003	0.1389	1.25	13.9	83.892	2.24e-007	1.35e-005	5.75e-009	
12	8.00e+003	0.1948	1.11	19.5	140.833	1.21e-007	1.40e-005	3.21e-009	
	Applied	Final	Void	Strain	Log				
	Stress	Displacement	Ratio	at End	т50	Cv	Mv	k	Ca
	psf	in		8	min	ft²/sec	1/psf	cm/sec	8
1	125.	0.002236	1.61	0.224	0.000	0.00e+000	1.79e-005	0.00e+000	0.00e+000
2	250.	0.005573	1.60	0.557	0.000	0.00e+000	2.67e-005	0.00e+000	0.00e+000
3	500.	0.01803	1.57	1.80	0.000	0.00e+000	4.98e-005	0.00e+000	0.00e+000
4	1.00e+003	0.04057	1.51	4.06	7.535	7.13e-007	4.51e-005	6.11e-008	0.00e+000
5	2.00e+003	0.07970	1.41	7.97	0.000	0.00e+000	3.91e-005	0.00e+000	0.00e+000
6	4.00e+003	0.1308	1.27	13.1	0.000	0.00e+000	2.56e-005	0.00e+000	0.00e+000
7	1.00e+003	0.1100	1.33	11.0	13.135	3.36e-007	6.94e-006	4.43e-009	0.00e+000
8	250.	0.08554	1.39	8.55	0.000	0.00e+000	3.26e-005	0.00e+000	0.00e+000
9	1.00e+003	0.09597	1.36	9.60	0.000	0.00e+000	1.39e-005	0.00e+000	0.00e+000
10	2.00e+003	0.1119	1.32	11.2	17.579	2.60e-007	1.59e-005	7.89e-009	0.00e+000
11	4.00e+003	0.1389	1.25	13.9	17.278	2.52e-007	1.35e-005	6.49e-009	0.00e+000
12	8.00e+003	0.1948	1.11	19.5	0.000		1.40e-005	0.00e+000	0.00e+000

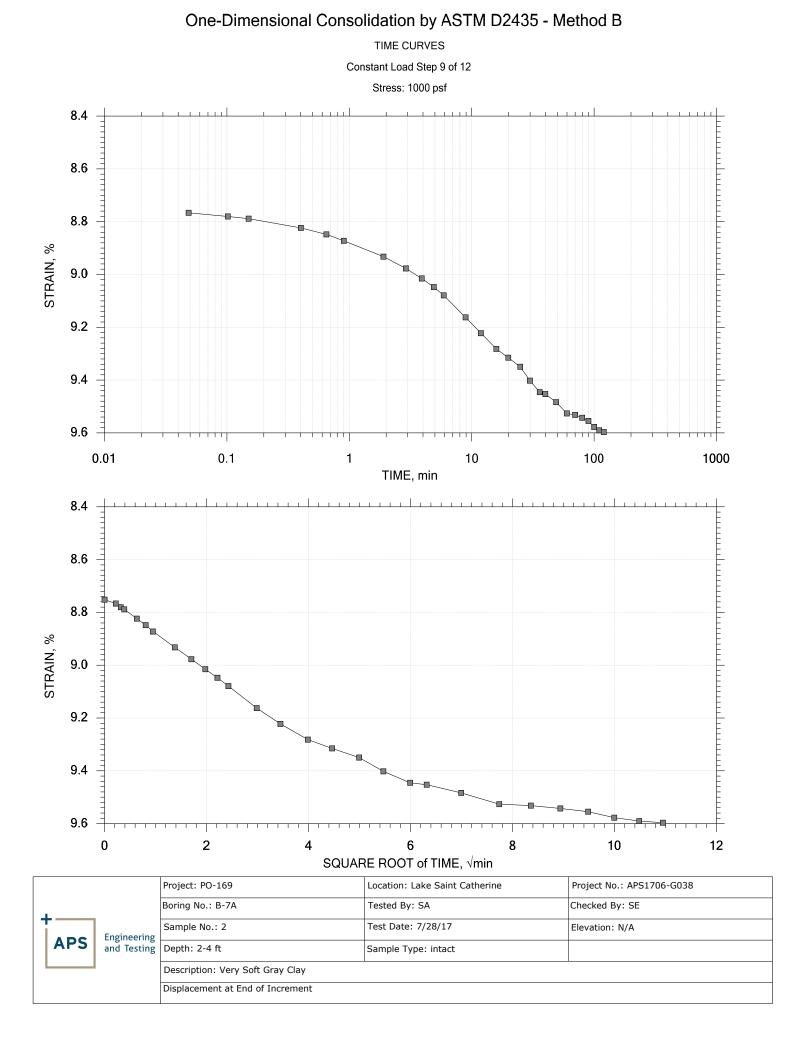

	—	Project: PO-169	Location: Lake Saint Catherine	Project No.: APS1706-G038
		Boring No.: B-7A	Tested By: SA	Checked By: SE
APS		Sample No.: 2	Test Date: 7/28/17	Elevation: N/A
APS	and Testing	Depth: 2-4 ft	Sample Type: intact	
		Description: Very Soft Gray Clay		
		Displacement at End of Increment		

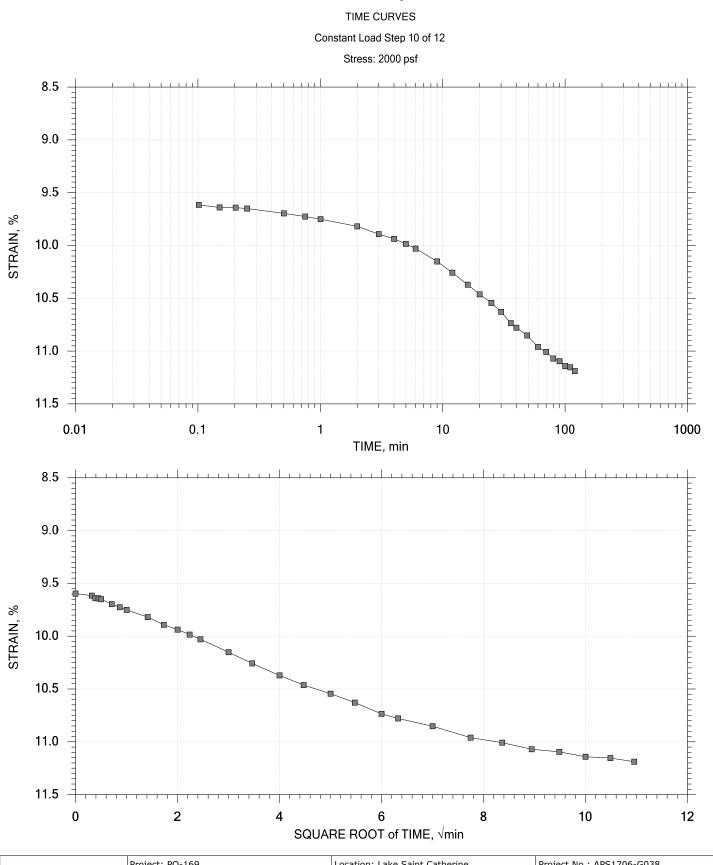

Project: PO-169 Location: Lake Saint Catherine Project No.: APS1706-G038 Boring No.: B-7A Tested By: SA Checked By: SE Sample No.: 2 Test Date: 7/28/17 Elevation: N/A Depth: 2-4 ft Sample Type: intact Implement at End of Increment Displacement at End of Increment Displacement at End of Increment Sample Type: intact


			Project: PO-169	Location: Lake Saint Catherine	Project No.: APS1706-G038
-		Engineering	Boring No.: B-7A	Tested By: SA	Checked By: SE
			Sample No.: 2	Test Date: 7/28/17	Elevation: N/A
	APS		Depth: 2-4 ft	Sample Type: intact	
			Description: Very Soft Gray Clay		
			Displacement at End of Increment		

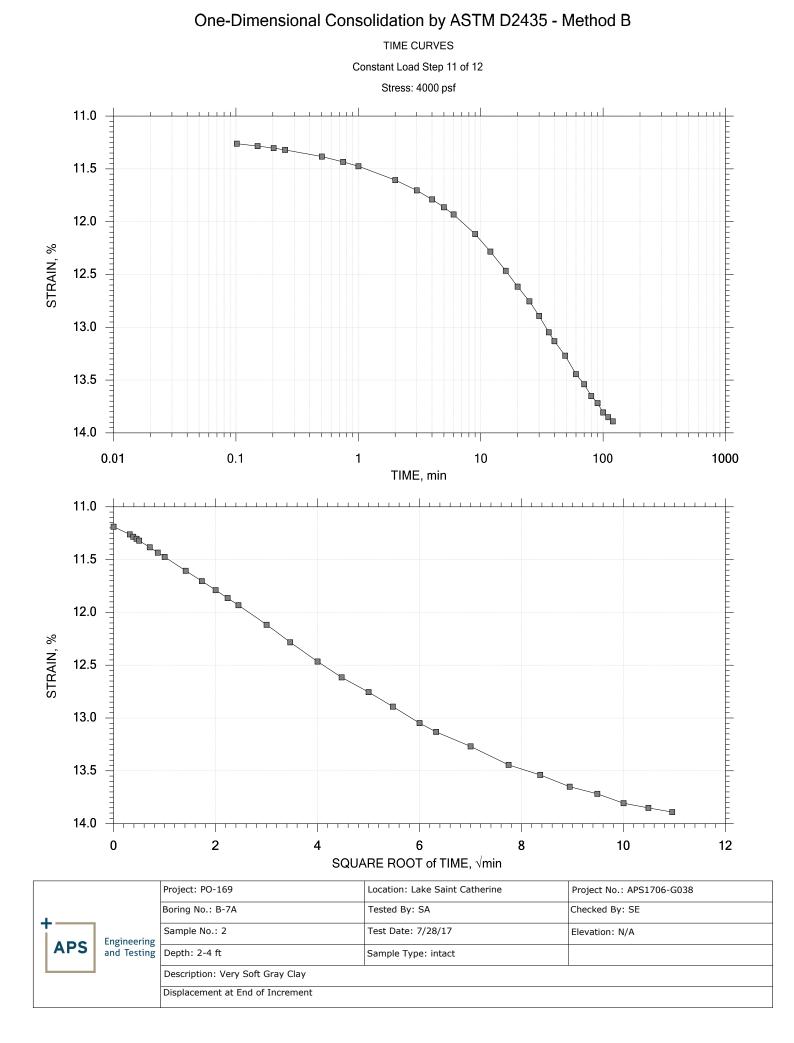

			Project: PO-169	Location: Lake Saint Catherine	Project No.: APS1706-G038	
			Boring No.: B-7A	Tested By: SA	Checked By: SE	
IT.		Engineering	Sample No.: 2	Test Date: 7/28/17	Elevation: N/A	
A	PS	and Testing	Depth: 2-4 ft	Sample Type: intact		
			Description: Very Soft Gray Clay			
			Displacement at End of Increment			

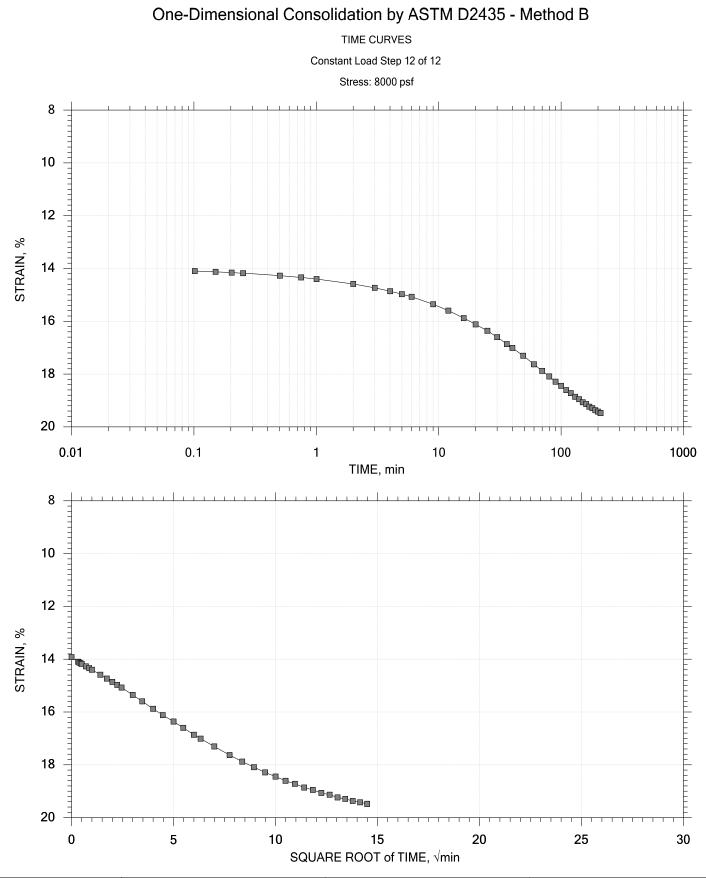

			Project: PO-169	Location: Lake Saint Catherine	Project No.: APS1706-G038
l a			Boring No.: B-7A	Tested By: SA	Checked By: SE
Li	APS	Engineering	Sample No.: 2	Test Date: 7/28/17	Elevation: N/A
	AFJ	and Testing	Depth: 2-4 ft	Sample Type: intact	
1			Description: Very Soft Gray Clay		
			Displacement at End of Increment		


Image: Project: PO-169 Location: Lake Saint Catherine Project No.: APS1706-G038 Boring No.: B-7A Tested By: SA Checked By: SE Sample No.: 2 Test Date: 7/28/17 Elevation: N/A Depth: 2-4 ft Sample Type: intact Description: Very Soft Gray Clay Displacement at End of Increment Displacement at End of Increment Figure 2000



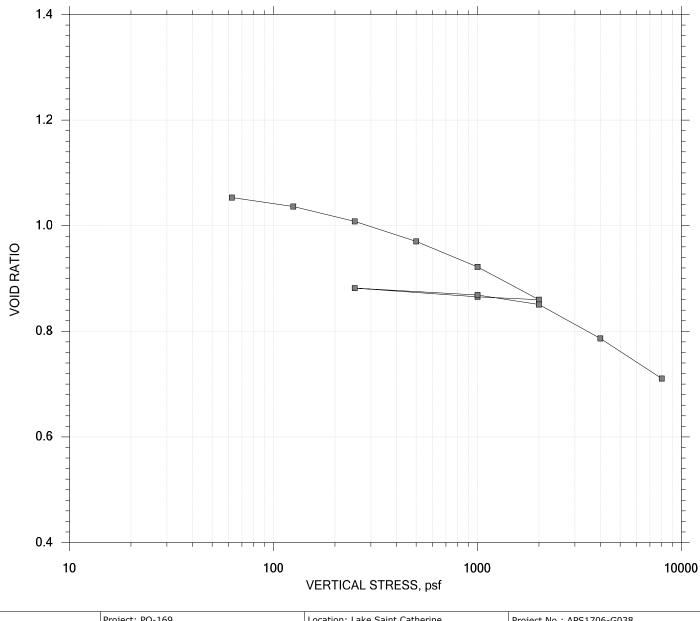
		Project: PO-169	Location: Lake Saint Catherine	Project No.: APS1706-G038	
+		Boring No.: B-7A	Tested By: SA	Checked By: SE	
APS	Engineering	Sample No.: 2	Test Date: 7/28/17	Elevation: N/A	
AFJ	and Testing	Depth: 2-4 ft	Sample Type: intact		
		Description: Very Soft Gray Clay			
		Displacement at End of Increment			




			Project: PO-169	Location: Lake Saint Catherine	Project No.: APS1706-G038
4			Boring No.: B-7A	Tested By: SA	Checked By: SE
		Engineering	Sample No.: 2	Test Date: 7/28/17	Elevation: N/A
	APS		Depth: 2-4 ft	Sample Type: intact	
			Description: Very Soft Gray Clay		
			Displacement at End of Increment		



Project: PO-169 Location: Lake Saint Catherine Project No.: APS1706-G038 Boring No.: B-7A Tested By: SA Checked By: SE Sample No.: 2 Test Date: 7/28/17 Elevation: N/A Depth: 2-4 ft Sample Type: intact Description: Very Soft Gray Clay Displacement at End of Increment Displacement at End of Increment



		Project: PO-169	Location: Lake Saint Catherine	Project No.: APS1706-G038
L	1	Boring No.: B-7A	Tested By: SA	Checked By: SE
		Sample No.: 2	Test Date: 7/28/17	Elevation: N/A
APS			Sample Type: intact	
		Description: Very Soft Gray Clay		
		Displacement at End of Increment		

Displacement at End of Increment

SUMMARY REPORT

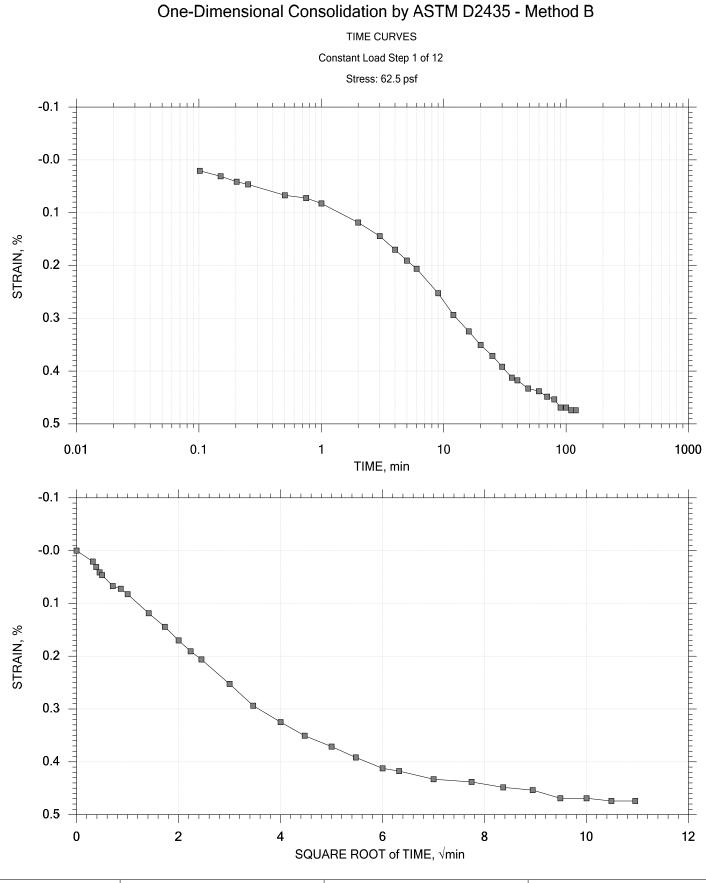
			Project: PO-169	Location: Lake Saint Catherine	Project No.: APS1706-G038
	APS	Engineering	Boring No.: B-8	Tested By: SA	Checked By: SE
			Sample No.: 5	Test Date: 7/28/17	Elevation: -3.80 ft
				Sample Type: intact	
			Description: Soft Gray Lean Clay		
			Displacement at End of Increment		

Project: PO-1609 Boring No.: B-8 Sample No.: 5

Location: Lake Saint Catherine Tested By: SA Test Date: 7/28/17 Sample Type: Intact Project No.: APS1706-G038 Checked By: SE Depth: 8-10 ft Elevation: -3.80 ft

Soil Description: Very Soft Gray Lean Clay

Measured Specific Gravity: 2.65 Initial Void Ratio: 1.06 Final Void Ratio: 0.740	Liquid Limit:43 Plastic Limit:1 Plasticity Inde	.9	Specimen Diameter: 2.50 in Initial Height: 1.00 in Final Height: 0.84 in After Consolidation		
	Before Co	onsolidation			
	Trimmings	Specimen+Ring	Specimen+Ring	Trimmings	
Container ID	a11	RING	ash	ash	
Wt. Container + Wet Soil, gm	91.800	151.27	140.36	140.36	
Wt. Container + Dry Soil, gm	72.080	111.50	111.50	111.50	
Wt. Container, gm	16.550	8.1800	8.1800	8.1800	
Wt. Dry Soil, gm	55.530	103.32	103.32	103.32	
Water Content, %	35.51	38.50	27.94	27.94	
Void Ratio		1.06	0.740		
Degree of Saturation, %		95.95	100.00		
Dry Unit Weight, pcf		80.181	95.057		

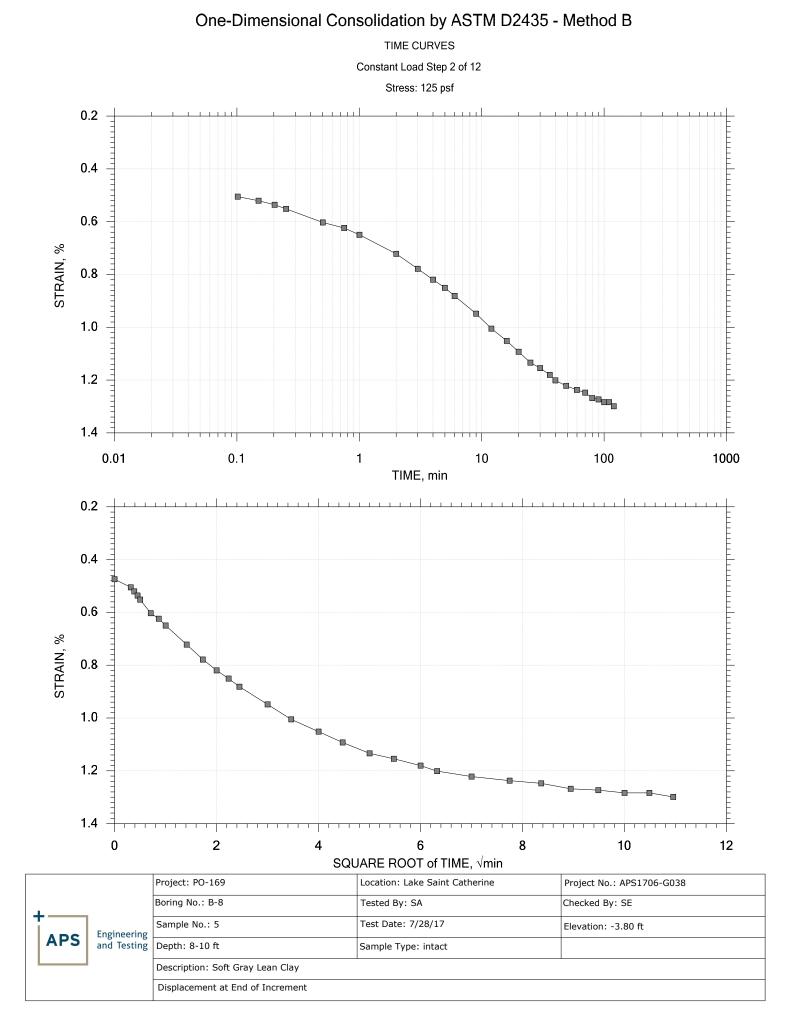

Project: PO-169 Boring No.: B-8 Sample No.: 5

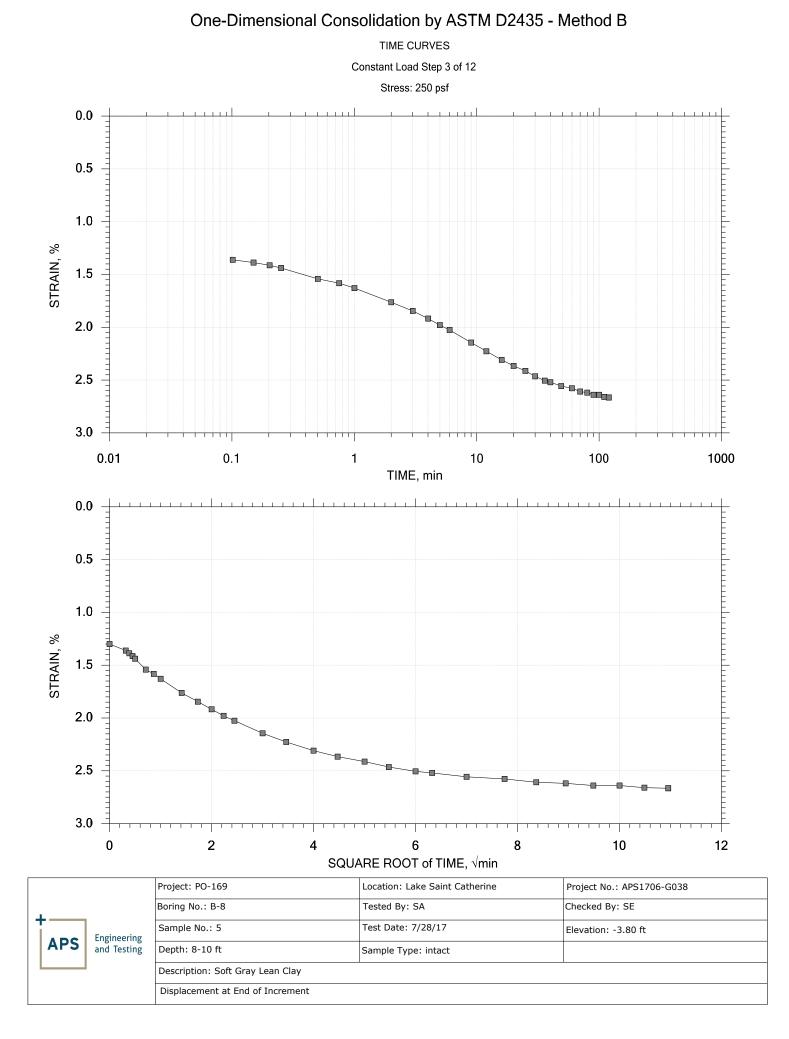
Location: Lake Saint Catherine Tested By: SA Test Date: 7/28/17 Sample Type: Intact Project No.: APS1706-G038 Checked By: SE Depth: 8-10 ft Elevation: -3.80 ft

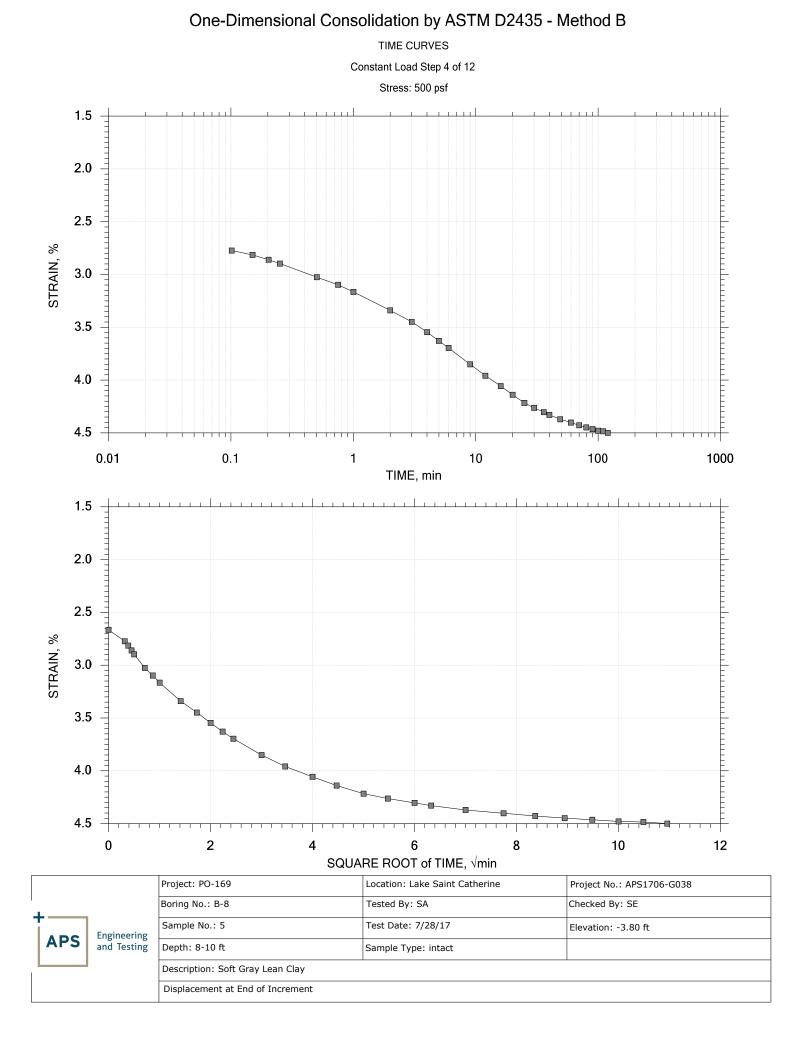
Soil Description: Very Soft Gray Lean Clay

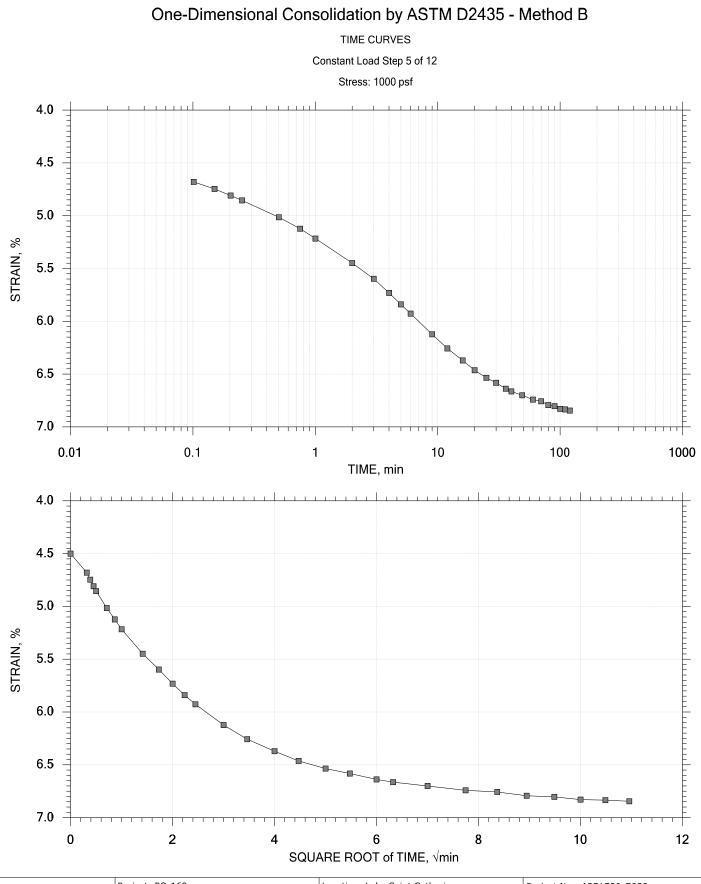
Displacement at End of Increment

	Applied	Final	Void	Strain	Sq.Rt				
	Stress	Displacement	Ratio	at End	Т90	Cv	Mv	k	
	psf	in		8	min	ft²/sec	1/psf	cm/sec	
1	62.5	0.004742	1 05	0 474		9.30e-007	7.59e-005	1.34e-007	
1		0.01299	1.05 1.04	0.474 1.30	26.265 16.403	9.30e-007 1.47e-006	1.32e-004	1.34e-007 3.69e-007	
2 3	125. 250.		1.04					3.72e-007	
		0.02665	0.970	2.66 4.50	13.189	1.79e-006 1.73e-006	1.09e-004	3.72e-007 2.42e-007	
4	500. 1.00e+003	0.04500			13.164		7.34e-005		
5		0.06845	0.922	6.84	10.238 7.705	2.13e-006	4.69e-005	1.90e-007	
6	2.00e+003	0.09855	0.860	9.85		2.67e-006	3.01e-005	1.53e-007	
7	1.00e+003	0.09592	0.865	9.59	0.634	3.16e-005	2.63e-006	1.58e-007	
8	250.	0.08788	0.882	8.79	4.894	4.13e-006	1.07e-005	8.43e-008	
9	1.00e+003	0.09422	0.869	9.42	1.174	1.73e-005	8.45e-006	2.78e-007	
10	2.00e+003	0.1029	0.851	10.3	3.792	5.26e-006	8.71e-006	8.71e-008	
11	4.00e+003	0.1341	0.787	13.4	6.879	2.77e-006	1.56e-005	8.22e-008	
12	8.00e+003	0.1709	0.711	17.1	5.407	3.26e-006	9.20e-006	5.71e-008	
	Applied	Final	Void	Strain	Log				
						Cv	Mv	k	Ca
									8
	<u>r</u> ~ -			-		,	-,		-
1	62.5	0.004742	1.05	0.474	6.198	9.15e-007	7.59e-005	1.32e-007	0.00e+000
2	125.	0.01299	1.04	1.30	6.192	9.04e-007	1.32e-004	2.27e-007	0.00e+000
3	250.	0.02665	1.01	2.66	3.775	1.45e-006	1.09e-004	3.02e-007	0.00e+000
4	500.	0.04500	0.970	4.50	3.616	1.47e-006	7.34e-005	2.05e-007	0.00e+000
5	1.00e+003	0.06845	0.922	6.84	2.429	2.09e-006	4.69e-005	1.86e-007	0.00e+000
6	2.00e+003	0.09855	0.860	9.85	1.970	2.43e-006	3.01e-005	1.39e-007	0.00e+000
7	1.00e+003	0.09592	0.865	9.59	0.000	0.00e+000	2.63e-006	0.00e+000	0.00e+000
8	250.	0.08788	0.882	8.79	1.107	4.25e-006	1.07e-005	8.66e-008	0.00e+000
9	1.00e+003	0.09422	0.869	9.42	0.254	1.86e-005	8.45e-006	2.99e-007	0.00e+000
10	2.00e+003	0.1029	0.851	10.3	0.602	7.70e-006	8.71e-006	1.28e-007	0.00e+000
11	4.00e+003	0.1341	0.787	13.4	1.294	3.42e-006	1.56e-005	1.02e-007	0.00e+000
12	8.00e+003	0.1709	0.711	17.1	1.459	2.81e-006	9.20e-006	4.91e-008	0.00e+000
2 3 4 5 6 7 8 9 10 11	125. 250. 500. 1.00e+003 2.00e+003 250. 1.00e+003 2.00e+003 4.00e+003	$\begin{array}{c} 0.01299\\ 0.02665\\ 0.04500\\ 0.06845\\ 0.09855\\ 0.09592\\ 0.08788\\ 0.09422\\ 0.1029\\ 0.1341 \end{array}$	1.04 1.01 0.970 0.922 0.860 0.865 0.882 0.869 0.851 0.787	$\begin{array}{c} 1.30\\ 2.66\\ 4.50\\ 6.84\\ 9.85\\ 9.59\\ 8.79\\ 9.42\\ 10.3\\ 13.4 \end{array}$	6.192 3.775 3.616 2.429 1.970 0.000 1.107 0.254 0.602 1.294	9.04e-007 1.45e-006 1.47e-006 2.09e-006 2.43e-006 0.00e+000 4.25e-006 1.86e-005 7.70e-006 3.42e-006	1.32e-004 1.09e-004 7.34e-005 3.01e-005 2.63e-006 1.07e-005 8.45e-006 8.71e-006 1.56e-005	2.27e-007 3.02e-007 2.05e-007 1.36e-007 1.39e-007 0.00e+000 8.66e-008 2.99e-007 1.28e-007 1.02e-007	0.00e+0 0.00e+0 0.00e+0 0.00e+0 0.00e+0 0.00e+0 0.00e+0 0.00e+0 0.00e+0 0.00e+0 0.00e+0

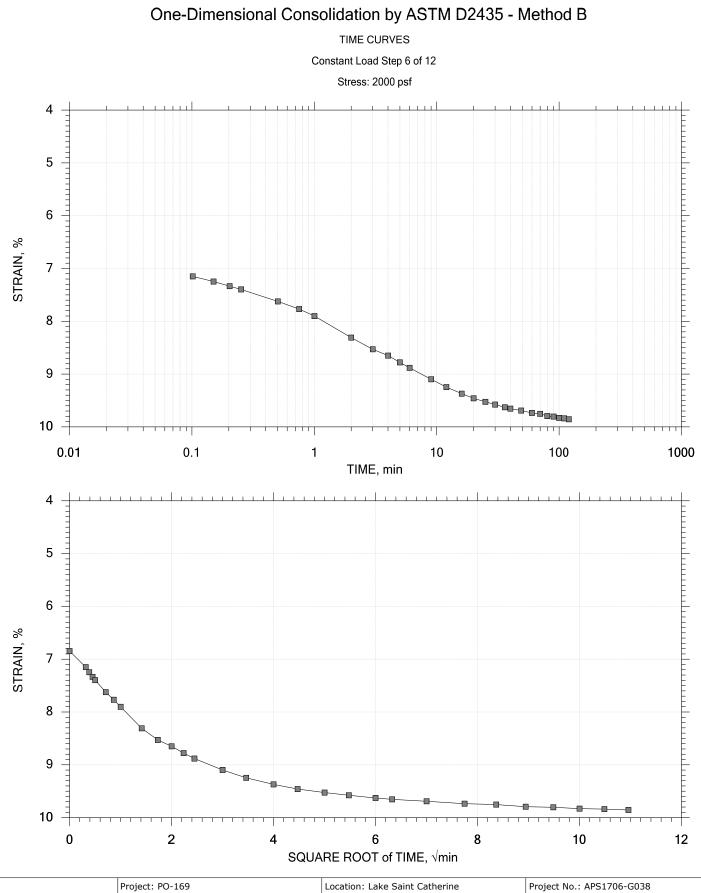

 Project: PO-169
 Location: Lake Saint Catherine
 Project No.: APS1706-G038

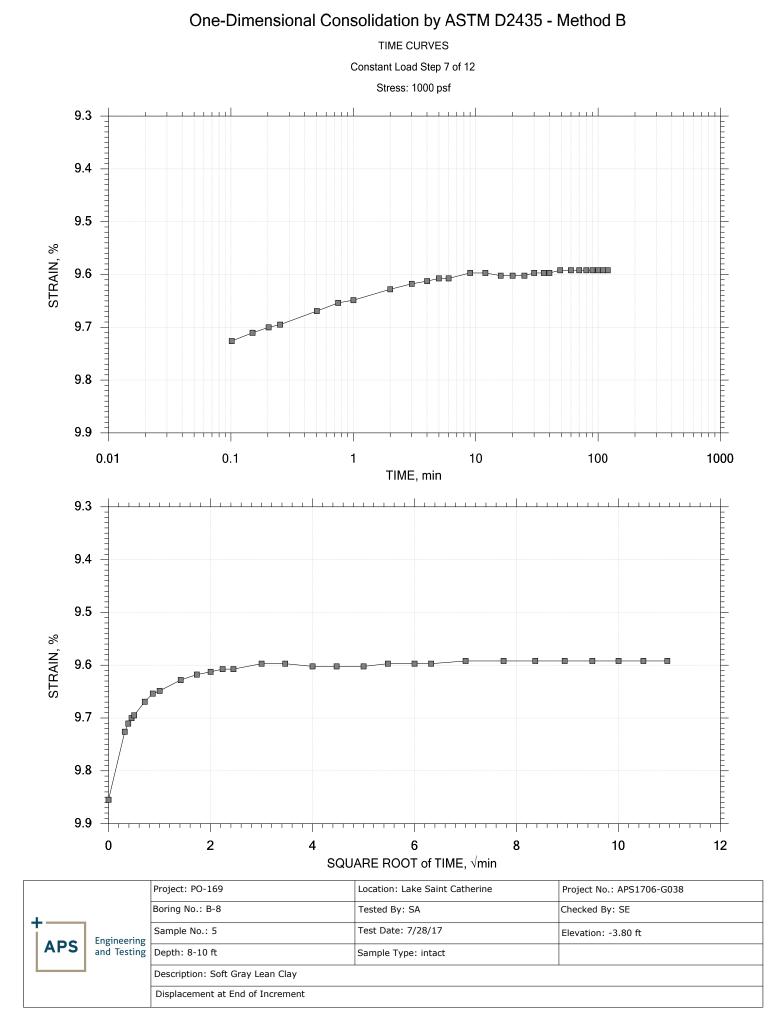

 Boring No.: B-8
 Tested By: SA
 Checked By: SE

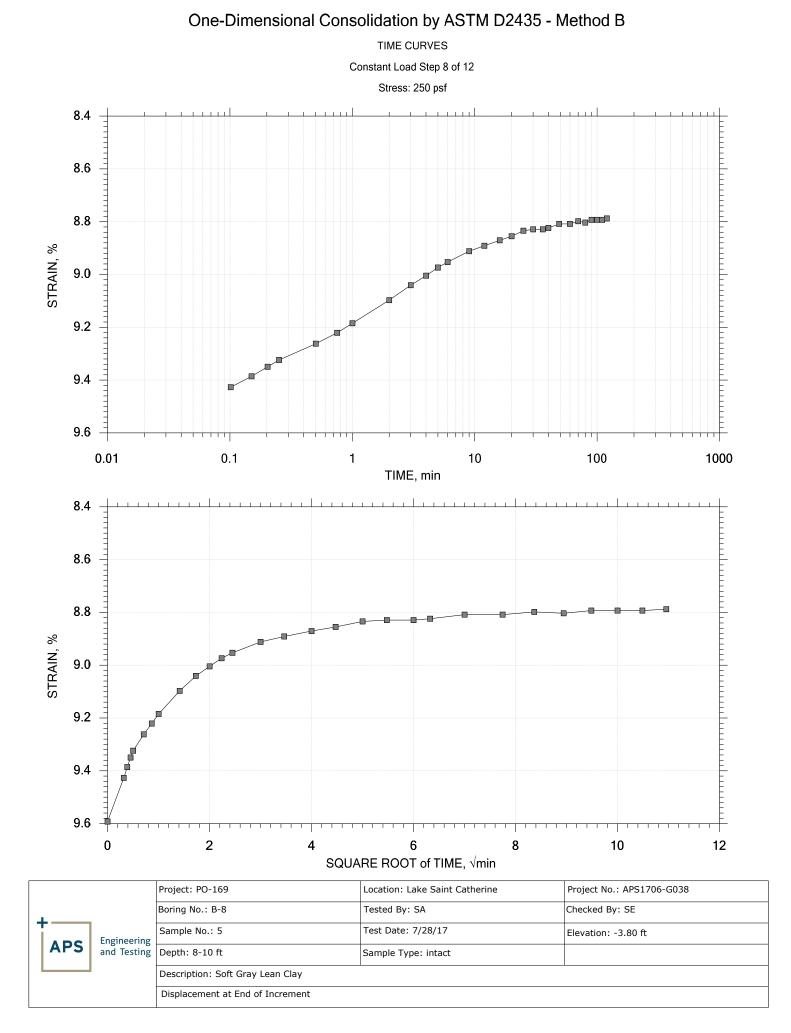

 Sample No.: 5
 Test Date: 7/28/17
 Elevation: -3.80 ft

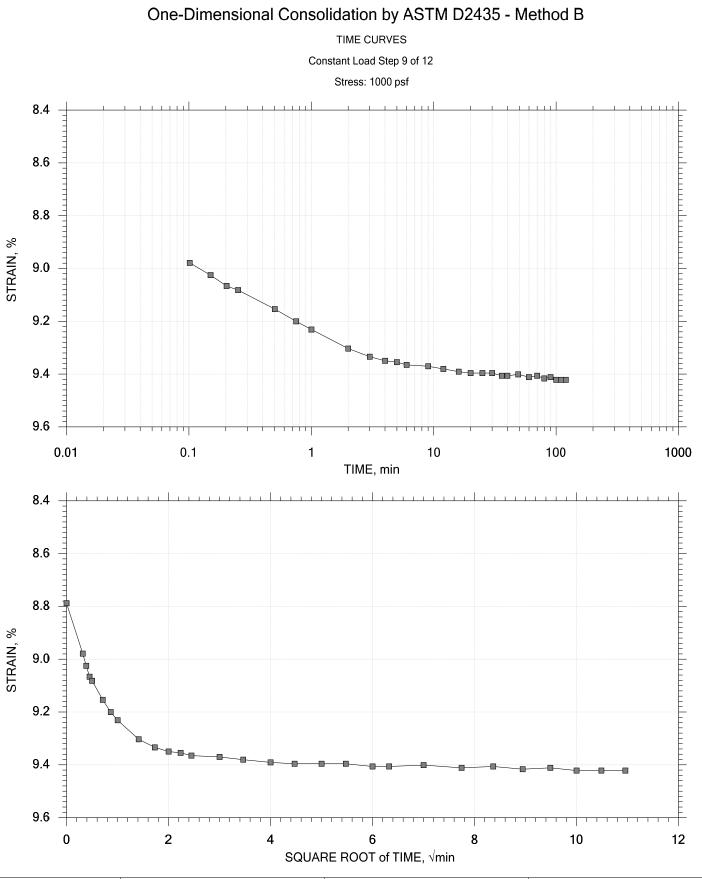

 Depth: 8-10 ft
 Sample Type: intact
 Description: Soft Gray Lean Clay

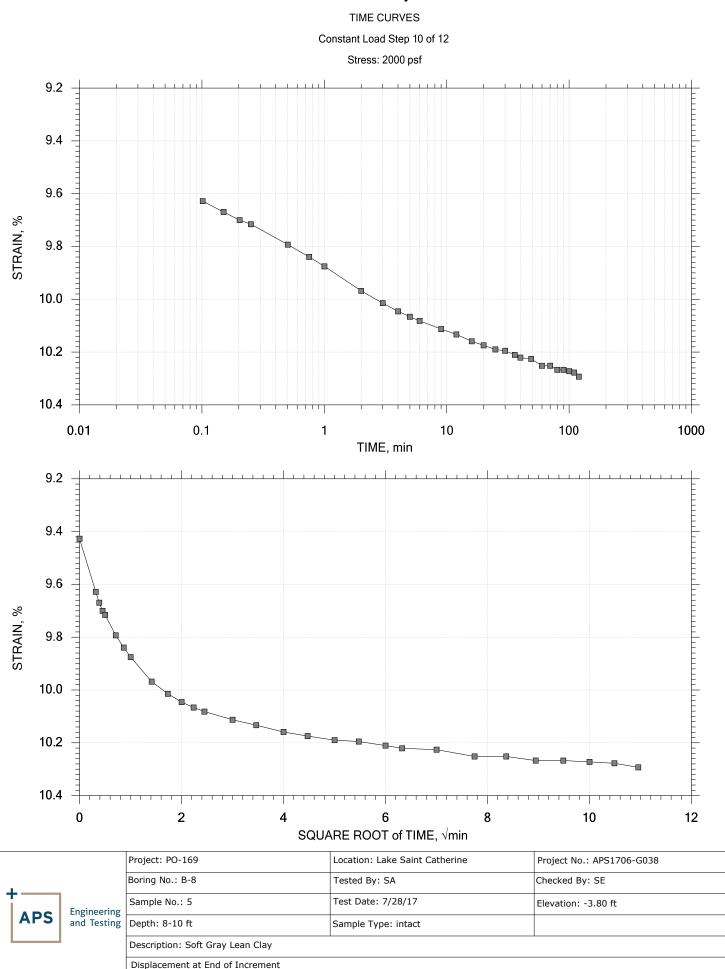
 Displacement at End of Increment
 Displacement at End of Increment

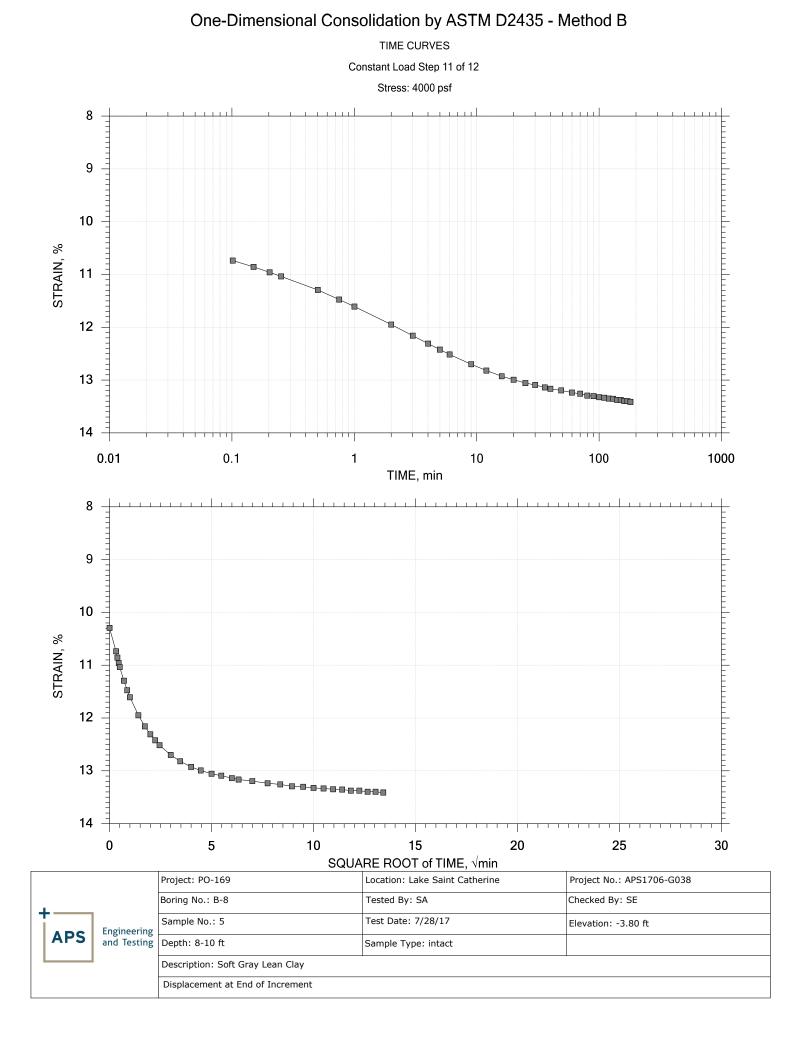


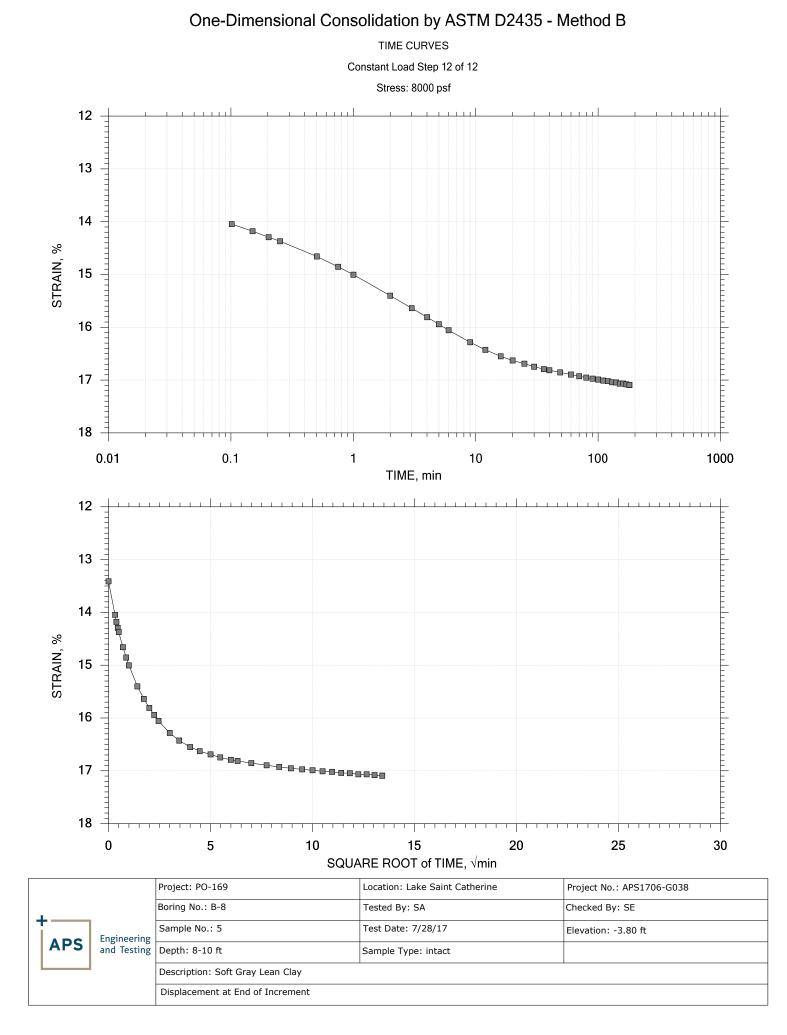


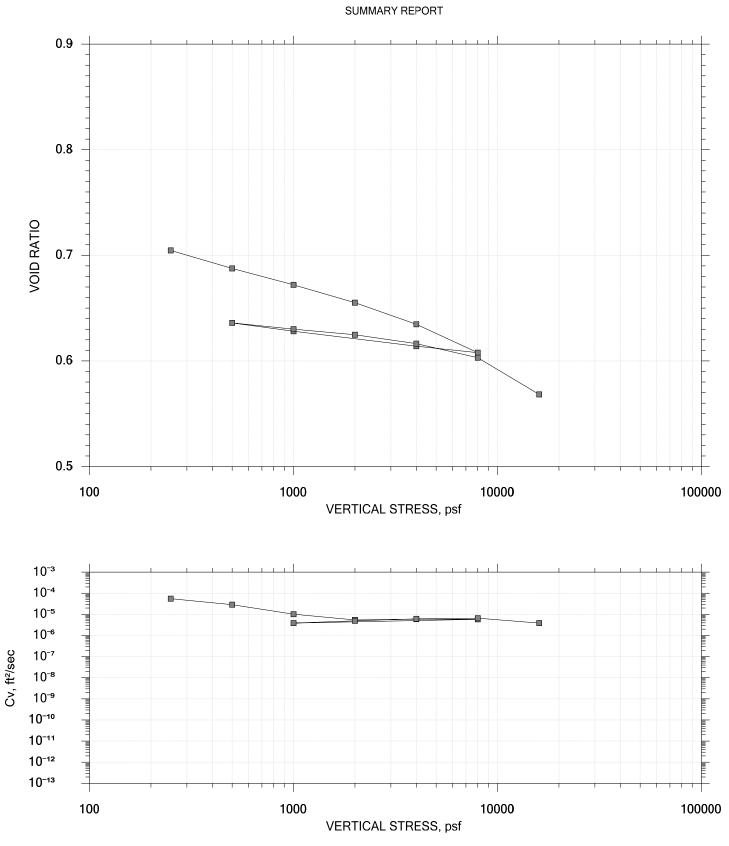



		Project: PO-169	Location: Lake Saint Catherine	Project No.: APS1706-G038
	Engineering	Boring No.: B-8	Tested By: SA	Checked By: SE
+		Sample No.: 5	Test Date: 7/28/17	Elevation: -3.80 ft
APS	0 0	Depth: 8-10 ft	Sample Type: intact	
	1	Description: Soft Gray Lean Clay		
		Displacement at End of Increment		

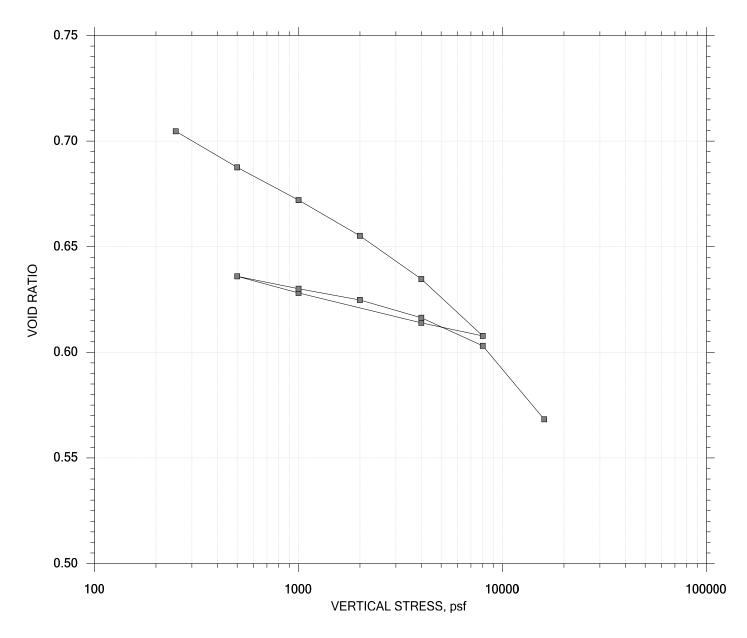

			Project: PO-169	Location: Lake Saint Catherine	Project No.: APS1706-G038
+		Engineering	Boring No.: B-8	Tested By: SA	Checked By: SE
			Sample No.: 5	Test Date: 7/28/17	Elevation: -3.80 ft
	APS	0 0	Depth: 8-10 ft	Sample Type: intact	
			Description: Soft Gray Lean Clay		
			Displacement at End of Increment		







		Project: PO-169	Location: Lake Saint Catherine	Project No.: APS1706-G038
		Boring No.: B-8	Tested By: SA	Checked By: SE
	Engineering	Sample No.: 5	Test Date: 7/28/17	Elevation: -3.80 ft
APS			Sample Type: intact	
		Description: Soft Gray Lean Clay		
		Displacement at End of Increment		



			Project: PO-169	Location: Lake Saint Catherine	Project No.: APS1706-G038
4	L		Boring No.: B-8	Tested By: SA	Checked By: SE
	APS	Engineering	Sample No.: 9	Test Date: 7/28/17	Elevation: -3.80 ft
	AFS	and Testing	Depth: 16-18 ft	Sample Type: intact	
			Description: Stiff Gray Lean Clay		
			Displacement at End of Increment		

SUMMARY REPORT

			Project: PO-169	Location: Lake Saint Catherine	Project No.: APS1706-G038
	+		Boring No.: B-8	Tested By: SA	Checked By: SE
	APS	Engineering		Test Date: 7/28/17	Elevation: -3.80 ft
	AFS	and Testing	Depth: 16-18 ft	Sample Type: intact	
			Description: Stiff Gray Lean Clay		
			Displacement at End of Increment		

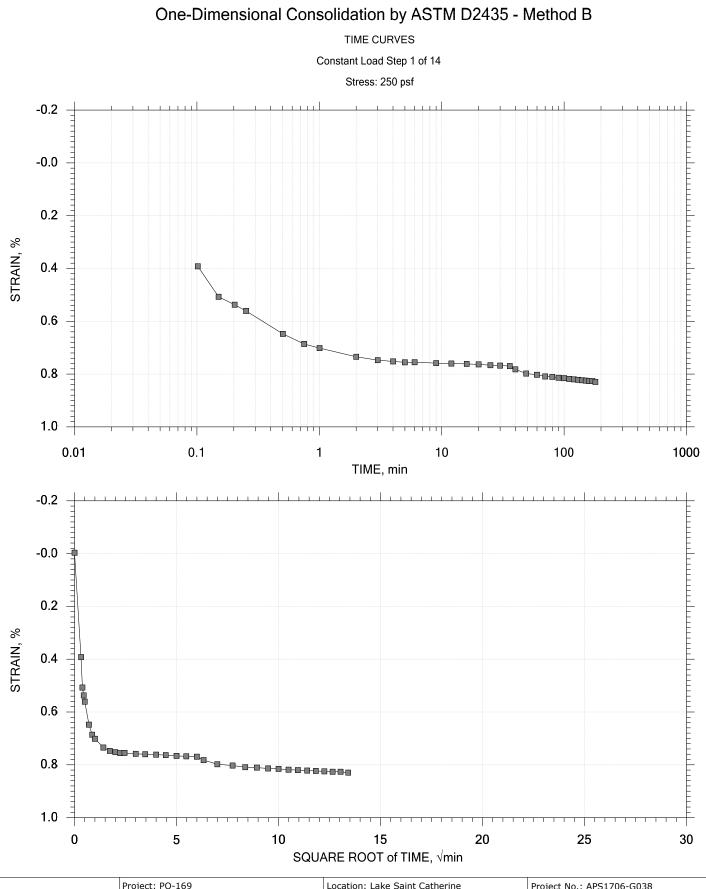
,

Project: PO-169 Boring No.: B-8 Sample No.: 9

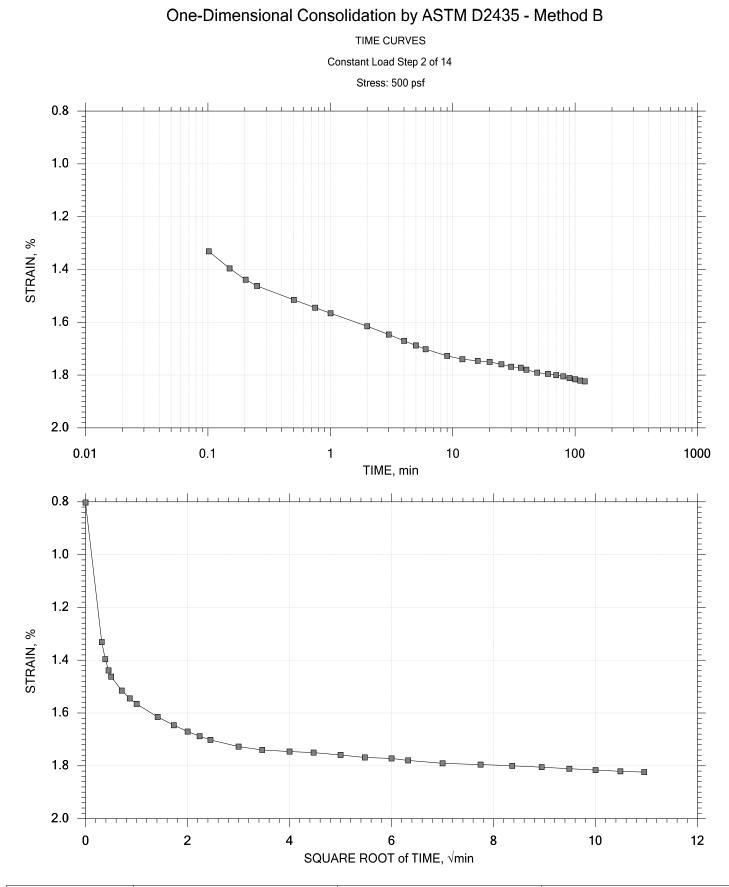
Location: Lake Saint Catherine Tested By: SA Test Date: 7/30/17 Sample Type: intact Project No.: APS1706-G038 Checked By: SE Depth: 16-18 ft Elevation: -3.80 ft

Soil Description: Stiff Gray Lean Clay

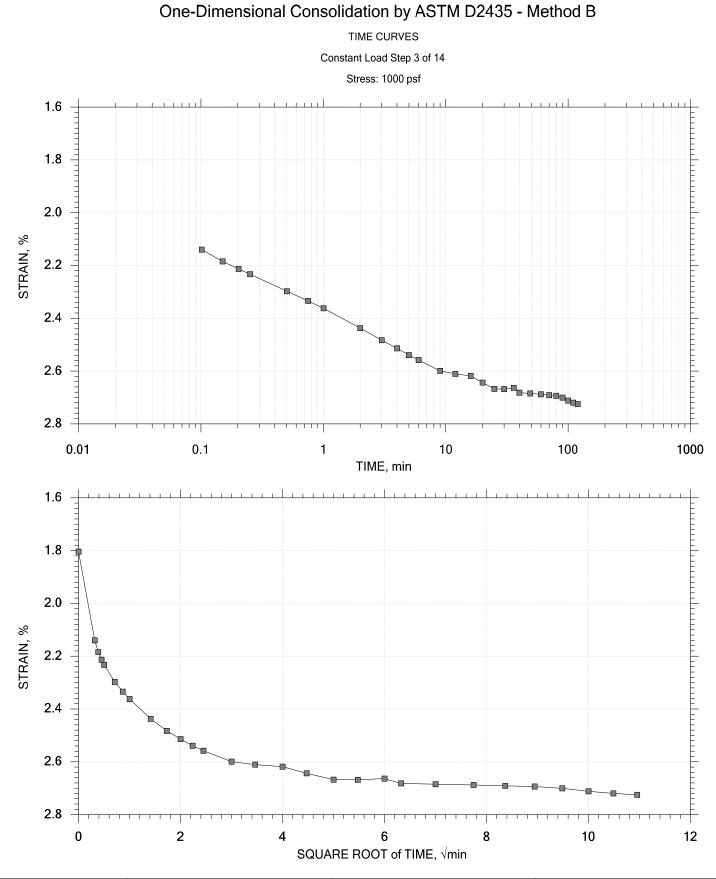
Measured Specific Gravity: 2.65 Initial Void Ratio: 0.719 Final Void Ratio: 0.621	Liquid Limit:36 Plastic Limit:1 Plasticity Inde	8	Specimen Diameter: 2.50 in Initial Height: 1.00 in Final Height: 0.94 in After Consolidation	
	Trimmings	Specimen+Ring	Specimen+Ring	Trimmings
Container ID	r16	RING	pr-7	pr7
Wt. Container + Wet Soil, gm	72.470	164.36	161.25	161.25
Wt. Container + Dry Soil, gm	59.120	132.21	132.21	132.21
Wt. Container, gm	8.2000	8.2000	8.2000	8.2000
Wt. Dry Soil, gm	50.920	124.01	124.01	124.01
Water Content, %	26.22	25.93	23.42	23.42
Void Ratio		0.719	0.621	
Degree of Saturation, %		95.56	99.99	
Dry Unit Weight, pcf		96.242	102.08	

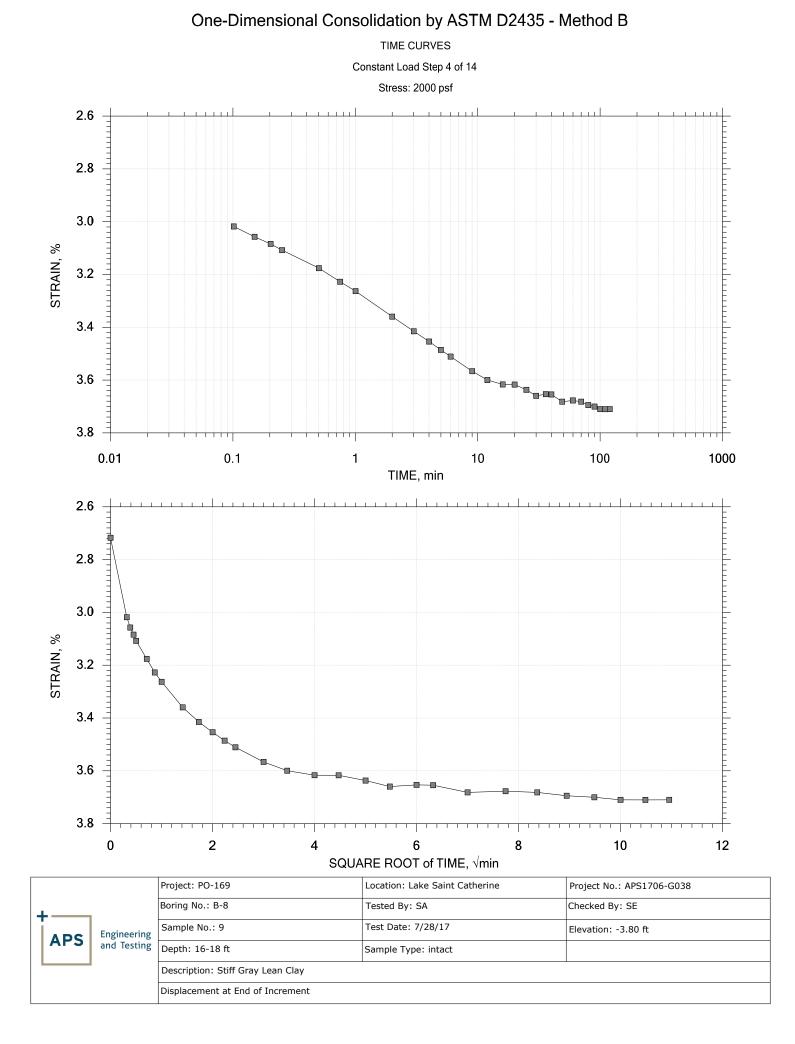

Project: PO-169 Boring No.: B-8 Sample No.: 9

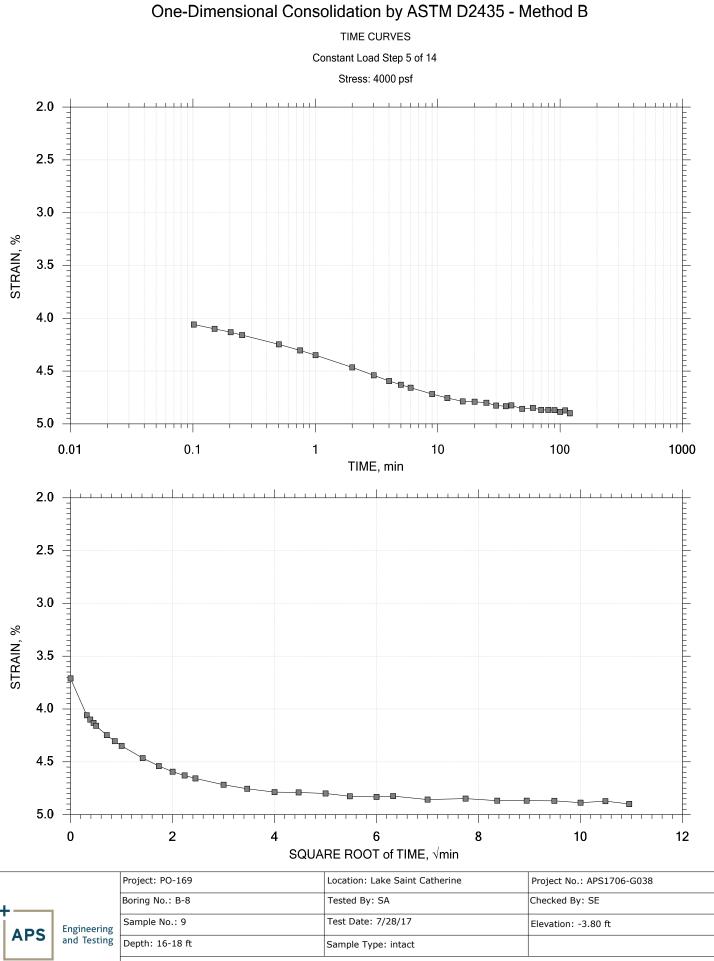
Location: Lake Saint Catherine Tested By: SA Test Date: 7/30/17 Sample Type: intact Project No.: APS1706-G038 Checked By: SE Depth: 16-18 ft Elevation: -3.80 ft


Soil Description: Stiff Gray Lean Clay

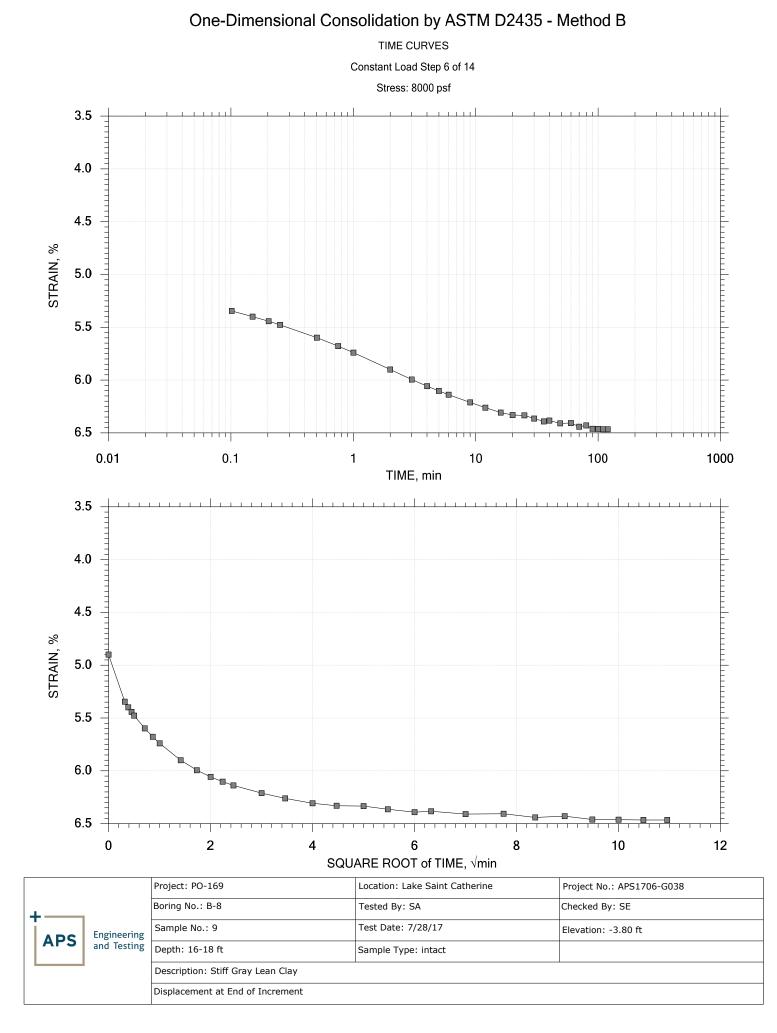
Displacement at End of Increment

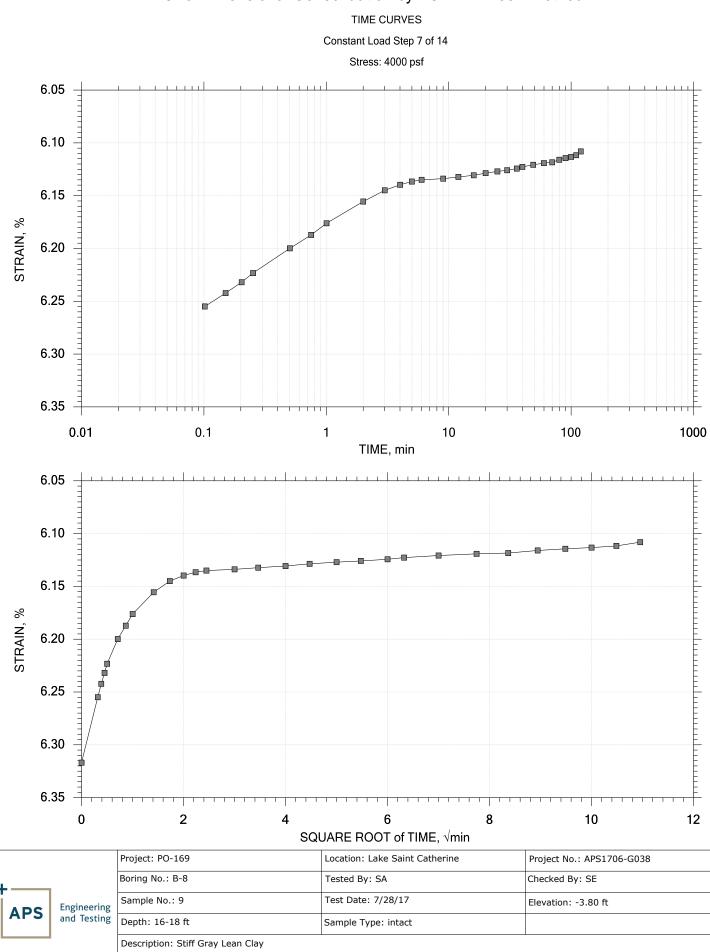

	Applied	Final	Void	Strain	Sq.Rt				
	Stress		Ratio	at End	Т90	Cv	Mv	k	
	psf	in		8	min	ft²/sec	1/psf	cm/sec	
1	250.	0.008295	0.705	0.829	0.490	4.97e-005	3.32e-005	3.13e-006	
2	500.	0.01824	0.688	1.82	0.858	2.78e-005	3.98e-005	2.11e-006	
3	1.00e+003	0.02725	0.672	2.73	2.433	9.63e-006	1.80e-005	3.30e-007	
4	2.00e+003	0.03710	0.655	3.71	4.378	5.25e-006	9.85e-006	9.84e-008	
5	4.00e+003	0.04899	0.635	4.90	4.053	5.54e-006	5.95e-006	6.27e-008	
б	8.00e+003	0.06465	0.608	6.47	4.375	4.99e-006	3.92e-006	3.72e-008	
7	4.00e+003	0.06108	0.614	6.11	1.463	1.47e-005	8.93e-007	2.50e-008	
8	1.00e+003	0.05282	0.628	5.28	6.252	3.49e-006	2.75e-006	1.83e-008	
9	500.	0.04825	0.636	4.83	22.087	1.00e-006	9.14e-006	1.74e-008	
10	1.00e+003	0.05166	0.630	5.17	5.579	3.97e-006	6.82e-006	5.15e-008	
11	2.00e+003	0.05478	0.625	5.48	4.430	4.97e-006	3.12e-006	2.95e-008	
12	4.00e+003	0.05966	0.616	5.97	4.022	5.42e-006	2.44e-006	2.52e-008	
13	8.00e+003	0.06741	0.603	6.74	4.022	5.35e-006	1.94e-006	1.97e-008	
14	1.60e+004	0.08763	0.568	8.76	5.183	4.03e-006	2.53e-006	1.94e-008	
	Applied	Final	Void	Strain	Log				
	Applied Stress	Final Displacement	Void Ratio	Strain at End	Log T50	Cv	Mv	k	Ca
						Cv ft²/sec	Mv 1/psf	k cm/sec	Ca %
1	Stress	Displacement		at End	т50				
1 2	Stress psf	Displacement in	Ratio	at End %	T50 min	ft²/sec	1/psf	cm/sec	8
	Stress psf 250.	Displacement in 0.008295	Ratio 0.705 0.688 0.672	at End % 0.829 1.82 2.73	T50 min 0.104 0.000 0.000	ft²/sec 5.42e-005	1/psf 3.32e-005	cm/sec 3.42e-006	% 0.00e+000
2	Stress psf 250. 500.	Displacement in 0.008295 0.01824	Ratio 0.705 0.688 0.672 0.655	at End % 0.829 1.82 2.73 3.71	T50 min 0.104 0.000 0.000 0.000	ft ² /sec 5.42e-005 0.00e+000	1/psf 3.32e-005 3.98e-005	cm/sec 3.42e-006 0.00e+000	% 0.00e+000 0.00e+000
2 3 4 5	Stress psf 250. 500. 1.00e+003	Displacement in 0.008295 0.01824 0.02725 0.03710 0.04899	Ratio 0.705 0.688 0.672 0.655 0.635	at End % 0.829 1.82 2.73 3.71 4.90	T50 min 0.104 0.000 0.000 0.000 0.000	ft ² /sec 5.42e-005 0.00e+000 0.00e+000	1/psf 3.32e-005 3.98e-005 1.80e-005 9.85e-006 5.95e-006	cm/sec 3.42e-006 0.00e+000 0.00e+000 0.00e+000 0.00e+000	<pre>% 0.00e+000 0.00e+000 0.00e+000 0.00e+000 0.00e+000 0.00e+000</pre>
2 3 4 5 6	Stress psf 250. 500. 1.00e+003 2.00e+003	Displacement in 0.008295 0.01824 0.02725 0.03710 0.04899 0.06465	Ratio 0.705 0.688 0.672 0.655 0.635 0.608	at End % 0.829 1.82 2.73 3.71 4.90 6.47	T50 min 0.104 0.000 0.000 0.000 0.000 0.764	ft ² /sec 5.42e-005 0.00e+000 0.00e+000 0.00e+000	1/psf 3.32e-005 3.98e-005 1.80e-005 9.85e-006	cm/sec 3.42e-006 0.00e+000 0.00e+000 0.00e+000	<pre>% 0.00e+000 0.00e+000 0.00e+000 0.00e+000 0.00e+000 0.00e+000</pre>
2 3 4 5 6 7	Stress psf 250. 500. 1.00e+003 2.00e+003 4.00e+003	Displacement in 0.008295 0.01824 0.02725 0.03710 0.04899 0.06465 0.06108	Ratio 0.705 0.688 0.672 0.655 0.635 0.608 0.614	at End % 0.829 1.82 2.73 3.71 4.90 6.47 6.11	T50 min 0.104 0.000 0.000 0.000 0.000 0.764 0.195	ft ² /sec 5.42e-005 0.00e+000 0.00e+000 0.00e+000 0.00e+000	1/psf 3.32e-005 3.98e-005 1.80e-005 9.85e-006 5.95e-006	cm/sec 3.42e-006 0.00e+000 0.00e+000 0.00e+000 0.00e+000	<pre>% 0.00e+000 0.00e+000 0.00e+000 0.00e+000 0.00e+000 0.00e+000</pre>
2 3 4 5 6 7 8	Stress psf 250. 500. 1.00e+003 2.00e+003 8.00e+003	Displacement in 0.008295 0.01824 0.02725 0.03710 0.04899 0.06465	Ratio 0.705 0.688 0.672 0.655 0.635 0.608 0.614 0.628	at End % 0.829 1.82 2.73 3.71 4.90 6.47 6.11 5.28	T50 min 0.104 0.000 0.000 0.000 0.764 0.195 1.770	ft ² /sec 5.42e-005 0.00e+000 0.00e+000 0.00e+000 6.64e-006	1/psf 3.32e-005 3.98e-005 1.80e-005 9.85e-006 5.95e-006 3.92e-006	cm/sec 3.42e-006 0.00e+000 0.00e+000 0.00e+000 4.94e-008	<pre>% 0.00e+000 0.00e+000 0.00e+000 0.00e+000 0.00e+000 0.00e+000</pre>
2 3 4 5 6 7 8 9	Stress psf 250. 500. 1.00e+003 2.00e+003 4.00e+003 4.00e+003 1.00e+003 500.	Displacement in 0.008295 0.01824 0.02725 0.03710 0.04899 0.06465 0.06108 0.05282 0.04825	Ratio 0.705 0.688 0.672 0.655 0.635 0.635 0.608 0.614 0.628 0.636	at End % 0.829 1.82 2.73 3.71 4.90 6.47 6.11 5.28 4.83	T50 min 0.104 0.000 0.000 0.000 0.764 0.195 1.770 4.967	ft ² /sec 5.42e-005 0.00e+000 0.00e+000 0.00e+000 6.64e-006 2.56e-005 2.86e-006 1.03e-006	1/psf 3.32e-005 3.98e-005 1.80e-005 9.85e-006 3.92e-006 8.93e-007 2.75e-006 9.14e-006	cm/sec 3.42e-006 0.00e+000 0.00e+000 0.00e+000 4.94e-008 4.36e-008 1.50e-008 1.80e-008	<pre>% 0.00e+000 0.00e+000 0.00e+000 0.00e+000 0.00e+000 0.00e+000 0.00e+000 0.00e+000 0.00e+000 0.00e+000</pre>
2 3 4 5 6 7 8 9 10	Stress psf 250. 500. 1.00e+003 2.00e+003 8.00e+003 4.00e+003 1.00e+003 500. 1.00e+003	Displacement in 0.008295 0.01824 0.02725 0.03710 0.04899 0.06465 0.06108 0.05282 0.04825 0.05166	Ratio 0.705 0.688 0.672 0.655 0.635 0.635 0.614 0.628 0.636 0.630	at End % 0.829 1.82 2.73 3.71 4.90 6.47 6.11 5.28 4.83 5.17	T50 min 0.104 0.000 0.000 0.000 0.764 0.195 1.770 4.967 1.351	ft ² /sec 5.42e-005 0.00e+000 0.00e+000 0.00e+000 6.64e-006 2.56e-005 2.86e-006 1.03e-006 3.81e-006	1/psf 3.32e-005 3.98e-005 9.85e-006 5.95e-006 3.92e-006 8.93e-007 2.75e-006 9.14e-006 6.82e-006	cm/sec 3.42e-006 0.00e+000 0.00e+000 0.00e+000 4.94e-008 1.50e-008 1.80e-008 4.94e-008	<pre>% 0.00e+000 0.00e+000</pre>
2 3 4 5 6 7 8 9 10 11	Stress psf 250. 500. 1.00e+003 2.00e+003 4.00e+003 4.00e+003 1.00e+003 500. 1.00e+003 2.00e+003	Displacement in 0.008295 0.01824 0.02725 0.03710 0.04899 0.06465 0.06108 0.05282 0.04825 0.05166 0.05478	Ratio 0.705 0.688 0.672 0.655 0.635 0.608 0.614 0.628 0.636 0.630 0.625	at End % 0.829 1.82 2.73 3.71 4.90 6.47 6.11 5.28 4.83 5.17 5.48	T50 min 0.104 0.000 0.000 0.000 0.764 0.195 1.770 4.967 1.351 1.068	ft ² /sec 5.42e-005 0.00e+000 0.00e+000 0.00e+000 6.64e-006 2.56e-005 2.86e-006 1.03e-006 3.81e-006 4.79e-006	1/psf 3.32e-005 3.98e-005 9.85e-006 5.95e-006 3.92e-006 8.93e-007 2.75e-006 9.14e-006 6.82e-006 3.12e-006	cm/sec 3.42e-006 0.00e+000 0.00e+000 0.00e+000 4.94e-008 4.36e-008 1.50e-008 1.80e-008 4.94e-008 2.84e-008	<pre>% 0.00e+000 0.00e+000</pre>
2 3 4 5 6 7 8 9 10 11 12	Stress psf 250. 500. 1.00e+003 2.00e+003 4.00e+003 1.00e+003 500. 1.00e+003 2.00e+003 4.00e+003	Displacement in 0.008295 0.01824 0.02725 0.03710 0.04899 0.06465 0.06108 0.05282 0.04825 0.05166 0.05478 0.05966	Ratio 0.705 0.688 0.672 0.655 0.635 0.608 0.614 0.628 0.630 0.630 0.625 0.616	at End % 0.829 1.82 2.73 3.71 4.90 6.47 6.11 5.28 4.83 5.17 5.48 5.97	T50 min 0.104 0.000 0.000 0.000 0.764 0.195 1.770 4.967 1.351 1.068 0.740	ft ² /sec 5.42e-005 0.00e+000 0.00e+000 0.00e+000 6.64e-006 2.56e-005 2.86e-006 1.03e-006 3.81e-006 4.79e-006 6.84e-006	1/psf 3.32e-005 3.98e-005 9.85e-006 5.95e-006 8.93e-007 2.75e-006 9.14e-006 6.82e-006 3.12e-006 2.44e-006	<pre>cm/sec 3.42e-006 0.00e+000 0.00e+000 0.00e+000 4.94e-008 4.36e-008 1.50e-008 1.80e-008 4.94e-008 2.84e-008 3.18e-008</pre>	<pre>% 0.00e+000 0.00e+000</pre>
2 3 4 5 6 7 8 9 10 11	Stress psf 250. 500. 1.00e+003 2.00e+003 4.00e+003 4.00e+003 1.00e+003 500. 1.00e+003 2.00e+003	Displacement in 0.008295 0.01824 0.02725 0.03710 0.04899 0.06465 0.06108 0.05282 0.04825 0.05166 0.05478	Ratio 0.705 0.688 0.672 0.655 0.635 0.608 0.614 0.628 0.636 0.630 0.625	at End % 0.829 1.82 2.73 3.71 4.90 6.47 6.11 5.28 4.83 5.17 5.48	T50 min 0.104 0.000 0.000 0.000 0.764 0.195 1.770 4.967 1.351 1.068	ft ² /sec 5.42e-005 0.00e+000 0.00e+000 0.00e+000 6.64e-006 2.56e-005 2.86e-006 1.03e-006 3.81e-006 4.79e-006	1/psf 3.32e-005 3.98e-005 9.85e-006 5.95e-006 3.92e-006 8.93e-007 2.75e-006 9.14e-006 6.82e-006 3.12e-006	cm/sec 3.42e-006 0.00e+000 0.00e+000 0.00e+000 4.94e-008 4.36e-008 1.50e-008 1.80e-008 4.94e-008 2.84e-008	<pre>% 0.00e+000 0.00e+000</pre>

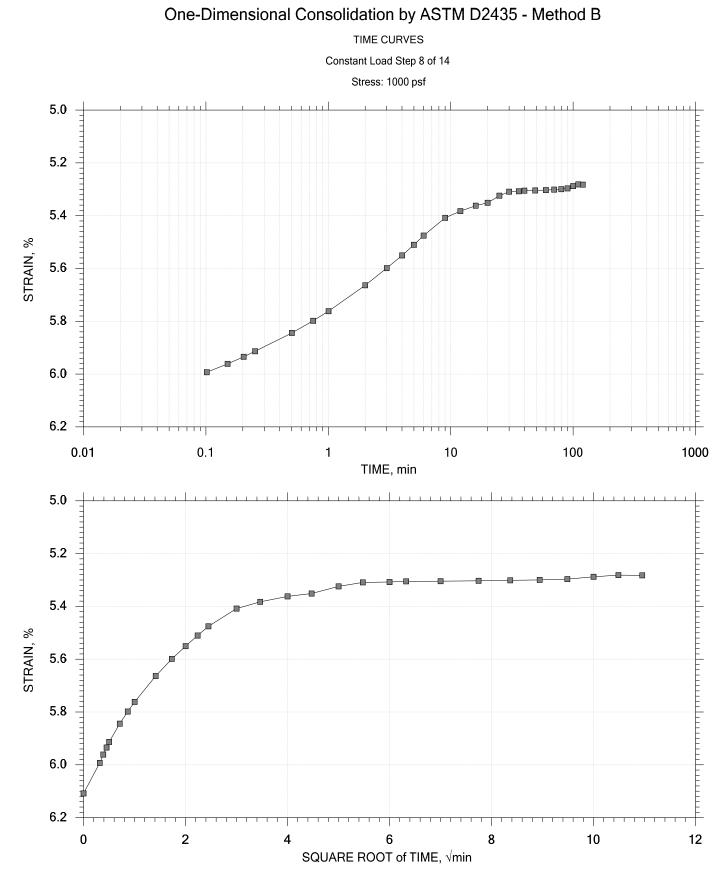

		Project: PO-169	Location: Lake Saint Catherine	Project No.: APS1706-G038
<u> </u>		Boring No.: B-8	Tested By: SA	Checked By: SE
APS	Engineering	Sample No.: 9	Test Date: 7/28/17	Elevation: -3.80 ft
AFS	and Testing	Depth: 16-18 ft	Sample Type: intact	
	-	Description: Stiff Gray Lean Clay		
		Displacement at End of Increment		



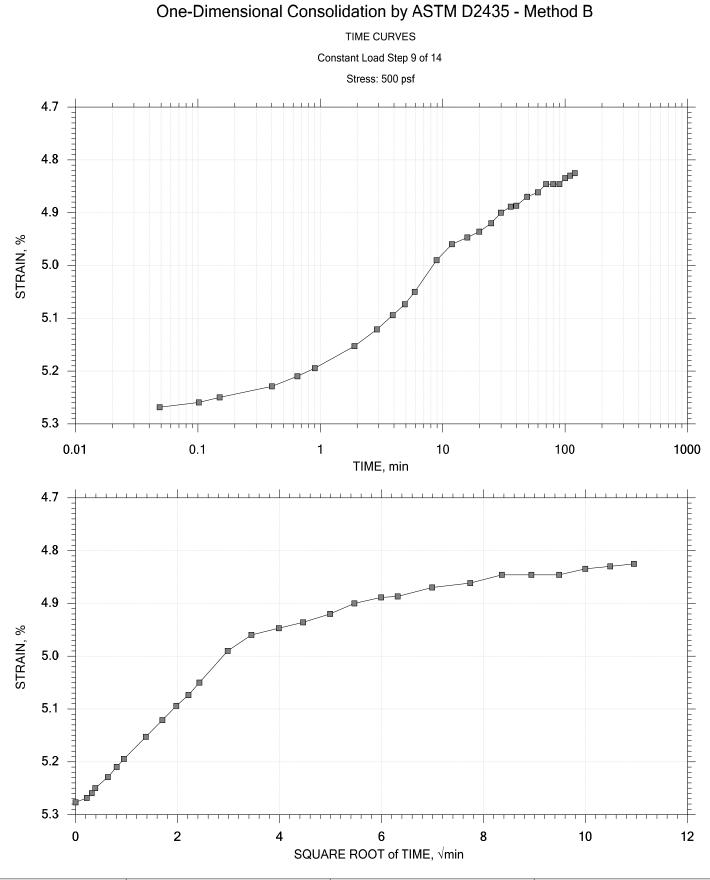
			Project: PO-169	Location: Lake Saint Catherine	Project No.: APS1706-G038
+-			Boring No.: B-8	Tested By: SA	Checked By: SE
	APS	Engineering	· ·	Test Date: 7/28/17	Elevation: -3.80 ft
	45	and Testing	Depth: 16-18 ft	Sample Type: intact	
			Description: Stiff Gray Lean Clay		
			Displacement at End of Increment		

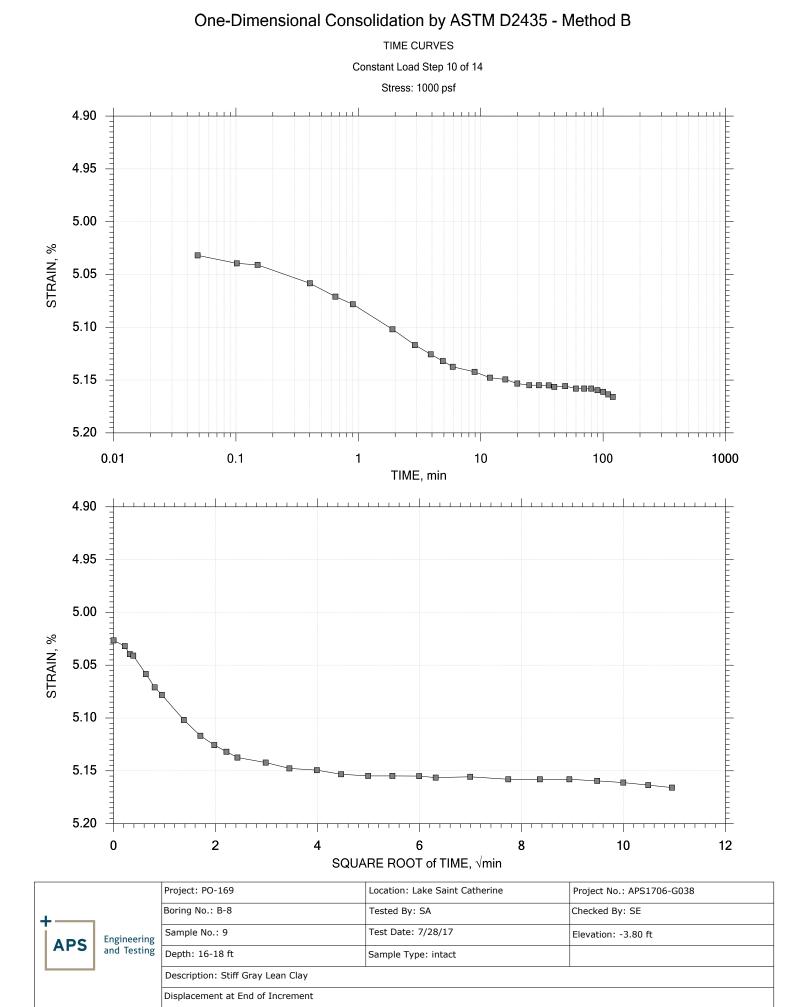


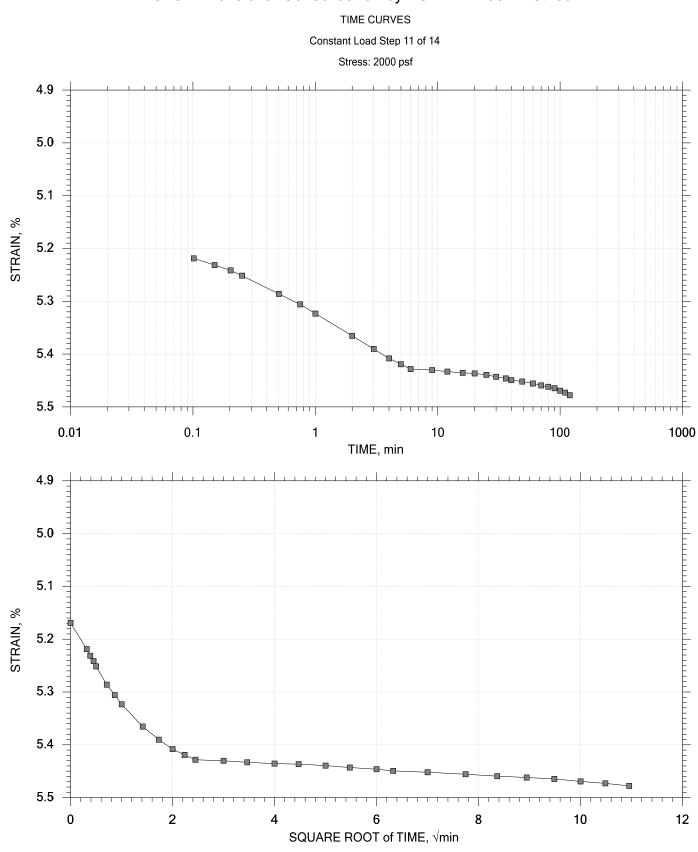

Image: Project: PO-169 Location: Lake Saint Catherine Project No.: APS1706-G038 Boring No.: B-8 Tested By: SA Checked By: SE Sample No.: 9 Test Date: 7/28/17 Elevation: -3.80 ft Depth: 16-18 ft Sample Type: intact Description: Stiff Gray Lean Clay Displacement at End of Increment Displacement at End of Increment Sample Type: intact



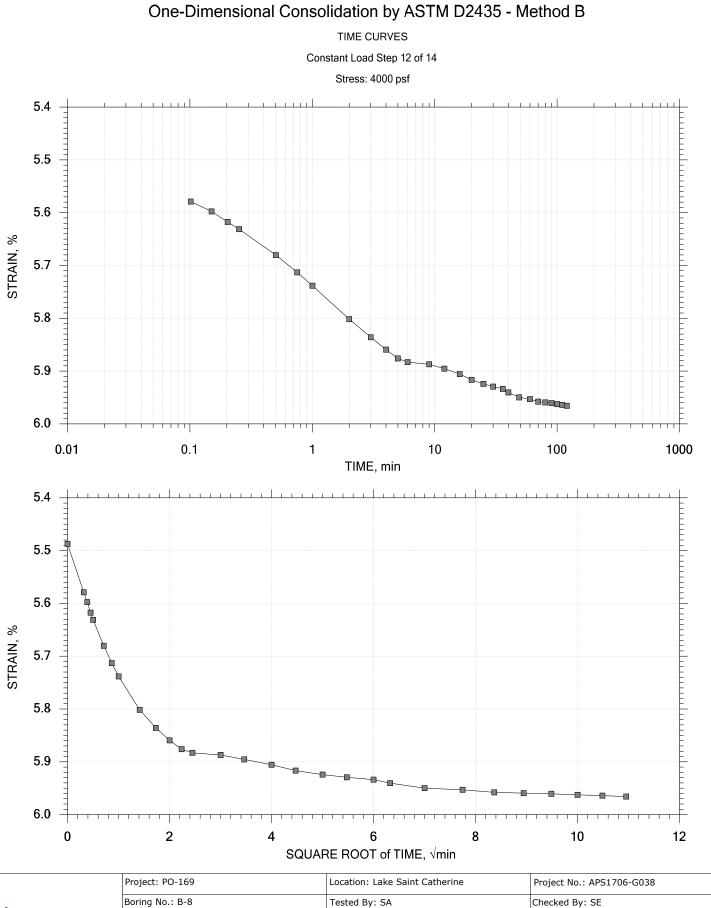
Description: Stiff Gray Lean Clay Displacement at End of Increment




Displacement at End of Increment

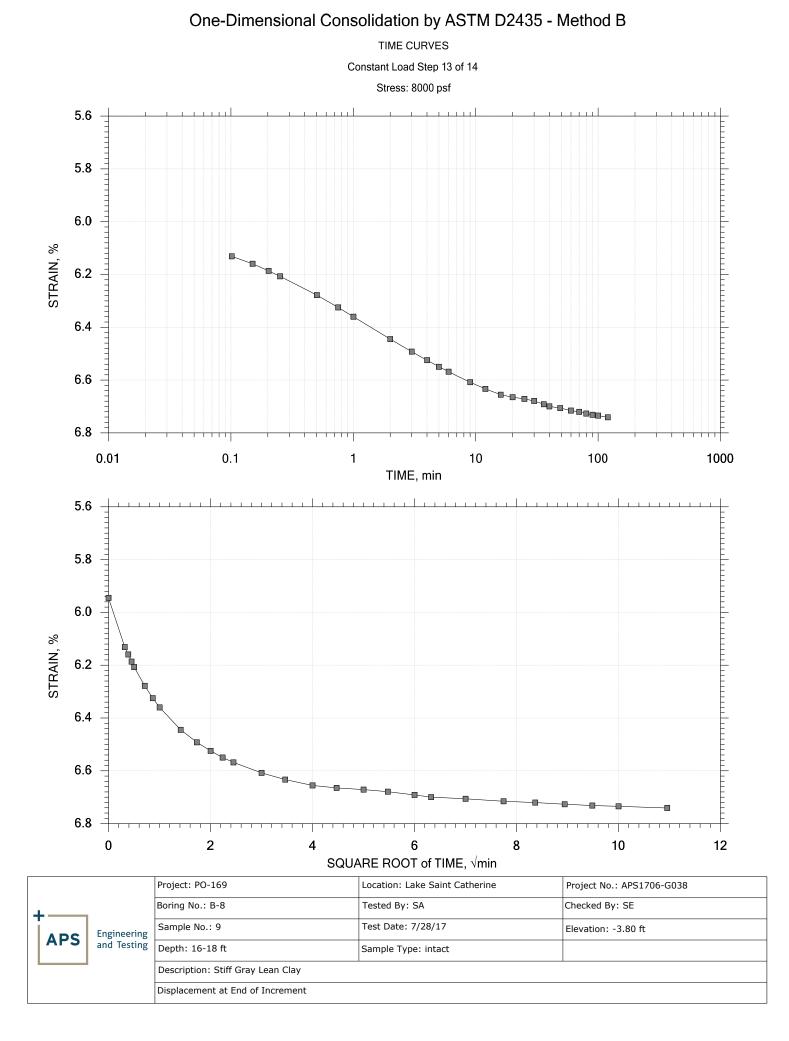


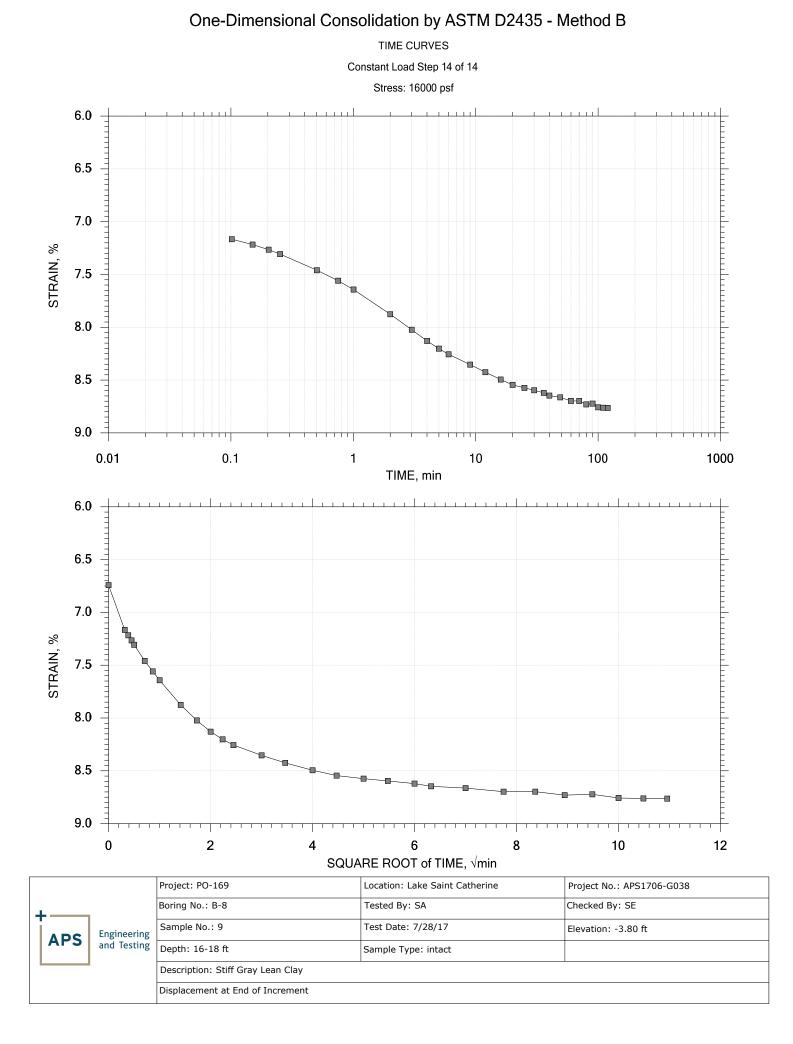
		Project: PO-169	Location: Lake Saint Catherine	Project No.: APS1706-G038
+		Boring No.: B-8	Tested By: SA	Checked By: SE
APS	Engineering	Sample No.: 9	Test Date: 7/28/17	Elevation: -3.80 ft
APS	and Testing	Depth: 16-18 ft	Sample Type: intact	
		Description: Stiff Gray Lean Clay		
		Displacement at End of Increment		

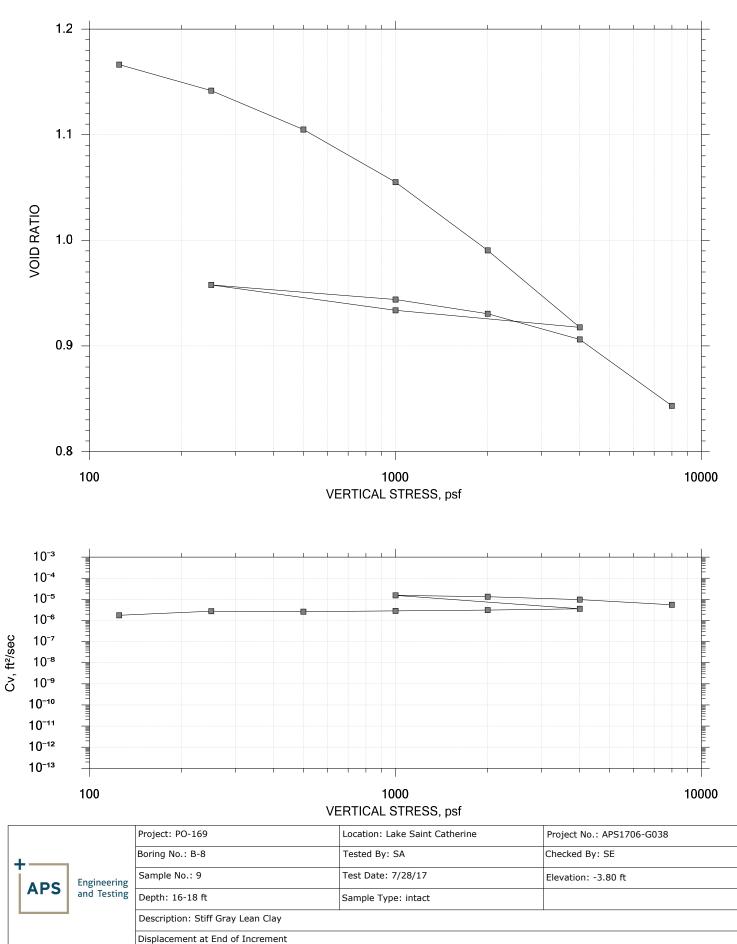


Project: PO-169 Location: Lake Saint Catherine Project No.: APS1706-G038 Boring No.: B-8 Tested By: SA Checked By: SE Sample No.: 9 Test Date: 7/28/17 Elevation: -3.80 ft Depth: 16-18 ft Sample Type: intact Description: Stiff Gray Lean Clay Displacement at End of Increment Displacement at End of Increment

Project: PO-169 Location: Lake Saint Catherine Project No.: APS1706-G038 Boring No.: B-8 Tested By: SA Checked By: SE Sample No.: 9 Test Date: 7/28/17 Elevation: -3.80 ft Depth: 16-18 ft Sample Type: intact Description: Stiff Gray Lean Clay Displacement at End of Increment Displacement at End of Increment Sample No.: P

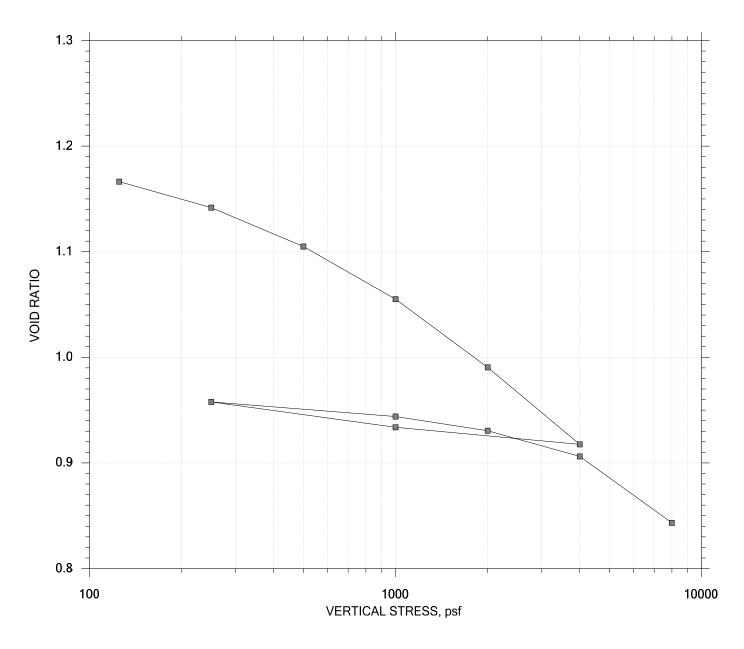

 APS
 Engineering and Testing


 Boring No.: B-8
 Tested By: SA
 Checked By: SE


 Sample No.: 9
 Test Date: 7/28/17
 Elevation: -3.80 ft

 Depth: 16-18 ft
 Sample Type: intact
 Description: Stiff Gray Lean Clay

 Displacement at End of Increment
 Displacement at End of Increment



SUMMARY REPORT

SUMMARY REPORT

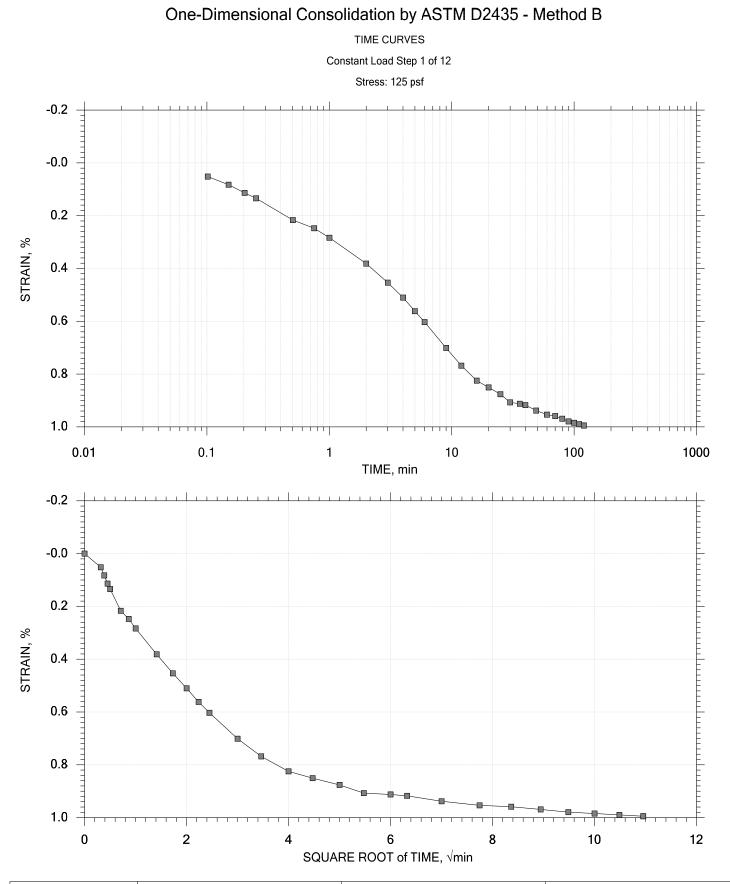
	Engineering	Project: PO-169	Location: Lake Saint Catherine	Project No.: APS1706-G038
		Boring No.: B-10	Tested By: SA	Checked By: SE
PS		Sample No.: 7	Test Date: 7/30/17	Elevation: -1.40 ft
P3	and Testing	Depth: 12-14 ft	Sample Type: intact	
	1	Description: Very Soft Gray Fat Clay		
		Displacement at End of Increment		

Project: PO-169 Boring No.: B-10 Sample No.: 7 Location: Lake Saint Catherine Tested By: SA Test Date: 7/30/17 Sample Type: Intact Project No.: APS1706-G038 Checked By: SE Depth: 12-14 ft Elevation: -1.40 ft

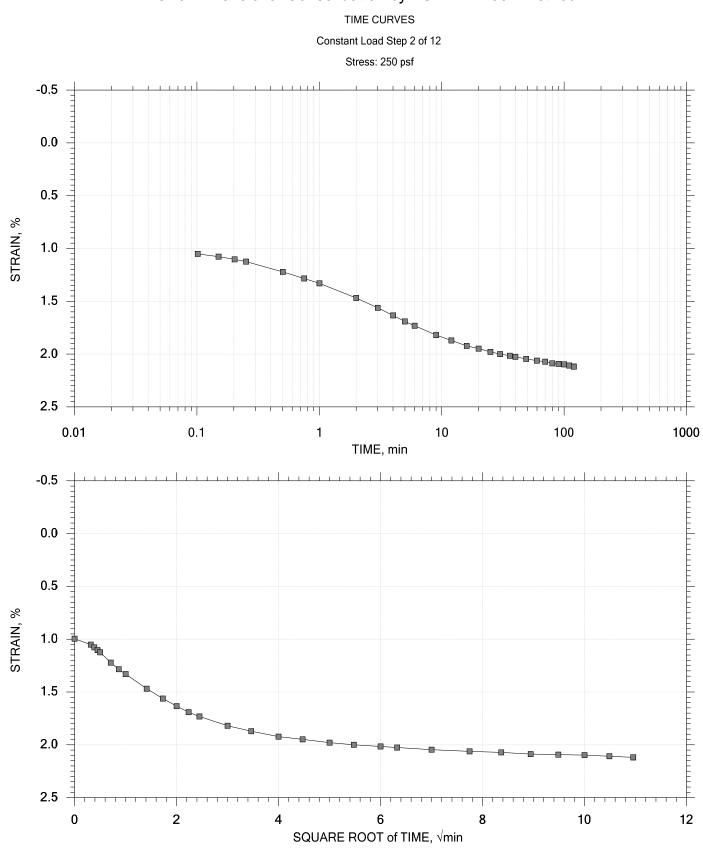
Soil Description: Very Soft Gray Fat Clay

Estimated Specific Gravity: 2.79 Initial Void Ratio: 1.19 Final Void Ratio: 0.843	Liquid Limit:55 Plastic Limit:1 Plasticity Inde	. 6	Specimen Diameter: Initial Height: 1. Final Height: 0.84	.00 in
	Before Co	nsolidation	After Consol	lidation
	Trimmings	Specimen+Ring	Specimen+Ring	Trimmings
Container ID	sh7	RING	sh6	sh6
Wt. Container + Wet Soil, gm	67.930	153.24	141.60	141.60
Wt. Container + Dry Soil, gm	50.470	110.60	110.60	110.60
Wt. Container, gm	8.1700	8.1800	8.1800	8.1800
Wt. Dry Soil, gm	42.300	102.42	102.42	102.42
Water Content, %	41.28	41.63	30.27	30.27
Void Ratio		1.19	0.843	
Degree of Saturation, %		97.62	100.00	
Dry Unit Weight, pcf		79.486	94.359	

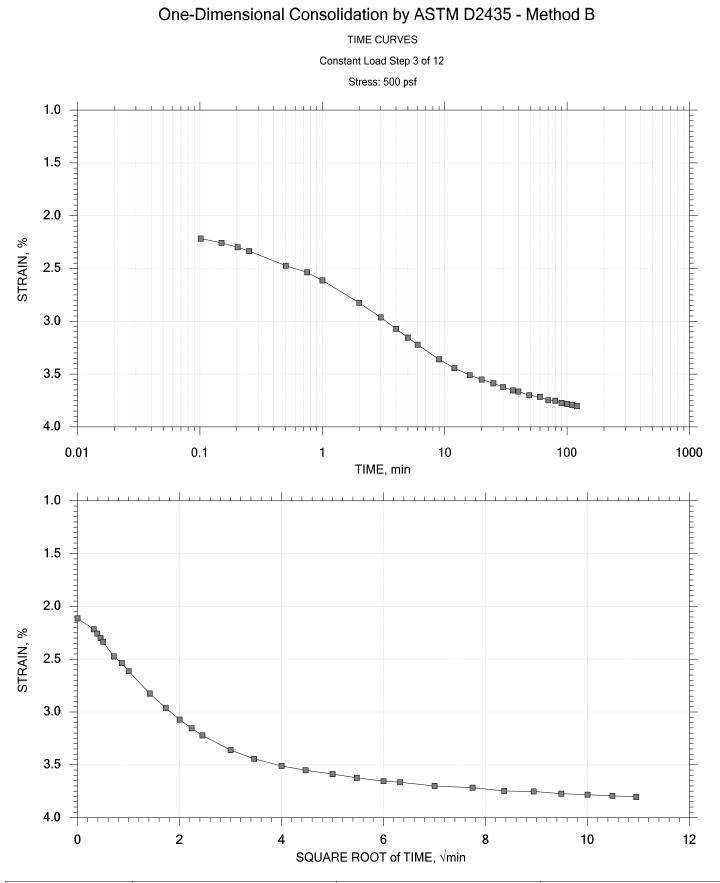
Note: Specific Gravity and Void Ratios are calculated assuming the degree of saturation equals 100% at the end of the test. Therefore, values may not represent actual values for the specimen.

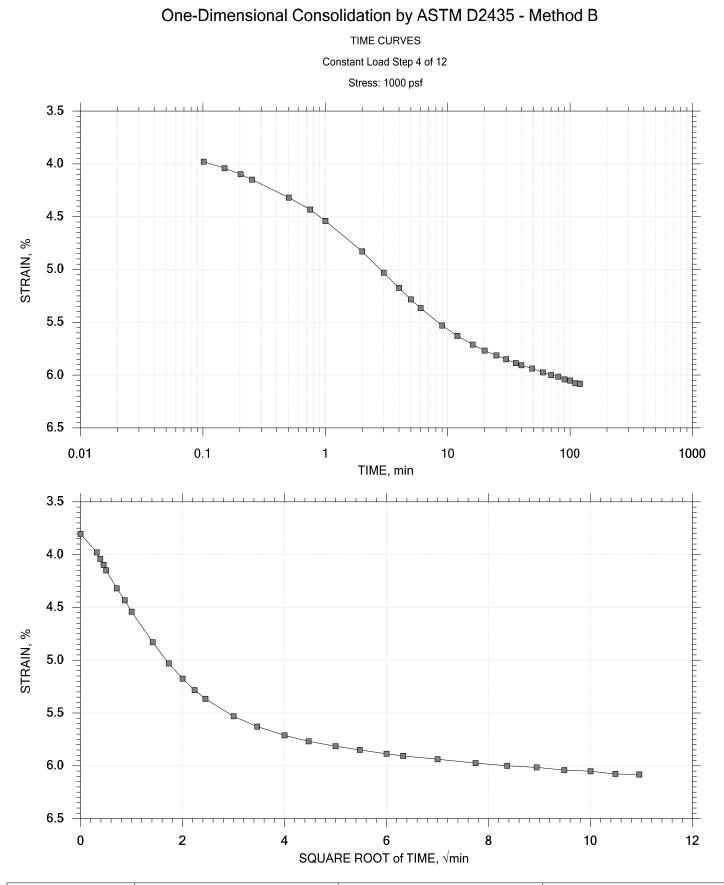

Project: PO-169 Boring No.: B-10 Sample No.: 7

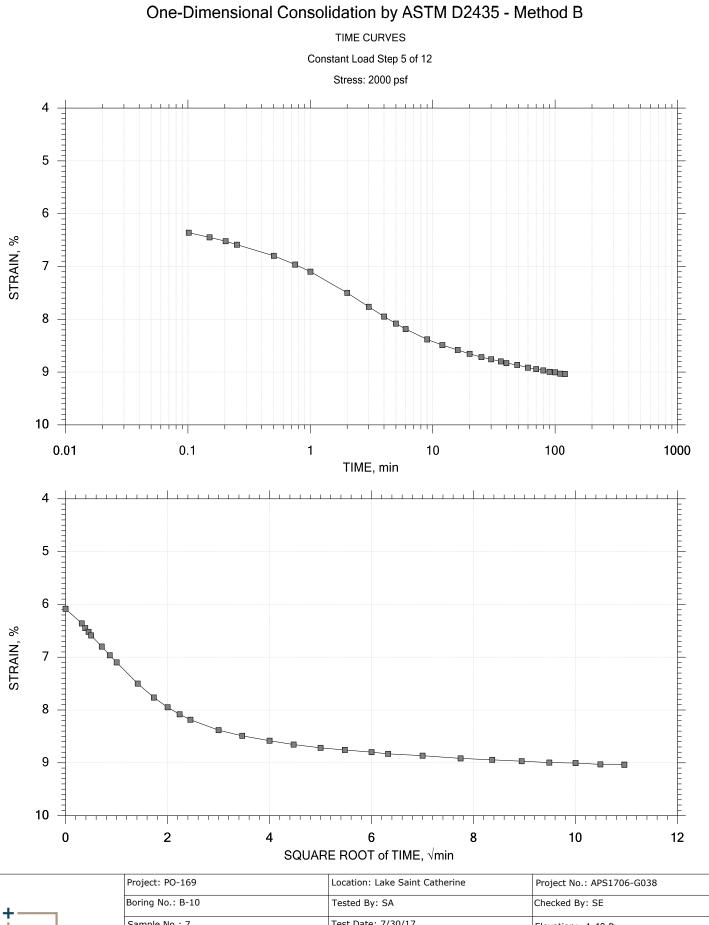
Location: Lake Saint Catherine Tested By: SA Test Date: 7/30/17 Sample Type: Intact Project No.: APS1706-G038 Checked By: SE Depth: 12-14 ft Elevation: -1.40 ft


Soil Description: Very Soft Gray Fat Clay

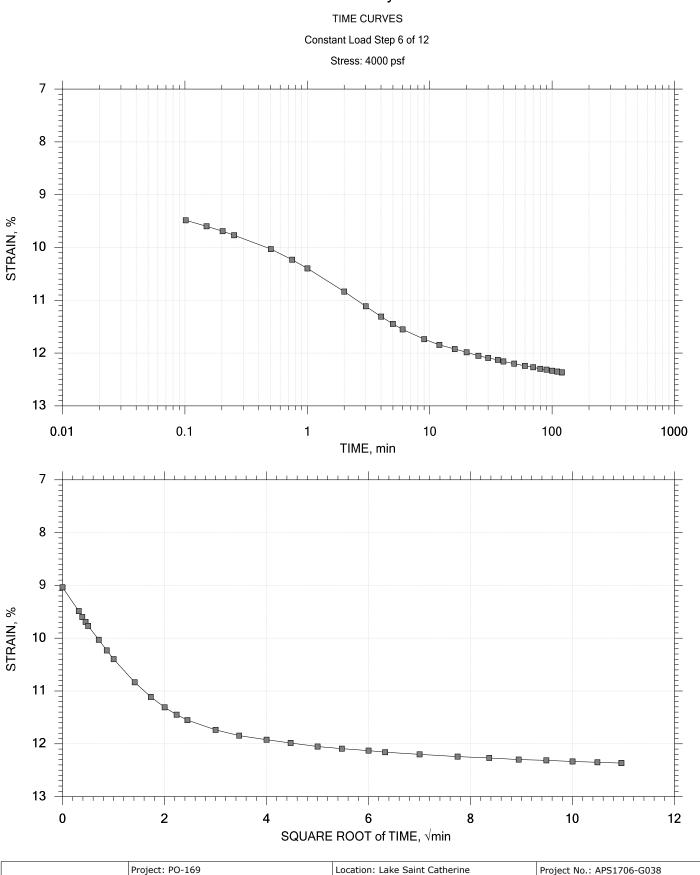
Displacement at End of Increment

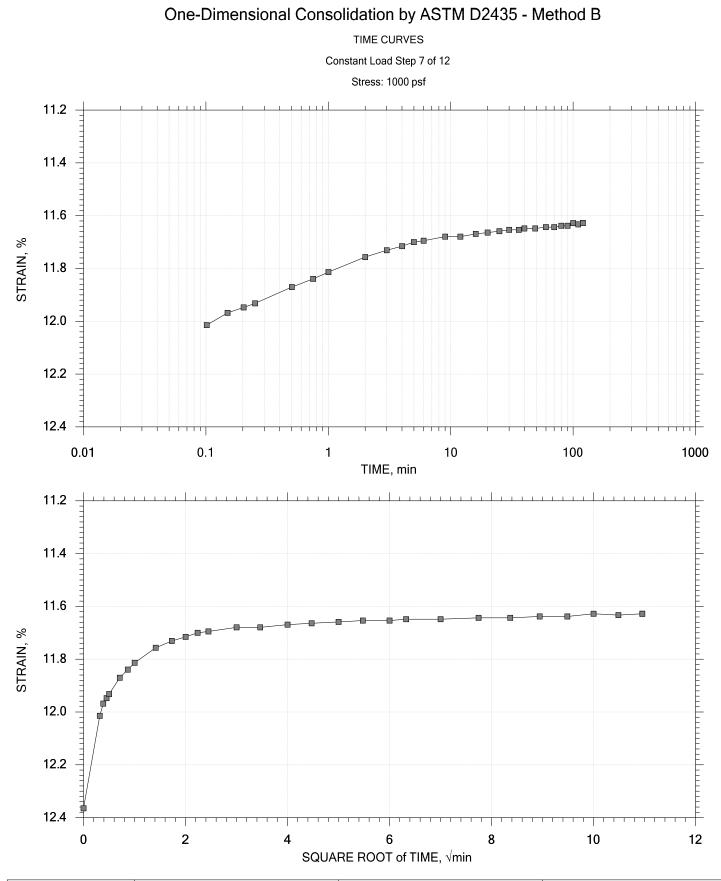

	Applied	Final	Void	Strain	Sq.Rt				
	Stress	Displacement	Ratio	at End	Т90	Cv	Mv	k	
	psf	in		8	min	ft²/sec	1/psf	cm/sec	
1	125.	0.009948	1.17	0.995	10.788	2.25e-006	7.96e-005	3.41e-007	
2	250.	0.02118	1.14	2.12	8.079	2.94e-006	8.99e-005	5.03e-007	
3	500.	0.03804	1.10	3.80	8.549	2.70e-006	6.74e-005	3.47e-007	
4	1.00e+003	0.06082	1.06	6.08	6.544	3.39e-006	4.56e-005	2.94e-007	
5	2.00e+003	0.09035	0.990	9.04	6.191	3.39e-006	2.95e-005	1.90e-007	
6	4.00e+003	0.1236	0.918	12.4	4.566	4.29e-006	1.66e-005	1.36e-007	
7	1.00e+003	0.1163	0.934	11.6	1.243	1.53e-005	2.46e-006	7.15e-008	
8	250.	0.1053	0.958	10.5	5.647	3.44e-006	1.46e-005	9.57e-008	
9	1.00e+003	0.1116	0.944	11.2	1.239	1.57e-005	8.38e-006	2.51e-007	
10	2.00e+003	0.1178	0.930	11.8	1.469	1.31e-005	6.19e-006	1.54e-007	
11	4.00e+003	0.1289	0.906	12.9	2.843	6.63e-006	5.54e-006	6.99e-008	
12	8.00e+003	0.1576	0.843	15.8	3.592	5.01e-006	7.19e-006	6.86e-008	
	Applied	Final	Void	Strain	Log				
	Stress	Displacement	Ratio	at End	т50	Cv	Mv	k	Ca
	psf	in		8	min	ft²/sec	1/psf	cm/sec	8
1	125.	0.009948	1.17	0.995	3.814	1.48e-006	7.96e-005	2.24e-007	0.00e+000
2	250.	0.02118	1.14	2.12	2.212	2.50e-006	8.99e-005	4.27e-007	0.00e+000
3	500.	0.03804	1.10	3.80	2.200	2.44e-006	6.74e-005	3.13e-007	0.00e+000
4	1.00e+003	0.06082	1.06	6.08	2.131	2.42e-006	4.56e-005	2.10e-007	0.00e+000
5	2.00e+003	0.09035	0.990	9.04	1.731	2.81e-006	2.95e-005	1.58e-007	0.00e+000
б	4.00e+003	0.1236	0.918	12.4	1.519	2.99e-006	1.66e-005	9.48e-008	0.00e+000
7	1.00e+003	0.1163	0.934	11.6	0.000	0.00e+000	2.46e-006	0.00e+000	0.00e+000
8	250.	0.1053	0.958	10.5	1.850	2.44e-006	1.46e-005	6.79e-008	0.00e+000
9	1.00e+003	0.1116	0.944	11.2	0.000	0.00e+000	8.38e-006	0.00e+000	0.00e+000
10	2.00e+003	0.1178	0.930	11.8	0.336	1.33e-005	6.19e-006	1.56e-007	0.00e+000
11	4.00e+003	0.1289	0.906	12.9	0.301	1.46e-005	5.54e-006	1.54e-007	0.00e+000
12	8.00e+003	0.1576	0.843	15.8	0.731	5.73e-006	7.19e-006	7.83e-008	0.00e+000


		Project: PO-169	Location: Lake Saint Catherine	Project No.: APS1706-G038
<u> </u>	Engineering	Boring No.: B-10	Tested By: SA	Checked By: SE
APS		P	Test Date: 7/30/17	Elevation: -1.40 ft
AFJ		Depth: 12-14 ft	Sample Type: intact	
		Description: Very Soft Gray Fat Clay		
		Displacement at End of Increment		

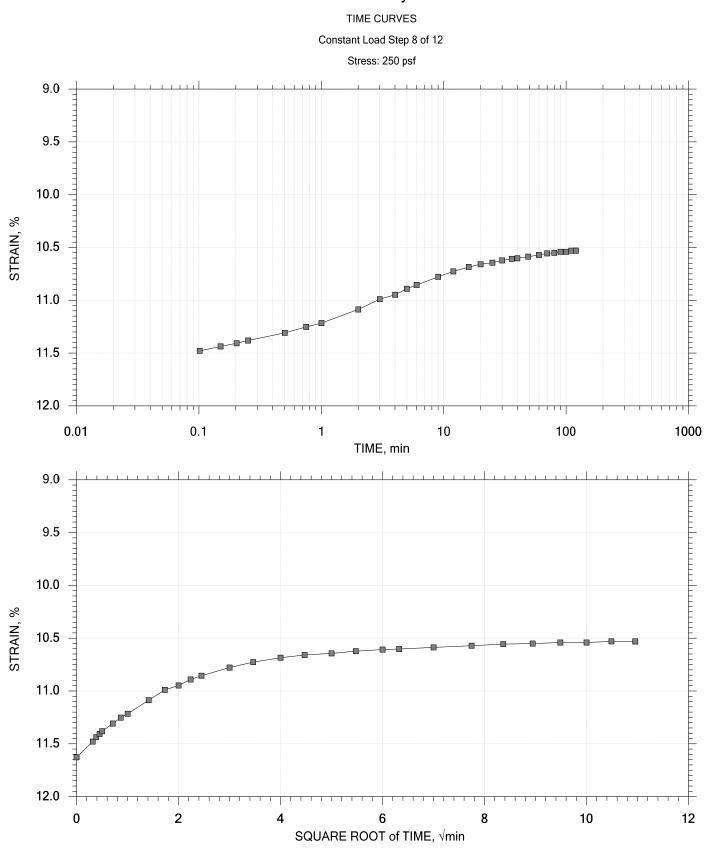

			Project: PO-169	Location: Lake Saint Catherine	Project No.: APS1706-G038
	APS	Engineering and Testing	Boring No.: B-10	Tested By: SA	Checked By: SE
			· ·	Test Date: 7/30/17	Elevation: -1.40 ft
			Depth: 12-14 ft	Sample Type: intact	
			Description: Very Soft Gray Fat Clay		
			Displacement at End of Increment		

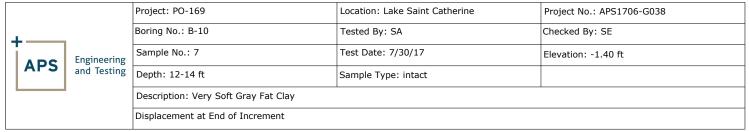
		Engineering	Project: PO-169	Location: Lake Saint Catherine	Project No.: APS1706-G038
+			Boring No.: B-10	Tested By: SA	Checked By: SE
AP			Sample No.: 7	Test Date: 7/30/17	Elevation: -1.40 ft
	``		Depth: 12-14 ft	Sample Type: intact	
			Description: Very Soft Gray Fat Clay		
			Displacement at End of Increment		

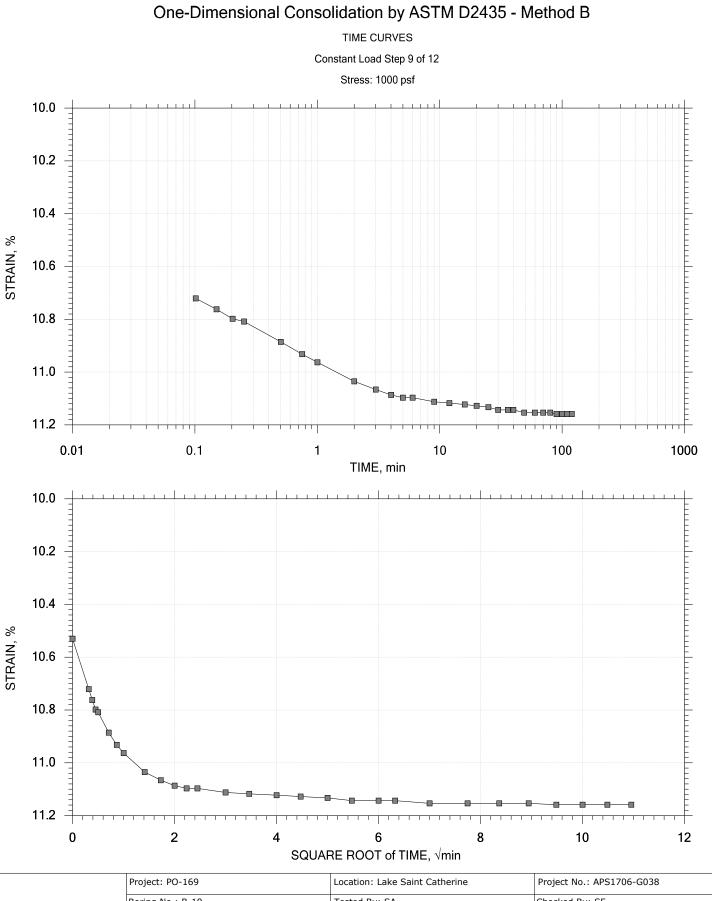

			Project: PO-169	Location: Lake Saint Catherine	Project No.: APS1706-G038
	APS	Engineering	Boring No.: B-10	Tested By: SA	Checked By: SE
			Sample No.: 7	Test Date: 7/30/17	Elevation: -1.40 ft
			Depth: 12-14 ft	Sample Type: intact	
			Description: Very Soft Gray Fat Clay		
			Displacement at End of Increment		

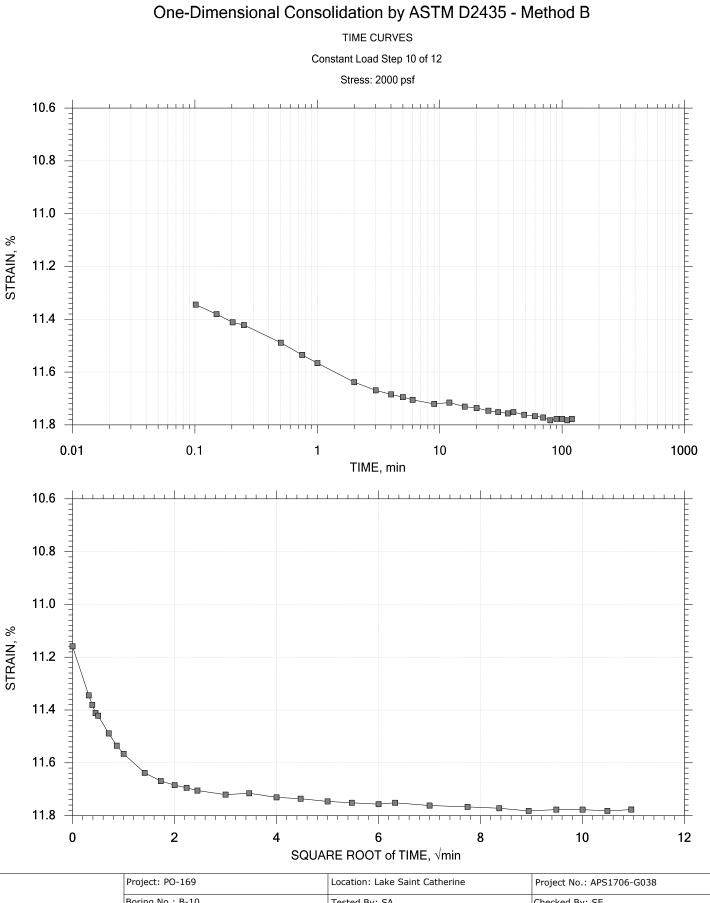

		Project: PO-169	Location: Lake Saint Catherine	Project No.: APS1706-G038
		Boring No.: B-10	Tested By: SA	Checked By: SE
	Engineering	Sample No.: 7	Test Date: 7/30/17	Elevation: -1.40 ft
PS	and Testing	Depth: 12-14 ft	Sample Type: intact	
		Description: Very Soft Gray Fat Clay		

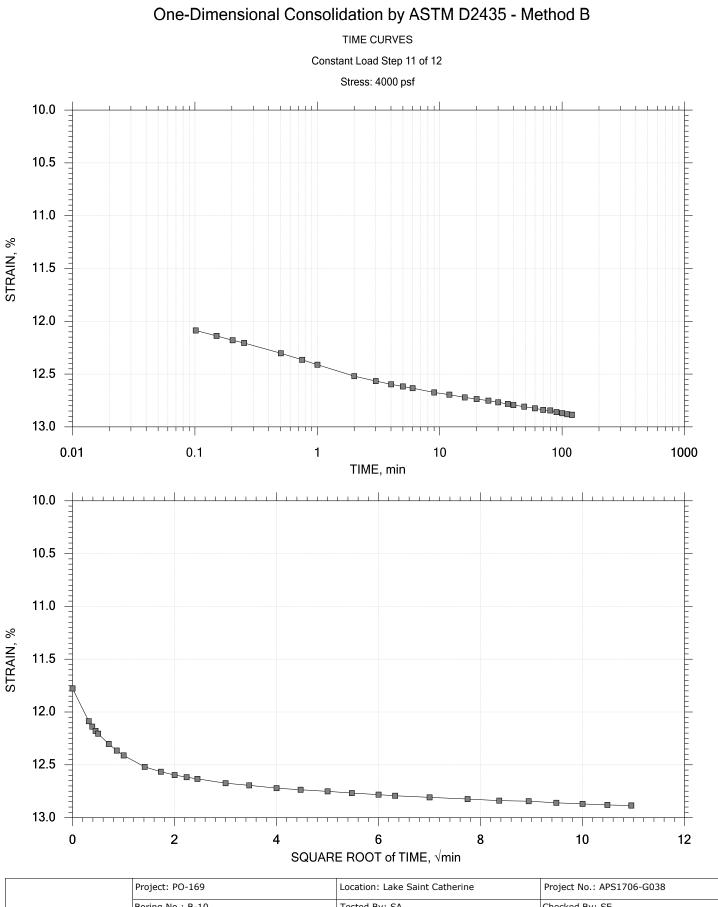
Displacement at End of Increment

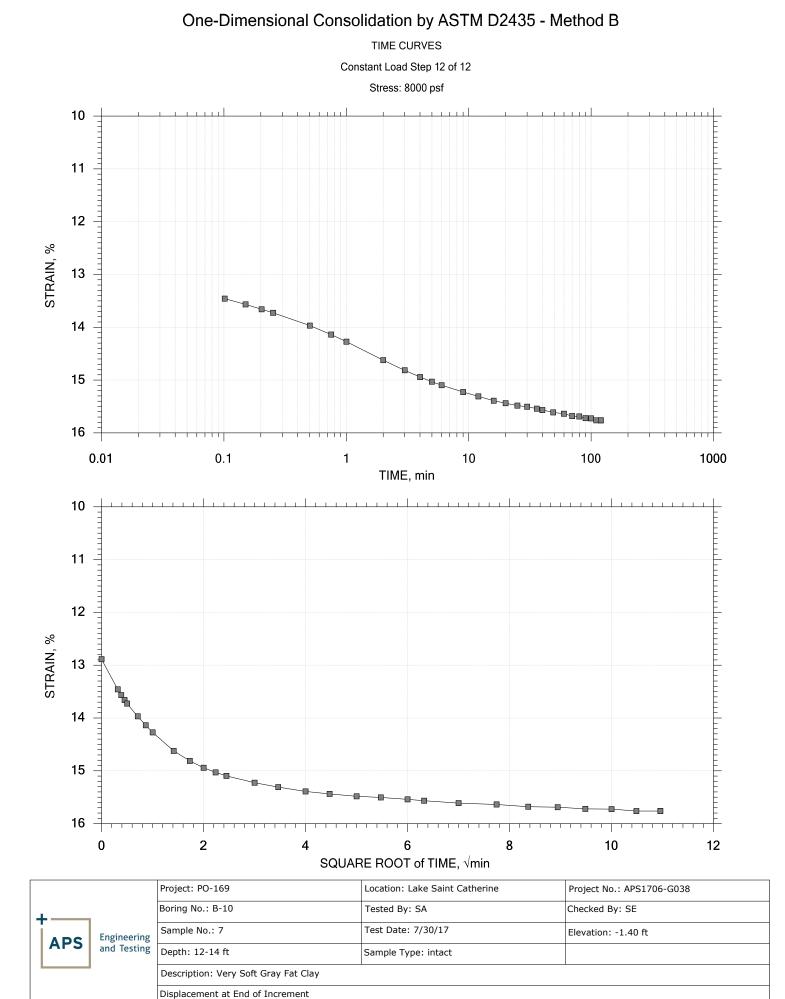

AP




		Project: PO-169	Location: Lake Saint Catherine	Project No.: APS1706-G038
+		Boring No.: B-10	Tested By: SA	Checked By: SE
APS	Engineering	Sample No.: 7	Test Date: 7/30/17	Elevation: -1.40 ft
AFS	and Testing	Depth: 12-14 ft	Sample Type: intact	
		Description: Very Soft Gray Fat Clay		
		Displacement at End of Increment		


		Project: PO-169	Location: Lake Saint Catherine	Project No.: APS1706-G038
-		Boring No.: B-10	Tested By: SA	Checked By: SE
APS	Engineering	Sample No.: 7	Test Date: 7/30/17	Elevation: -1.40 ft
AFS	and Testing	Depth: 12-14 ft	Sample Type: intact	
		Description: Very Soft Gray Fat Clay		
		Displacement at End of Increment		




		Project: PO-169	Location: Lake Saint Catherine	Project No.: APS1706-G038
L		Boring No.: B-10	Tested By: SA	Checked By: SE
APS	Engineering	Sample No.: 7	Test Date: 7/30/17	Elevation: -1.40 ft
AFJ	and Testing	Depth: 12-14 ft	Sample Type: intact	
		Description: Very Soft Gray Fat Clay		
		Displacement at End of Increment		

			Project: PO-169	Location: Lake Saint Catherine	Project No.: APS1706-G038
4	L		Boring No.: B-10	Tested By: SA	Checked By: SE
Li	APS	Engineering	Sample No.: 7	Test Date: 7/30/17	Elevation: -1.40 ft
	AFJ	and Testing	Depth: 12-14 ft	Sample Type: intact	
			Description: Very Soft Gray Fat Clay		
			Displacement at End of Increment		

		Project: PO-169	Location: Lake Saint Catherine	Project No.: APS1706-G038
+	_	Boring No.: B-10	Tested By: SA	Checked By: SE
APS	e Engineering	Sample No.: 7	Test Date: 7/30/17	Elevation: -1.40 ft
AFJ	and Testing	Depth: 12-14 ft	Sample Type: intact	
	-	Description: Very Soft Gray Fat Clay		
		Displacement at End of Increment		

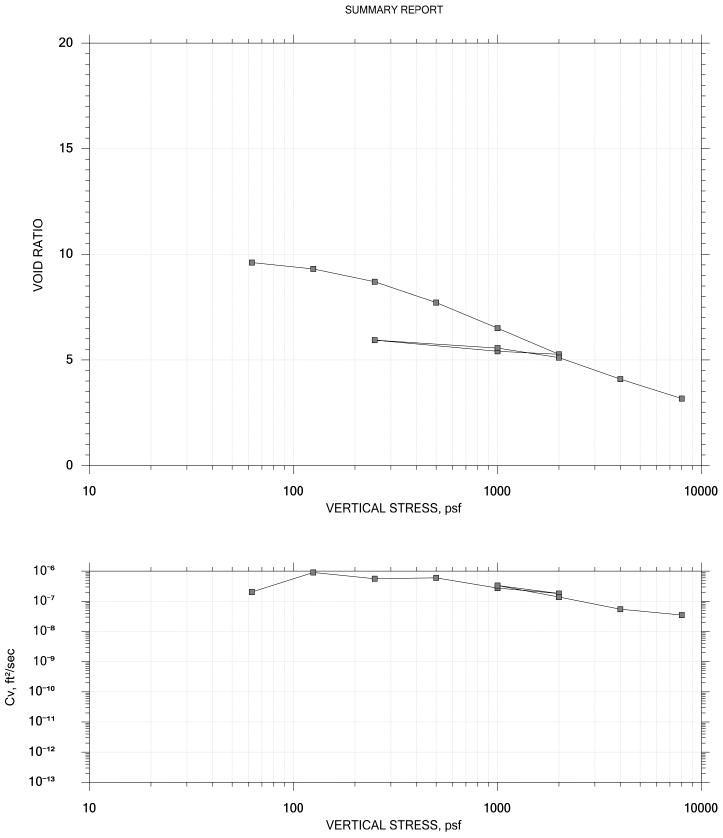
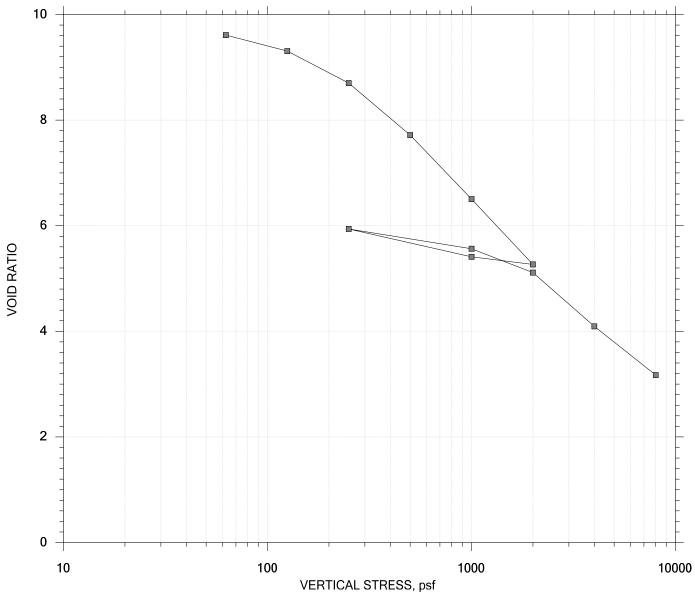


 Image: Project: PO-169
 Location: Lake Saint Catherine
 Project No.: APS1706-G038

 Boring No.: B-11
 Tested By: SA
 Checked By: SE


 Sample No.: 1
 Test Date: 8/1/2017
 Elevation: -2.80 ft

 Depth: 0-2 ft
 Sample Type: intact
 Image: Project No.: APS1706-G038

 Description: Very Soft Black Organic Clay
 Description: Very Soft Black Organic Clay

 Displacement at End of Increment
 Tested Supplement

SUMMARY REPORT

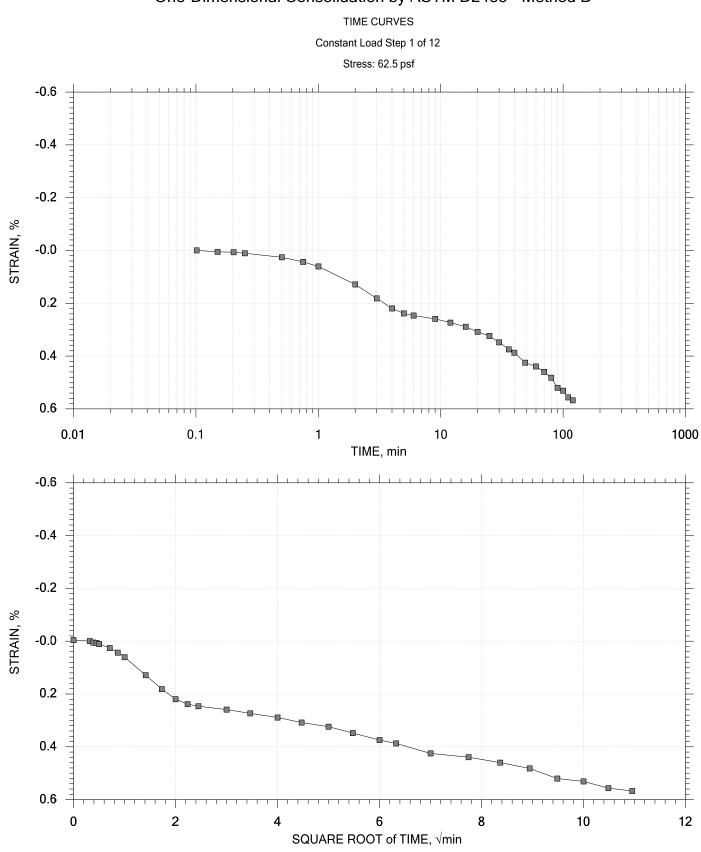
		Project: PO-169	Location: Lake Saint Catherine	Project No.: APS1706-G038
+	_	Boring No.: B-11	Tested By: SA	Checked By: SE
APS	Engineering	Sample No.: 1	Test Date: 8/1/2017	Elevation: -2.80 ft
	and Testing	Depth: 0-2 ft	Sample Type: intact	
		Description: Very Soft Black Organic Clay		
		Displacement at End of Increment		

Project: PO-169 Boring No.: B-11 Sample No.: 2

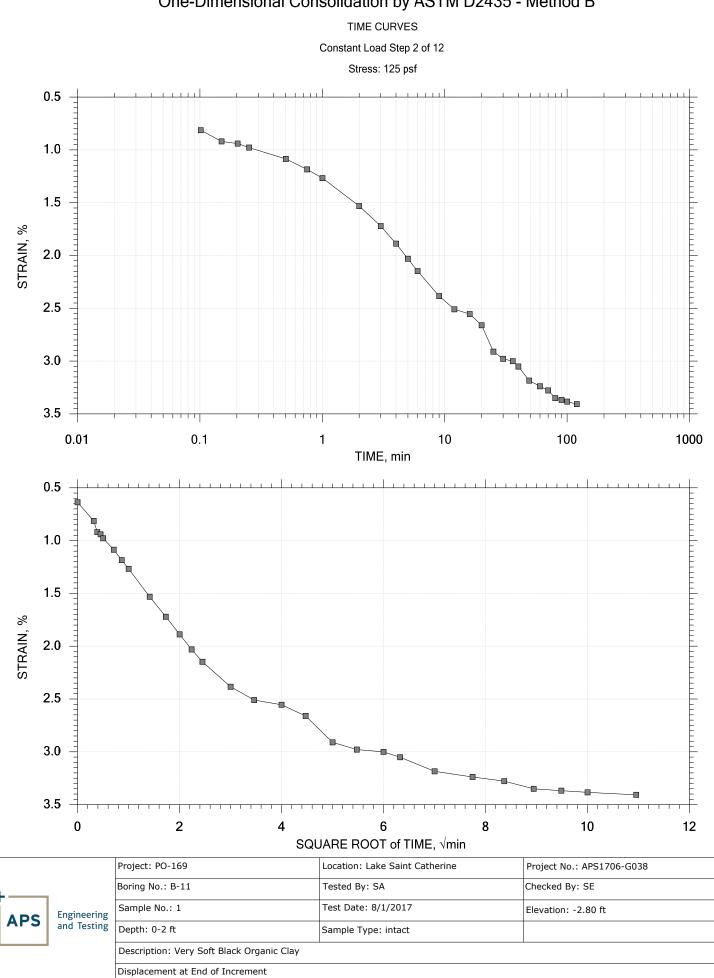
Location: Lake Saint Catherine Tested By: SA Test Date: 8/1/17 Sample Type: intact Project No.: APS1706-G038 Checked By: SE Depth: 0-2 ft Elevation: -2.80 ft

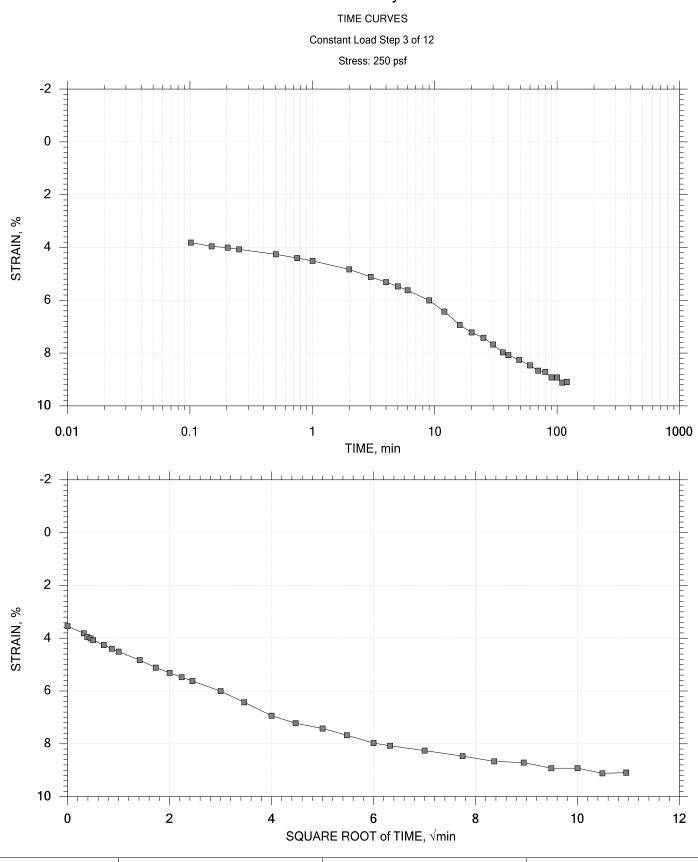
Soil Description: Very Soft Black Organic Clay

Before Consolidation Trimmings After Consolidation Specimen+Ring After Consolidation Container ID bbw RING pr5 pr5 Wt. Container + Wet Soil, gm 82.630 96.440 50.920 50.920 Wt. Container + Dry Soil, gm 24.660 27.850 27.850 27.850 Wt. Container, gm 8.1400 8.1700 8.1700 8.1700 Wt. Dry Soil, gm 16.520 19.680 19.680 19.680 Water Content, % 350.91 348.53 117.23 117.23 Void Ratio 9.67 3.06 Dry Unit Weight, pcf 15.273 40.140	Measured Specific Gravity: 2.61 Initial Void Ratio: 9.67 Final Void Ratio: 3.06	Liquid Limit:24 Plastic Limit:6 Plasticity Inde	55 ex:183	Specimen Diameter: Initial Height: 1 Final Height: 0.38	.00 in 3 in
Container ID bbw RING pr5 pr5 Wt. Container + Wet Soil, gm 82.630 96.440 50.920 50.920 Wt. Container + Dry Soil, gm 24.660 27.850 27.850 27.850 Wt. Container, gm 8.1400 8.1700 8.1700 8.1700 Wt. Dry Soil, gm 16.520 19.680 19.680 19.680 Water Content, % 350.91 348.53 117.23 117.23 Void Ratio 9.67 3.06 Degree of Saturation, % 94.08 100.00					
Wt. Container + Wet Soil, gm 82.630 96.440 50.920 50.920 Wt. Container + Dry Soil, gm 24.660 27.850 27.850 27.850 Wt. Container, gm 8.1400 8.1700 8.1700 8.1700 Wt. Dry Soil, gm 16.520 19.680 19.680 19.680 Water Content, % 350.91 348.53 117.23 117.23 Void Ratio 9.67 3.06 Degree of Saturation, % 94.08 100.00		Trimmings	Specimen+Ring	Specimen+Ring	Trimmings
Wt. Container + Dry Soil, gm 24.660 27.850 27.850 27.850 Wt. Container, gm 8.1400 8.1700 8.1700 8.1700 Wt. Dry Soil, gm 16.520 19.680 19.680 19.680 Water Content, % 350.91 348.53 117.23 117.23 Void Ratio 9.67 3.06 Degree of Saturation, % 94.08 100.00	Container ID	bbw	RING	pr5	pr5
Wt. Container, gm 8.1400 8.1700 8.1700 8.1700 Wt. Dry Soil, gm 16.520 19.680 19.680 19.680 Water Content, % 350.91 348.53 117.23 117.23 Void Ratio 9.67 3.06 Degree of Saturation, % 94.08 100.00	Wt. Container + Wet Soil, gm	82.630	96.440	50.920	50.920
Wt. Dry Soil, gm 16.520 19.680 19.680 19.680 Water Content, % 350.91 348.53 117.23 117.23 Void Ratio 9.67 3.06 Degree of Saturation, % 94.08 100.00	Wt. Container + Dry Soil, gm	24.660	27.850	27.850	27.850
Water Content, % 350.91 348.53 117.23 117.23 Void Ratio 9.67 3.06 Degree of Saturation, % 94.08 100.00	Wt. Container, qm	8.1400	8.1700	8.1700	8.1700
Void Ratio 9.67 3.06 Degree of Saturation, % 94.08 100.00	Wt. Dry Soil, gm	16.520	19.680	19.680	19.680
Degree of Saturation, % 94.08 100.00	Water Content, %	350.91	348.53	117.23	117.23
	Void Ratio		9.67	3.06	
Dry Unit Weight, pcf 15.273 40.140	Degree of Saturation, %		94.08	100.00	
	Dry Unit Weight, pcf		15.273	40.140	


Project: PO-169 Boring No.: B-11 Sample No.: 2

Location: Lake Saint Catherine Tested By: SA Test Date: 8/1/17 Sample Type: intact Project No.: APS1706-G038 Checked By: SE Depth: 0-2 ft Elevation: -2.80 ft

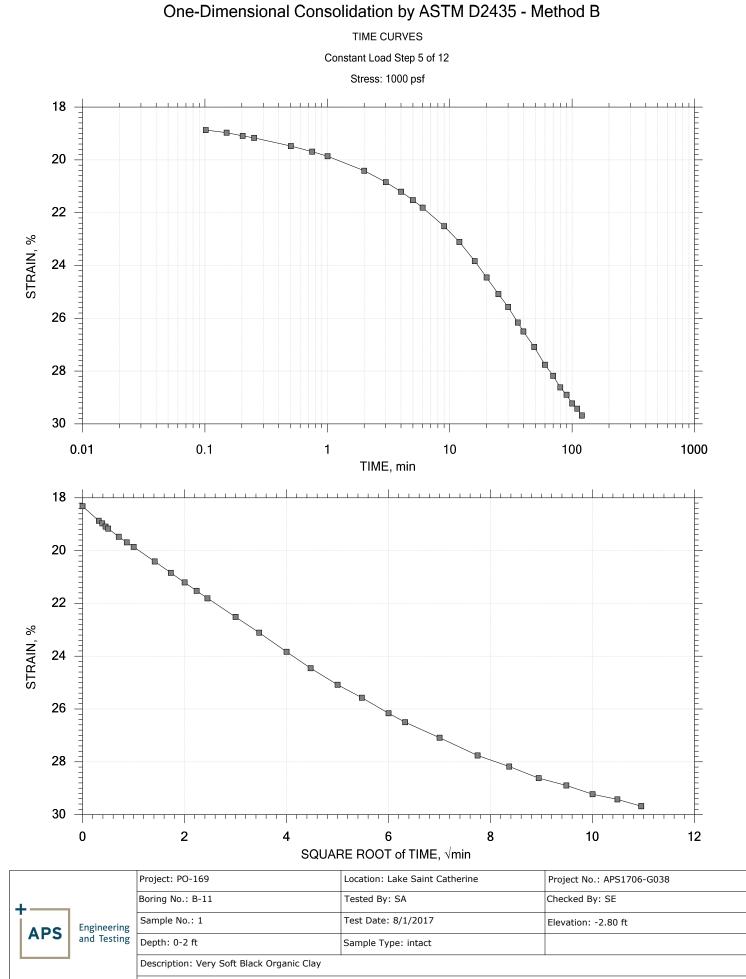

Soil Description: Very Soft Black Organic Clay

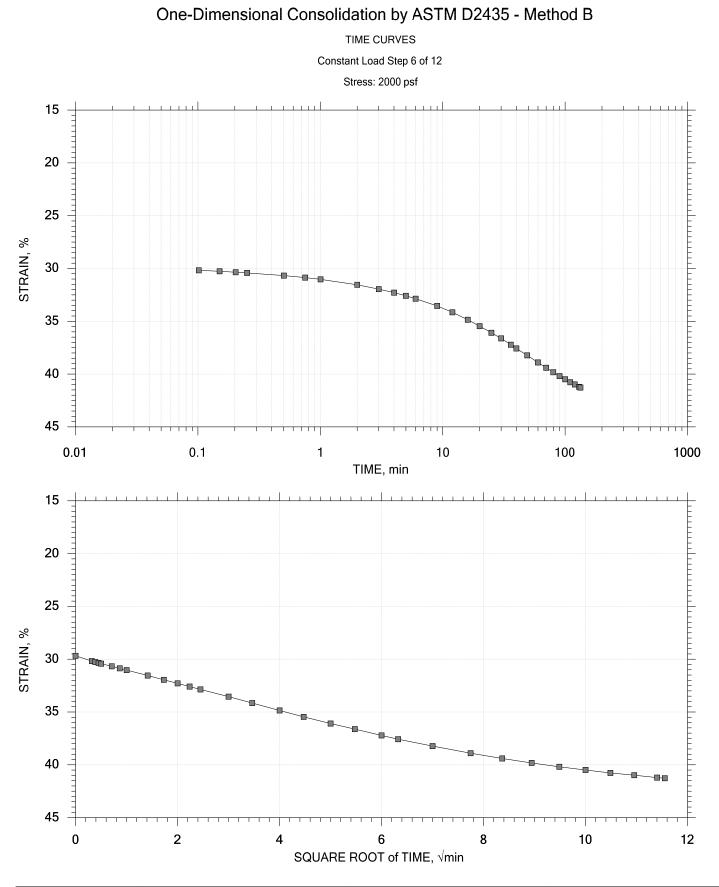

Displacement at End of Increment

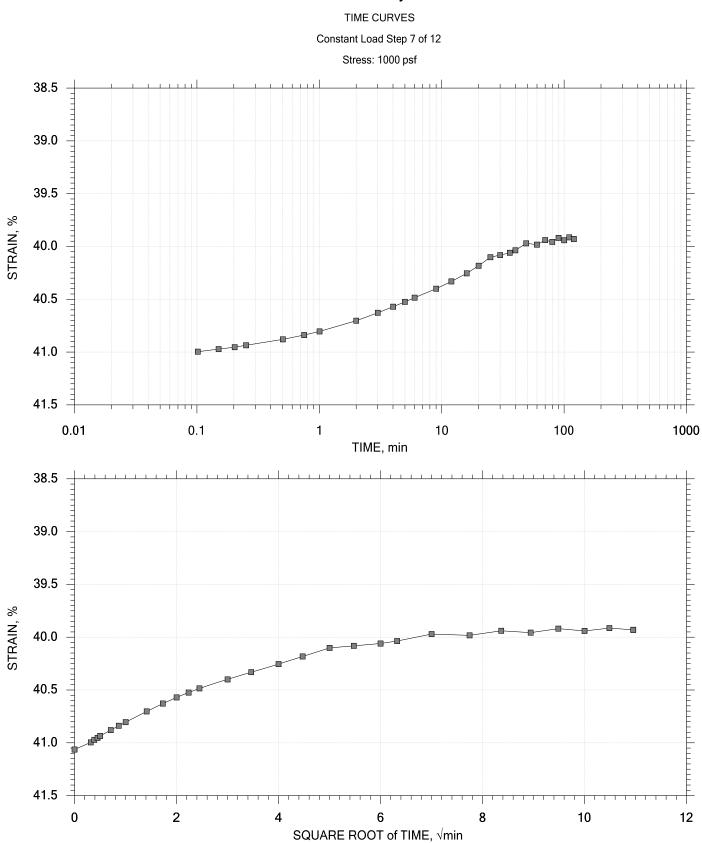
	Applied	Final	Void	Strain	Sq.Rt				
	Stress	Displacement	Ratio	at End	Т90	Cv	Mv	k	
	psf	in		90	min	ft²/sec	1/psf	cm/sec	
1	62.5	0.005675	9.61	0.568	108.020	2.26e-007	9.08e-005	3.90e-008	
1 2	125.	0.03407	9.31	3.41	26.678	8.84e-007	4.54e-004	7.64e-007	
∠ 3	250.	0.03407	8.70	3.41 9.09	20.078	7.42e-007	4.55e-004	6.42e-007	
4	500.	0.1832	7.72	18.3	29.531	6.19e-007	3.69e-004	4.34e-007	
5	1.00e+003	0.2968	6.50	29.7	44.912	3.16e-007	2.27e-004	1.36e-007	
6	2.00e+003	0.4127	5.27	41.3	46.582	2.19e-007	1.16e-004	4.84e-008	
7	1.00e+003	0.3993	5.41	39.9	15.132	5.72e-007	1.34e-005	1.46e-008	
8	250.	0.3498	5.94	35.0	113.129	8.48e-008	6.60e-005	1.07e-008	
9	1.00e+003	0.3850	5.56	38.5	26.888	3.65e-007	4.69e-005	3.26e-008	
10	2.00e+003	0.4272	5.11	42.7	63.683	1.36e-007	4.23e-005	1.09e-008	
11	4.00e+003	0.5227	4.09	52.3	122.734	5.51e-008	4.77e-005	5.01e-009	
12	8.00e+003	0.6091	3.17	60.9	130.336	3.55e-008	2.16e-005	1.46e-009	
	Applied	Final	Void	etrain	Tog				
	Applied	Final	Void	Strain	Log	0	Mer	lr.	(La
	Stress	Displacement	Void Ratio	at End	т50	Cv	Mv 1/paf	k	Ca
						Cv ft²/sec	Mv 1/psf	k cm/sec	Ca %
1	Stress	Displacement		at End	т50				
1 2	Stress psf	Displacement in	Ratio	at End %	T50 min	ft²/sec	1/psf	cm/sec	8
1 2 3	Stress psf 62.5	Displacement in 0.005675	Ratio 9.61	at End % 0.568	T50 min 0.000	ft²/sec 0.00e+000	1/psf 9.08e-005	cm/sec 0.00e+000	% 0.00e+000
2	Stress psf 62.5 125.	Displacement in 0.005675 0.03407	Ratio 9.61 9.31	at End % 0.568 3.41	T50 min 0.000 0.000	ft ² /sec 0.00e+000 0.00e+000	1/psf 9.08e-005 4.54e-004	cm/sec 0.00e+000 0.00e+000	% 0.00e+000 0.00e+000
2 3 4	Stress psf 62.5 125. 250.	Displacement in 0.005675 0.03407 0.09093	Ratio 9.61 9.31 8.70	at End % 0.568 3.41 9.09	T50 min 0.000 0.000 10.055	ft ² /sec 0.00e+000 0.00e+000 4.98e-007	1/psf 9.08e-005 4.54e-004 4.55e-004	cm/sec 0.00e+000 0.00e+000 4.31e-007	% 0.00e+000 0.00e+000 0.00e+000
2 3 4 5	Stress psf 62.5 125. 250. 500.	Displacement in 0.005675 0.03407 0.09093 0.1832	Ratio 9.61 9.31 8.70 7.72	at End % 0.568 3.41 9.09 18.3	T50 min 0.000 0.000 10.055 0.000	ft ² /sec 0.00e+000 0.00e+000 4.98e-007 0.00e+000	1/psf 9.08e-005 4.54e-004 4.55e-004 3.69e-004	cm/sec 0.00e+000 0.00e+000 4.31e-007 0.00e+000	<pre>% 0.00e+000 0.00e+000 0.00e+000 0.00e+000 0.00e+000</pre>
2 3 4 5 6	Stress psf 62.5 125. 250. 500. 1.00e+003 2.00e+003	Displacement in 0.005675 0.03407 0.09093 0.1832 0.2968 0.4127	Ratio 9.61 9.31 8.70 7.72 6.50 5.27	at End % 0.568 3.41 9.09 18.3 29.7 41.3	T50 min 0.000 0.000 10.055 0.000 0.000 0.000	ft ² /sec 0.00e+000 4.98e-007 0.00e+000 0.00e+000 0.00e+000	1/psf 9.08e-005 4.54e-004 4.55e-004 3.69e-004 2.27e-004	cm/sec 0.00e+000 0.00e+000 4.31e-007 0.00e+000 0.00e+000	<pre>% 0.00e+000 0.00e+000 0.00e+000 0.00e+000 0.00e+000 0.00e+000</pre>
2 3 4 5 6 7	Stress psf 62.5 125. 250. 500. 1.00e+003	Displacement in 0.005675 0.03407 0.09093 0.1832 0.2968	Ratio 9.61 9.31 8.70 7.72 6.50 5.27 5.41	at End % 0.568 3.41 9.09 18.3 29.7 41.3 39.9	T50 min 0.000 0.000 10.055 0.000 0.000 0.000 0.000	ft ² /sec 0.00e+000 0.00e+000 4.98e-007 0.00e+000 0.00e+000	1/psf 9.08e-005 4.54e-004 4.55e-004 3.69e-004 2.27e-004 1.16e-004	cm/sec 0.00e+000 4.31e-007 0.00e+000 0.00e+000 0.00e+000	<pre>% 0.00e+000 0.00e+000 0.00e+000 0.00e+000 0.00e+000 0.00e+000</pre>
2 3 4 5 6 7 8	Stress psf 62.5 125. 500. 1.00e+003 2.00e+003 1.00e+003 250.	Displacement in 0.005675 0.03407 0.09093 0.1832 0.2968 0.4127 0.3993 0.3498	Ratio 9.61 9.31 8.70 7.72 6.50 5.27 5.41 5.94	at End % 0.568 3.41 9.09 18.3 29.7 41.3 39.9 35.0	T50 min 0.000 0.000 10.055 0.000 0.000 0.000 0.000 0.000	ft ² /sec 0.00e+000 4.98e-007 0.00e+000 0.00e+000 0.00e+000 0.00e+000 0.00e+000	1/psf 9.08e-005 4.54e-004 4.55e-004 3.69e-004 2.27e-004 1.34e-005 6.60e-005	cm/sec 0.00e+000 4.31e-007 0.00e+000 0.00e+000 0.00e+000 0.00e+000 0.00e+000	<pre>% 0.00e+000 0.00e+000 0.00e+000 0.00e+000 0.00e+000 0.00e+000 0.00e+000 0.00e+000</pre>
2 3 4 5 6 7 8 9	Stress psf 62.5 125. 250. 1.00e+003 2.00e+003 1.00e+003 250. 1.00e+003	Displacement in 0.005675 0.03407 0.09093 0.1832 0.2968 0.4127 0.3993 0.3498 0.3850	Ratio 9.61 9.31 8.70 7.72 6.50 5.27 5.41 5.94 5.56	at End % 0.568 3.41 9.09 18.3 29.7 41.3 39.9 35.0 38.5	T50 min 0.000 0.000 10.055 0.000 0.000 0.000 0.000 0.000 0.000	ft ² /sec 0.00e+000 4.98e-007 0.00e+000 0.00e+000 0.00e+000 0.00e+000 0.00e+000 0.00e+000	1/psf 9.08e-005 4.54e-004 4.55e-004 3.69e-004 2.27e-004 1.16e-004 1.34e-005 6.60e-005 4.69e-005	<pre>cm/sec 0.00e+000 4.31e-007 0.00e+000 0.00e+000 0.00e+000 0.00e+000 0.00e+000</pre>	<pre>% 0.00e+000 0.00e+000 0.00e+000 0.00e+000 0.00e+000 0.00e+000 0.00e+000 0.00e+000 0.00e+000 0.00e+000</pre>
2 3 4 5 6 7 8 9 10	Stress psf 62.5 125. 250. 1.00e+003 2.00e+003 250. 1.00e+003 2.00e+003	Displacement in 0.005675 0.03407 0.09093 0.1832 0.2968 0.4127 0.3993 0.3498 0.3850 0.4272	Ratio 9.61 9.31 8.70 7.72 6.50 5.27 5.41 5.94 5.56 5.11	at End % 0.568 3.41 9.09 18.3 29.7 41.3 39.9 35.0 38.5 42.7	T50 min 0.000 10.055 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	ft ² /sec 0.00e+000 4.98e-007 0.00e+000 0.00e+000 0.00e+000 0.00e+000 0.00e+000 0.00e+000 0.00e+000	1/psf 9.08e-005 4.54e-004 3.69e-004 2.27e-004 1.16e-004 1.34e-005 6.60e-005 4.69e-005 4.23e-005	<pre>cm/sec 0.00e+000 4.31e-007 0.00e+000 0.00e+000 0.00e+000 0.00e+000 0.00e+000 0.00e+000</pre>	<pre>% 0.00e+000 0.00e+000</pre>
2 3 4 5 6 7 8 9	Stress psf 62.5 125. 250. 1.00e+003 2.00e+003 1.00e+003 250. 1.00e+003	Displacement in 0.005675 0.03407 0.09093 0.1832 0.2968 0.4127 0.3993 0.3498 0.3850	Ratio 9.61 9.31 8.70 7.72 6.50 5.27 5.41 5.94 5.56	at End % 0.568 3.41 9.09 18.3 29.7 41.3 39.9 35.0 38.5	T50 min 0.000 0.000 10.055 0.000 0.000 0.000 0.000 0.000 0.000	ft ² /sec 0.00e+000 4.98e-007 0.00e+000 0.00e+000 0.00e+000 0.00e+000 0.00e+000 0.00e+000	1/psf 9.08e-005 4.54e-004 4.55e-004 3.69e-004 2.27e-004 1.16e-004 1.34e-005 6.60e-005 4.69e-005	<pre>cm/sec 0.00e+000 4.31e-007 0.00e+000 0.00e+000 0.00e+000 0.00e+000 0.00e+000</pre>	<pre>% 0.00e+000 0.00e+000 0.00e+000 0.00e+000 0.00e+000 0.00e+000 0.00e+000 0.00e+000 0.00e+000 0.00e+000</pre>

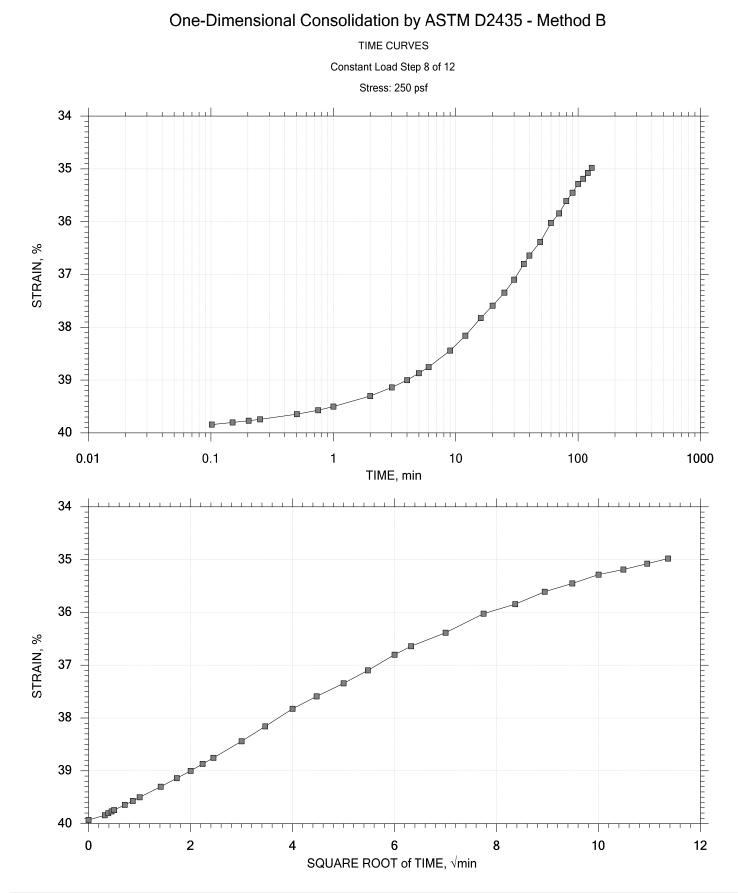


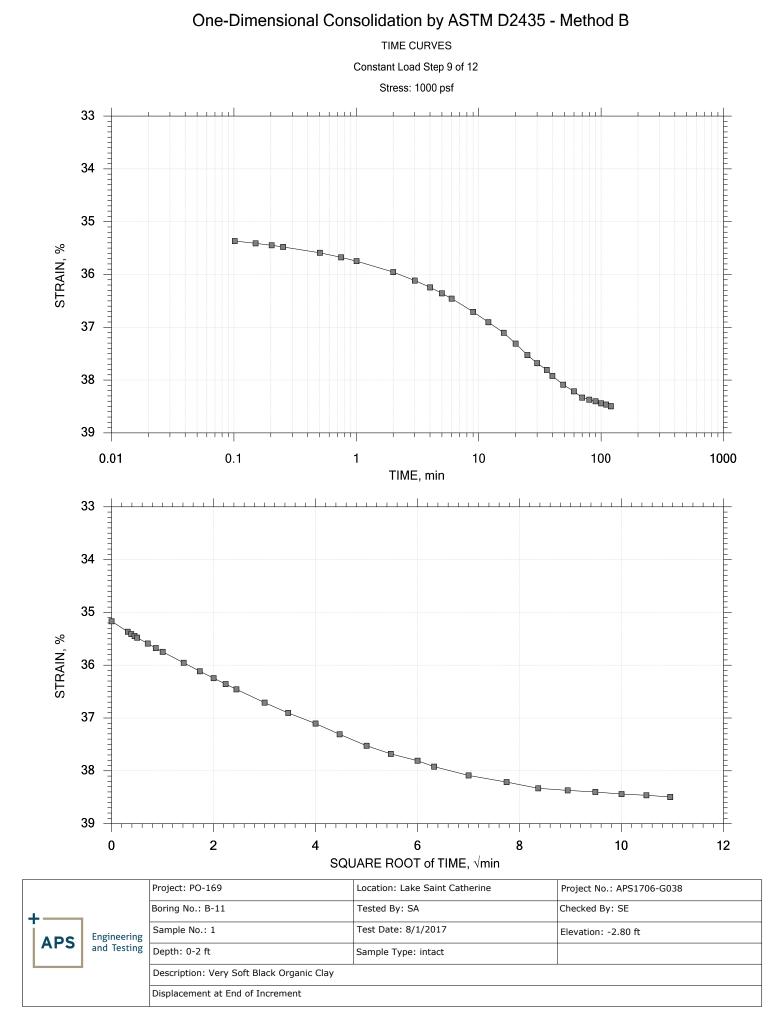
Project: PO-169 Location: Lake Saint Catherine Project No.: APS1706-G038 Boring No.: B-11 Tested By: SA Checked By: SE Sample No.: 1 Test Date: 8/1/2017 Elevation: -2.80 ft Depth: 0-2 ft Sample Type: intact Description: Very Soft Black Organic Clay Displacement at End of Increment Displacement at End of Increment Sample No.: APS1706-G038

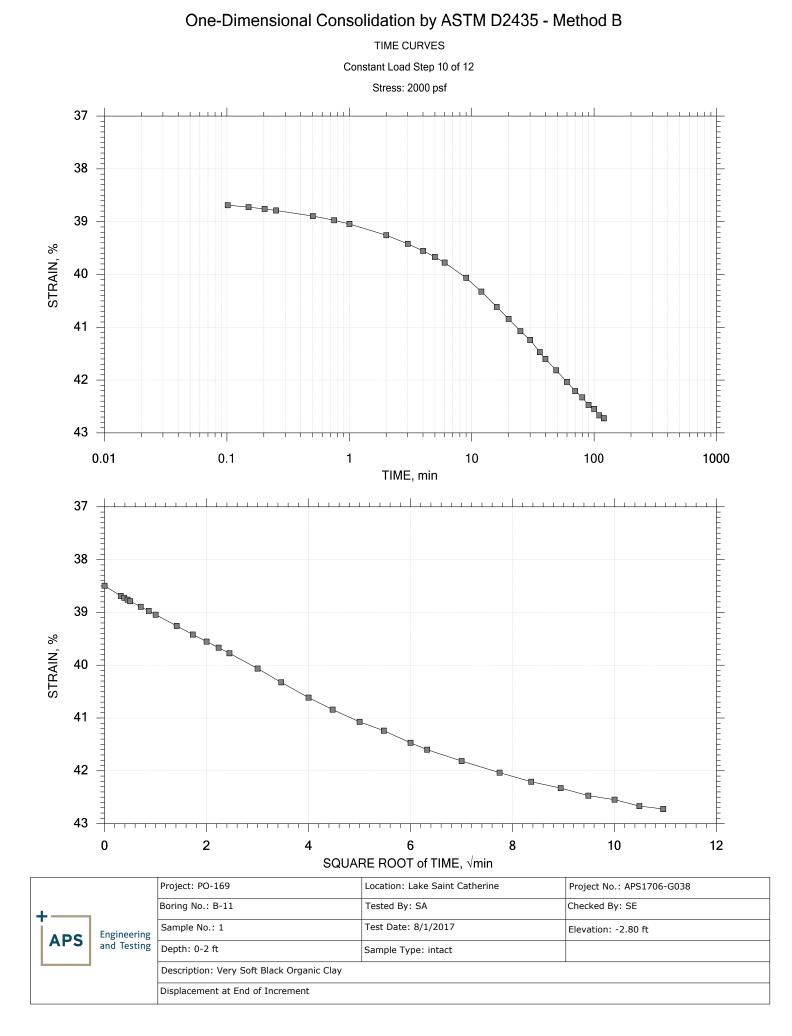


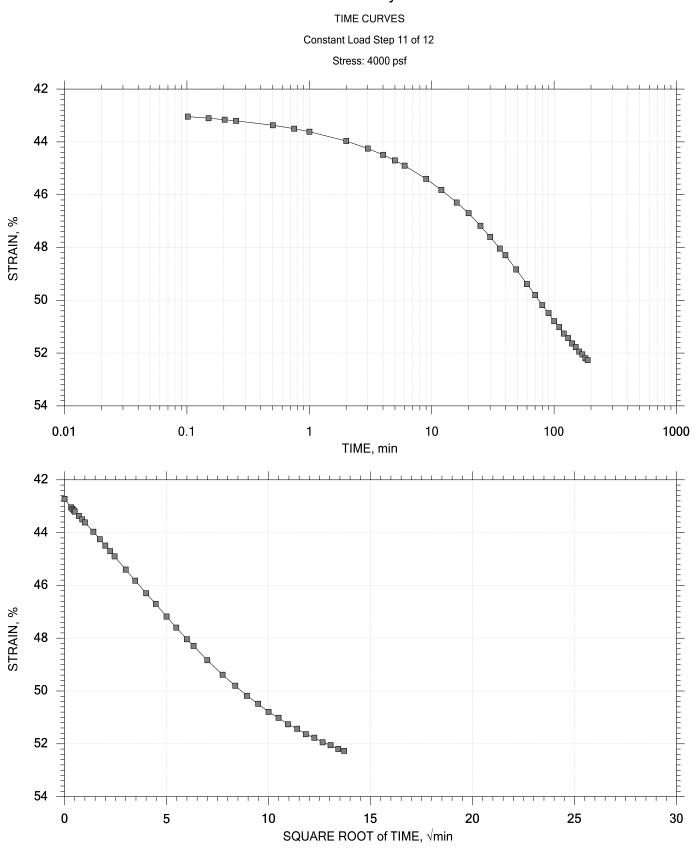

		Project: PO-169	Location: Lake Saint Catherine	Project No.: APS1706-G038
-		Boring No.: B-11	Tested By: SA	Checked By: SE
Engineering	Engineering	· ·	Test Date: 8/1/2017	Elevation: -2.80 ft
APS	and Testing	Depth: 0-2 ft	Sample Type: intact	
		Description: Very Soft Black Organic Clay		
		Displacement at End of Increment		

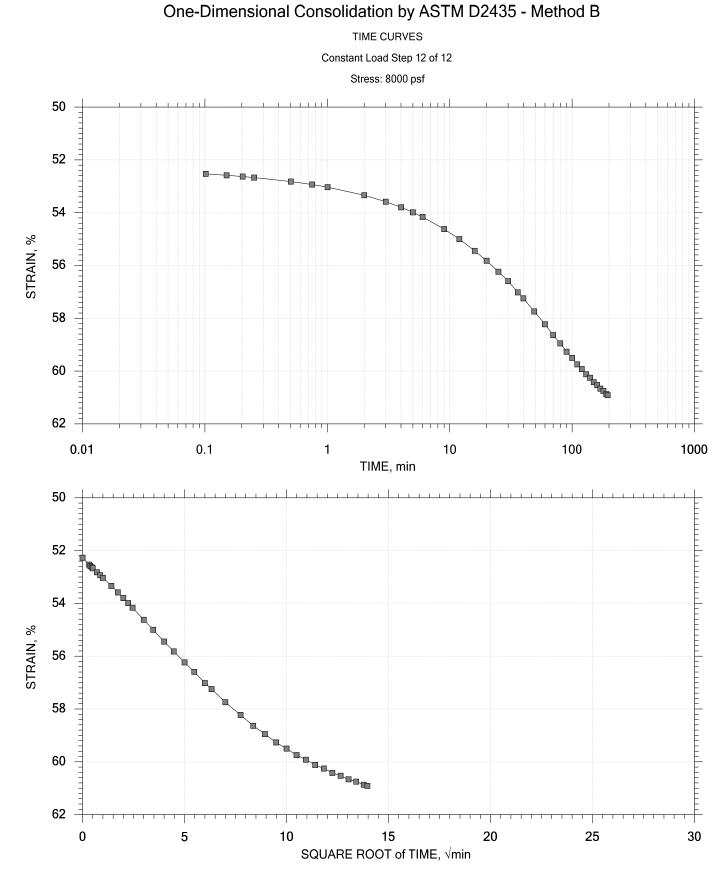

		Project: PO-169	Location: Lake Saint Catherine	Project No.: APS1706-G038
+	_	Boring No.: B-11	Tested By: SA	Checked By: SE
APS	Engineering	Sample No.: 1	Test Date: 8/1/2017	Elevation: -2.80 ft
AFS	and Testing	Depth: 0-2 ft	Sample Type: intact	
	-	Description: Very Soft Black Organic Clay		
		Displacement at End of Increment		

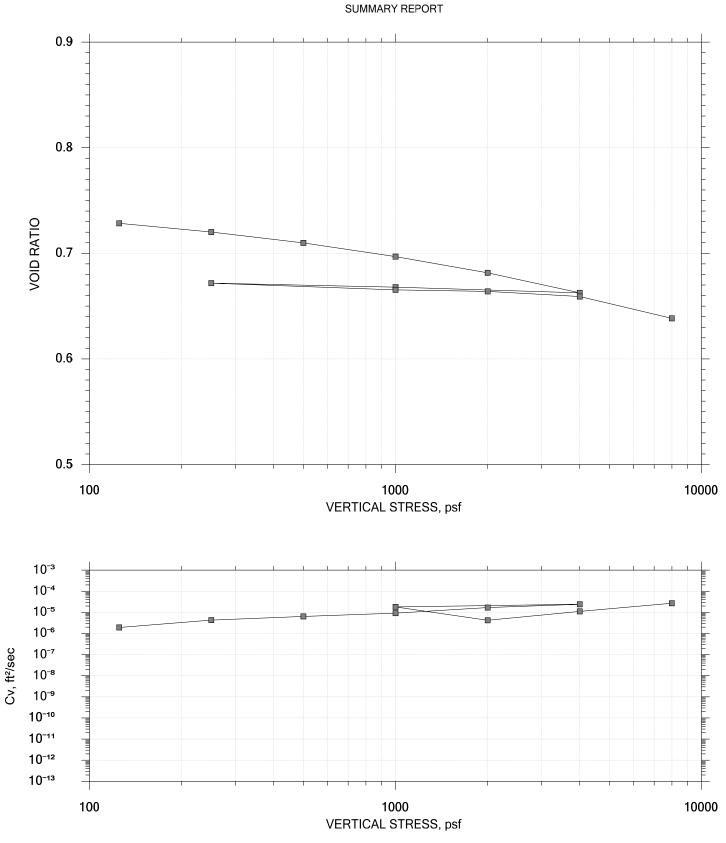

Displacement at End of Increment


			Project: PO-169	Location: Lake Saint Catherine	Project No.: APS1706-G038
+-			Boring No.: B-11	Tested By: SA	Checked By: SE
lin	PS	e Engineering		Test Date: 8/1/2017	Elevation: -2.80 ft
	-3	and Testing	Depth: 0-2 ft	Sample Type: intact	
			Description: Very Soft Black Organic Clay		
			Displacement at End of Increment		




Project: PO-169 Location: Lake Saint Catherine Project No.: APS1706-G038 Boring No.: B-11 Tested By: SA Checked By: SE Sample No.: 1 Test Date: 8/1/2017 Elevation: -2.80 ft Depth: 0-2 ft Sample Type: intact Description: Very Soft Black Organic Clay Displacement at End of Increment Displacement at End of Increment Feature Science Scienc

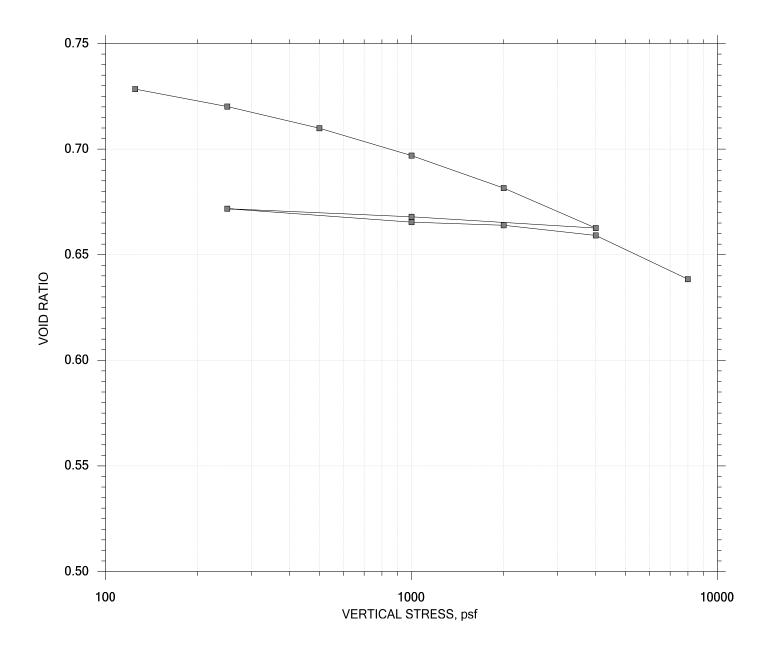

			Project: PO-169	Location: Lake Saint Catherine	Project No.: APS1706-G038
		Engineering and Testing	Boring No.: B-11	Tested By: SA	Checked By: SE
	APS			Test Date: 8/1/2017	Elevation: -2.80 ft
	APS		Depth: 0-2 ft	Sample Type: intact	
1			Description: Very Soft Black Organic Clay		
			Displacement at End of Increment		



			Project: PO-169	Location: Lake Saint Catherine	Project No.: APS1706-G038
	APS	Engineering	Boring No.: B-11	Tested By: SA	Checked By: SE
			Sample No.: 1	Test Date: 8/1/2017	Elevation: -2.80 ft
			Depth: 0-2 ft	Sample Type: intact	
			Description: Very Soft Black Organic Clay		
			Displacement at End of Increment		

Project: PO-169 Location: Lake Saint Catherine Project No.: APS1706-G038 Boring No.: B-11 Tested By: SA Checked By: SE Sample No.: 1 Test Date: 8/1/2017 Elevation: -2.80 ft Depth: 0-2 ft Sample Type: intact Implement at End of Increment Displacement at End of Increment Displacement at End of Increment Sample Type: Implement at End of Increment

 Engineering and Testing
 Project: PO-169
 Location: Lake Saint Catherine
 Project No.: APS1706-G038


 Engineering and Testing
 Boring No.: B-11
 Tested By: SA
 Checked By: SE

 Sample No.: 1
 Test Date: 8/1/2017
 Elevation: -2.80 ft

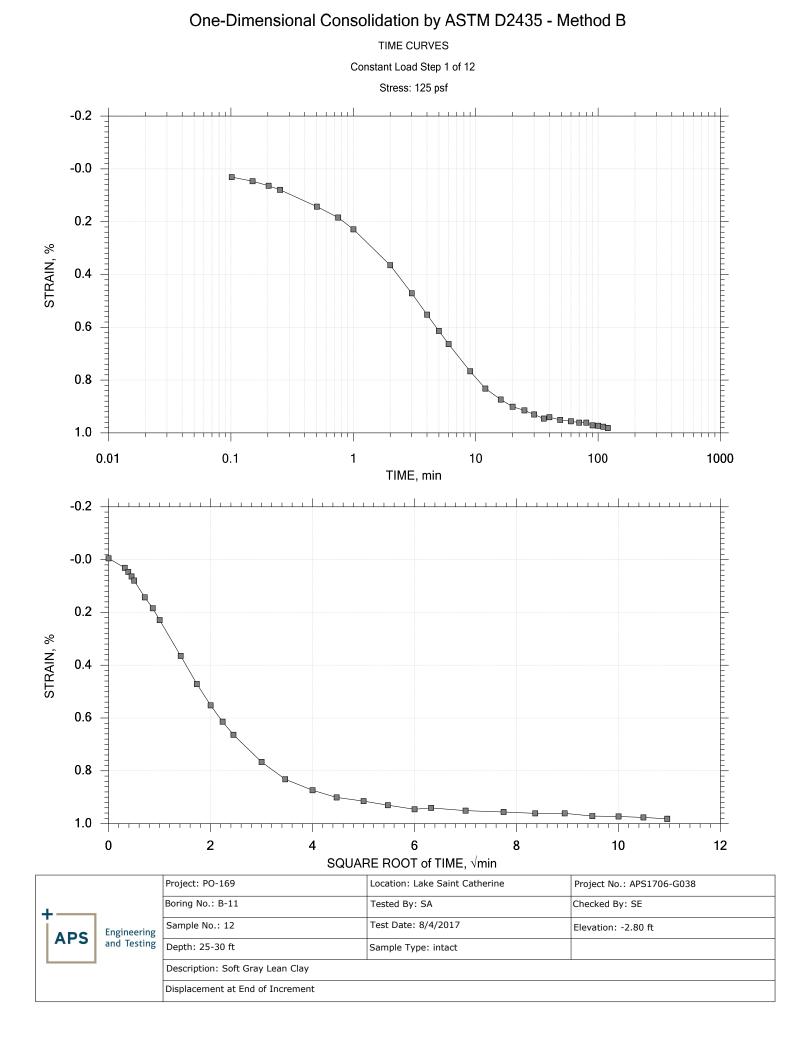
 Depth: 0-2 ft
 Sample Type: intact
 Description: Very Soft Black Organic Clay

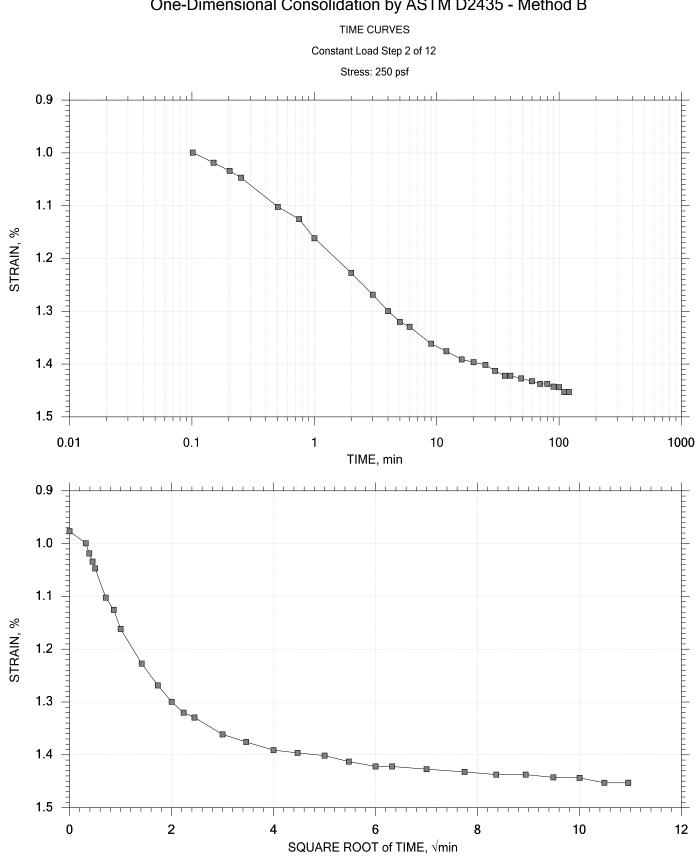
 Displacement at End of Increment
 Displacement at End of Increment

SUMMARY REPORT

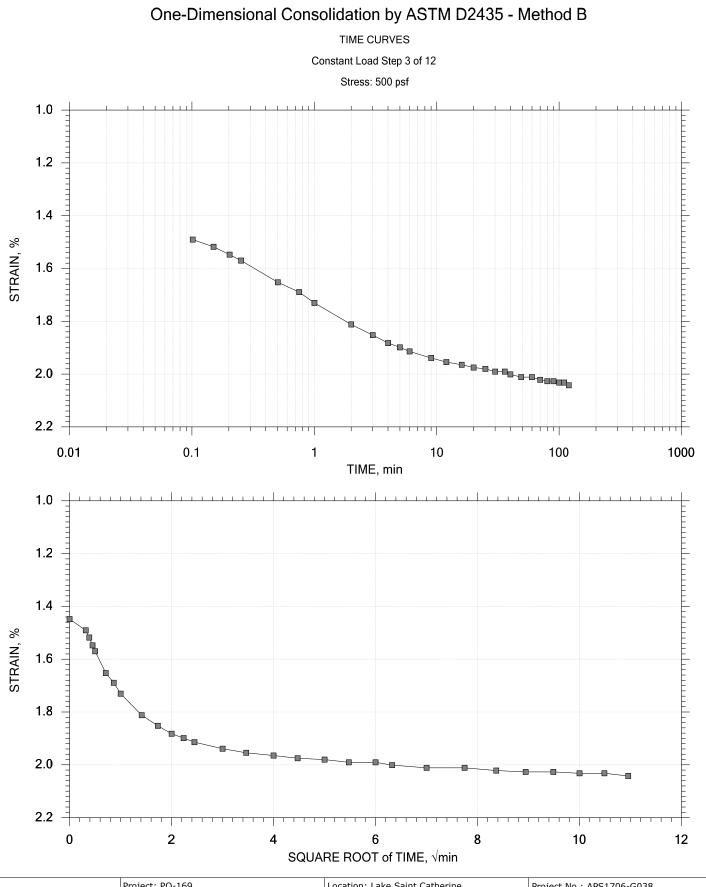
	APS ^{Er} ar	Engineering and Testing	Project: PO-169	Location: Lake Saint Catherine	Project No.: APS1706-G038
+			Boring No.: B-11	Tested By: SA	Checked By: SE
Li.			Sample No.: 12	Test Date: 8/4/2017	Elevation: -2.80 ft
			Depth: 25-30 ft	Sample Type: intact	
15			Description: Soft Gray Lean Clay		
			Displacement at End of Increment		

Project: PO-169 Boring No.: B-11 Sample No.: 12 Soil Description: Soft Gray Lean Clay	Location: La Tested By: S Test Date: & Sample Type:	3/4/17	Project No.: Checked By: Depth: 25-3(Elevation: -) ft
Estimated Specific Gravity: 2.68 Initial Void Ratio: 0.746 Final Void Ratio: 0.638	Liquid Limit: 3 Plastic Limit: Plasticity Inde	24	Specimen Diameter: Initial Height: 1. Final Height: 0.94	.00 in
	Before Co Trimmings	onsolidation Specimen+Ring	After Consol Specimen+Ring	lidation Trimmings
Container ID	pr-6	RING	pr9	pr9
<pre>Wt. Container + Wet Soil, gm Wt. Container + Dry Soil, gm Wt. Container, gm Wt. Dry Soil, gm Water Content, % Void Ratio Degree of Saturation, % Dry Unit Weight, pcf</pre>	92.500 73.940 8.2300 65.710 28.25 	165.25 131.73 8.1800 123.55 27.13 0.746 97.56 95.885	161.15 131.73 8.1800 123.55 23.81 0.638 100.00 102.15	161.15 131.73 8.1800 123.55 23.81

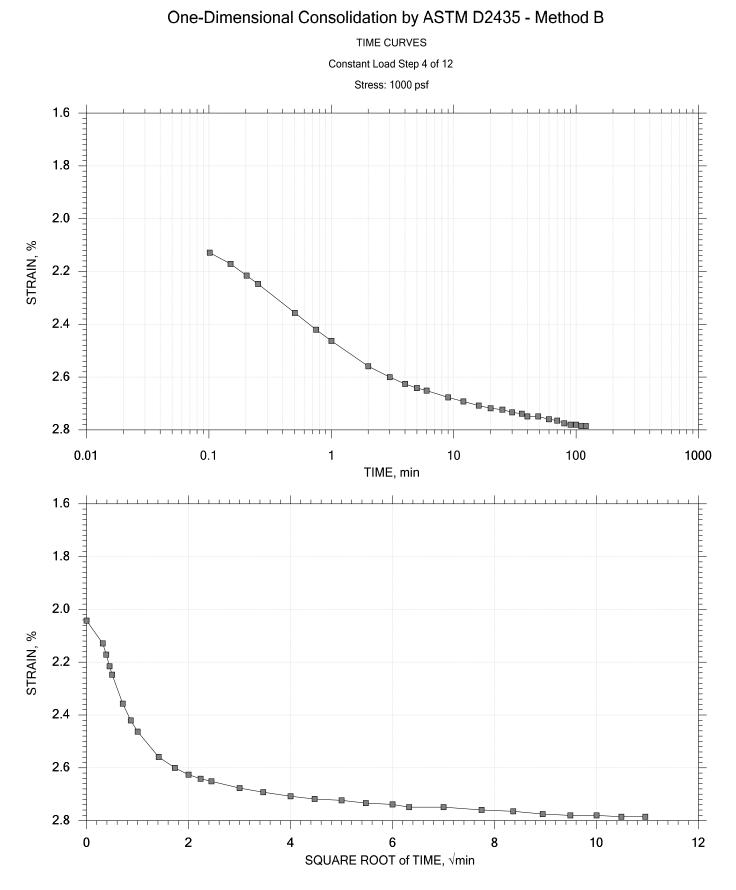

Note: Specific Gravity and Void Ratios are calculated assuming the degree of saturation equals 100% at the end of the test. Therefore, values may not represent actual values for the specimen.

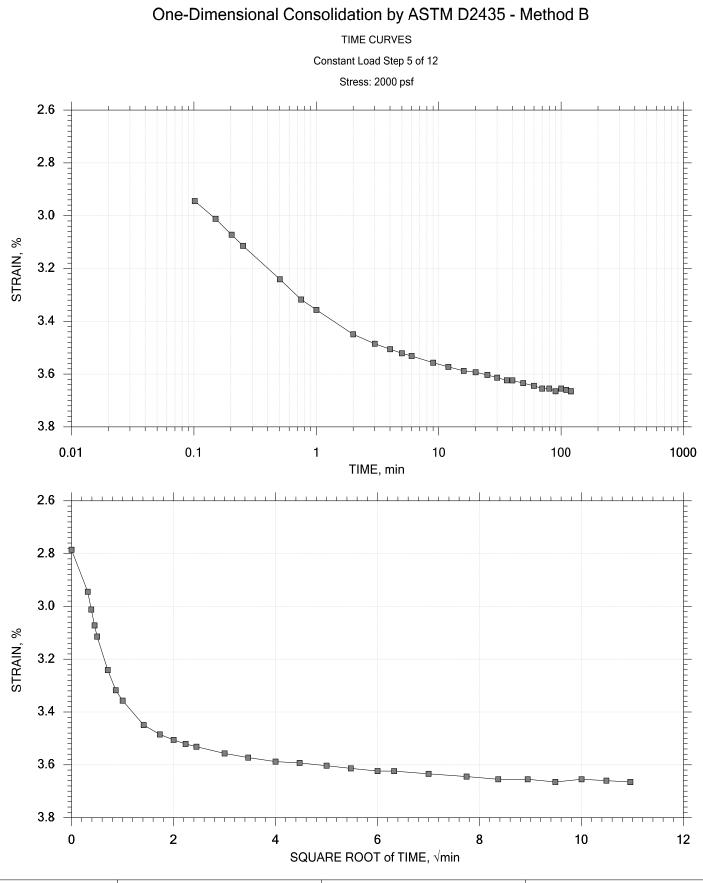

Project: PO-169 Boring No.: B-11 Sample No.: 12 Location: Lake Saint Catherine Tested By: SA Test Date: 8/4/17 Sample Type: Intact Project No.: APS1706-G038 Checked By: SE Depth: 25-30 ft Elevation: -2.80 ft

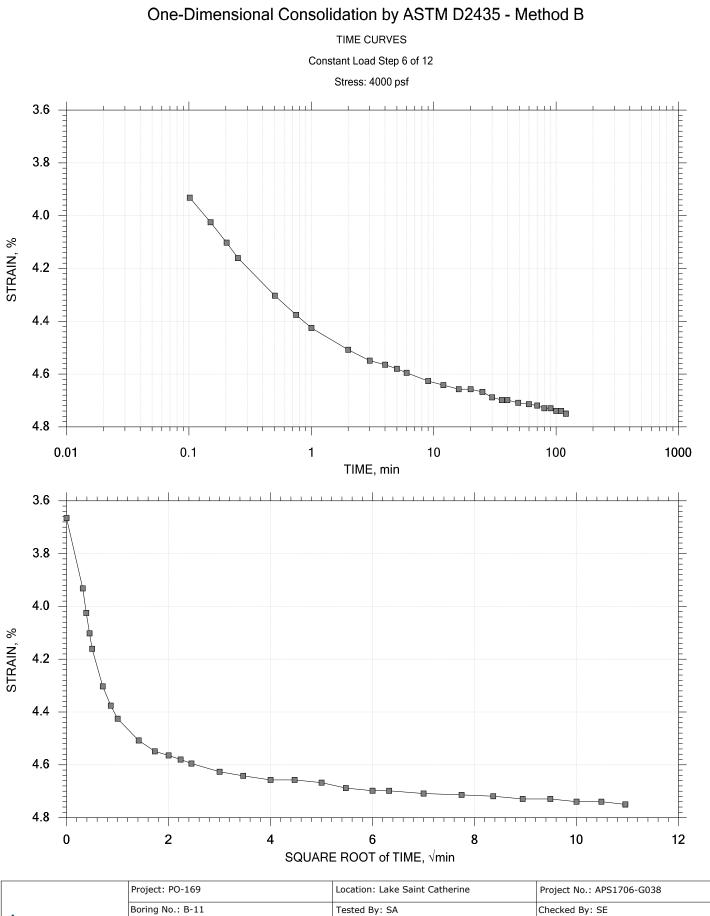
Soil Description: Soft Gray Lean Clay

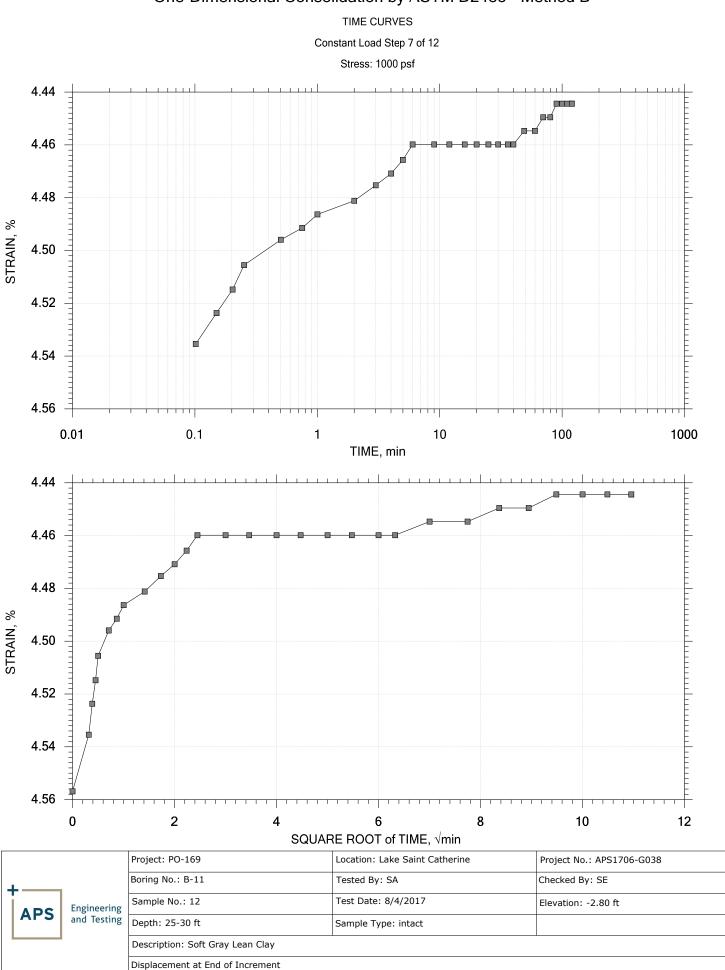

Displacement at End of Increment

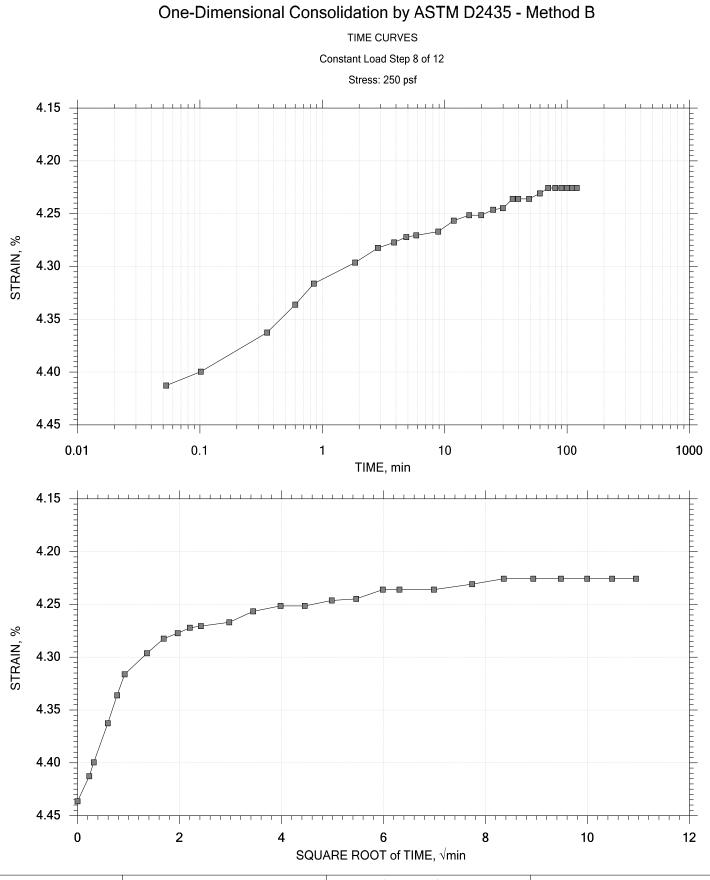
	Applied	Final	Void	Strain	Sq.Rt				
	Stress	Displacement	Ratio	at End	Т90	Cv	Mv	k	
	psf	in		%	min	ft²/sec	1/psf	cm/sec	
	1						1		
1	125.	0.009816	0.728	0.982	13.973	1.74e-006	7.85e-005	2.60e-007	
2	250.	0.01453	0.720	1.45	6.092	3.93e-006	3.77e-005	2.82e-007	
3	500.	0.02042	0.710	2.04	3.724	6.36e-006	2.36e-005	2.85e-007	
4	1.00e+003	0.02785	0.697	2.79	3.225	7.25e-006	1.49e-005	2.05e-007	
5	2.00e+003	0.03665	0.682	3.67	1.409	1.63e-005	8.80e-006	2.73e-007	
6	4.00e+003	0.04750	0.663	4.75	1.065	2.12e-005	5.42e-006	2.18e-007	
7	1.00e+003	0.04444	0.668	4.44	2.460	9.08e-006	1.02e-006	1.76e-008	
8	250.	0.04226	0.672	4.23	2.817	7.97e-006	2.92e-006	4.42e-008	
9	1.00e+003	0.04589	0.665	4.59	1.347	1.66e-005	4.85e-006	1.54e-007	
10	2.00e+003	0.04675	0.664	4.68	4.880	4.57e-006	8.62e-007	7.50e-009	
11	4.00e+003	0.04951	0.659	4.95	3.727	5.97e-006	1.38e-006	1.56e-008	
12	8.00e+003	0.06137	0.638	6.14	1.023	2.14e-005	2.97e-006	1.21e-007	
	Applied	Final	Void	Strain	Log				
	Applied Stress	Final Displacement	Void Ratio	Strain at End	Log T50	Cv	Mv	k	Ca
						Cv ft²/sec	Mv 1/psf	k cm/sec	Ca %
	Stress psf	Displacement in	Ratio	at End %	T50 min	ft²/sec	1/psf	cm/sec	\$
1	Stress psf 125.	Displacement in 0.009816	Ratio 0.728	at End % 0.982	T50 min 2.635	ft²/sec 2.14e-006	1/psf 7.85e-005	cm/sec 3.20e-007	% 0.00e+000
2	Stress psf 125. 250.	Displacement in 0.009816 0.01453	Ratio 0.728 0.720	at End % 0.982 1.45	T50 min 2.635 1.285	ft ² /sec 2.14e-006 4.33e-006	1/psf 7.85e-005 3.77e-005	cm/sec 3.20e-007 3.11e-007	% 0.00e+000 0.00e+000
2 3	Stress psf 125. 250. 500.	Displacement in 0.009816 0.01453 0.02042	Ratio 0.728 0.720 0.710	at End % 0.982 1.45 2.04	T50 min 2.635 1.285 0.856	ft ² /sec 2.14e-006 4.33e-006 6.43e-006	1/psf 7.85e-005 3.77e-005 2.36e-005	cm/sec 3.20e-007 3.11e-007 2.88e-007	<pre>% 0.00e+000 0.00e+000 0.00e+000</pre>
2 3 4	Stress psf 125. 250. 500. 1.00e+003	Displacement in 0.009816 0.01453 0.02042 0.02785	Ratio 0.728 0.720 0.710 0.697	at End % 0.982 1.45 2.04 2.79	T50 min 2.635 1.285 0.856 0.461	ft ² /sec 2.14e-006 4.33e-006 6.43e-006 1.18e-005	1/psf 7.85e-005 3.77e-005 2.36e-005 1.49e-005	cm/sec 3.20e-007 3.11e-007 2.88e-007 3.33e-007	% 0.00e+000 0.00e+000 0.00e+000 0.00e+000
2 3 4 5	Stress psf 125. 250. 500. 1.00e+003 2.00e+003	Displacement in 0.009816 0.01453 0.02042 0.02785 0.03665	Ratio 0.728 0.720 0.710 0.697 0.682	at End % 0.982 1.45 2.04 2.79 3.67	T50 min 2.635 1.285 0.856 0.461 0.333	ft ² /sec 2.14e-006 4.33e-006 6.43e-006 1.18e-005 1.60e-005	1/psf 7.85e-005 3.77e-005 2.36e-005 1.49e-005 8.80e-006	cm/sec 3.20e-007 3.11e-007 2.88e-007 3.33e-007 2.68e-007	<pre>% 0.00e+000 0.00e+000 0.00e+000 0.00e+000 0.00e+000 0.00e+000</pre>
2 3 4 5 6	Stress psf 125. 250. 500. 1.00e+003 2.00e+003 4.00e+003	Displacement in 0.009816 0.01453 0.02042 0.02785 0.03665 0.04750	Ratio 0.728 0.720 0.710 0.697 0.682 0.663	at End % 0.982 1.45 2.04 2.79 3.67 4.75	T50 min 2.635 1.285 0.856 0.461 0.333 0.218	ft ² /sec 2.14e-006 4.33e-006 6.43e-005 1.60e-005 2.40e-005	1/psf 7.85e-005 3.77e-005 2.36e-005 1.49e-005 8.80e-006 5.42e-006	cm/sec 3.20e-007 3.11e-007 2.88e-007 3.33e-007 2.68e-007 2.48e-007	<pre>% 0.00e+000 0.00e+000 0.00e+000 0.00e+000 0.00e+000 0.00e+000</pre>
2 3 4 5 6 7	Stress psf 125. 250. 500. 1.00e+003 2.00e+003 1.00e+003	Displacement in 0.009816 0.01453 0.02042 0.02785 0.03665 0.04750 0.04444	Ratio 0.728 0.720 0.710 0.697 0.682 0.663 0.663	at End % 0.982 1.45 2.04 2.79 3.67 4.75 4.44	T50 min 2.635 1.285 0.856 0.461 0.333 0.218 0.000	ft ² /sec 2.14e-006 4.33e-006 6.43e-006 1.18e-005 1.60e-005 2.40e-005 0.00e+000	1/psf 7.85e-005 3.77e-005 2.36e-005 1.49e-005 8.80e-006 5.42e-006 1.02e-006	cm/sec 3.20e-007 3.11e-007 2.88e-007 3.33e-007 2.68e-007 2.48e-007 0.00e+000	<pre>% 0.00e+000 0.00e+000 0.00e+000 0.00e+000 0.00e+000 0.00e+000 0.00e+000</pre>
2 3 4 5 6 7 8	Stress psf 125. 250. 1.00e+003 2.00e+003 4.00e+003 1.00e+003 250.	Displacement in 0.009816 0.01453 0.02042 0.02785 0.03665 0.04750 0.04444 0.04226	Ratio 0.728 0.720 0.697 0.682 0.663 0.668 0.668	at End % 0.982 1.45 2.04 2.79 3.67 4.75 4.44 4.23	T50 min 2.635 1.285 0.856 0.461 0.333 0.218 0.000 0.450	ft ² /sec 2.14e-006 4.33e-006 6.43e-006 1.18e-005 1.60e-005 0.00e+000 1.16e-005	1/psf 7.85e-005 3.77e-005 2.36e-005 1.49e-005 8.80e-006 5.42e-006 1.02e-006 2.92e-006	cm/sec 3.20e-007 3.11e-007 2.88e-007 2.68e-007 2.68e-007 0.00e+000 6.43e-008	<pre>% 0.00e+000 0.00e+000 0.00e+000 0.00e+000 0.00e+000 0.00e+000 0.00e+000 0.00e+000</pre>
2 3 4 5 6 7 8 9	Stress psf 125. 500. 1.00e+003 1.00e+003 1.00e+003 1.00e+003 1.00e+003	Displacement in 0.009816 0.01453 0.02042 0.02785 0.03665 0.04750 0.04444 0.04226 0.04589	Ratio 0.728 0.720 0.710 0.697 0.682 0.663 0.668 0.672 0.665	at End % 0.982 1.45 2.04 2.79 3.67 4.75 4.44 4.23 4.59	T50 min 2.635 1.285 0.856 0.461 0.333 0.218 0.000 0.450 0.000	ft ² /sec 2.14e-006 4.33e-006 6.43e-006 1.18e-005 1.60e-005 2.40e-005 0.00e+000 1.16e-005 0.00e+000	1/psf 7.85e-005 3.77e-005 2.36e-005 1.49e-005 8.80e-006 5.42e-006 2.92e-006 2.92e-006 4.85e-006	cm/sec 3.20e-007 3.11e-007 2.88e-007 3.33e-007 2.68e-007 2.48e-007 0.00e+000 6.43e-008 0.00e+000	<pre>% 0.00e+000 0.00e+000 0.00e+000 0.00e+000 0.00e+000 0.00e+000 0.00e+000 0.00e+000 0.00e+000 0.00e+000</pre>
2 3 4 5 6 7 8 9 10	Stress psf 125. 250. 500. 1.00e+003 2.00e+003 1.00e+003 250. 1.00e+003 2.00e+003	Displacement in 0.009816 0.01453 0.02042 0.02785 0.03665 0.04750 0.04444 0.04226 0.04589 0.04675	Ratio 0.728 0.720 0.697 0.682 0.663 0.668 0.672 0.665 0.664	at End % 0.982 1.45 2.04 2.79 3.67 4.75 4.44 4.23 4.59 4.68	T50 min 2.635 1.285 0.856 0.461 0.333 0.218 0.000 0.450 0.000 0.000	ft ² /sec 2.14e-006 4.33e-006 6.43e-006 1.18e-005 1.60e-005 2.40e-005 0.00e+000 1.16e-005 0.00e+000 0.00e+000	1/psf 7.85e-005 3.77e-005 2.36e-005 1.49e-005 5.42e-006 1.02e-006 2.92e-006 4.85e-006 8.62e-007	cm/sec 3.20e-007 3.11e-007 2.88e-007 2.68e-007 2.48e-007 0.00e+000 6.43e-008 0.00e+000 0.00e+000	<pre>% 0.00e+000 0.00e+000</pre>
2 3 4 5 6 7 8 9	Stress psf 125. 500. 1.00e+003 1.00e+003 1.00e+003 1.00e+003 1.00e+003	Displacement in 0.009816 0.01453 0.02042 0.02785 0.03665 0.04750 0.04444 0.04226 0.04589	Ratio 0.728 0.720 0.710 0.697 0.682 0.663 0.668 0.672 0.665	at End % 0.982 1.45 2.04 2.79 3.67 4.75 4.44 4.23 4.59	T50 min 2.635 1.285 0.856 0.461 0.333 0.218 0.000 0.450 0.000	ft ² /sec 2.14e-006 4.33e-006 6.43e-006 1.18e-005 1.60e-005 2.40e-005 0.00e+000 1.16e-005 0.00e+000	1/psf 7.85e-005 3.77e-005 2.36e-005 1.49e-005 8.80e-006 5.42e-006 2.92e-006 2.92e-006 4.85e-006	cm/sec 3.20e-007 3.11e-007 2.88e-007 3.33e-007 2.68e-007 2.48e-007 0.00e+000 6.43e-008 0.00e+000	<pre>% 0.00e+000 0.00e+000 0.00e+000 0.00e+000 0.00e+000 0.00e+000 0.00e+000 0.00e+000 0.00e+000 0.00e+000</pre>



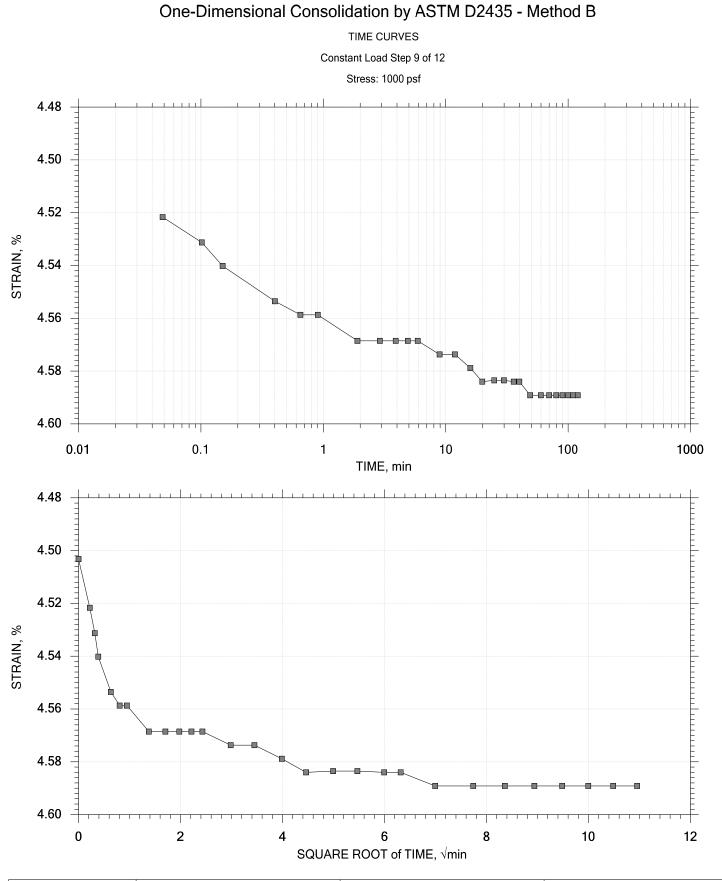

Project: PO-169 Location: Lake Saint Catherine Project No.: APS1706-G038 Boring No.: B-11 Tested By: SA Checked By: SE Test Date: 8/4/2017 Sample No.: 12 Elevation: -2.80 ft Engineering and Testing APS Depth: 25-30 ft Sample Type: intact Description: Soft Gray Lean Clay Displacement at End of Increment


		Engineering	Project: PO-169	Location: Lake Saint Catherine	Project No.: APS1706-G038
+			Boring No.: B-11	Tested By: SA	Checked By: SE
1 .	s		Sample No.: 12	Test Date: 8/4/2017	Elevation: -2.80 ft
	-3		Depth: 25-30 ft	Sample Type: intact	
			Description: Soft Gray Lean Clay		
			Displacement at End of Increment		

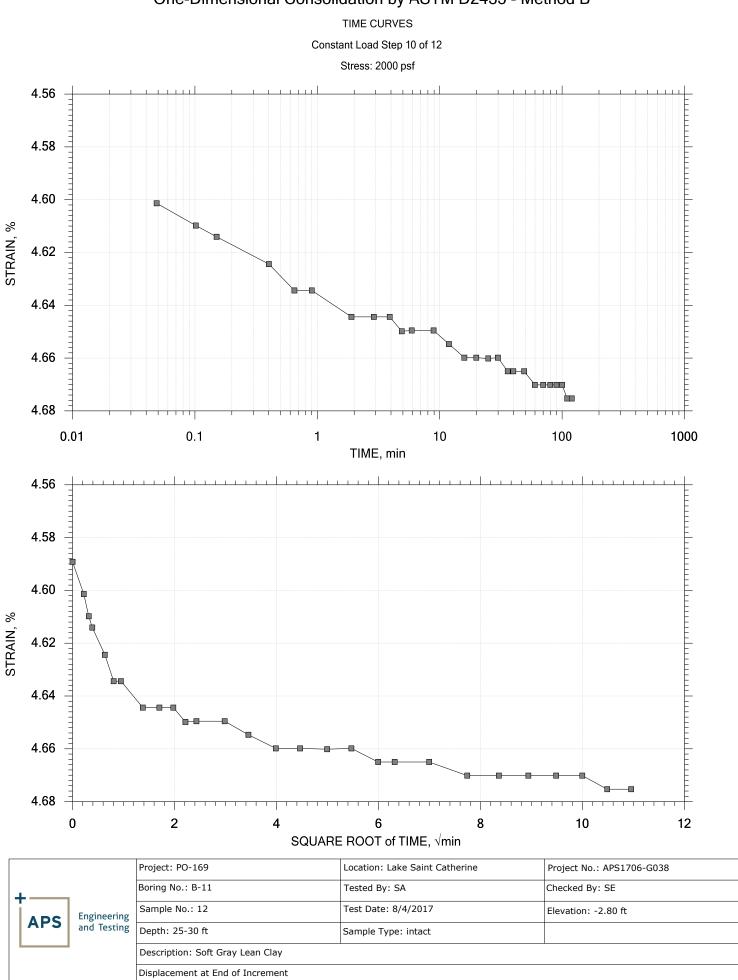

		Engineering and Testing	Project: PO-169	Location: Lake Saint Catherine	Project No.: APS1706-G038
	L		Boring No.: B-11	Tested By: SA	Checked By: SE
	APS		Sample No.: 12	Test Date: 8/4/2017	Elevation: -2.80 ft
	AFS		Depth: 25-30 ft	Sample Type: intact	
			Description: Soft Gray Lean Clay		
		Displacement at End of Increment			

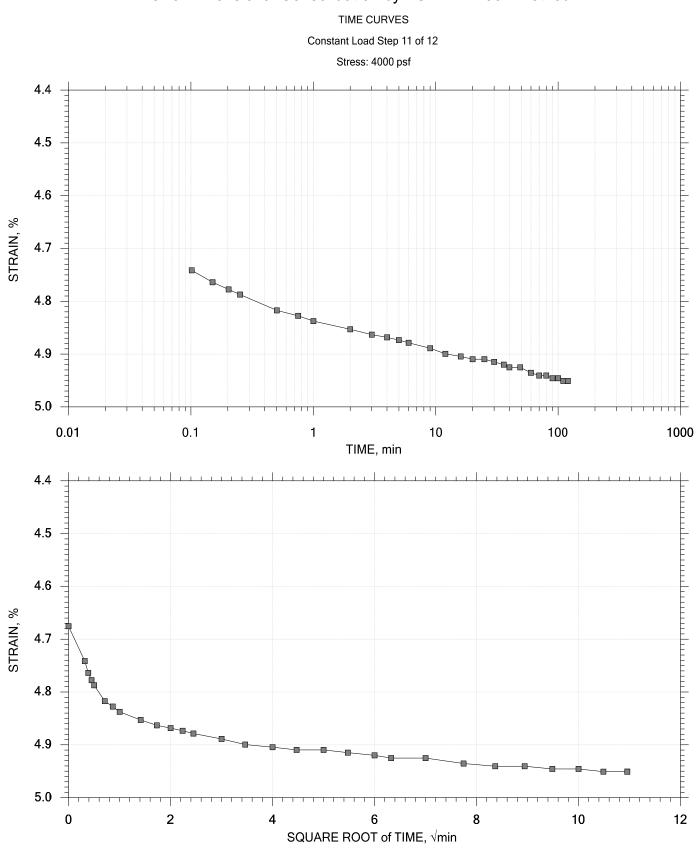


		Project: PO-169	Location: Lake Saint Catherine	Project No.: APS1706-G038
L	Engineering	Boring No.: B-11	Tested By: SA	Checked By: SE
APS		· ·	Test Date: 8/4/2017	Elevation: -2.80 ft
AFS		Depth: 25-30 ft	Sample Type: intact	
		Description: Soft Gray Lean Clay		
		Displacement at End of Increment		

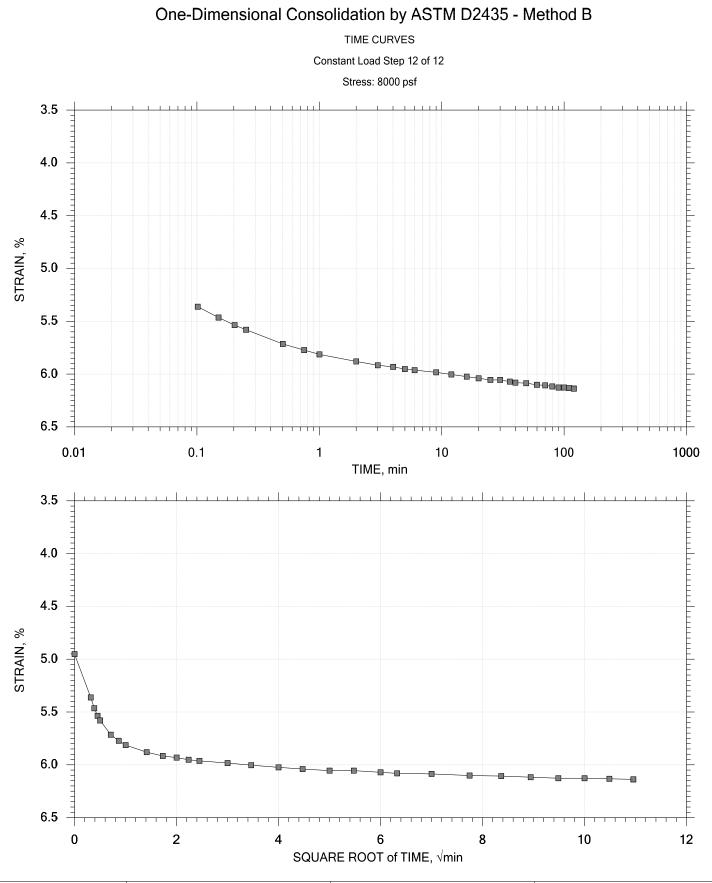


		Project: PO-169	Location: Lake Saint Catherine	Project No.: APS1706-G038
-	APS Engineering and Testing	Boring No.: B-11	Tested By: SA	Checked By: SE
			Test Date: 8/4/2017	Elevation: -2.80 ft
APS		Depth: 25-30 ft	Sample Type: intact	
		Description: Soft Gray Lean Clay		
		Displacement at End of Increment		

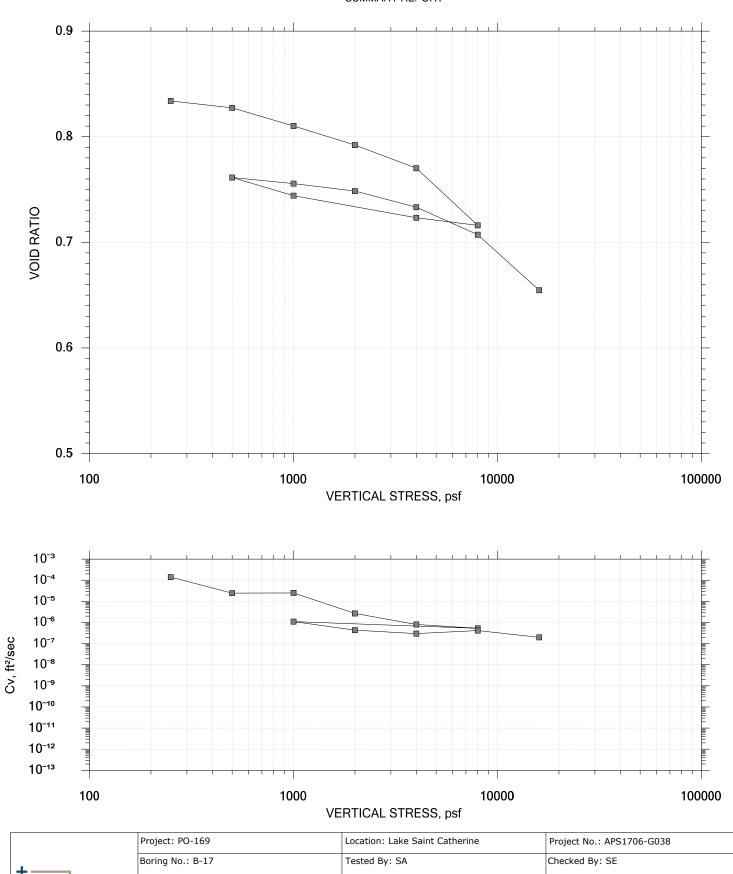




			Description: Soft Gray Lean Clay Displacement at End of Increment		
	APS	Engineering		Sample Type: intact	
			Sample No.: 12	Test Date: 8/4/2017	Elevation: -2.80 ft
			Boring No.: B-11	Tested By: SA	Checked By: SE
			Project: PO-169	Location: Lake Saint Catherine	Project No.: APS1706-G038



Project: PO-169 Location: Lake Saint Catherine Project No.: APS1706-G038 Boring No.: B-11 Tested By: SA Checked By: SE Sample No.: 12 Test Date: 8/4/2017 Elevation: -2.80 ft Engineering **APS** and Testing Depth: 25-30 ft Sample Type: intact Description: Soft Gray Lean Clay Displacement at End of Increment



			Project: PO-169	Location: Lake Saint Catherine	Project No.: APS1706-G038
	±		Boring No.: B-11	Tested By: SA	Checked By: SE
	APS	Engineering	Sample No.: 12	Test Date: 8/4/2017	Elevation: -2.80 ft
	APS	and Testing	Depth: 25-30 ft	Sample Type: intact	
		I	Description: Soft Gray Lean Clay		
			Displacement at End of Increment		

			Project: PO-169	Location: Lake Saint Catherine	Project No.: APS1706-G038
+			Boring No.: B-11	Tested By: SA	Checked By: SE
Li	APS	Engineering	Sample No.: 12	Test Date: 8/4/2017	Elevation: -2.80 ft
	AFS	and Testing	Depth: 25-30 ft	Sample Type: intact	
			Description: Soft Gray Lean Clay		
			Displacement at End of Increment		

Test Date: 8/4/2017

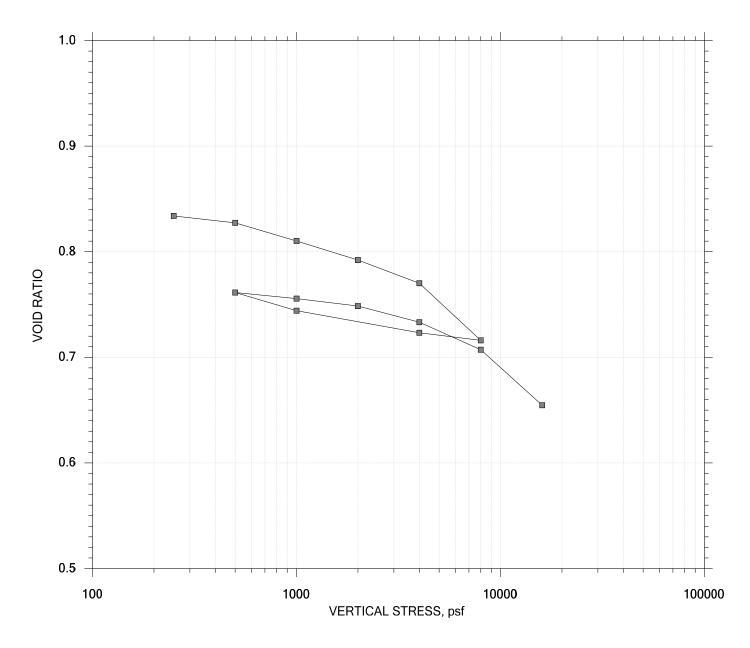
Sample Type: intact

Elevation: -0.50 ft

Sample No.: 10

Depth: 18-20 ft

Description: Stiff Gray Lean Clay Displacement at End of Increment


Engineering and Testing

APS

One-Dimensional Consolidation by ASTM D2435 - Method B

SUMMARY REPORT

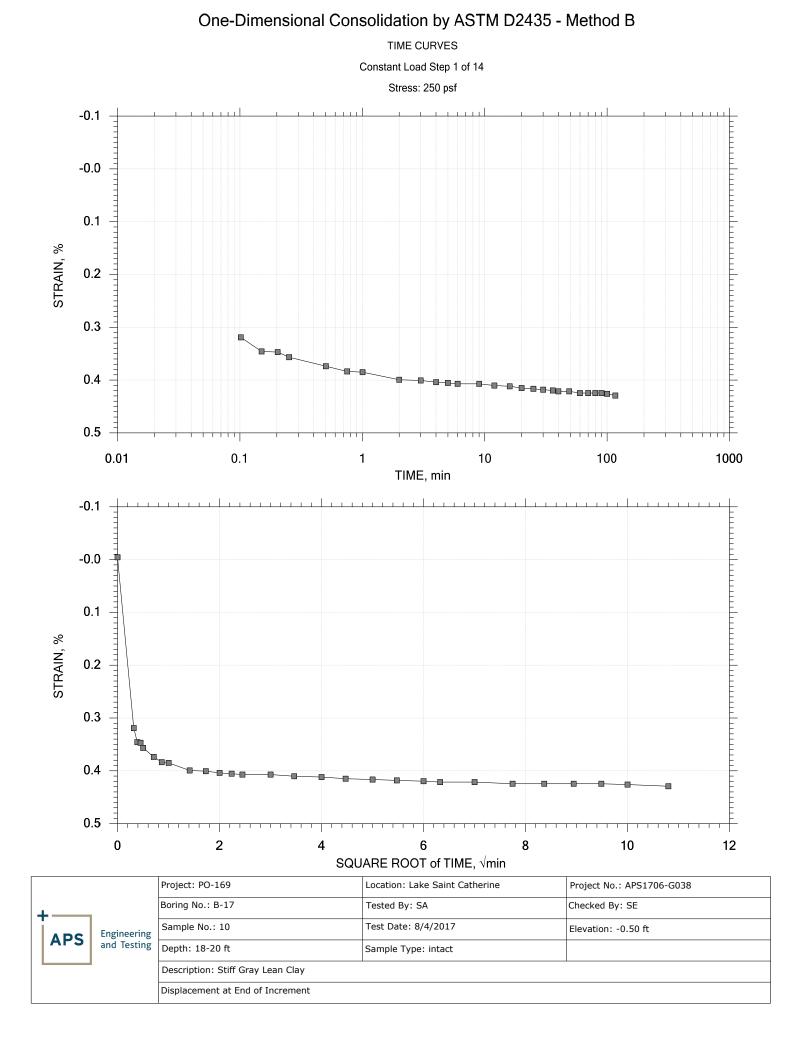
SUMMARY REPORT

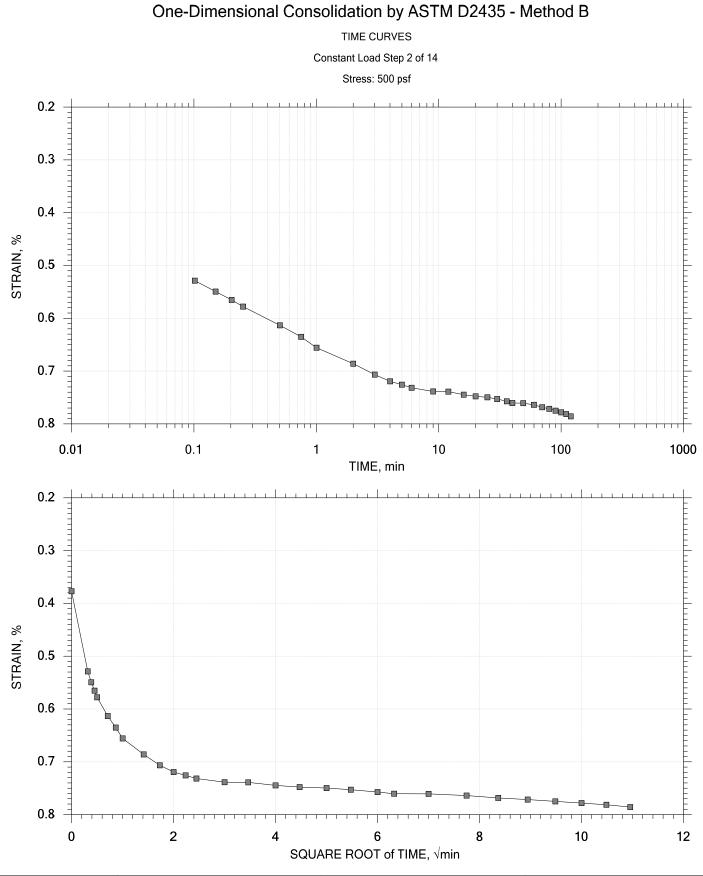
		Project: PO-169	Location: Lake Saint Catherine	Project No.: APS1706-G038
-		Boring No.: B-17	Tested By: SA	Checked By: SE
APS	Engineering	Sample No.: 10	Test Date: 8/4/2017	Elevation: -0.50 ft
AFS	and Testing	Depth: 18-20 ft	Sample Type: intact	
		Description: Stiff Gray Lean Clay		
		Displacement at End of Increment		

Project: PO-169 Boring No.: B-17 Sample No.: 10 Location: Lake Saint Catherine Tested By: SA Test Date: 8/4/17 Sample Type: intact

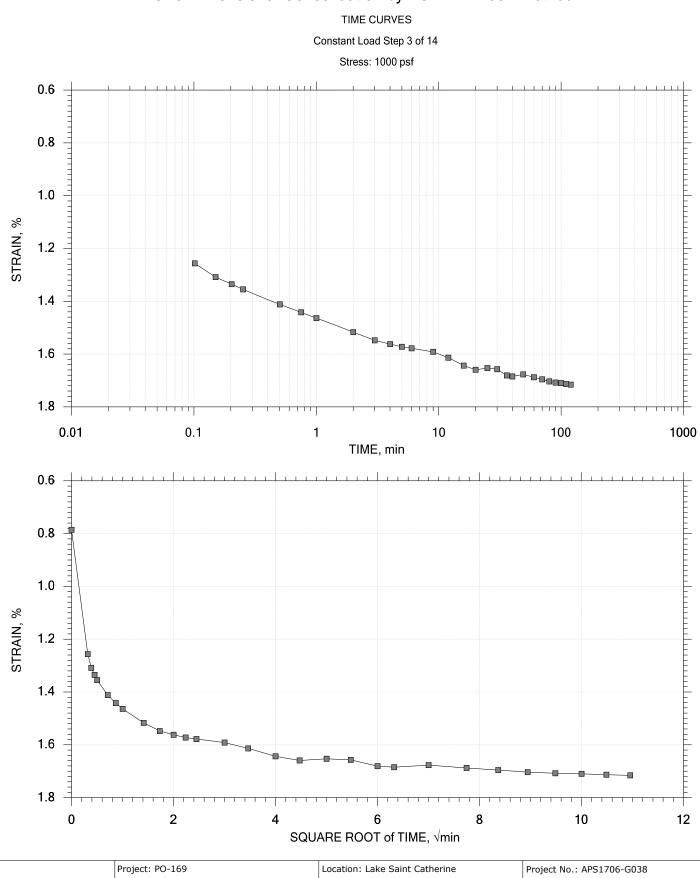
Soil Description: Stiff Gray Lean Clay

Estimated Specific Gravity: 2.78 Initial Void Ratio: 0.842 Final Void Ratio: 0.655	Liquid Limit: 43 Plastic Limit:15 Plasticity Index: 28		Specimen Diameter: 2.50 in Initial Height: 1.00 in Final Height: 0.90 in	
	Before Co	onsolidation	After Consol	idation
	Trimmings	Specimen+Ring	Specimen+Ring	Trimmings
Container ID	pr9	RING	sh3	sh3
Wt. Container + Wet Soil, gm	125.89	162.87	158.03	158.03
Wt. Container + Dry Soil, gm	100.97	129.44	129.44	129.44
Wt. Container, gm	8.1600	8.1600	8.1600	8.1600
Wt. Dry Soil, gm	92.810	121.28	121.28	121.28
Water Content, %	26.85	27.56	23.57	23.57
Void Ratio		0.842	0.655	
Degree of Saturation, %		90.93	100.00	
Dry Unit Weight, pcf		94.123	104.77	

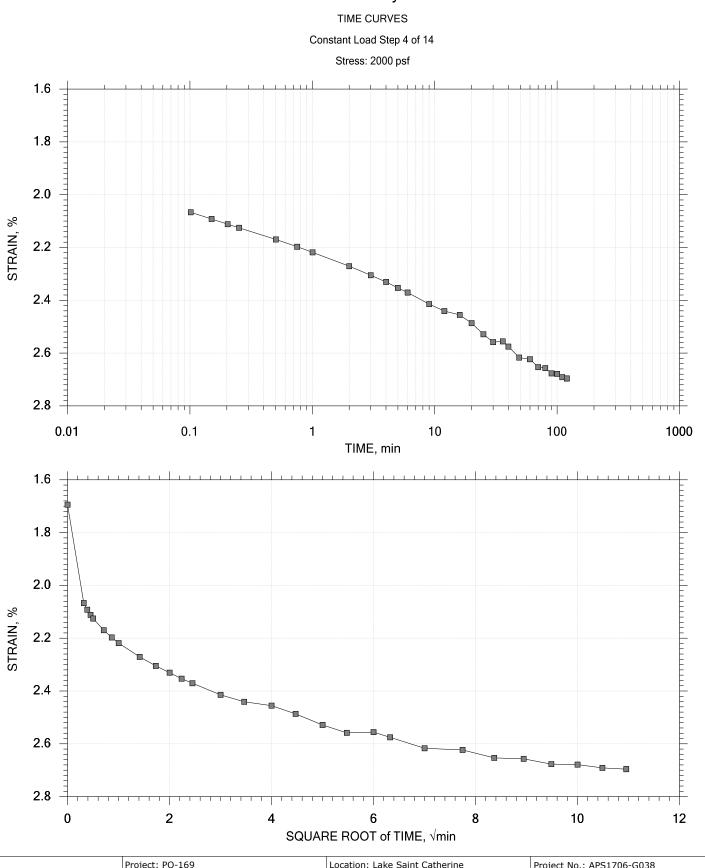

Note: Specific Gravity and Void Ratios are calculated assuming the degree of saturation equals 100% at the end of the test. Therefore, values may not represent actual values for the specimen.

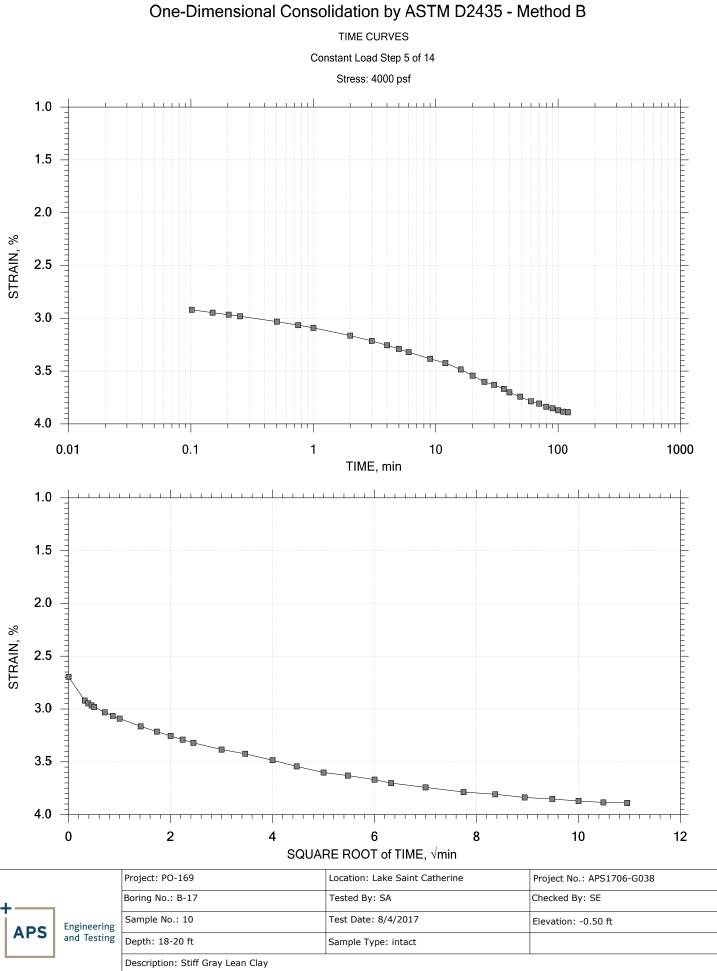

Project: APS1706-G038 Boring No.: B-17 Sample No.: 10 Location: Lake Saint Catherine Tested By: SA Test Date: 8/4/17 Sample Type: intact Project No.: APS1706-G038 Checked By: SE Depth: 18-20 ft Elevation: -0.50 ft

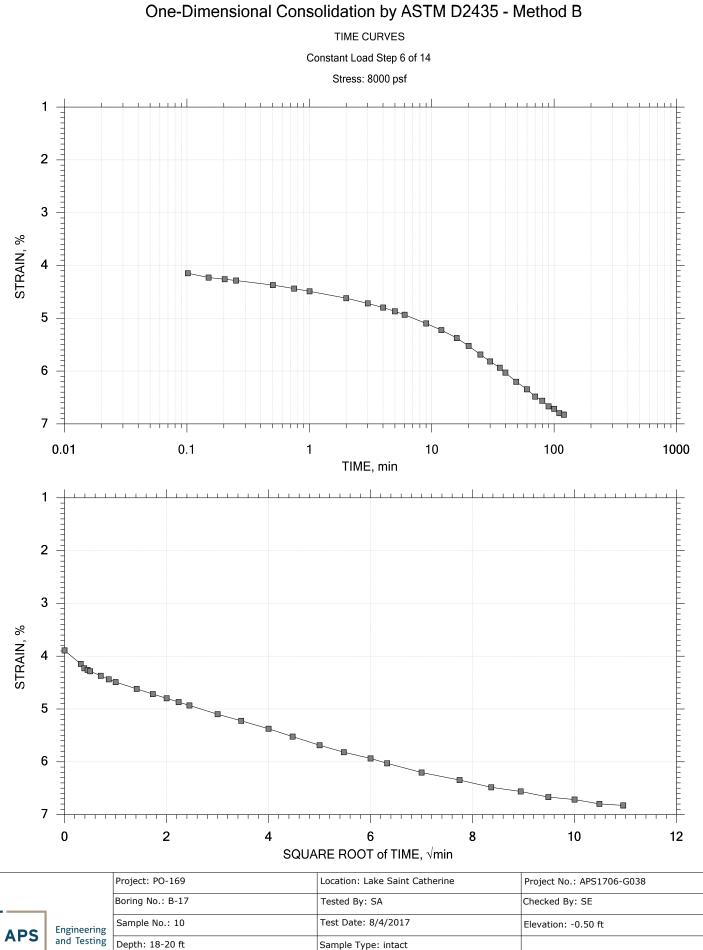
Soil Description: Stiff Gray Lean Clay


Displacement at End of Increment

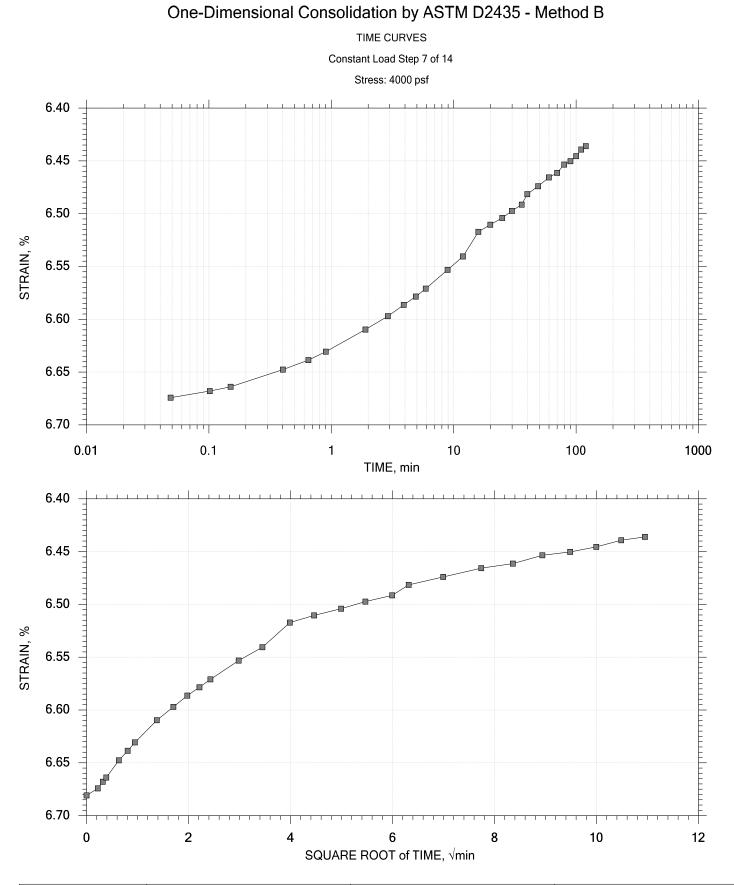
	Applied	Final	Void	Strain	Sq.Rt				
	Stress	Displacement	Ratio	at End	Т90	Cv	Mv	k	
	psf	in		8	min	ft²/sec	1/psf	cm/sec	
	-						-		
1	250.	0.004292	0.834	0.429	0.219	1.12e-004	1.72e-005	3.65e-006	
2	500.	0.007858	0.827	0.786	1.220	1.99e-005	1.43e-005	5.39e-007	
3	1.00e+003	0.01716	0.810	1.72	0.993	2.41e-005	1.86e-005	8.52e-007	
4	2.00e+003	0.02696	0.792	2.70	9.336	2.51e-006	9.80e-006	4.69e-008	
5	4.00e+003	0.03890	0.770	3.89	28.774	7.98e-007	5.97e-006	9.06e-009	
б	8.00e+003	0.06825	0.716	6.82	35.398	6.21e-007	7.34e-006	8.67e-009	
7	4.00e+003	0.06436	0.723	6.44	22.071	9.69e-007	9.71e-007	1.79e-009	
8	1.00e+003	0.05299	0.744	5.30	114.924	1.89e-007	3.79e-006	1.36e-009	
9	500.	0.04368	0.761	4.37	184.184	1.21e-007	1.86e-005	4.27e-009	
10	1.00e+003	0.04679	0.756	4.68	19.873	1.13e-006	6.21e-006	1.33e-008	
11	2.00e+003	0.05061	0.749	5.06	64.157	3.46e-007	3.83e-006	2.52e-009	
12	4.00e+003	0.05894	0.733	5.89	93.506	2.34e-007	4.16e-006	1.86e-009	
13	8.00e+003	0.07307	0.707	7.31	49.990	4.28e-007	3.53e-006	2.88e-009	
14	1.60e+004	0.1016	0.655	10.2	100.337	2.04e-007	3.57e-006	1.38e-009	
	Applied	Final	Void	Strain	Log				
	Stress	Displacement	Void Ratio	at End	т50	Cv	Mv	k	Ca
						Cv ft²/sec	Mv 1/psf	k cm/sec	Ca %
	Stress psf	Displacement in	Ratio	at End %	T50 min	ft²/sec	1/psf	cm/sec	\$
1	Stress psf 250.	Displacement in 0.004292	Ratio 0.834	at End % 0.429	T50 min 0.000	ft²/sec 0.00e+000	1/psf 1.72e-005	cm/sec 0.00e+000	% 0.00e+000
2	Stress psf 250. 500.	Displacement in 0.004292 0.007858	Ratio 0.834 0.827	at End % 0.429 0.786	T50 min 0.000 0.189	ft ² /sec 0.00e+000 2.98e-005	1/psf 1.72e-005 1.43e-005	cm/sec 0.00e+000 8.09e-007	% 0.00e+000 0.00e+000
2 3	Stress psf 250. 500. 1.00e+003	Displacement in 0.004292 0.007858 0.01716	Ratio 0.834 0.827 0.810	at End % 0.429 0.786 1.72	T50 min 0.000 0.189 0.000	ft ² /sec 0.00e+000 2.98e-005 0.00e+000	1/psf 1.72e-005 1.43e-005 1.86e-005	cm/sec 0.00e+000 8.09e-007 0.00e+000	<pre>% 0.00e+000 0.00e+000 0.00e+000</pre>
2 3 4	Stress psf 250. 500. 1.00e+003 2.00e+003	Displacement in 0.004292 0.007858 0.01716 0.02696	Ratio 0.834 0.827 0.810 0.792	at End % 0.429 0.786 1.72 2.70	T50 min 0.000 0.189 0.000 0.000	ft ² /sec 0.00e+000 2.98e-005 0.00e+000 0.00e+000	1/psf 1.72e-005 1.43e-005 1.86e-005 9.80e-006	cm/sec 0.00e+000 8.09e-007 0.00e+000 0.00e+000	% 0.00e+000 0.00e+000 0.00e+000 0.00e+000
2 3 4 5	Stress psf 250. 500. 1.00e+003 2.00e+003 4.00e+003	Displacement in 0.004292 0.007858 0.01716 0.02696 0.03890	Ratio 0.834 0.827 0.810 0.792 0.770	at End % 0.429 0.786 1.72 2.70 3.89	T50 min 0.000 0.189 0.000 0.000 0.000	ft ² /sec 0.00e+000 2.98e-005 0.00e+000 0.00e+000 0.00e+000	1/psf 1.72e-005 1.43e-005 1.86e-005 9.80e-006 5.97e-006	cm/sec 0.00e+000 8.09e-007 0.00e+000 0.00e+000 0.00e+000	<pre>% 0.00e+000 0.00e+000 0.00e+000 0.00e+000 0.00e+000 0.00e+000</pre>
2 3 4 5 6	Stress psf 250. 500. 1.00e+003 2.00e+003 8.00e+003	Displacement in 0.004292 0.007858 0.01716 0.02696 0.03890 0.06825	Ratio 0.834 0.827 0.810 0.792 0.770 0.716	at End % 0.429 0.786 1.72 2.70 3.89 6.82	T50 min 0.000 0.189 0.000 0.000 0.000 0.000	ft ² /sec 0.00e+000 2.98e-005 0.00e+000 0.00e+000 0.00e+000 0.00e+000	1/psf 1.72e-005 1.43e-005 1.86e-005 9.80e-006 5.97e-006 7.34e-006	cm/sec 0.00e+000 8.09e-007 0.00e+000 0.00e+000 0.00e+000 0.00e+000	<pre>% 0.00e+000 0.00e+000 0.00e+000 0.00e+000 0.00e+000 0.00e+000</pre>
2 3 4 5 6 7	Stress psf 250. 500. 1.00e+003 2.00e+003 4.00e+003 4.00e+003	Displacement in 0.004292 0.007858 0.01716 0.02696 0.03890 0.06825 0.06436	Ratio 0.834 0.827 0.810 0.792 0.770 0.716 0.723	at End % 0.429 0.786 1.72 2.70 3.89 6.82 6.44	T50 min 0.000 0.189 0.000 0.000 0.000 0.000 6.938	ft ² /sec 0.00e+000 2.98e-005 0.00e+000 0.00e+000 0.00e+000 7.16e-007	1/psf 1.72e-005 1.43e-005 9.80e-006 5.97e-006 7.34e-006 9.71e-007	cm/sec 0.00e+000 8.09e-007 0.00e+000 0.00e+000 0.00e+000 1.32e-009	<pre>% 0.00e+000 0.00e+000 0.00e+000 0.00e+000 0.00e+000 0.00e+000 0.00e+000</pre>
2 3 4 5 6 7 8	Stress psf 250. 500. 1.00e+003 2.00e+003 4.00e+003 4.00e+003 1.00e+003	Displacement in 0.004292 0.007858 0.01716 0.02696 0.03890 0.06825 0.06436 0.05299	Ratio 0.834 0.827 0.810 0.792 0.770 0.716 0.723 0.744	at End % 0.429 0.786 1.72 2.70 3.89 6.82 6.44 5.30	T50 min 0.000 0.189 0.000 0.000 0.000 0.000 6.938 0.000	ft ² /sec 0.00e+000 2.98e-005 0.00e+000 0.00e+000 0.00e+000 7.16e-007 0.00e+000	1/psf 1.72e-005 1.43e-005 1.86e-005 9.80e-006 5.97e-006 9.71e-007 3.79e-006	cm/sec 0.00e+000 8.09e-007 0.00e+000 0.00e+000 0.00e+000 1.32e-009 0.00e+000	<pre>% 0.00e+000 0.00e+000 0.00e+000 0.00e+000 0.00e+000 0.00e+000 0.00e+000 0.00e+000 0.00e+000</pre>
2 3 4 5 6 7 8 9	Stress psf 250. 500. 1.00e+003 2.00e+003 4.00e+003 4.00e+003 1.00e+003 500.	Displacement in 0.004292 0.007858 0.01716 0.02696 0.03890 0.06825 0.06436 0.05299 0.04368	Ratio 0.834 0.827 0.810 0.792 0.770 0.716 0.723 0.744 0.761	at End % 0.429 0.786 1.72 2.70 3.89 6.82 6.44 5.30 4.37	T50 min 0.000 0.189 0.000 0.000 0.000 0.000 6.938 0.000 0.000	ft ² /sec 0.00e+000 2.98e-005 0.00e+000 0.00e+000 0.00e+000 7.16e-007 0.00e+000 0.00e+000	1/psf 1.72e-005 1.43e-005 1.86e-005 9.80e-006 5.97e-006 7.34e-006 9.71e-007 3.79e-006 1.86e-005	cm/sec 0.00e+000 8.09e-007 0.00e+000 0.00e+000 0.00e+000 1.32e-009 0.00e+000 0.00e+000	<pre>% 0.00e+000 0.00e+000 0.00e+000 0.00e+000 0.00e+000 0.00e+000 0.00e+000 0.00e+000 0.00e+000 0.00e+000</pre>
2 3 4 5 6 7 8 9 10	Stress psf 250. 500. 1.00e+003 2.00e+003 8.00e+003 4.00e+003 1.00e+003 500. 1.00e+003	Displacement in 0.004292 0.007858 0.01716 0.02696 0.03890 0.06825 0.06436 0.05299 0.04368 0.04368	Ratio 0.834 0.827 0.810 0.792 0.770 0.716 0.723 0.744 0.761 0.756	at End % 0.429 0.786 1.72 2.70 3.89 6.82 6.44 5.30 4.37 4.68	T50 min 0.000 0.189 0.000 0.000 0.000 6.938 0.000 0.000 0.000 0.000	ft ² /sec 0.00e+000 2.98e-005 0.00e+000 0.00e+000 0.00e+000 7.16e-007 0.00e+000 0.00e+000 0.00e+000	1/psf 1.72e-005 1.43e-005 9.80e-006 5.97e-006 7.34e-006 9.71e-007 3.79e-006 1.86e-005 6.21e-006	<pre>cm/sec 0.00e+000 8.09e-007 0.00e+000 0.00e+000 0.00e+000 1.32e-009 0.00e+000 0.00e+000 0.00e+000</pre>	<pre>% 0.00e+000 0.00e+000</pre>
2 3 4 5 6 7 8 9 10 11	Stress psf 250. 500. 1.00e+003 2.00e+003 4.00e+003 1.00e+003 500. 1.00e+003 2.00e+003	Displacement in 0.004292 0.007858 0.01716 0.02696 0.03890 0.06825 0.06436 0.05299 0.04368 0.04368 0.04679 0.05061	Ratio 0.834 0.827 0.810 0.792 0.770 0.716 0.723 0.744 0.761 0.756 0.749	at End % 0.429 0.786 1.72 2.70 3.89 6.82 6.44 5.30 4.37 4.68 5.06	T50 min 0.000 0.189 0.000 0.000 0.000 6.938 0.000 0.000 0.000 0.000	ft ² /sec 0.00e+000 2.98e-005 0.00e+000 0.00e+000 0.00e+000 7.16e-007 0.00e+000 0.00e+000 0.00e+000 0.00e+000	1/psf 1.72e-005 1.43e-005 9.80e-006 5.97e-006 7.34e-006 9.71e-007 3.79e-006 1.86e-005 6.21e-006 3.83e-006	<pre>cm/sec 0.00e+000 8.09e-007 0.00e+000 0.00e+000 0.00e+000 1.32e-009 0.00e+000 0.00e+000 0.00e+000 0.00e+000</pre>	<pre>% 0.00e+000 0.00e+000</pre>
2 3 4 5 6 7 8 9 10 11 12	Stress psf 250. 500. 1.00e+003 4.00e+003 4.00e+003 1.00e+003 500. 1.00e+003 2.00e+003 4.00e+003	Displacement in 0.004292 0.007858 0.01716 0.02696 0.03890 0.06825 0.06436 0.05299 0.04368 0.04368 0.044679 0.05061 0.05894	Ratio 0.834 0.827 0.810 0.792 0.770 0.716 0.723 0.744 0.761 0.756 0.749 0.733	at End % 0.429 0.786 1.72 2.70 3.89 6.82 6.44 5.30 4.37 4.68 5.06 5.89	T50 min 0.000 0.189 0.000 0.000 0.000 6.938 0.000 0.000 0.000 0.000 0.000 1.980	ft ² /sec 0.00e+000 2.98e-005 0.00e+000 0.00e+000 7.16e-007 0.00e+000 0.00e+000 0.00e+000 0.00e+000 0.00e+000 4.25e-007	1/psf 1.72e-005 1.43e-005 9.80e-006 5.97e-006 7.34e-006 9.71e-007 3.79e-006 1.86e-005 6.21e-006 3.83e-006 4.16e-006	cm/sec 0.00e+000 8.09e-007 0.00e+000 0.00e+000 1.32e-009 0.00e+000 0.00e+000 0.00e+000 0.00e+000 0.00e+000 3.37e-009	<pre>% 0.00e+000 0.00e+000</pre>
2 3 4 5 6 7 8 9 10 11	Stress psf 250. 500. 1.00e+003 2.00e+003 4.00e+003 1.00e+003 500. 1.00e+003 2.00e+003	Displacement in 0.004292 0.007858 0.01716 0.02696 0.03890 0.06825 0.06436 0.05299 0.04368 0.04368 0.04679 0.05061	Ratio 0.834 0.827 0.810 0.792 0.770 0.716 0.723 0.744 0.761 0.756 0.749	at End % 0.429 0.786 1.72 2.70 3.89 6.82 6.44 5.30 4.37 4.68 5.06	T50 min 0.000 0.189 0.000 0.000 0.000 6.938 0.000 0.000 0.000 0.000	ft ² /sec 0.00e+000 2.98e-005 0.00e+000 0.00e+000 0.00e+000 7.16e-007 0.00e+000 0.00e+000 0.00e+000 0.00e+000	1/psf 1.72e-005 1.43e-005 9.80e-006 5.97e-006 7.34e-006 9.71e-007 3.79e-006 1.86e-005 6.21e-006 3.83e-006	<pre>cm/sec 0.00e+000 8.09e-007 0.00e+000 0.00e+000 0.00e+000 1.32e-009 0.00e+000 0.00e+000 0.00e+000 0.00e+000</pre>	<pre>% 0.00e+000 0.00e+000</pre>

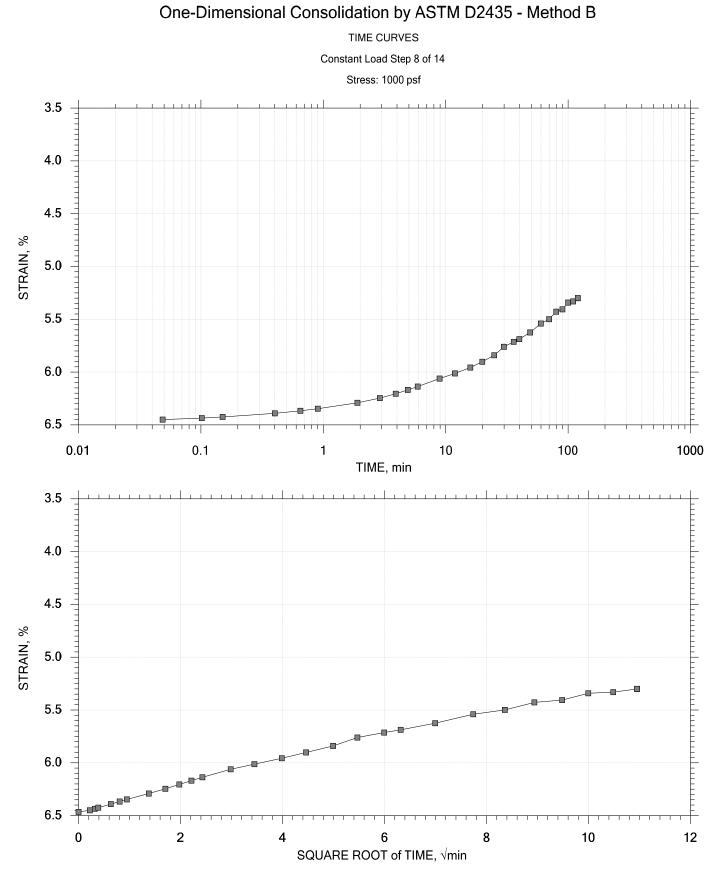



Project: PO-169 Location: Lake Saint Catherine Project No.: APS1706-G038 Boring No.: B-17 Tested By: SA Checked By: SE Sample No.: 10 Test Date: 8/4/2017 Elevation: -0.50 ft Depth: 18-20 ft Sample Type: intact Description: Stiff Gray Lean Clay Displacement at End of Increment Displacement at End of Increment Sample No.: APS1706-G038

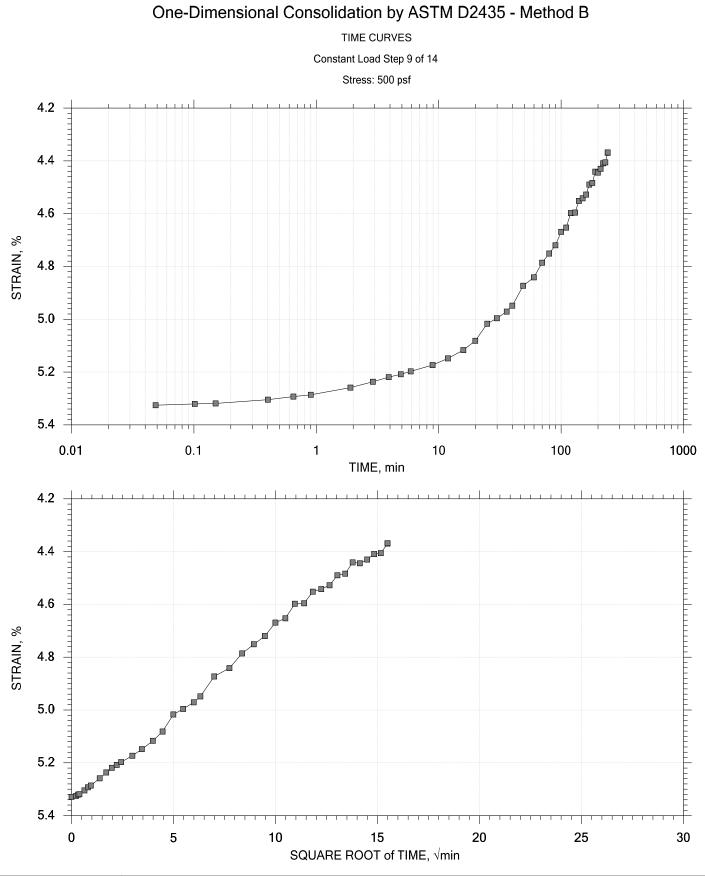

		Project: PO-169	Location: Lake Saint Catherine	Project No.: APS1706-G038
<u> </u>		Boring No.: B-17	Tested By: SA	Checked By: SE
APS	Engineering	Sample No.: 10	Test Date: 8/4/2017	Elevation: -0.50 ft
AFS	and Testing	Depth: 18-20 ft	Sample Type: intact	
		Description: Stiff Gray Lean Clay		
		Displacement at End of Increment		

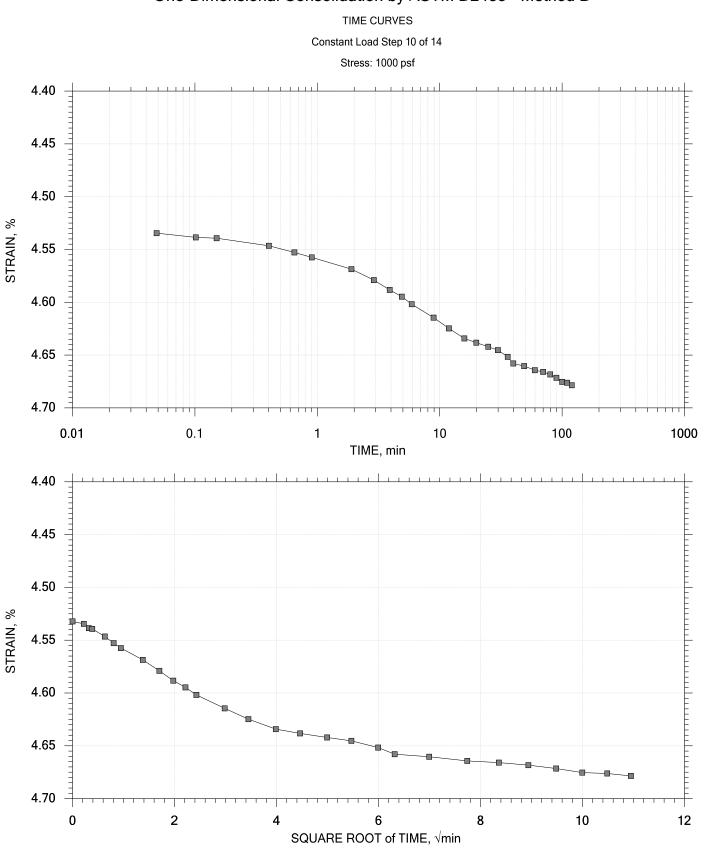
			Project: PO-169	Location: Lake Saint Catherine	Project No.: APS1706-G038
+-	+		Boring No.: B-17	Tested By: SA	Checked By: SE
li,	APS	Engineering	· ·	Test Date: 8/4/2017	Elevation: -0.50 ft
111		and Testing	Depth: 18-20 ft	Sample Type: intact	
		I	Description: Stiff Gray Lean Clay		
			Displacement at End of Increment		

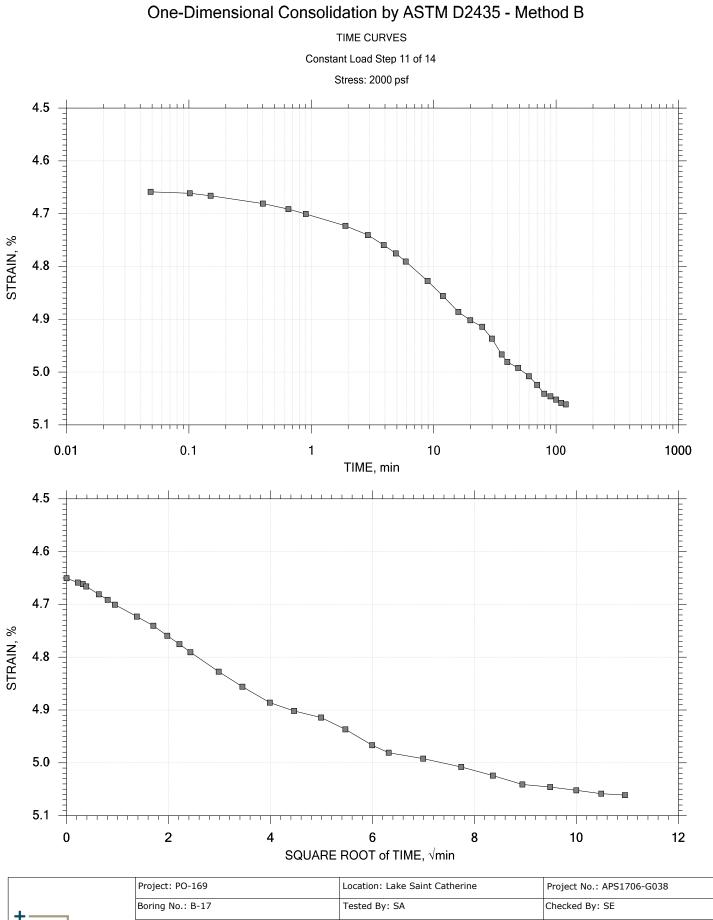

Displacement at End of Increment

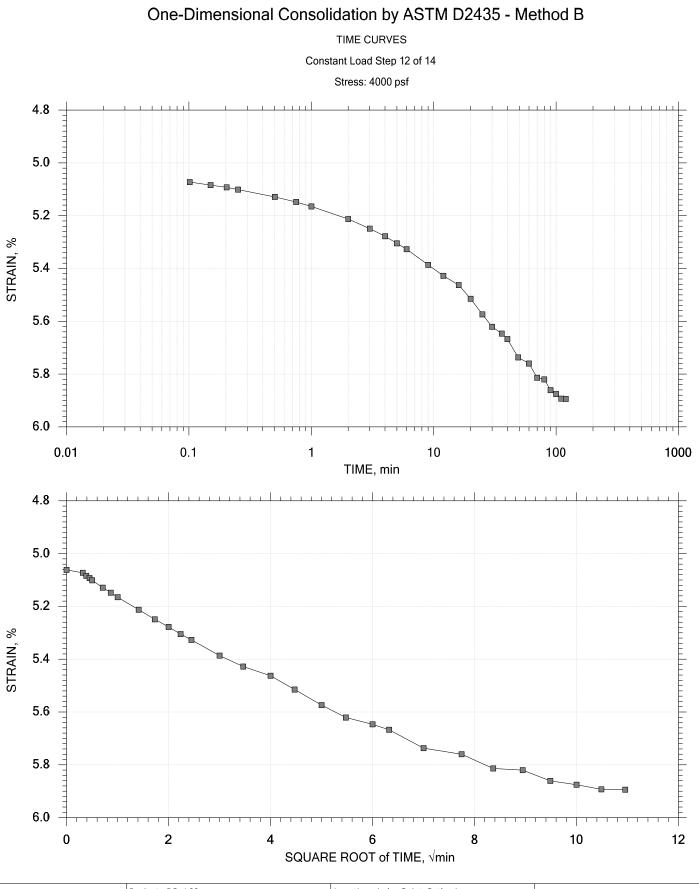

Displacement at End of Increment

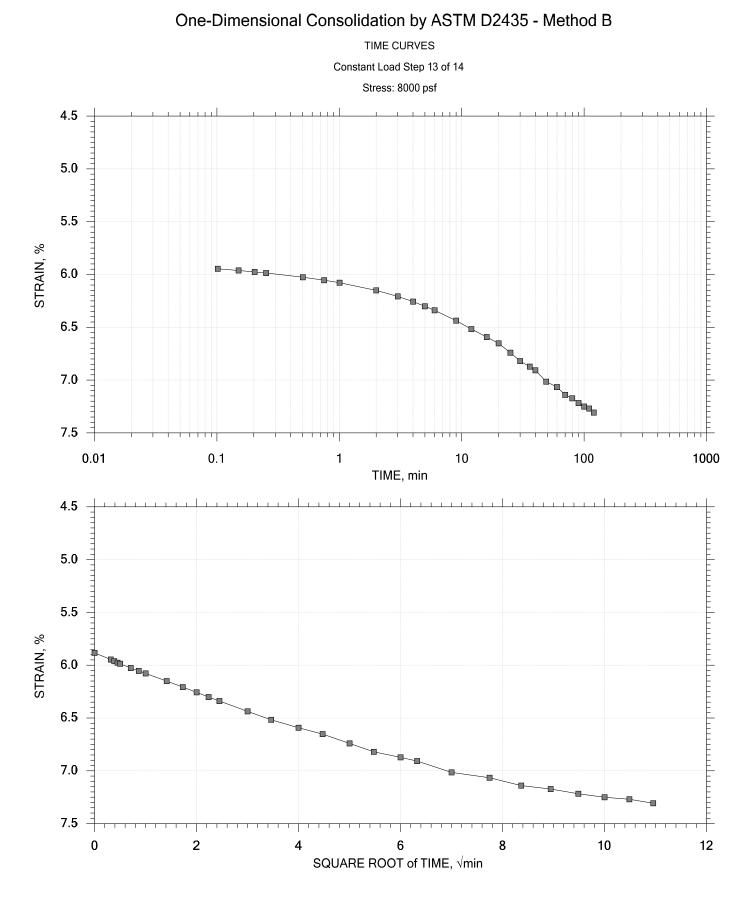
Description: Stiff Gray Lean Clay

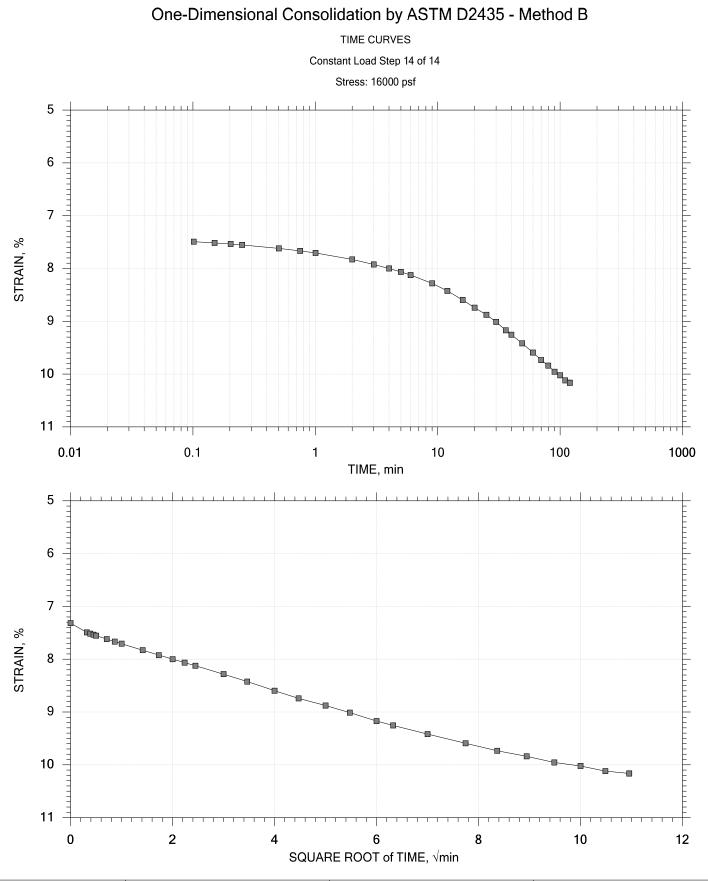

Sample Type: intact

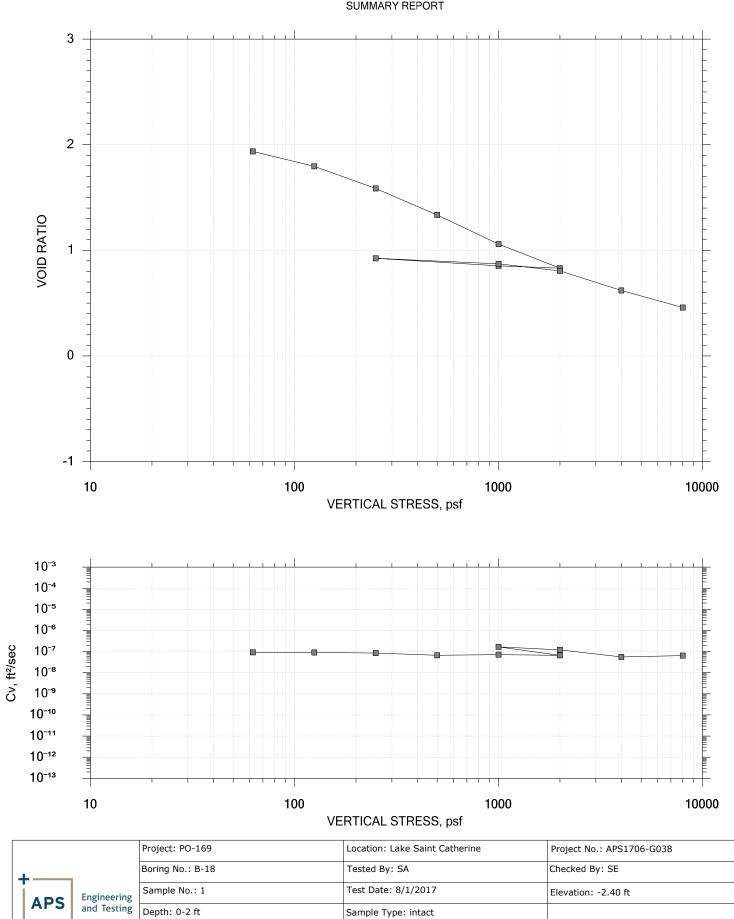

		Project: PO-169	Location: Lake Saint Catherine	Project No.: APS1706-G038
±	_	Boring No.: B-17	Tested By: SA	Checked By: SE
APS	Engineering	Sample No.: 10	Test Date: 8/4/2017	Elevation: -0.50 ft
APS	and Testing	Depth: 18-20 ft	Sample Type: intact	
	-	Description: Stiff Gray Lean Clay		
		Displacement at End of Increment		


		Project: PO-169	Location: Lake Saint Catherine	Project No.: APS1706-G038
+		Boring No.: B-17	Tested By: SA	Checked By: SE
APS	Engineering	Sample No.: 10	Test Date: 8/4/2017	Elevation: -0.50 ft
APS	and Testing	Depth: 18-20 ft	Sample Type: intact	
	1	Description: Stiff Gray Lean Clay		
		Displacement at End of Increment		


		Project: PO-169	Location: Lake Saint Catherine	Project No.: APS1706-G038
<u> </u>		Boring No.: B-17	Tested By: SA	Checked By: SE
APS	Engineering	Sample No.: 10	Test Date: 8/4/2017	Elevation: -0.50 ft
AFS	and Testing	Depth: 18-20 ft	Sample Type: intact	
		Description: Stiff Gray Lean Clay		
		Displacement at End of Increment		

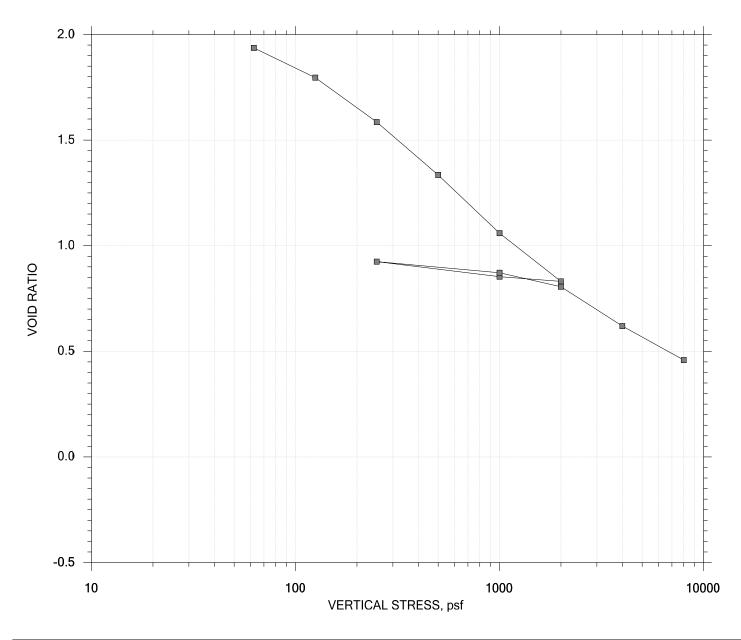

		Project: PO-169	Location: Lake Saint Catherine	Project No.: APS1706-G038
+		Boring No.: B-17	Tested By: SA	Checked By: SE
APS	Engineering		Test Date: 8/4/2017	Elevation: -0.50 ft
AFS	and Testing	Depth: 18-20 ft	Sample Type: intact	
	1	Description: Stiff Gray Lean Clay		
		Displacement at End of Increment		


4			Boring No.: B-17	Tested By: SA	Checked By: SE
j	APS	Engineering	Sample No.: 10	Test Date: 8/4/2017	Elevation: -0.50 ft
	AFJ	and Testing	Depth: 18-20 ft	Sample Type: intact	
1			Description: Stiff Gray Lean Clay		
			Displacement at End of Increment		


			Project: PO-169	Location: Lake Saint Catherine	Project No.: APS1706-G038
4			Boring No.: B-17	Tested By: SA	Checked By: SE
Li.	APS	Engineering	Sample No.: 10	Test Date: 8/4/2017	Elevation: -0.50 ft
	APS	and Testing	Depth: 18-20 ft	Sample Type: intact	
			Description: Stiff Gray Lean Clay		
			Displacement at End of Increment		

			Project: PO-169	Location: Lake Saint Catherine	Project No.: APS1706-G038
4			Boring No.: B-17	Tested By: SA	Checked By: SE
li	APS	Engineering	Sample No.: 10	Test Date: 8/4/2017	Elevation: -0.50 ft
	AFS	and Testing	Depth: 18-20 ft	Sample Type: intact	
			Description: Stiff Gray Lean Clay		
			Displacement at End of Increment		

			Project: PO-169	Location: Lake Saint Catherine	Project No.: APS1706-G038
	+		Boring No.: B-17	Tested By: SA	Checked By: SE
	APS	Engineering	·· · · ·	Test Date: 8/4/2017	Elevation: -0.50 ft
	AFS	and Testing	Depth: 18-20 ft	Sample Type: intact	
			Description: Stiff Gray Lean Clay		
			Displacement at End of Increment		



Description: Very Soft Black Organic Clay Displacement at End of Increment

One-Dimensional Consolidation by ASTM D2435 - Method B

SUMMARY REPORT

SUMMARY REPORT

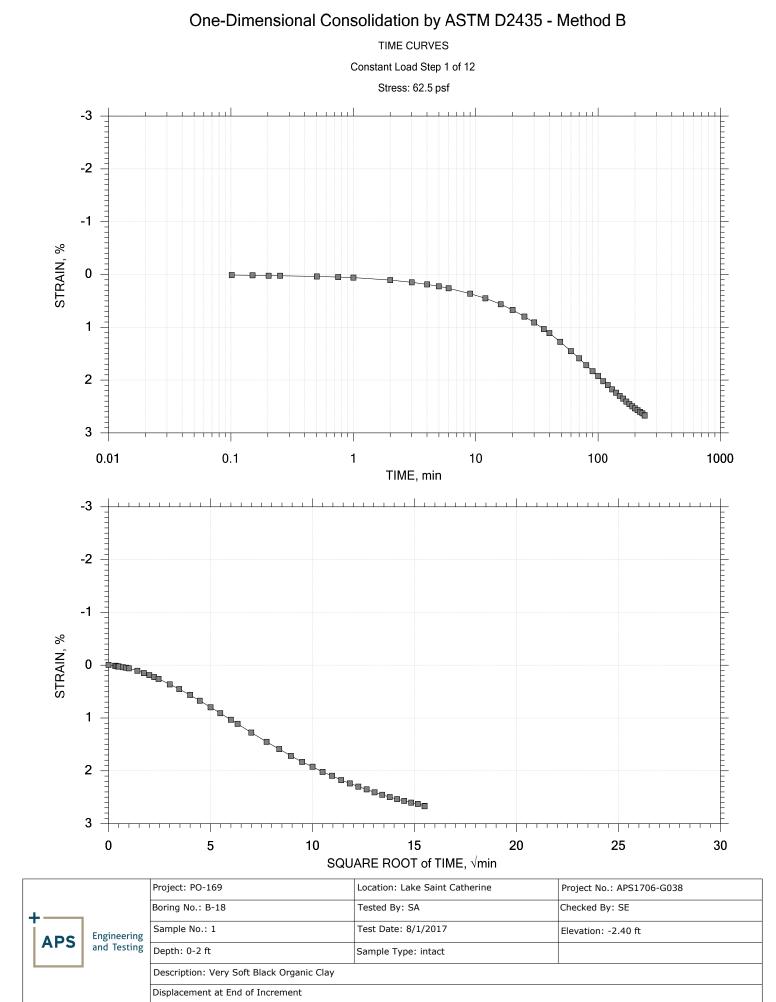
		Project: PO-169	Location: Lake Saint Catherine	Project No.: APS1706-G038
L		Boring No.: B-18	Tested By: SA	Checked By: SE
APS	Engineering	Sample No.: 1	Test Date: 8/1/2017	Elevation: -2.40 ft
APS	and Testing	Depth: 0-2 ft	Sample Type: intact	
		Description: Very Soft Black Organic Clay		
		Displacement at End of Increment		

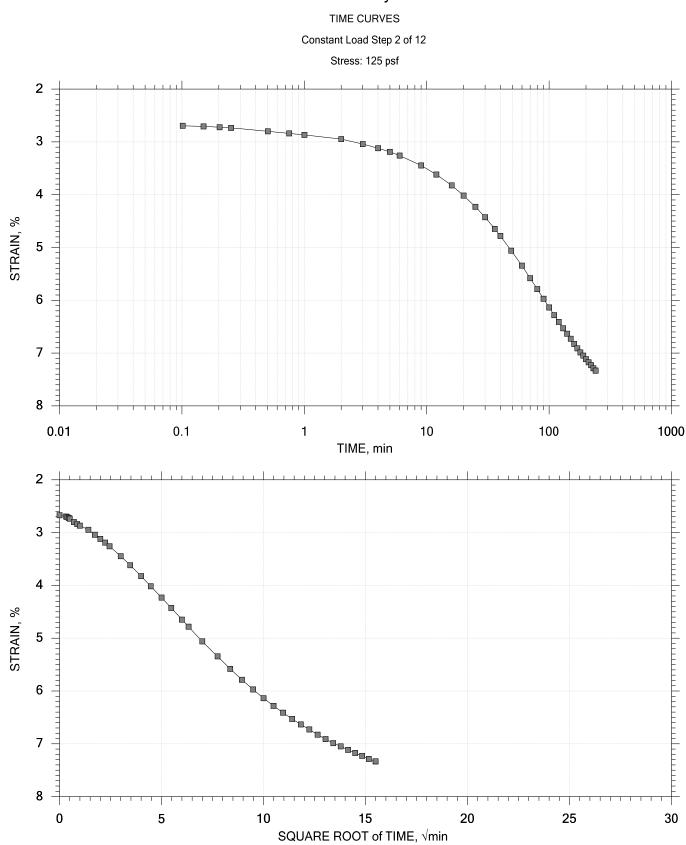
Project: APS1706-G038 Boring No.: B-18 Sample No.: 1

Location: Lake Saint Catherine Tested By: SA Test Date: 8/1/17 Sample Type: Intact Project No.: APS1706-G038 Checked By: SE Depth: 0-2 ft Elevation: -2.40 ft

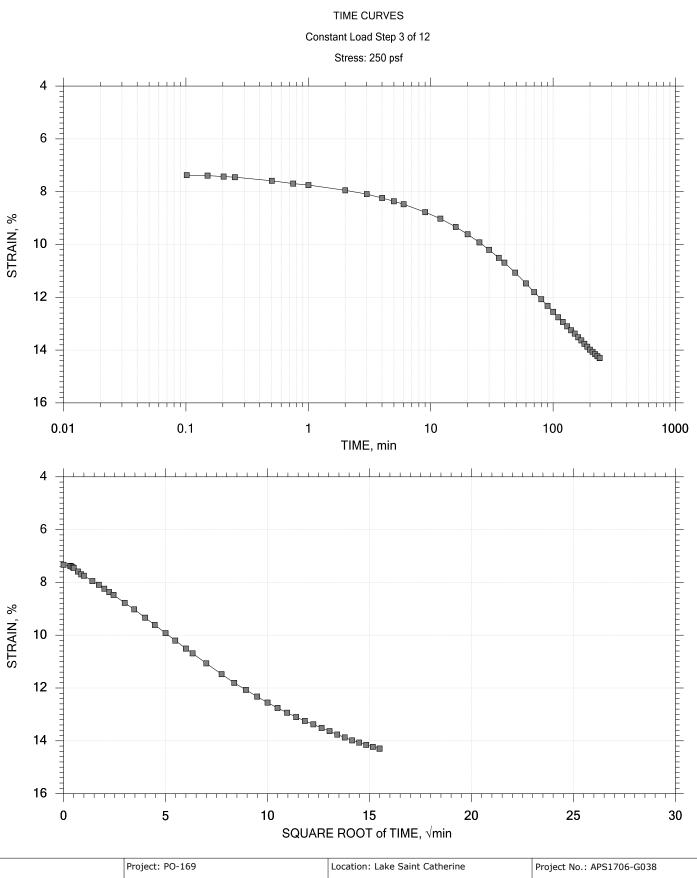
Soil Description: Very Soft Black Organic Clay

Measured Specific Gravity: 2.17 Initial Void Ratio: 2.02 Final Void Ratio: 0.459	Liquid Limit: 2 Plastic Limit: Plasticity Inde	62 ex: 237	Specimen Diameter Initial Height: 1 Final Height: 0.48	.00 in 3 in
		onsolidation	After Consol	
	Trimmings	Specimen+Ring	Specimen+Ring	Trimmings
Container ID	sh5	RING	sh19	sh19
Wt. Container + Wet Soil, gm	143.10	115.55	78.280	78.280
Wt. Container + Dry Soil, qm	20.840	66.043	66.043	66.043
Wt. Container, gm	8.1500	8.1900	8.1900	8.1900
Wt. Dry Soil, gm	12.690	57.853	57.853	57.853
Water Content, %	963.44	85.57	21.15	21.15
Void Ratio		2.02	0.459	
Degree of Saturation, %		92.06	100.00	
Dry Unit Weight, pcf		44.899	92.850	

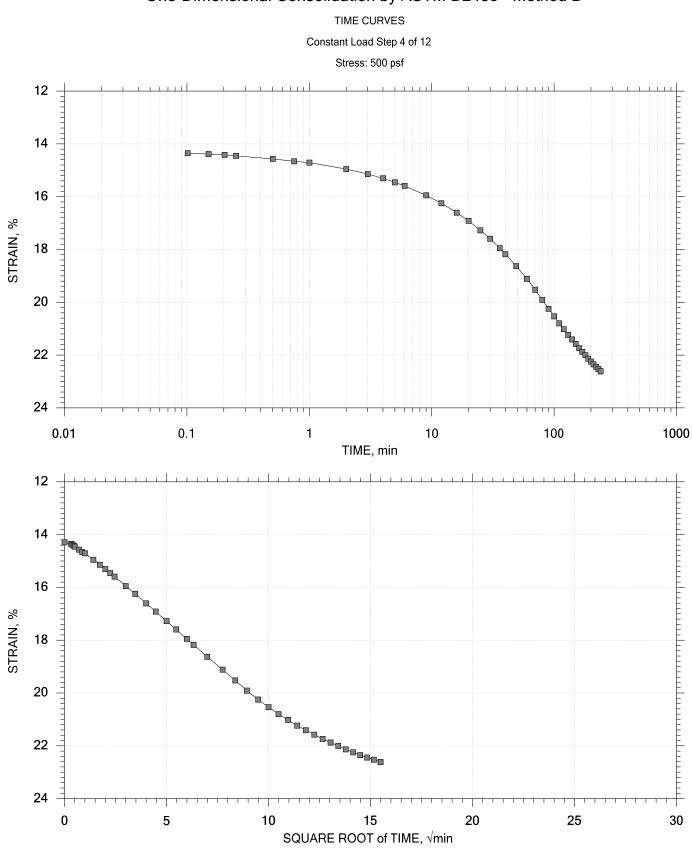

Project: APS1706-G038 Boring No.: B-18 Sample No.: 1

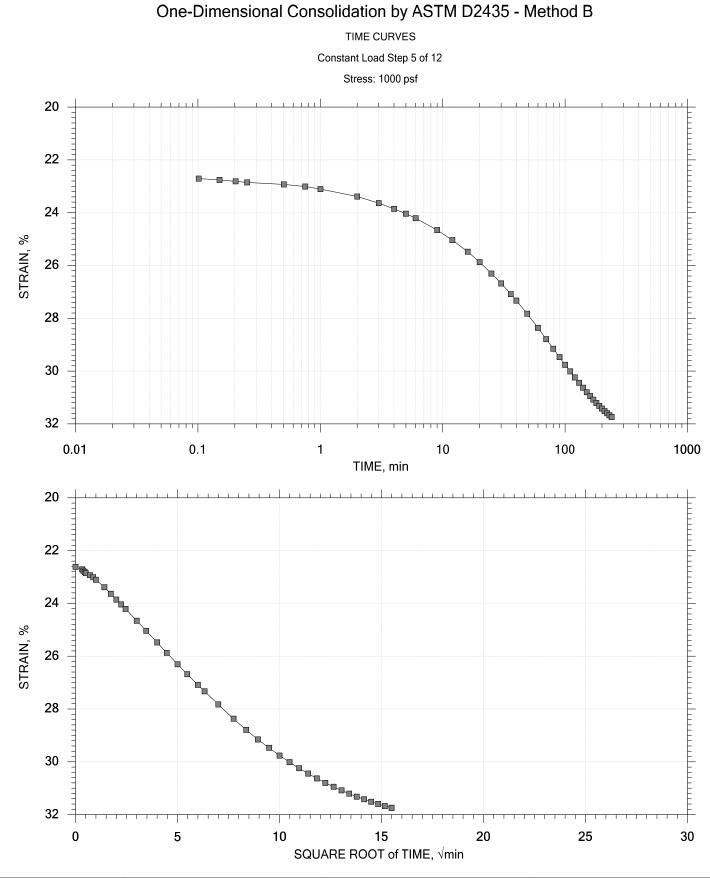

Location: Lake Saint Catherine Tested By: SA Test Date: 8/1/17 Sample Type: Intact Project No.: APS1706-G038 Checked By: SE Depth: 0-2 ft Elevation: -2.40 ft

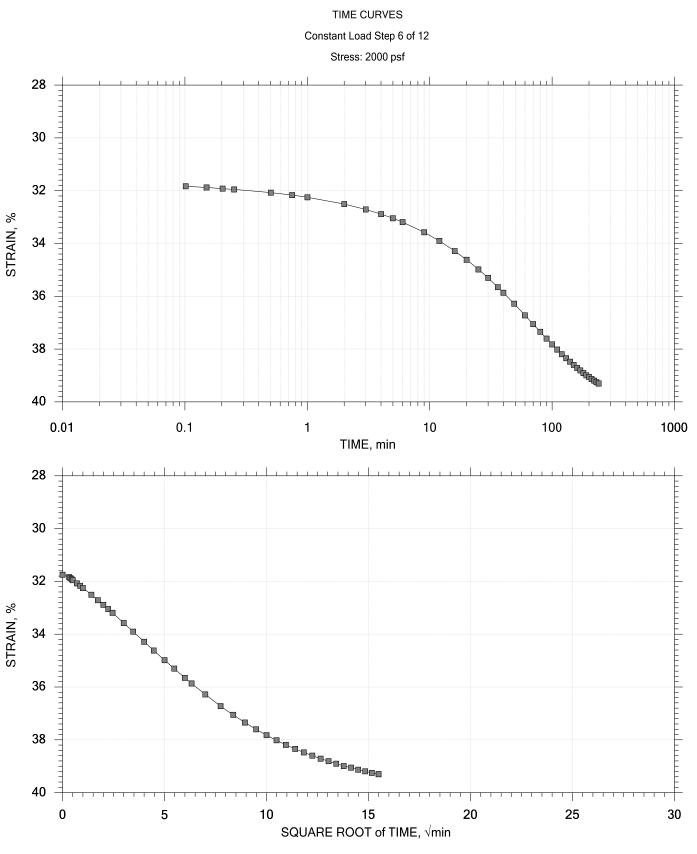
Soil Description: Very Soft Black Organic Clay

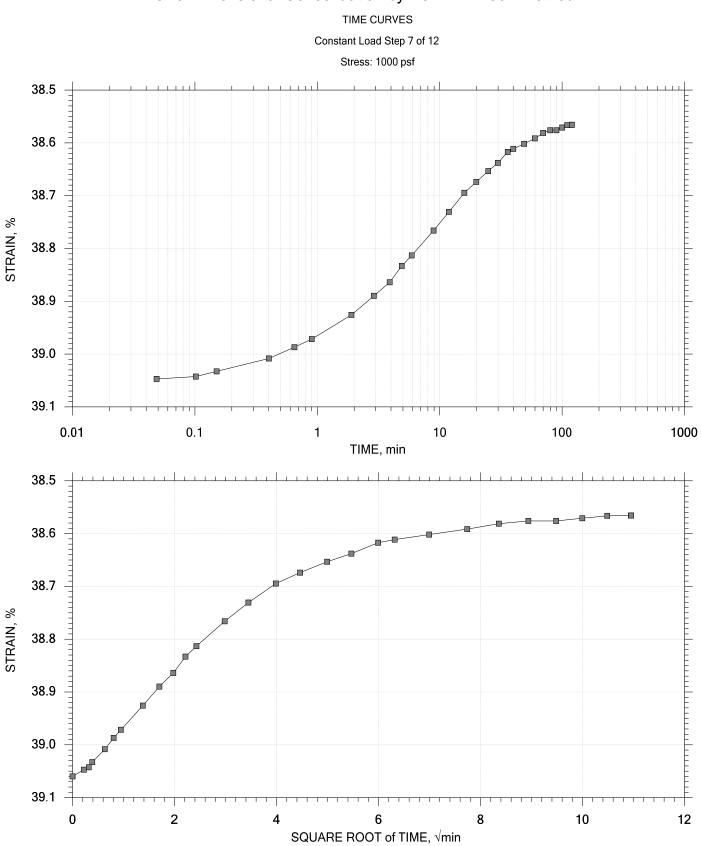

Displacement at End of Increment

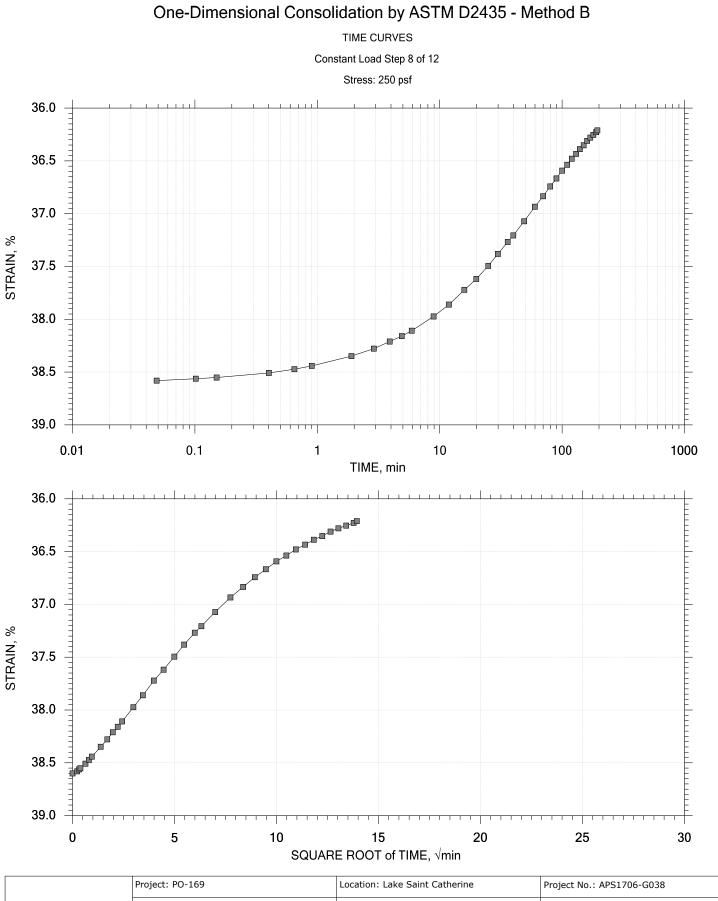
	Applied	Final	Void	Strain	Sq.Rt				
	Stress	Displacement	Ratio	at End	Т90	Cv	Mv	k	
	psf	in		olo	min	ft²/sec	1/psf	cm/sec	
-	60 F	0.00670	1 0 4	0 67	200 000	1 15 . 005	4 07 004	0 20 - 000	
1	62.5	0.02670	1.94	2.67	208.229	1.15e-007	4.27e-004	9.32e-008	
2	125.	0.07332	1.80	7.33	235.383	9.41e-008	7.46e-004	1.34e-007	
3	250.	0.1429	1.59	14.3	228.483	8.54e-008	5.57e-004	9.05e-008	
4	500.	0.2261	1.33	22.6	238.071	6.85e-008	3.33e-004	4.34e-008	
5	1.00e+003	0.3174	1.06	31.7	182.401	7.13e-008	1.83e-004	2.48e-008	
6	2.00e+003	0.3930	0.831	39.3	155.351	6.57e-008	7.56e-005	9.45e-009	
7	1.00e+003	0.3857	0.854	38.6	20.891	4.38e-007	7.35e-006	6.13e-009	
8	250.	0.3621	0.925	36.2	128.888	7.46e-008	3.14e-005	4.46e-009	
9	1.00e+003	0.3795	0.872	38.0	55.817	1.74e-007	2.32e-005	7.69e-009	
10	2.00e+003	0.4015	0.806	40.2	77.562	1.18e-007	2.20e-005	4.92e-009	
11	4.00e+003	0.4632	0.620	46.3	139.763	5.66e-008	3.08e-005	3.32e-009	
12	8.00e+003	0.5164	0.459	51.6	96.752	6.60e-008	1.33e-005	1.67e-009	
	Applied	Final	Void	Strain	Log				
	Stress	Displacement	Ratio	at End	T50	Cv	Mv	k	Ca
	psf	in	Racio	80 Ena	min	ft²/sec	1/psf	cm/sec	دم ۶
	psi	111		°0		IL-/SEC	1/psi	CIII/ SEC	` 0
1	62.5	0.02670	1.94	2.67	0.000	0.00e+000	4.27e-004	0.00e+000	0.00e+000
2	125.	0.07332	1.80	7.33	0.000	0.00e+000	7.46e-004	0.00e+000	0.00e+000
3	250.	0.1429	1.59	14.3	0.000	0.00e+000	5.57e-004	0.00e+000	0.00e+000
4	500.	0.2261	1.33	22.6	0.000	0.00e+000	3.33e-004	0.00e+000	0.00e+000
5	1.00e+003	0.3174	1.06	31.7	0.000	0.00e+000	1.83e-004	0.00e+000	0.00e+000
6	2.00e+003	0.3930	0.831	39.3	0.000	0.00e+000	7.56e-005	0.00e+000	0.00e+000
7	1.00e+003	0.3857	0.854	38.6	5.297	4.01e-007	7.35e-006	5.61e-009	0.00e+000
8	250.	0.3621	0.925	36.2	0.000	0.00e+000	3.14e-005	0.00e+000	0.00e+000
9	1.00e+003	0.3795	0.872	38.0	13.959	1.62e-007	2.32e-005	7.14e-009	0.00e+000
10	2.00e+003	0.4015	0.806	40.2	17.105	1.24e-007	2.20e-005	5.18e-009	0.00e+000
11	4.00e+003	0.4632	0.620	46.3	33.405	5.50e-008	3.08e-005	3.23e-009	0.00e+000
12	8.00e+003	0.5164	0.459	51.6	23.242	6.38e-008	1.33e-005	1.62e-009	0.00e+000

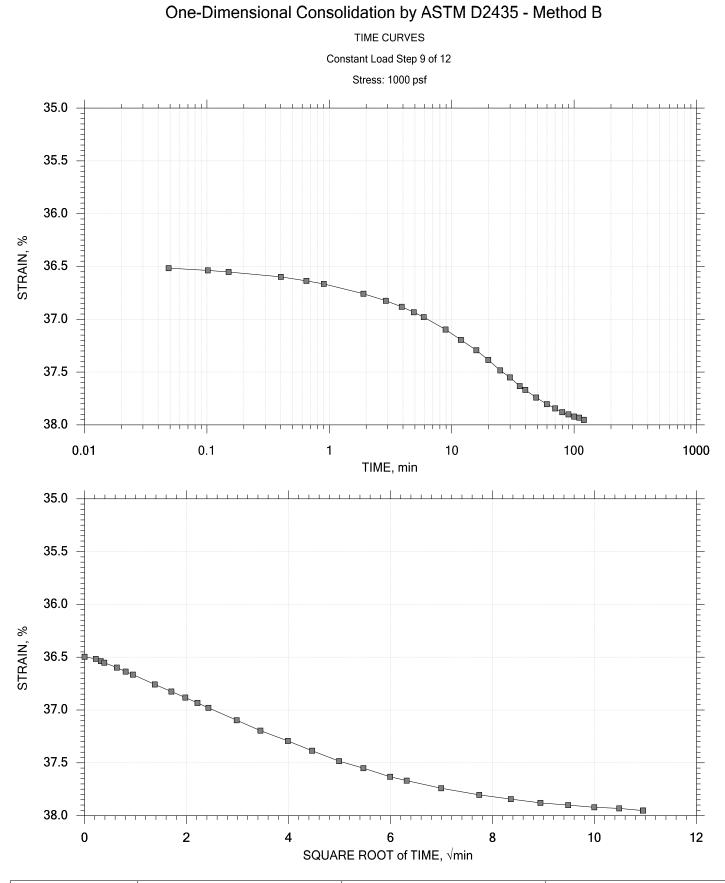


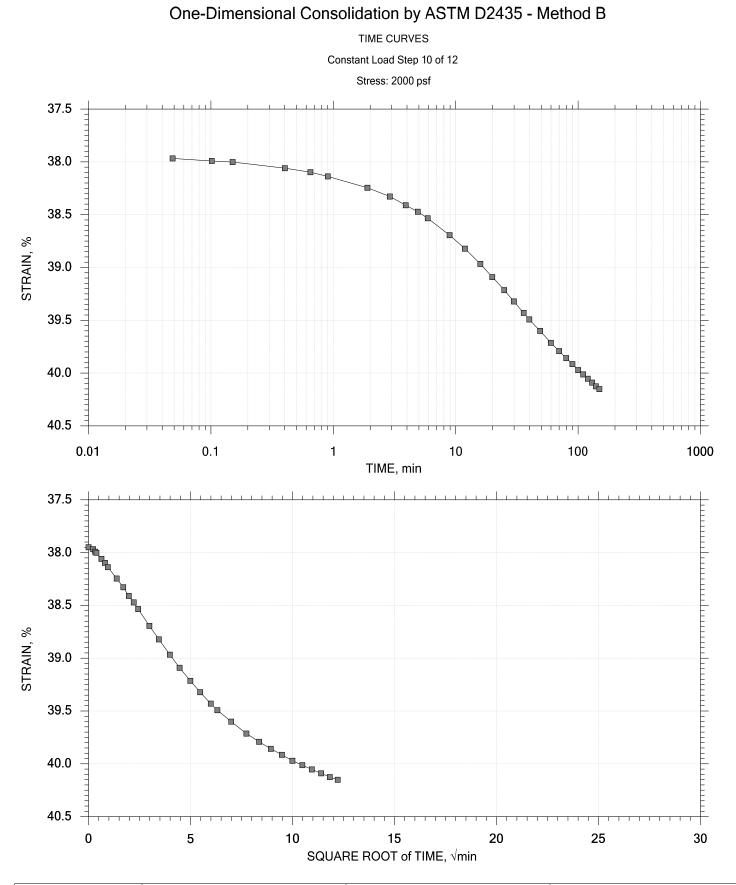

			Project: PO-169	Location: Lake Saint Catherine	Project No.: APS1706-G038
	+		Boring No.: B-18	Tested By: SA	Checked By: SE
	APS	Engineering	Sample No.: 1	Test Date: 8/1/2017	Elevation: -2.40 ft
	AFS	and Testing	Depth: 0-2 ft	Sample Type: intact	
			Description: Very Soft Black Organic Clay		
			Displacement at End of Increment		

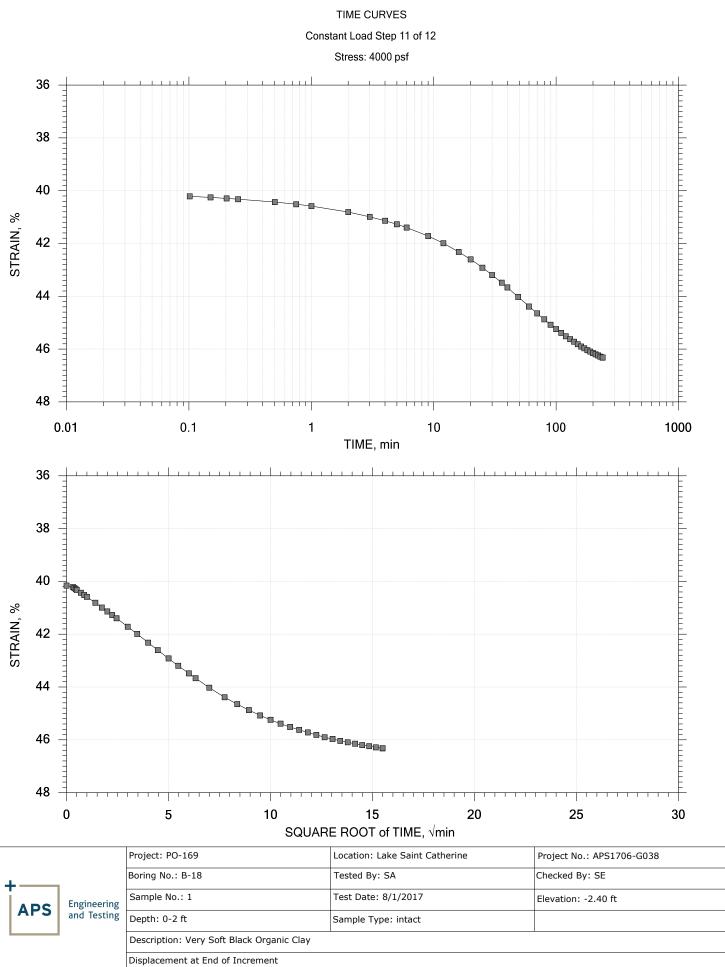

		Project: PO-169	Location: Lake Saint Catherine	Project No.: APS1706-G038
-	Engineering	Boring No.: B-18	Tested By: SA	Checked By: SE
APS		Sample No.: 1	Test Date: 8/1/2017	Elevation: -2.40 ft
AFJ	and Testing	Depth: 0-2 ft	Sample Type: intact	
		Description: Very Soft Black Organic Clay		
		Displacement at End of Increment		

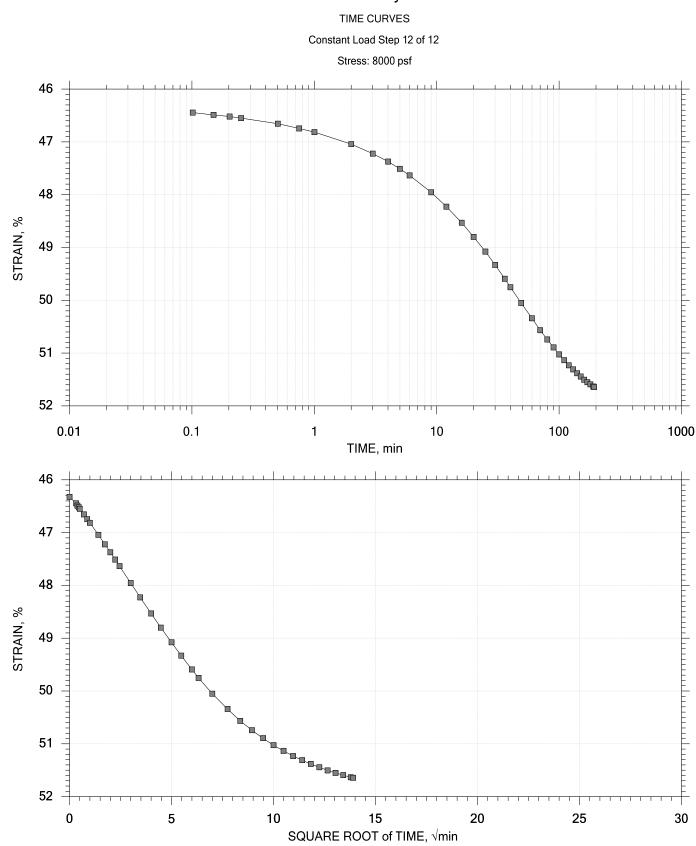

			Project: PO-169	Location: Lake Saint Catherine	Project No.: APS1706-G038
	<u> </u>		Boring No.: B-18	Tested By: SA	Checked By: SE
	APS	Engineering	Sample No.: 1	Test Date: 8/1/2017	Elevation: -2.40 ft
	AFS	and Testing	Depth: 0-2 ft	Sample Type: intact	
			Description: Very Soft Black Organic Clay		
			Displacement at End of Increment		


Project: PO-169 Location: Lake Saint Catherine Project No.: APS1706-G038 Boring No.: B-18 Tested By: SA Checked By: SE Sample No.: 1 Test Date: 8/1/2017 Elevation: -2.40 ft Depth: 0-2 ft Sample Type: intact Implement Description: Very Soft Black Organic Clay Implement Implement

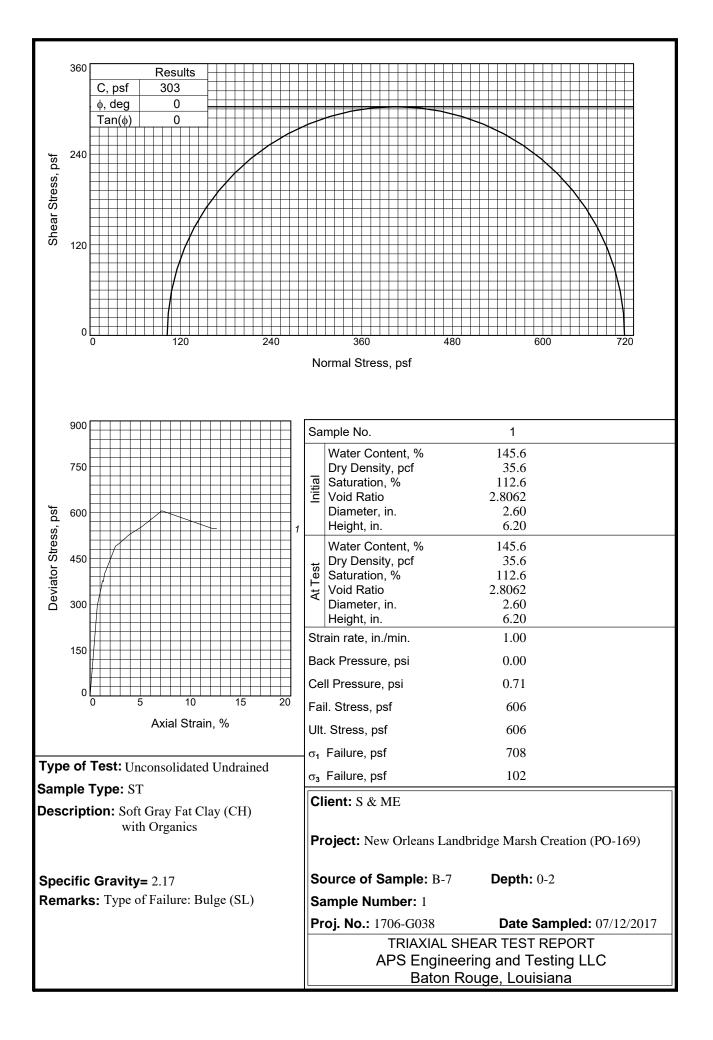

			Project: PO-169	Location: Lake Saint Catherine	Project No.: APS1706-G038
,	+		Boring No.: B-18	Tested By: SA	Checked By: SE
	APS	Engineering	Sample No.: 1	Test Date: 8/1/2017	Elevation: -2.40 ft
	AFJ	and Testing	Depth: 0-2 ft	Sample Type: intact	
			Description: Very Soft Black Organic Clay		
			Displacement at End of Increment		

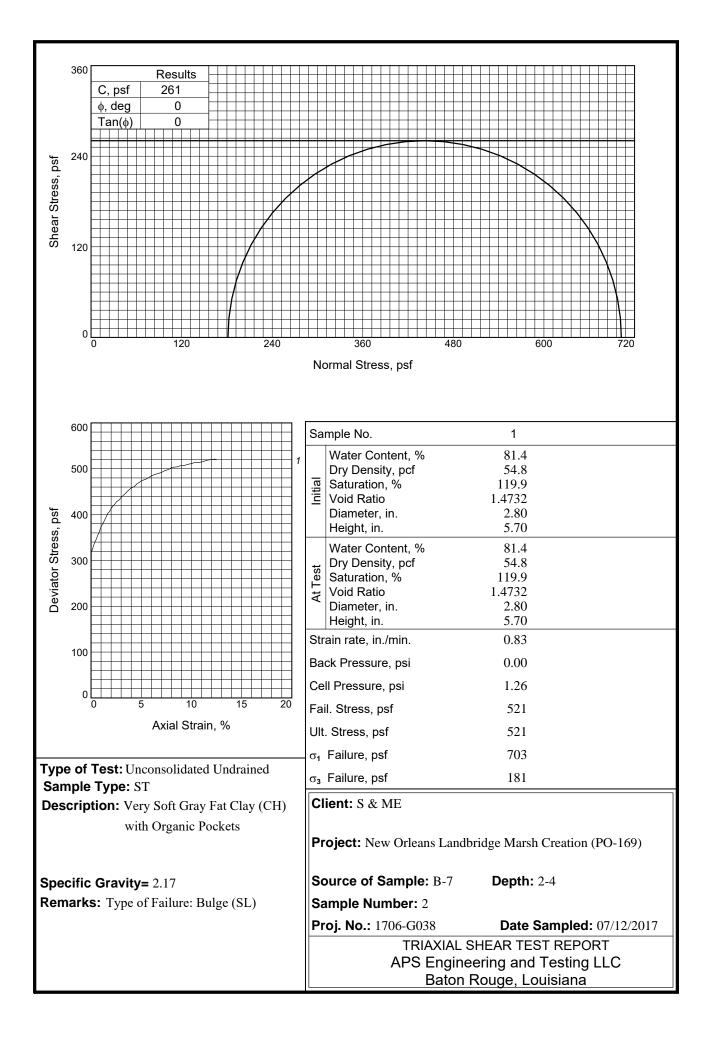

		Project: PO-169	Location: Lake Saint Catherine	Project No.: APS1706-G038
+		Boring No.: B-18	Tested By: SA	Checked By: SE
APS	Engineering	Sample No.: 1	Test Date: 8/1/2017	Elevation: -2.40 ft
APS	and Testing	Depth: 0-2 ft	Sample Type: intact	
		Description: Very Soft Black Organic Clay		
		Displacement at End of Increment		

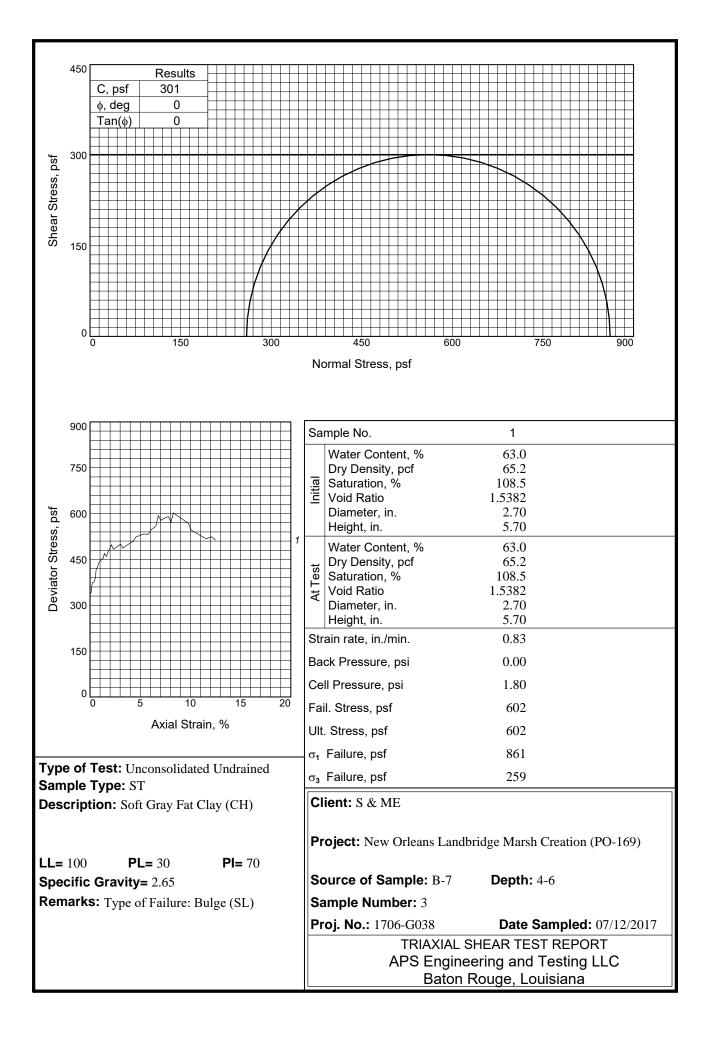

			Project: PO-169	Location: Lake Saint Catherine	Project No.: APS1706-G038
-			Boring No.: B-18	Tested By: SA	Checked By: SE
Li	APS	Engineering and Testing	Sample No.: 1	Test Date: 8/1/2017	Elevation: -2.40 ft
	AFJ		Depth: 0-2 ft	Sample Type: intact	
1			Description: Very Soft Black Organic Clay		
			Displacement at End of Increment		

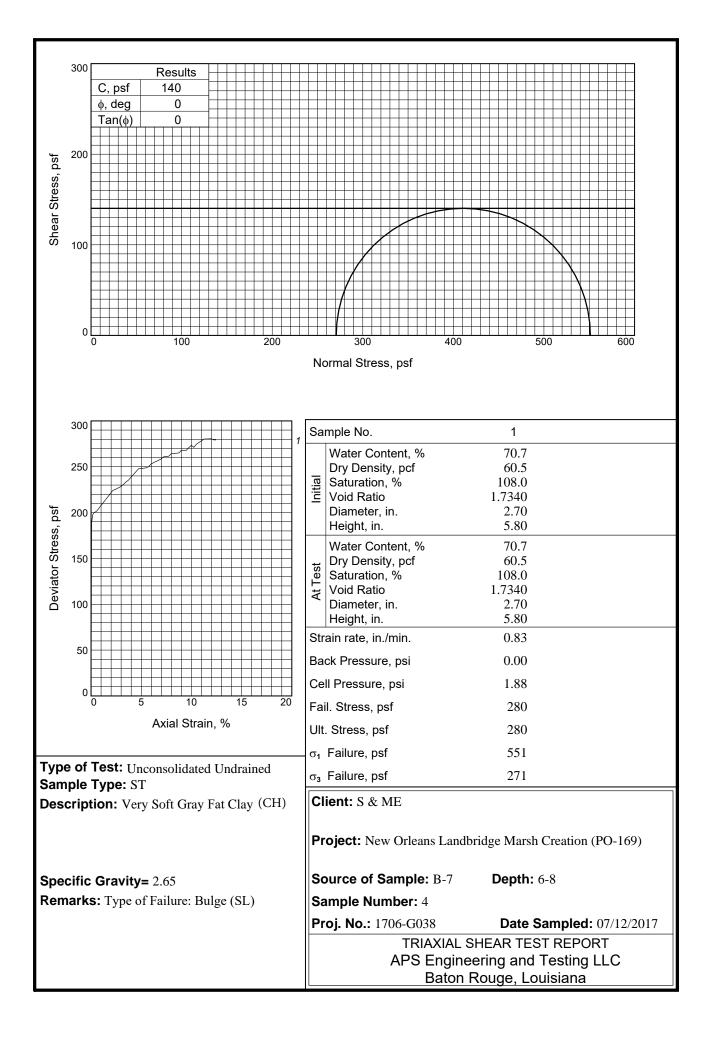

			Project: PO-169	Location: Lake Saint Catherine	Project No.: APS1706-G038
4	+ APS		Boring No.: B-18	Tested By: SA	Checked By: SE
Li			Sample No.: 1	Test Date: 8/1/2017	Elevation: -2.40 ft
			Depth: 0-2 ft	Sample Type: intact	
Ľ			Description: Very Soft Black Organic Clay		
			Displacement at End of Increment		

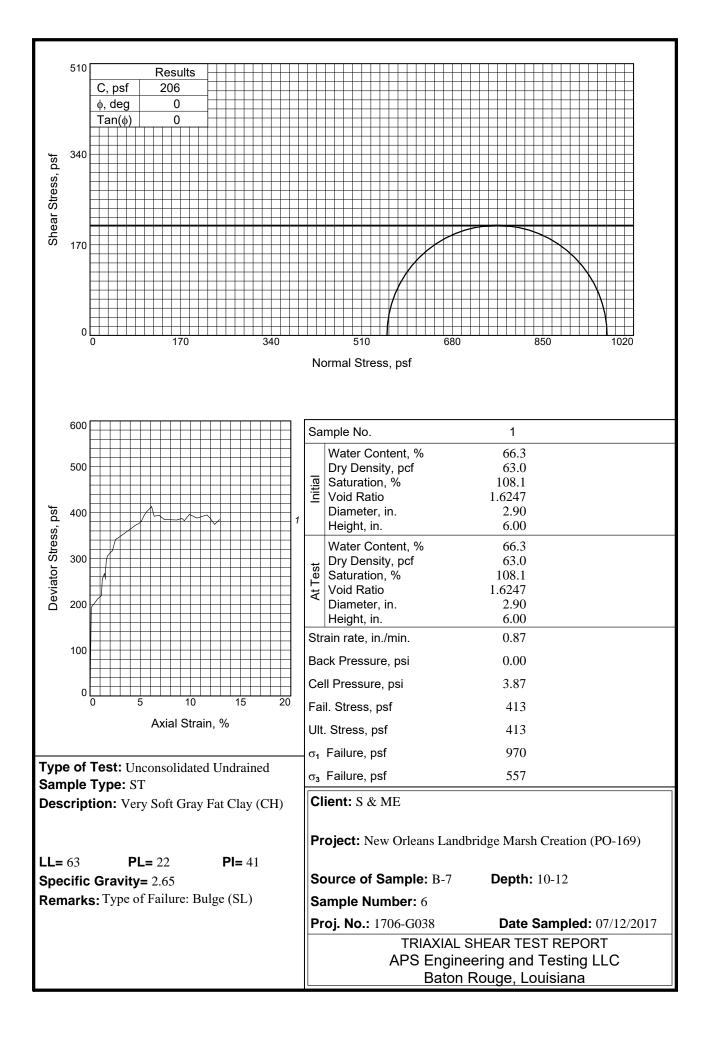
			Project: PO-169	Location: Lake Saint Catherine	Project No.: APS1706-G038
4	+ APS	Engineering and Testing	Boring No.: B-18	Tested By: SA	Checked By: SE
li			Sample No.: 1	Test Date: 8/1/2017	Elevation: -2.40 ft
			Depth: 0-2 ft	Sample Type: intact	
1			Description: Very Soft Black Organic Clay		
			Displacement at End of Increment		

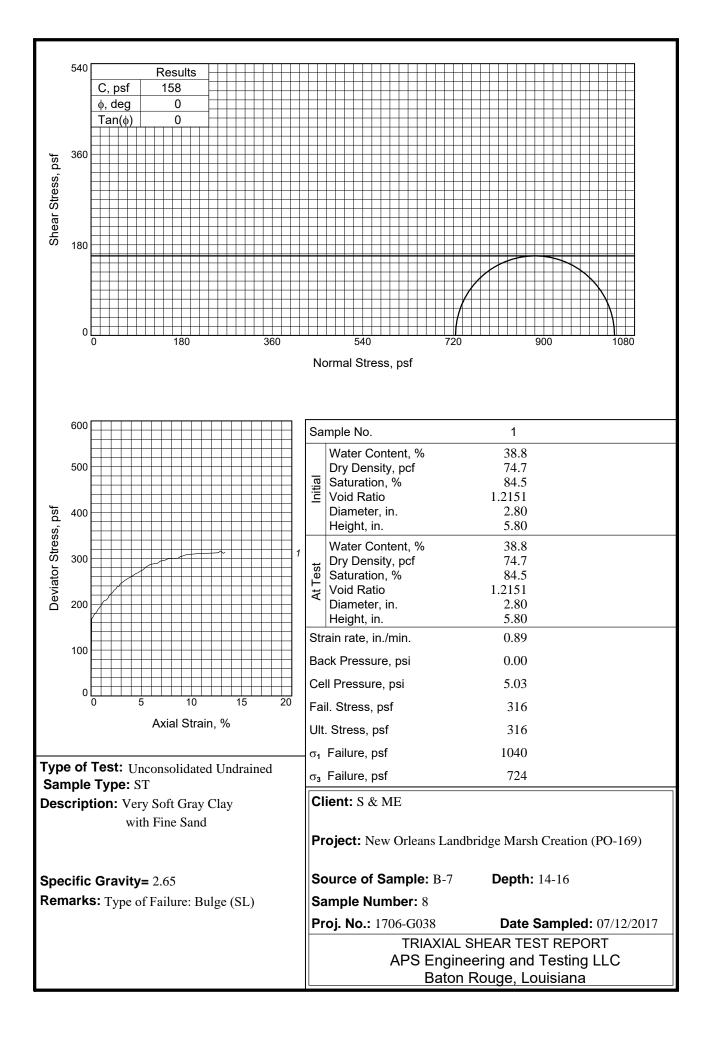

One-Dimensional Consolidation by ASTM D2435 - Method B

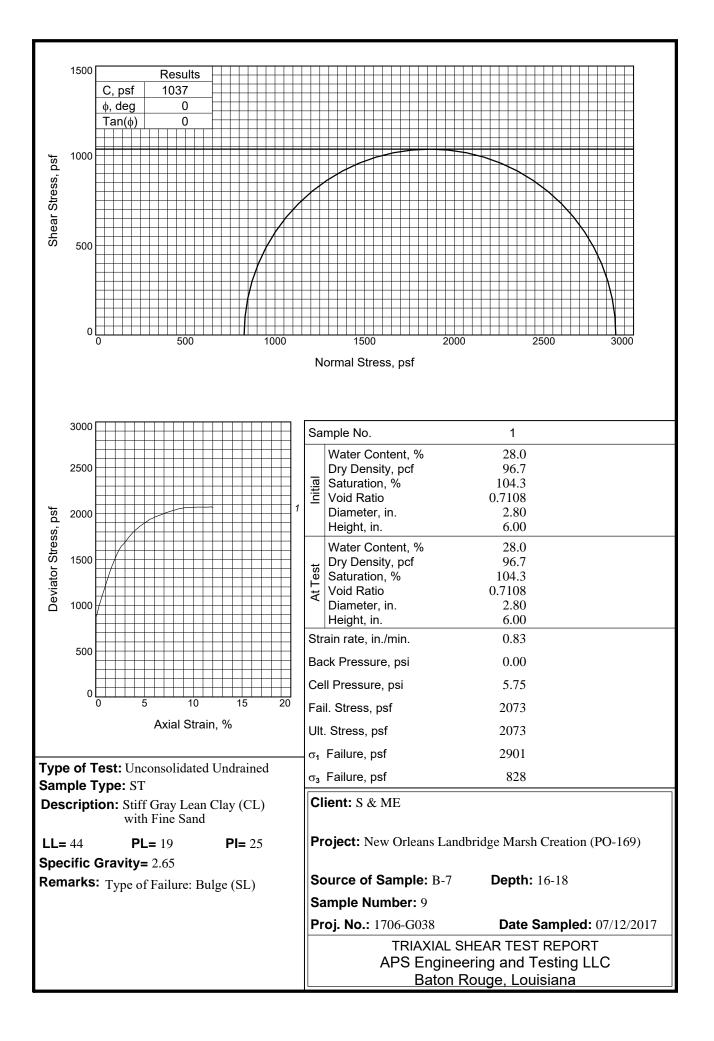


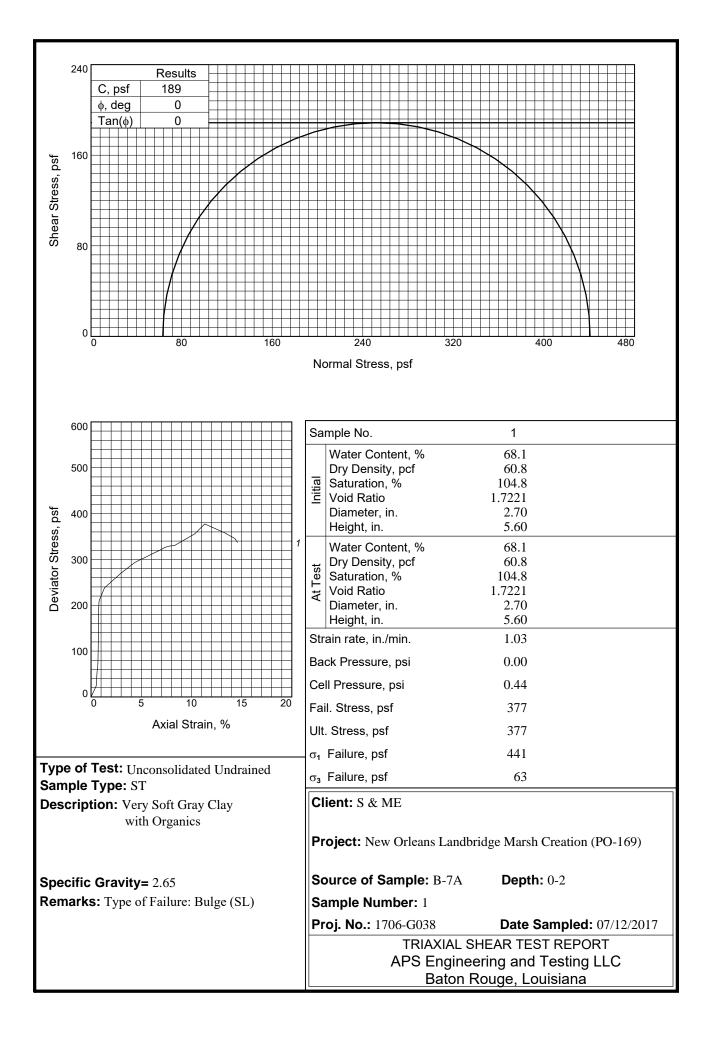

	+ APS	Engineering and Testing	Project: PO-169	Location: Lake Saint Catherine	Project No.: APS1706-G038
.			Boring No.: B-18	Tested By: SA	Checked By: SE
				Test Date: 8/1/2017	Elevation: -2.40 ft
			Depth: 0-2 ft	Sample Type: intact	
			Description: Very Soft Black Organic Clay		
			Displacement at End of Increment		

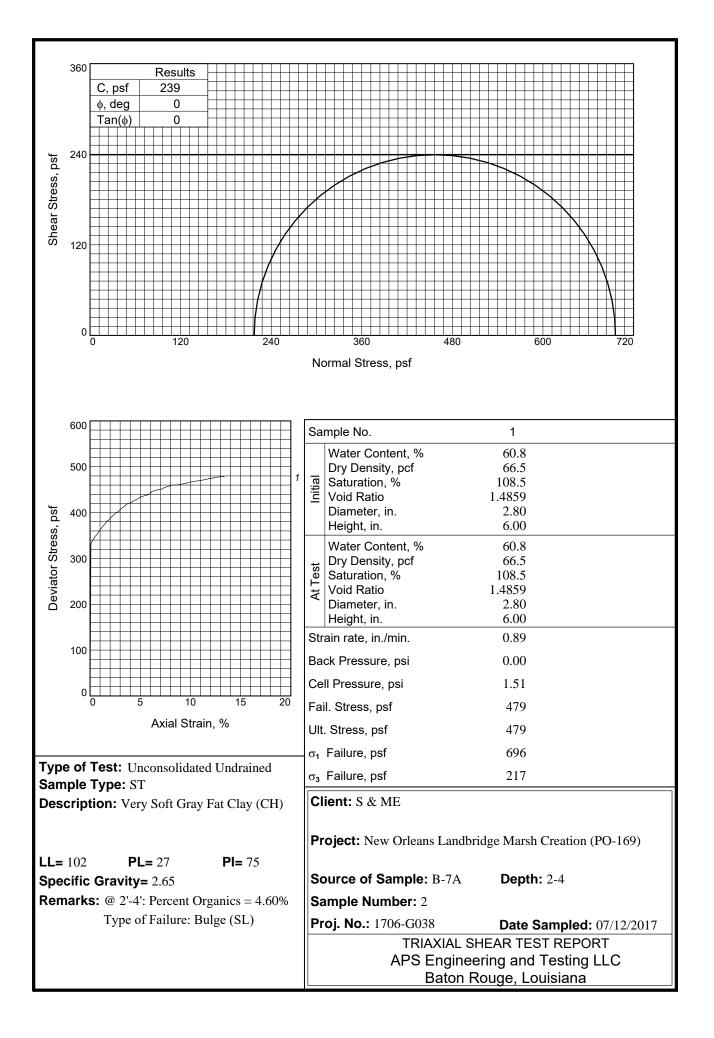

One-Dimensional Consolidation by ASTM D2435 - Method B

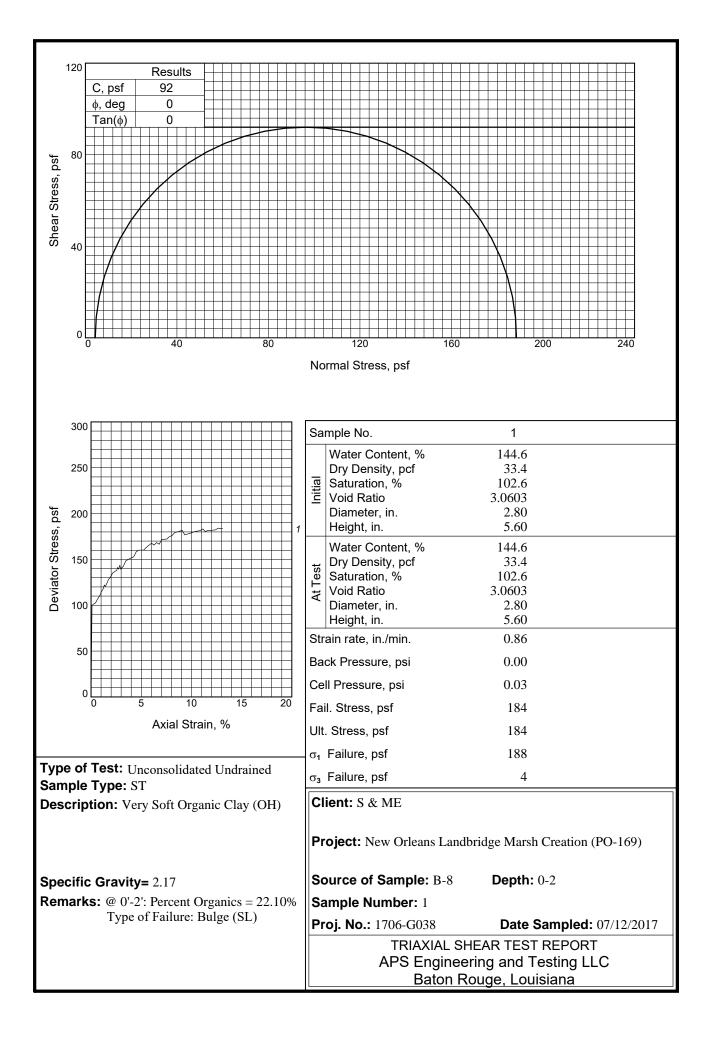

Unconsolidated Undrained Results (UU)

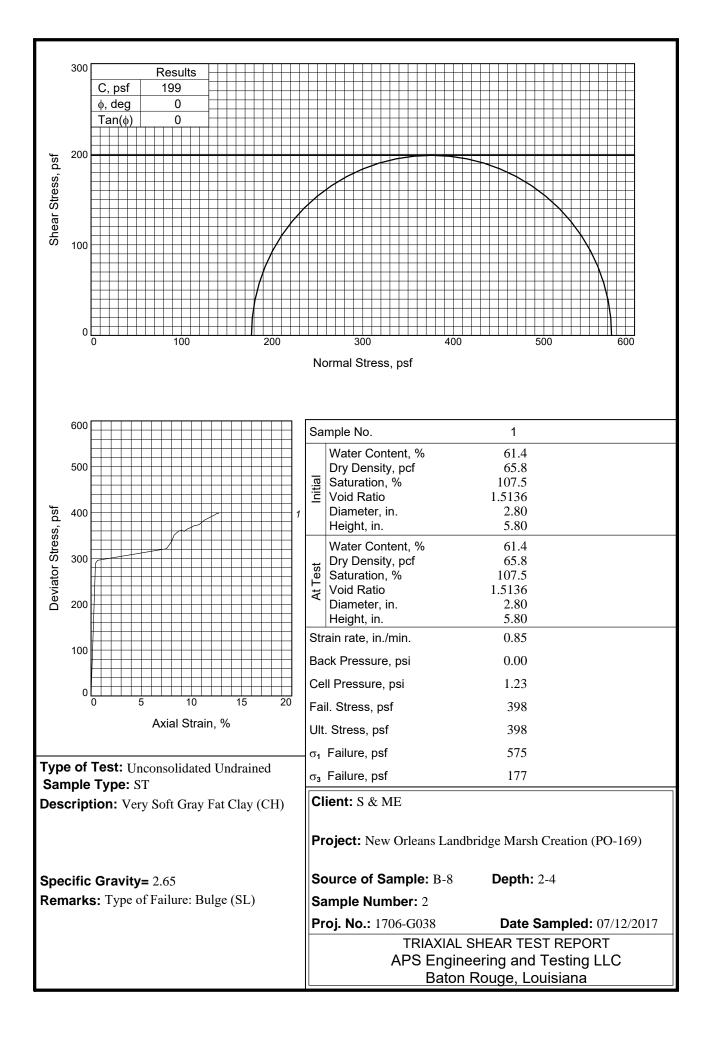


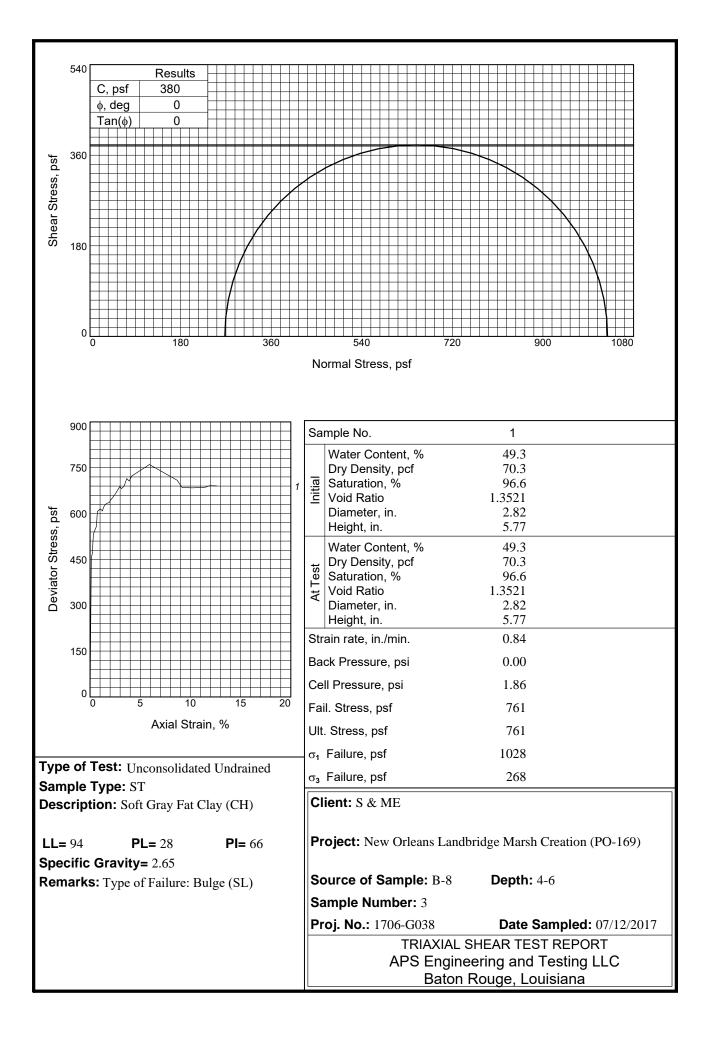


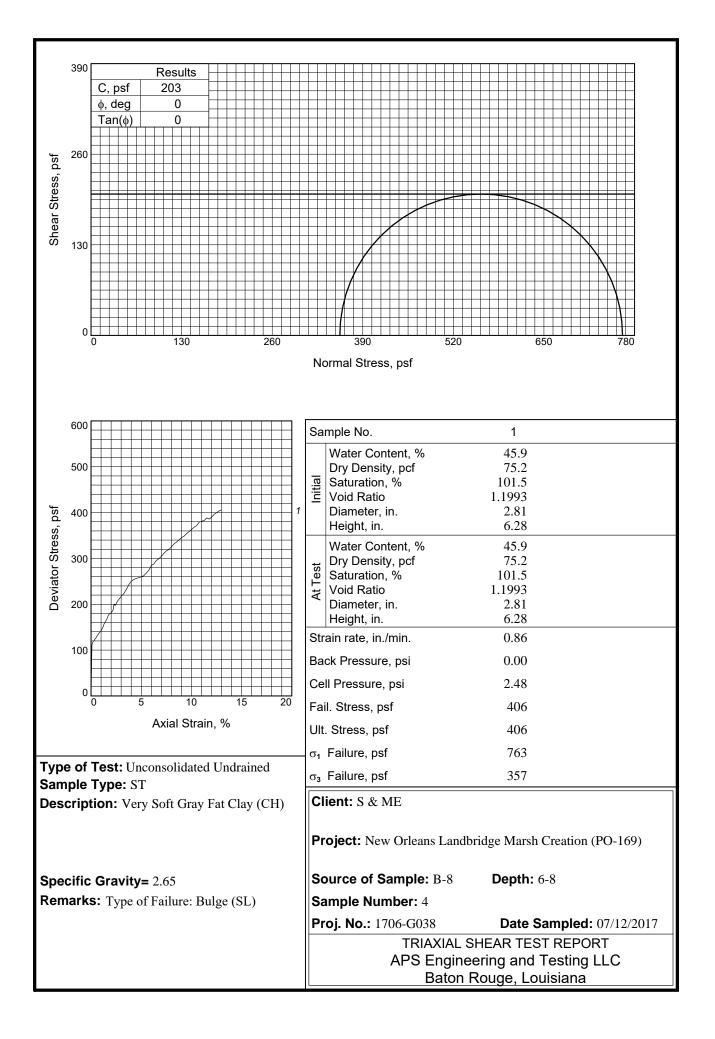


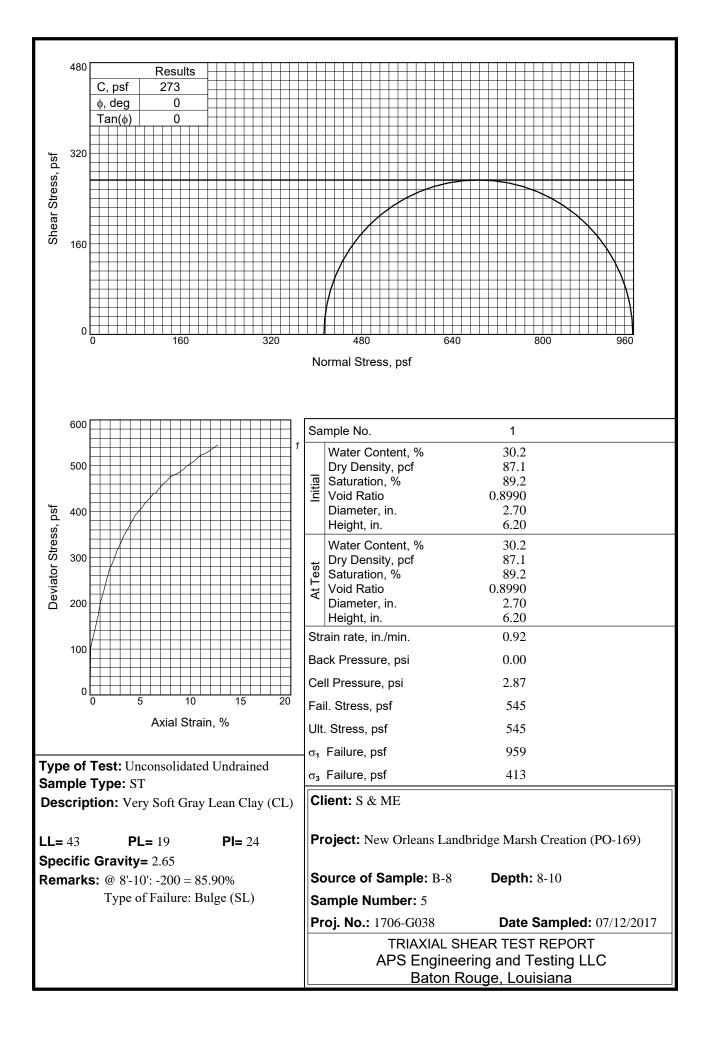


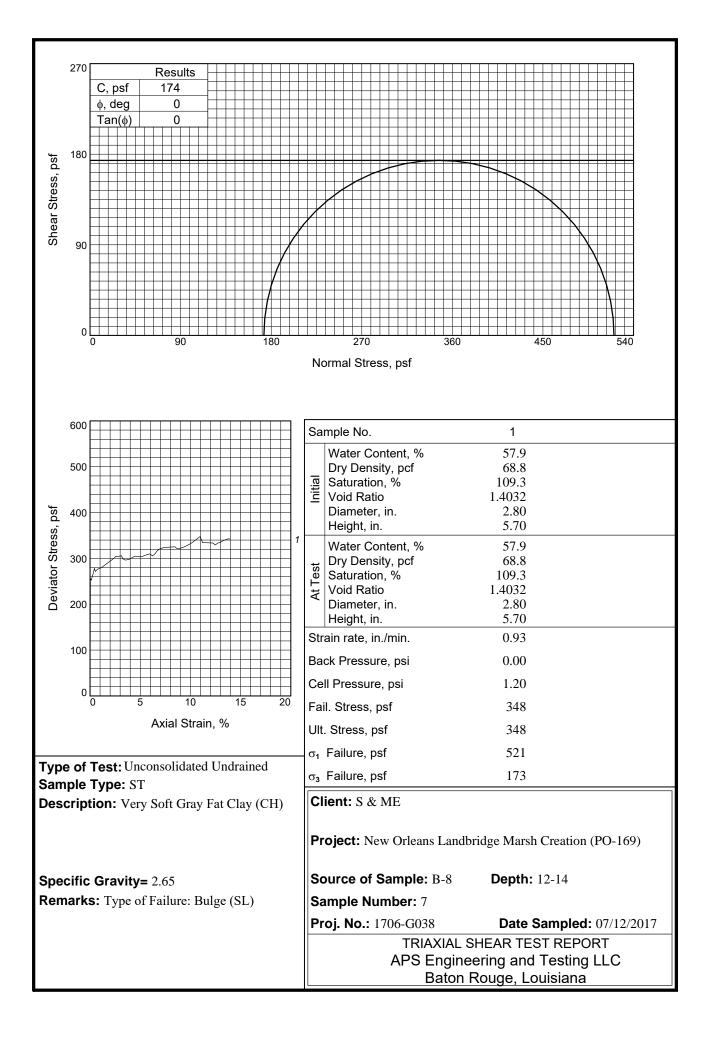


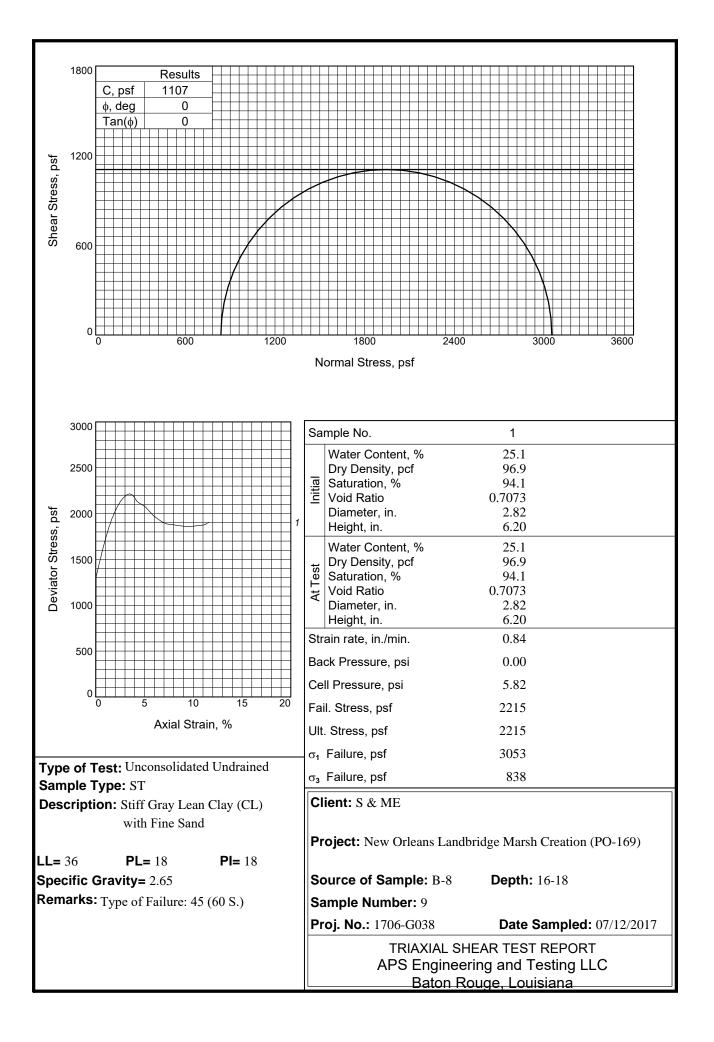


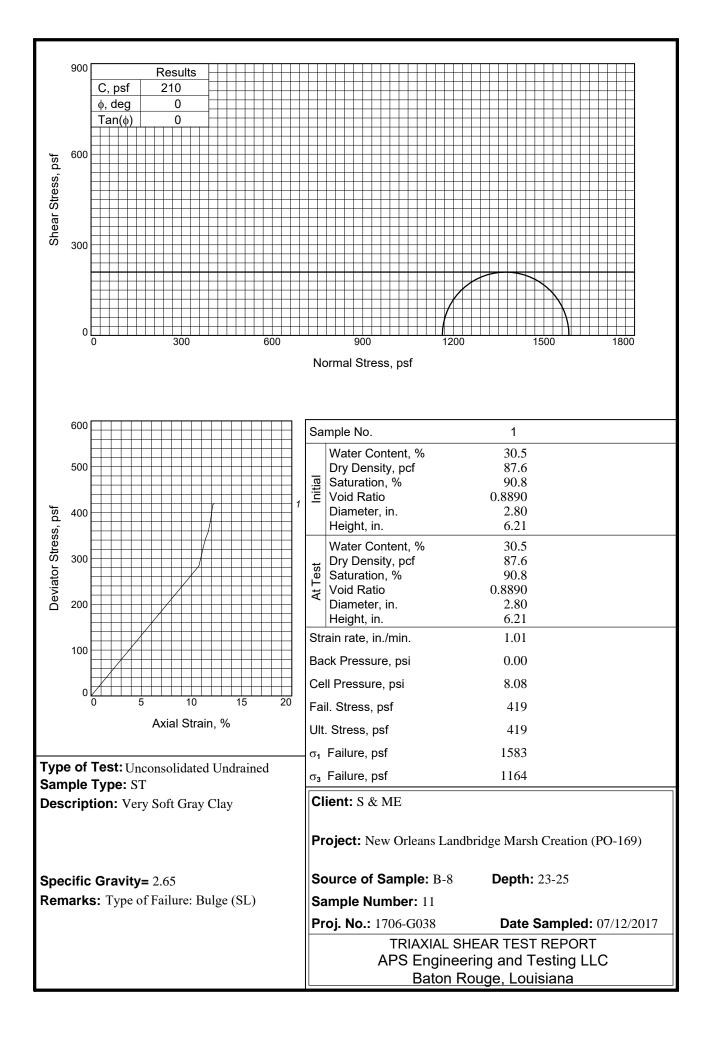


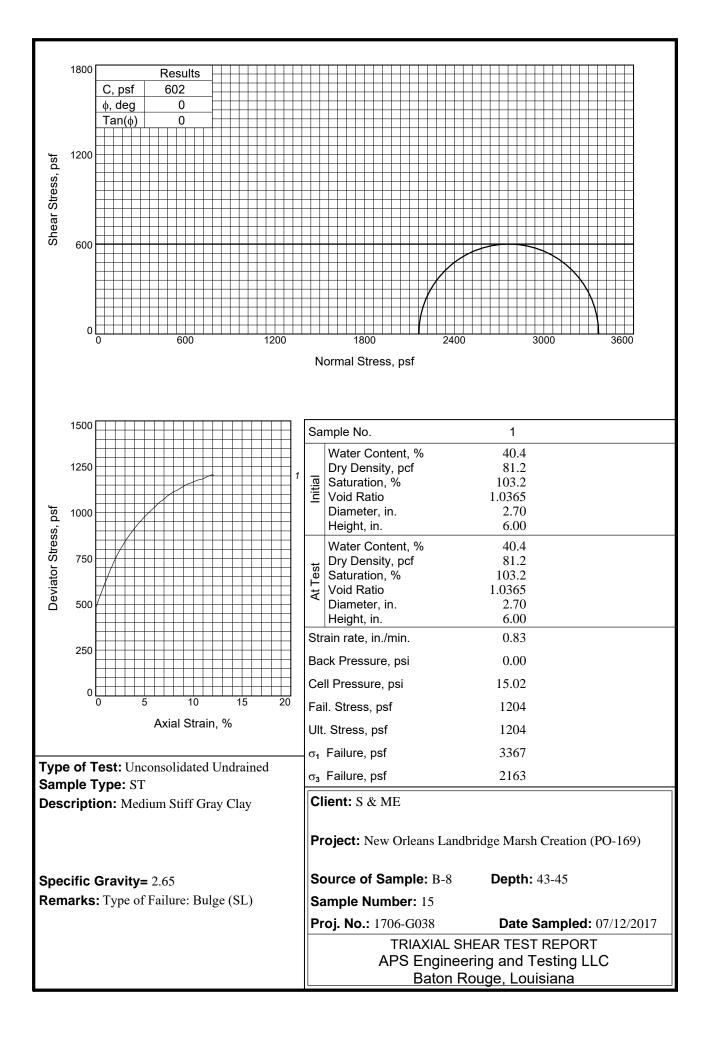


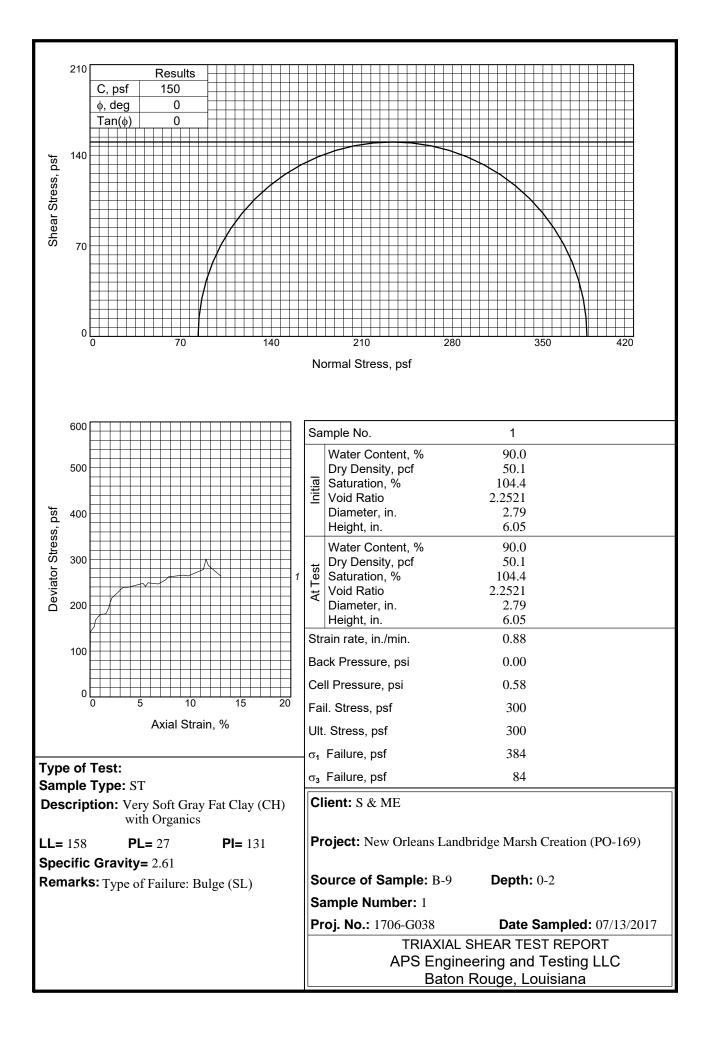


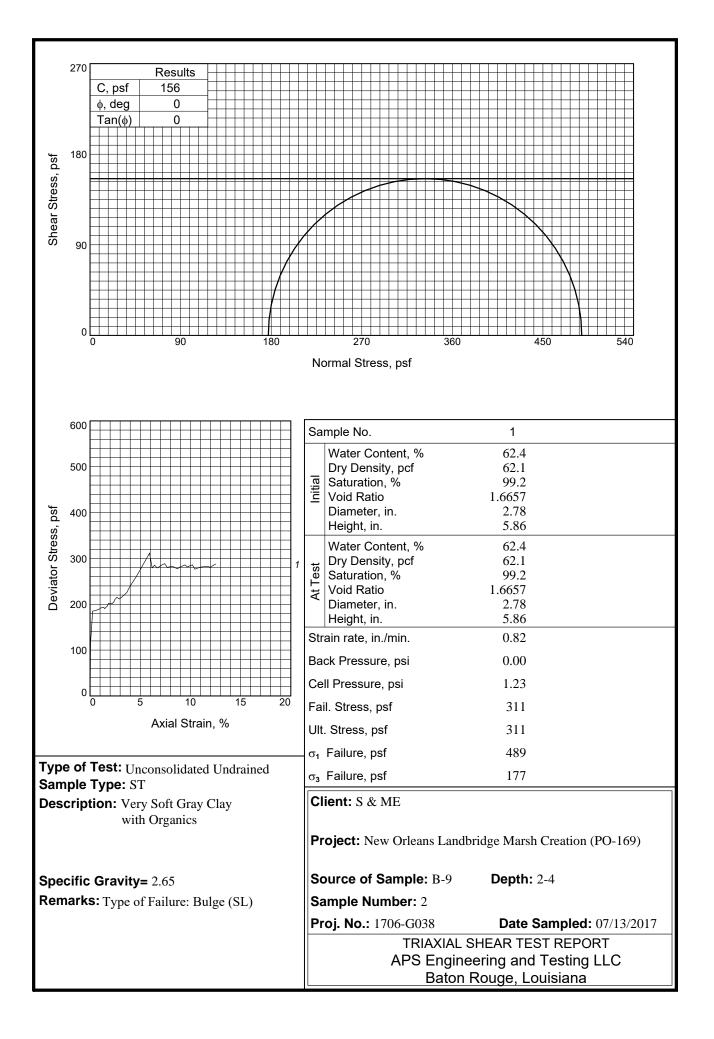


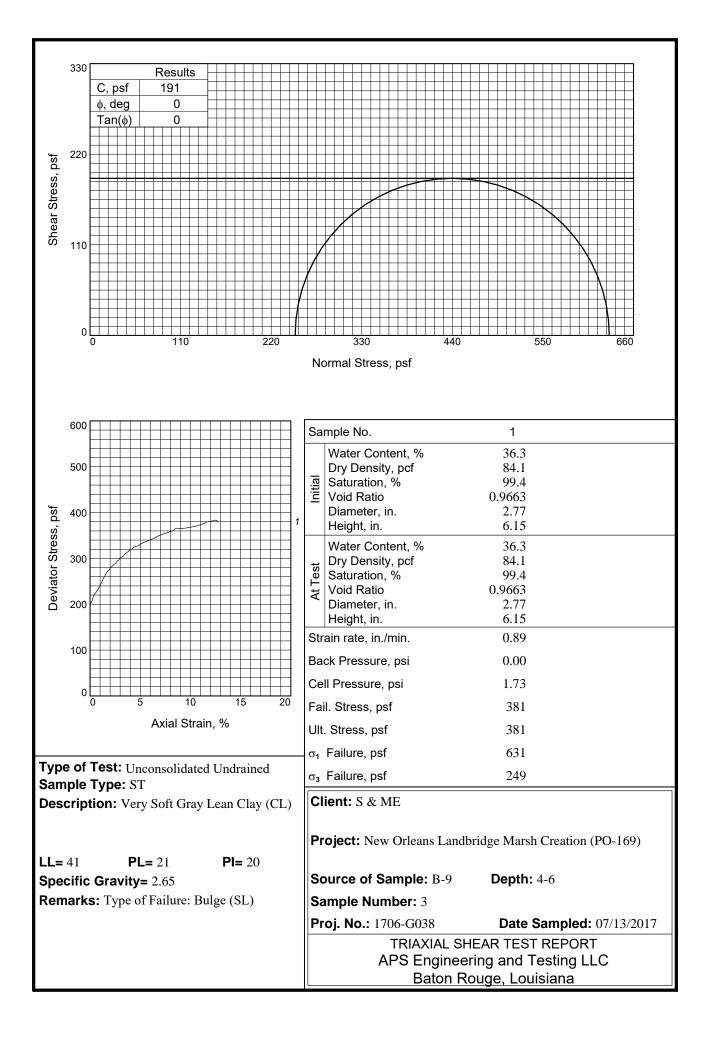


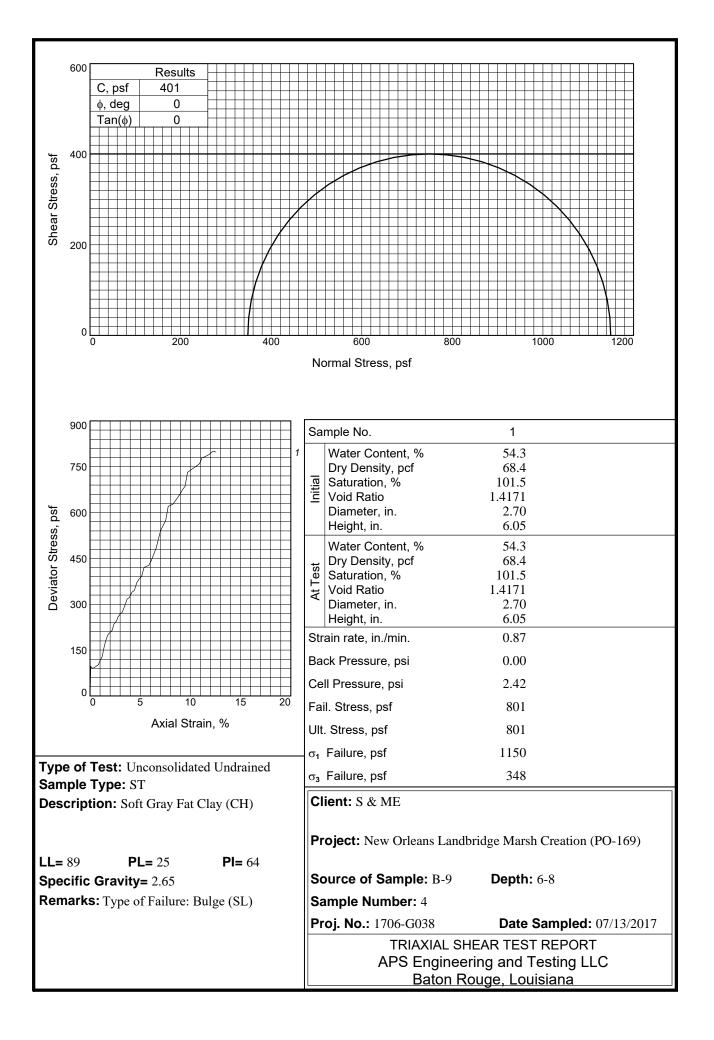


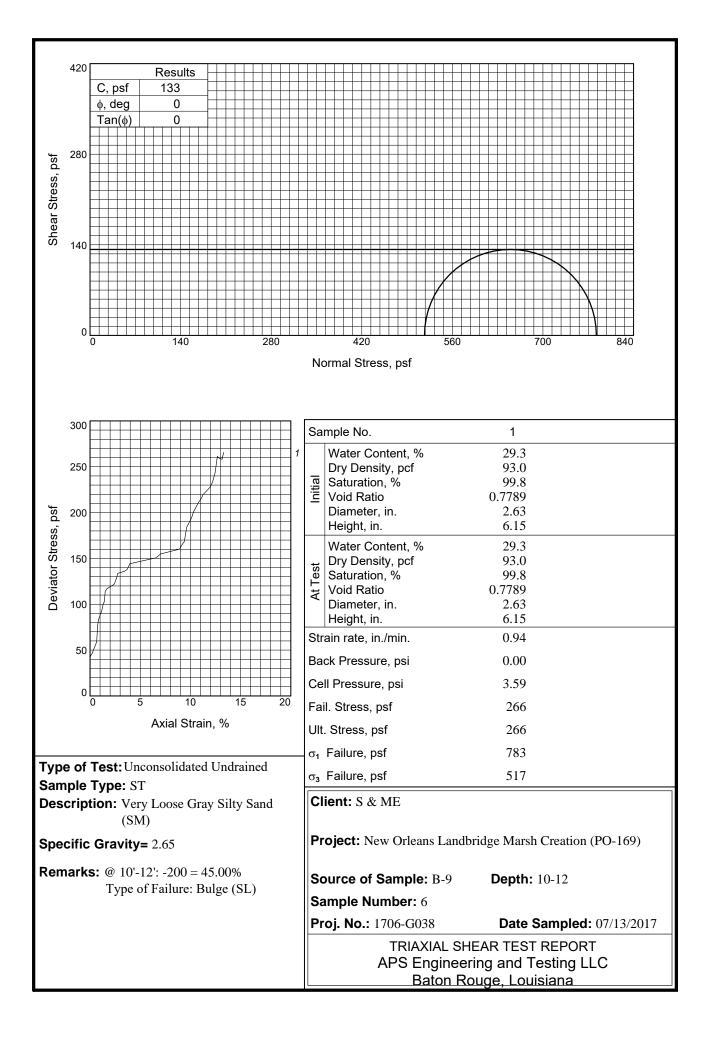


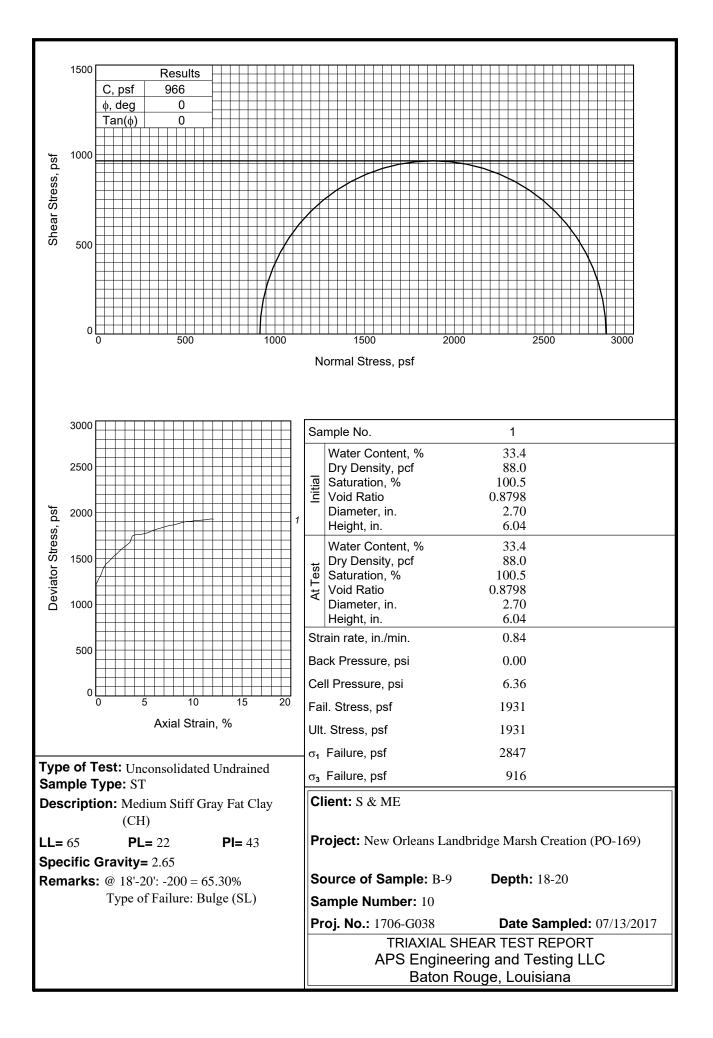


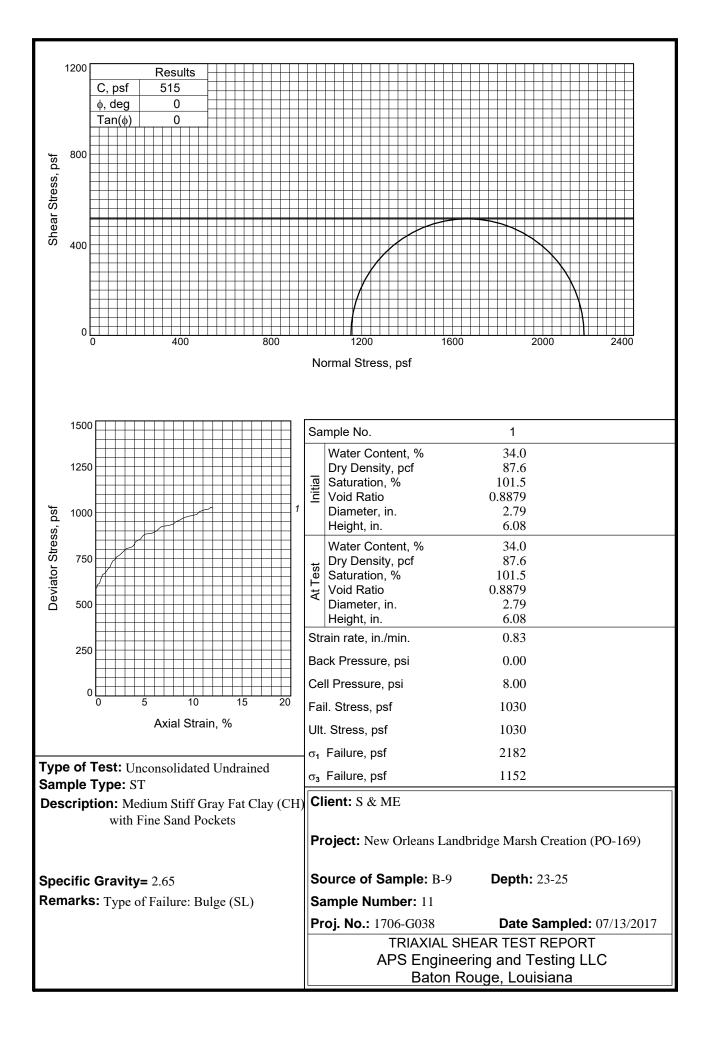


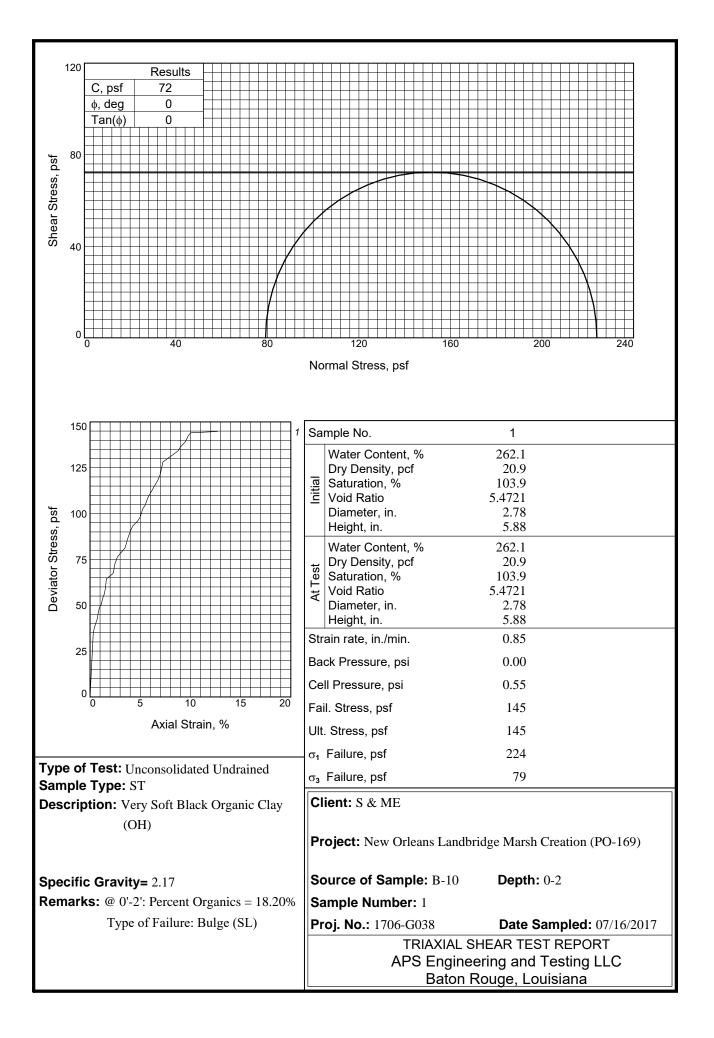


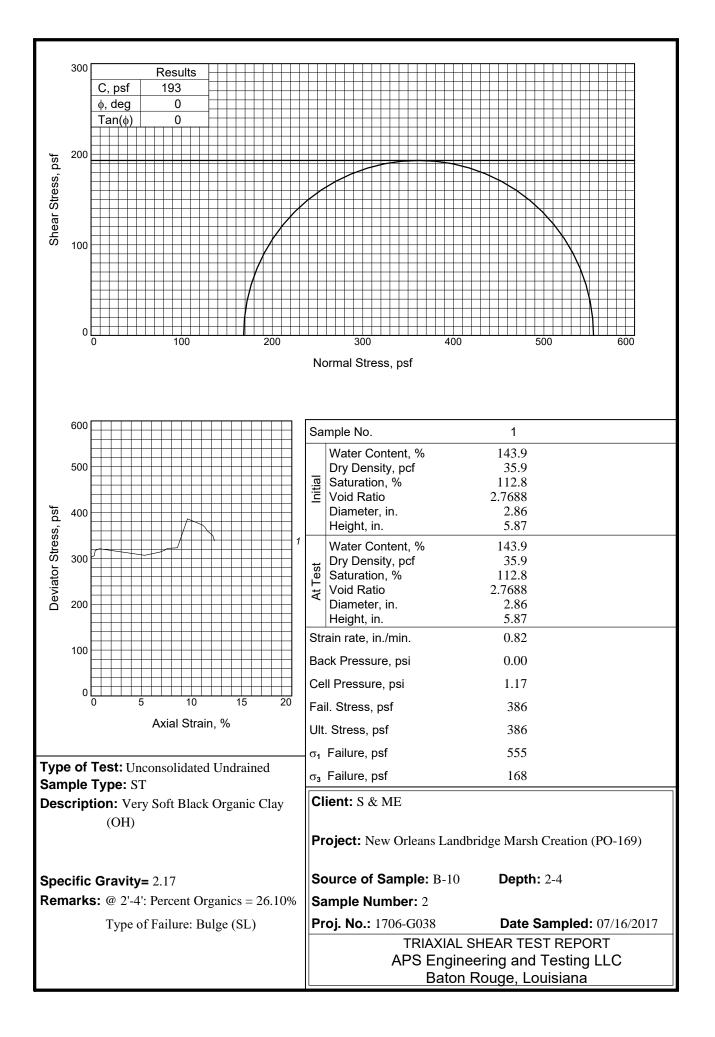


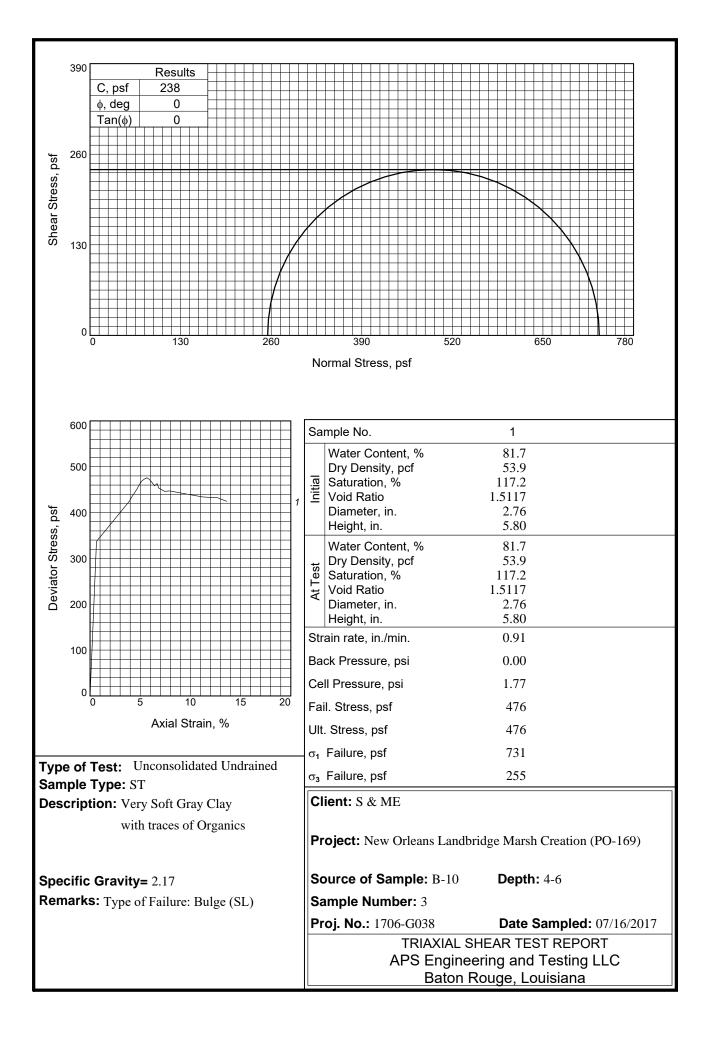


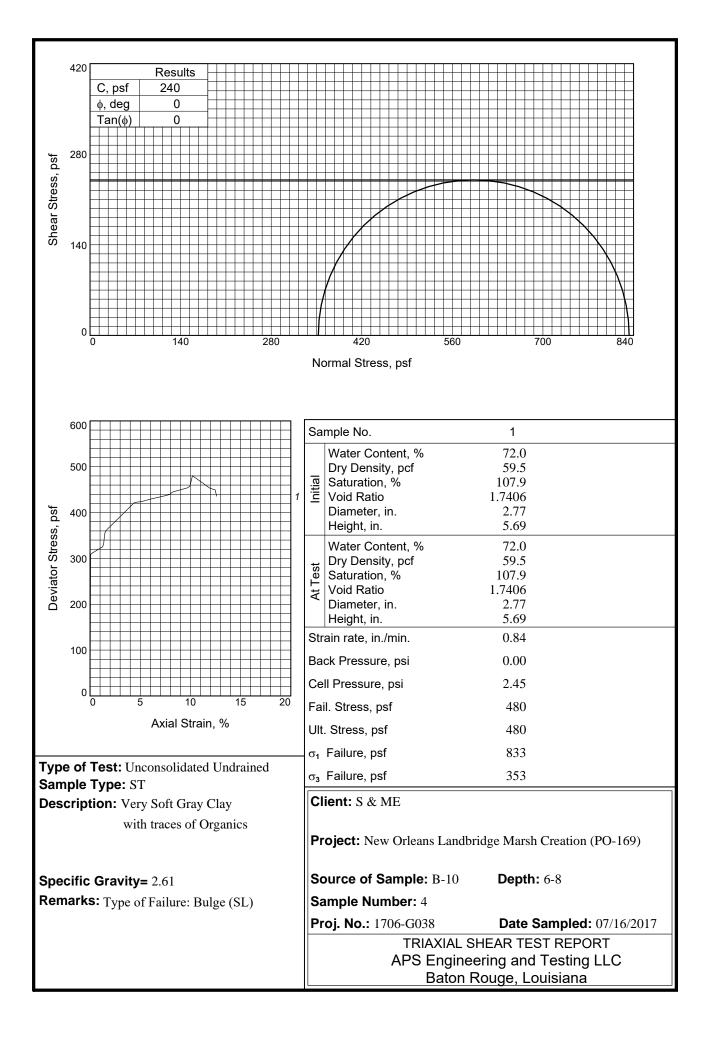


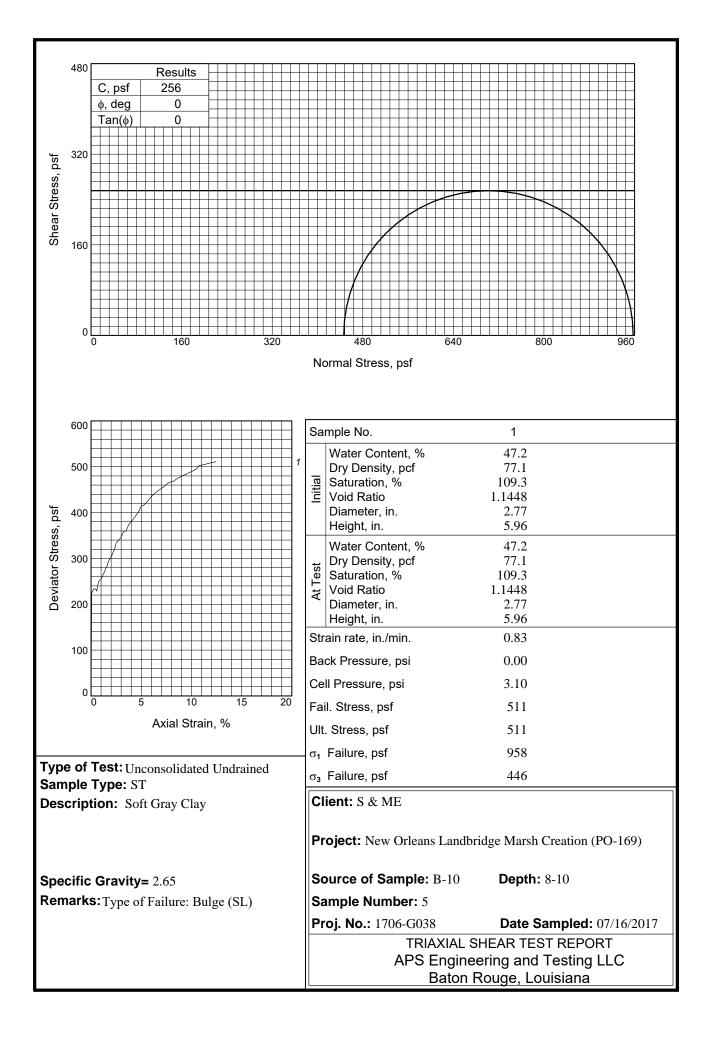


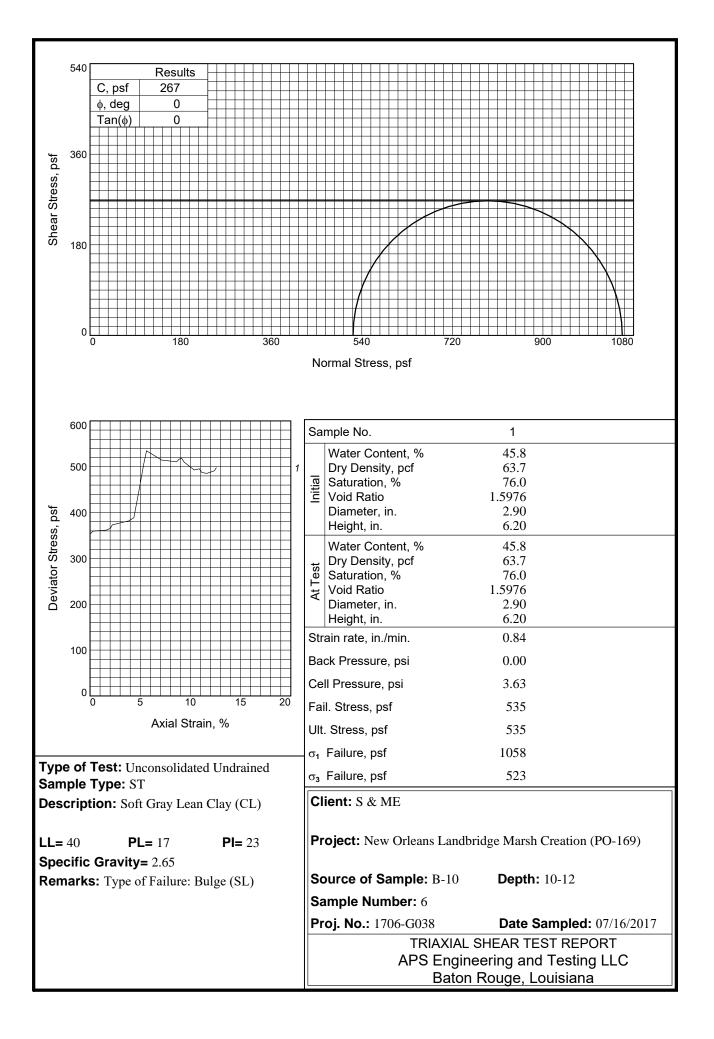


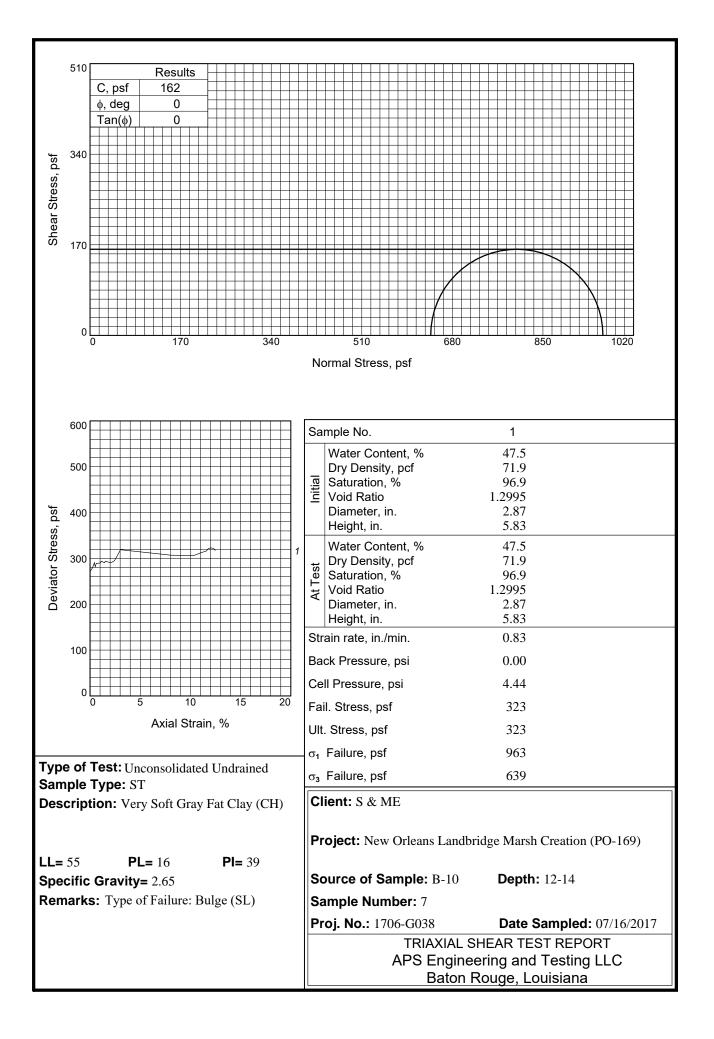


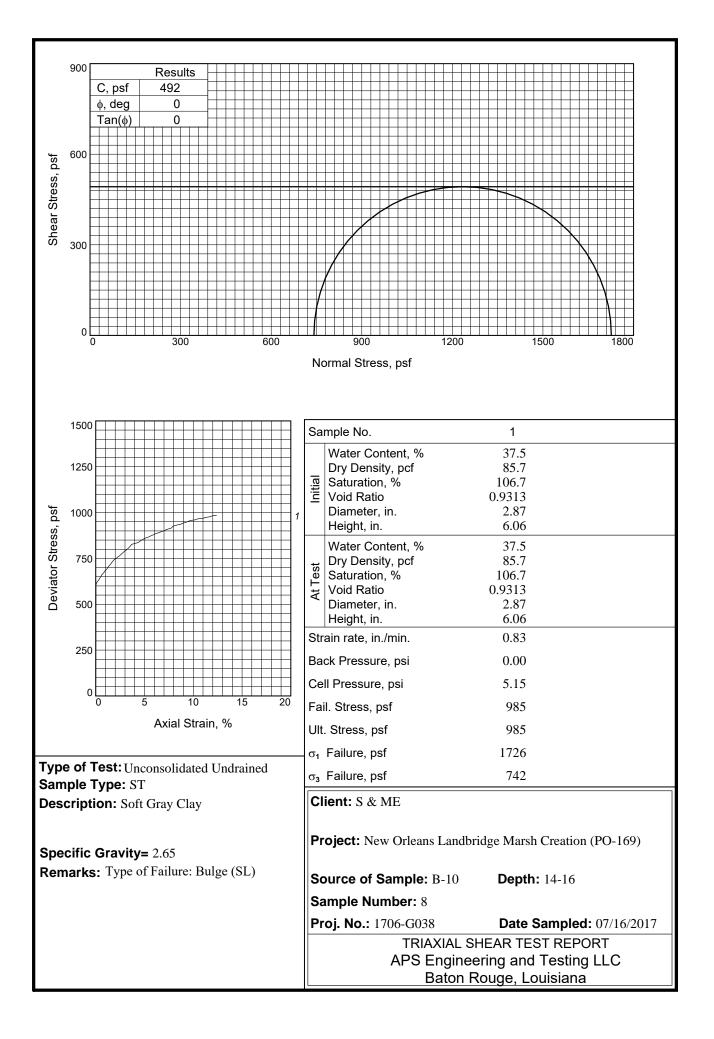


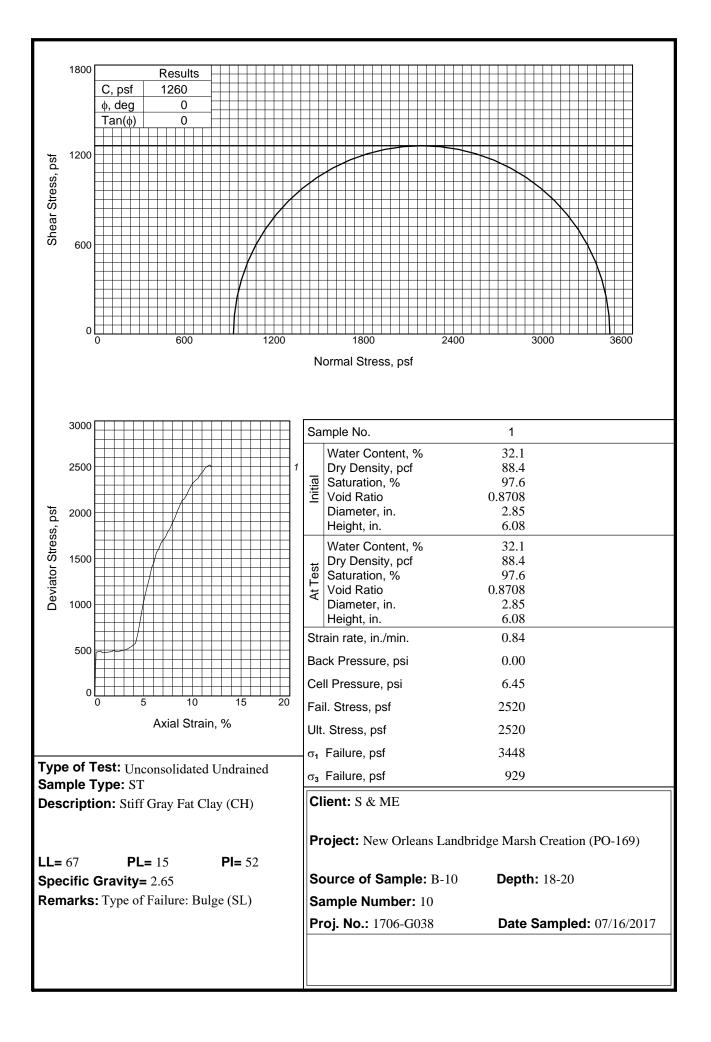


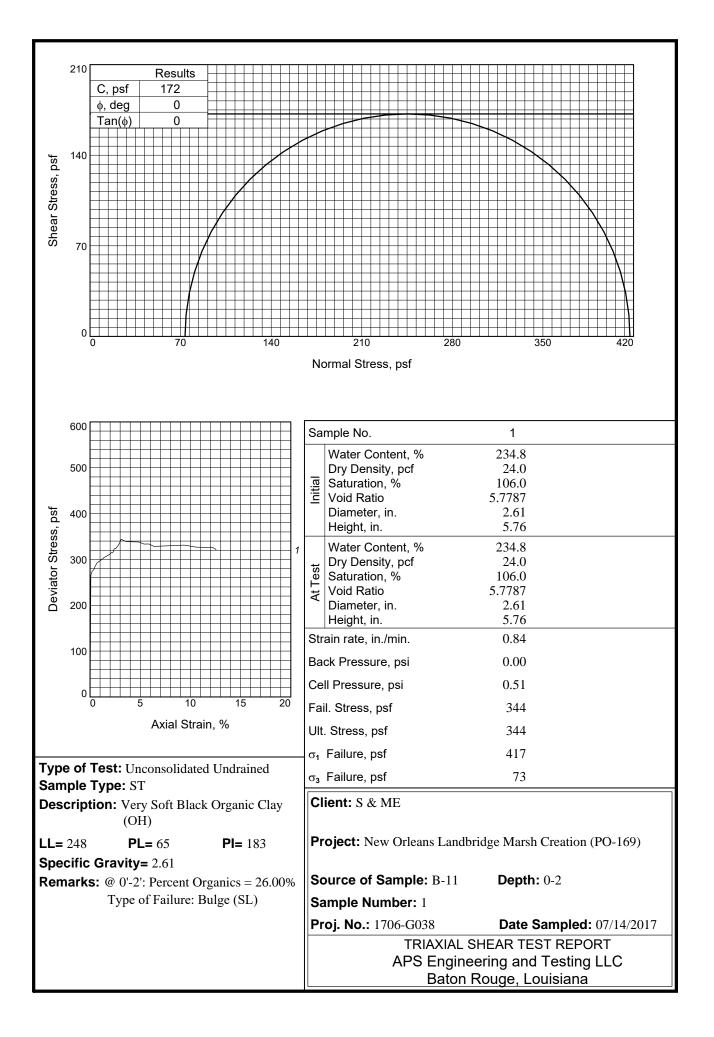


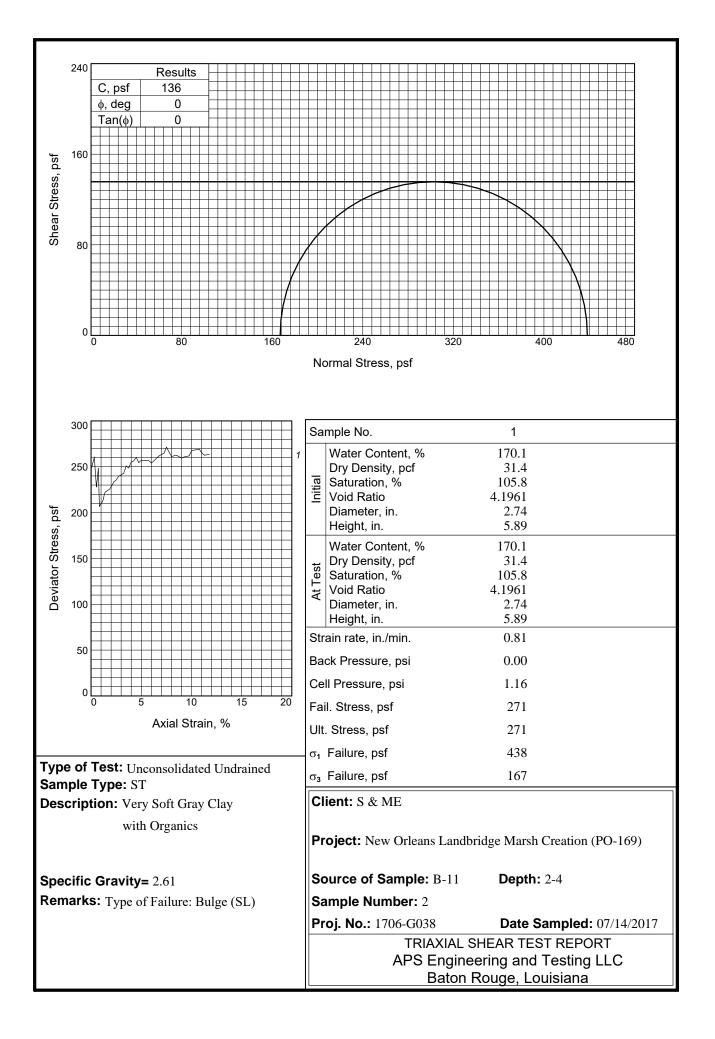


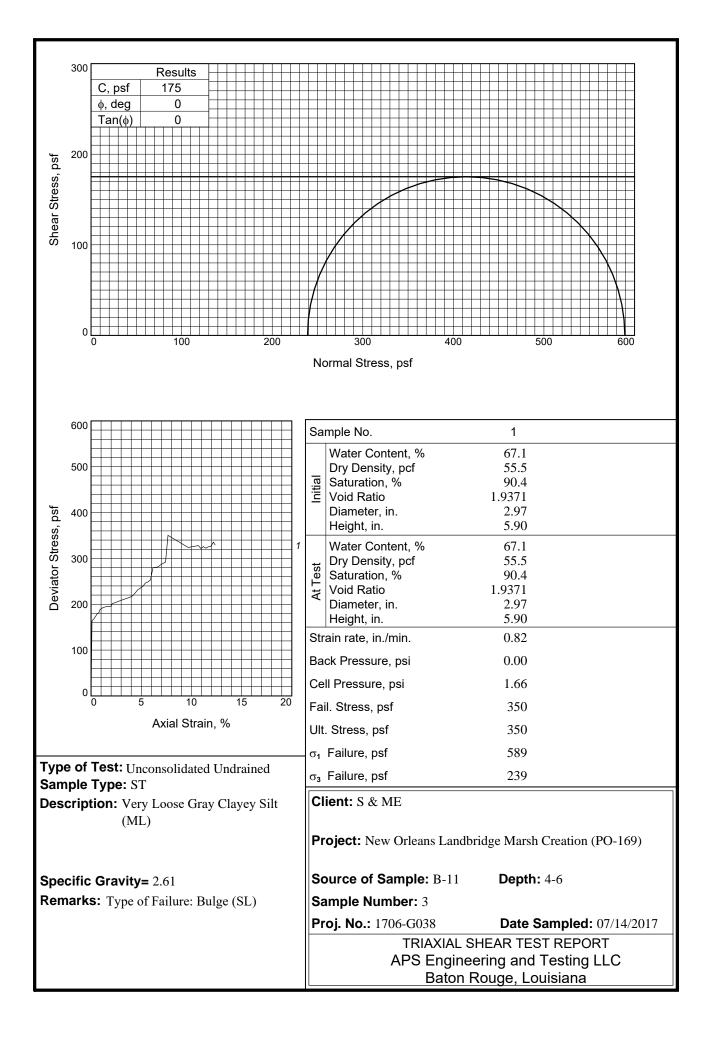


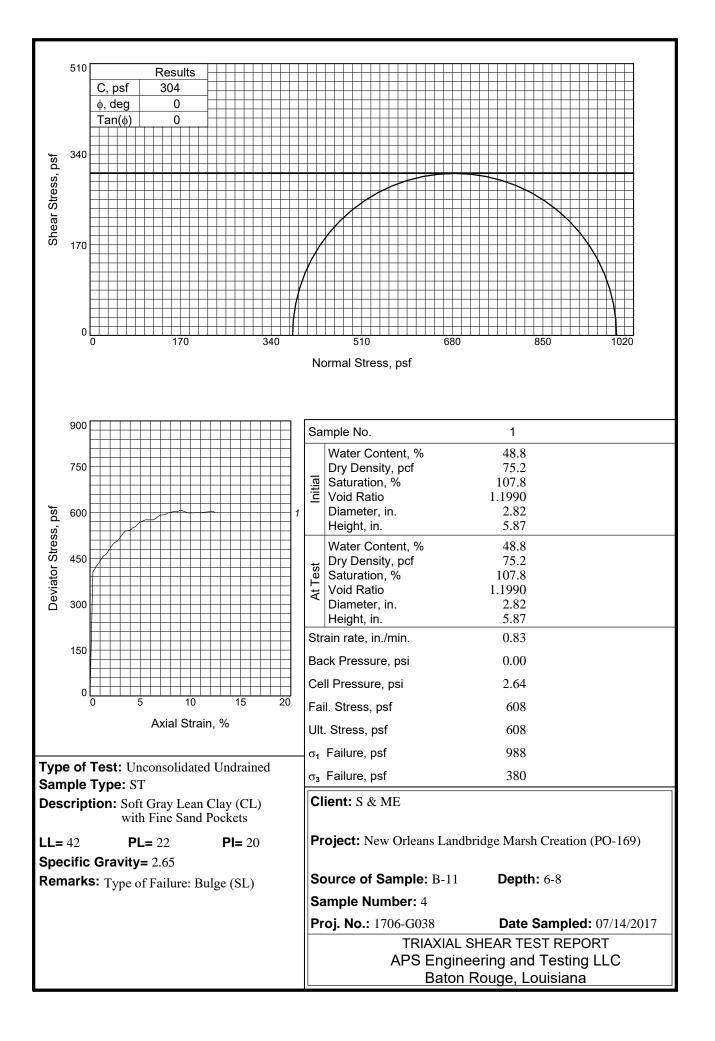


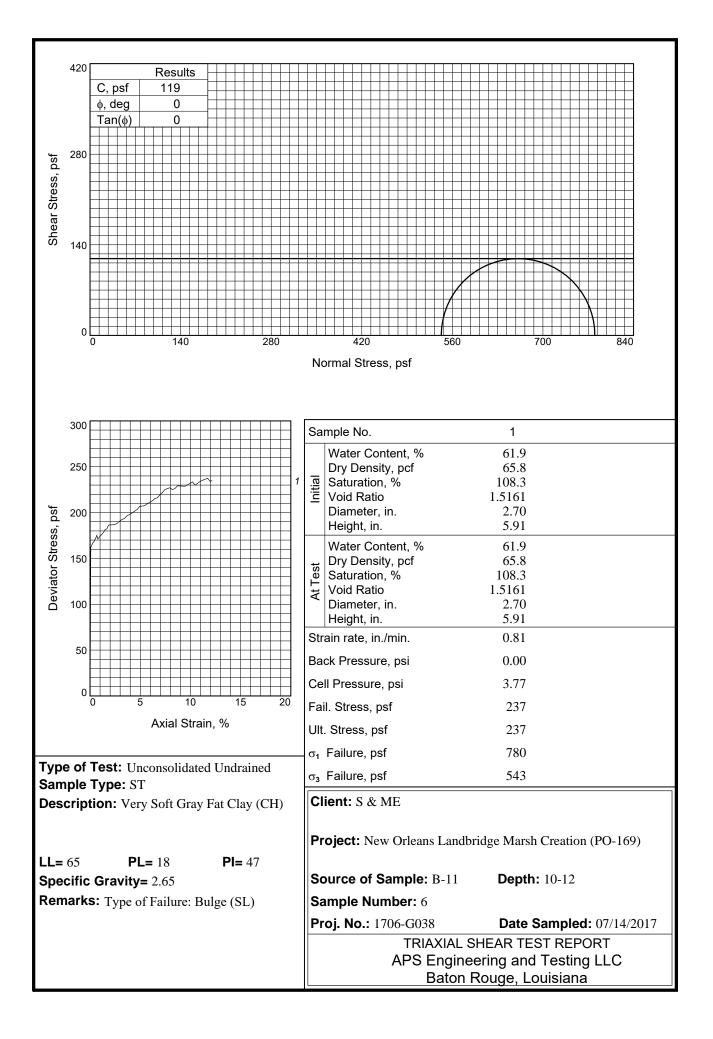


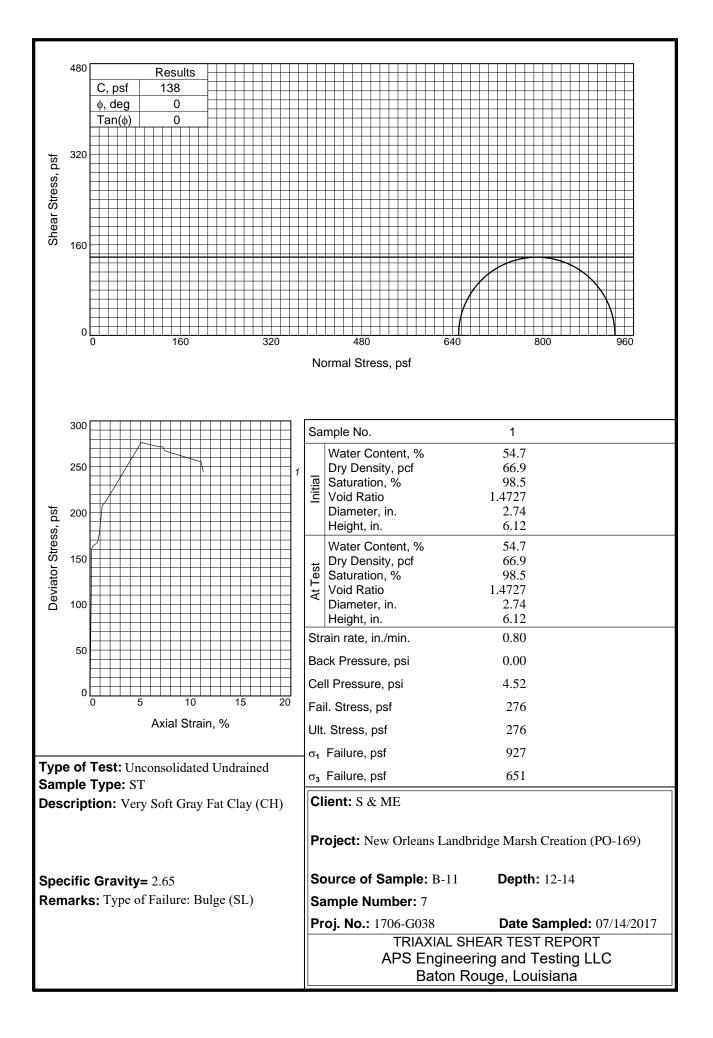


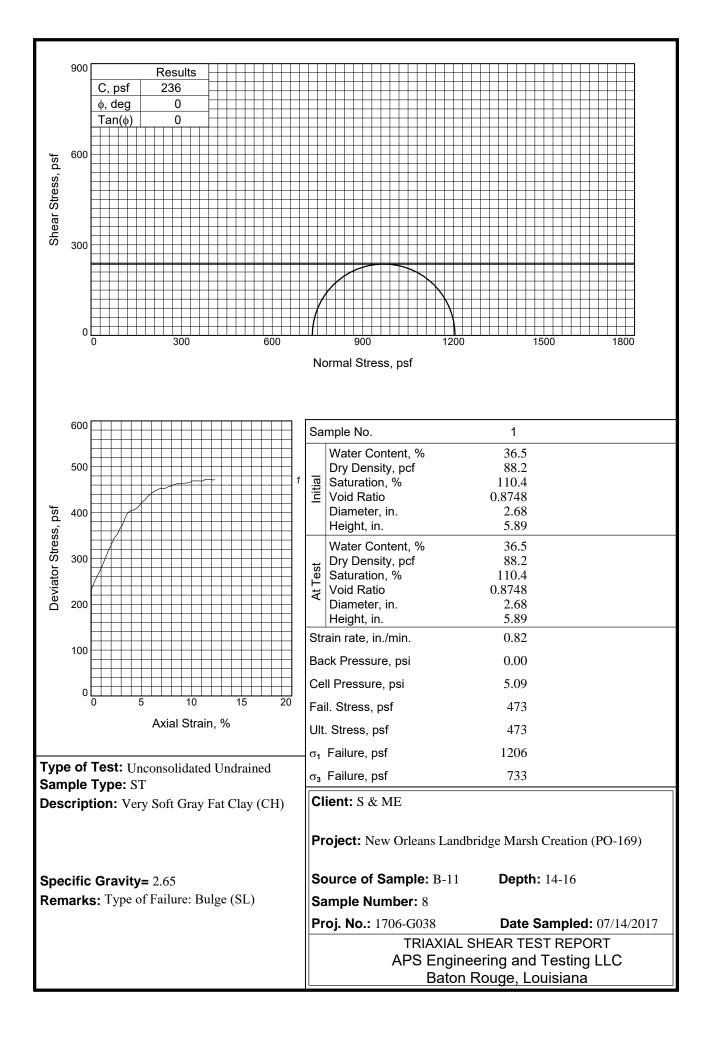


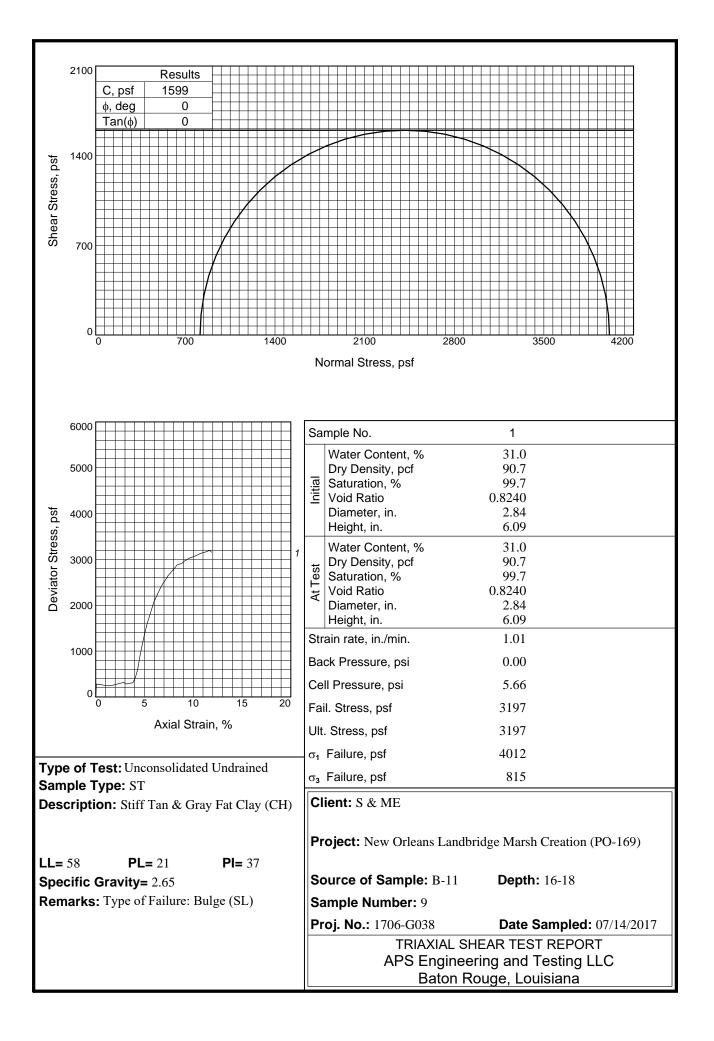


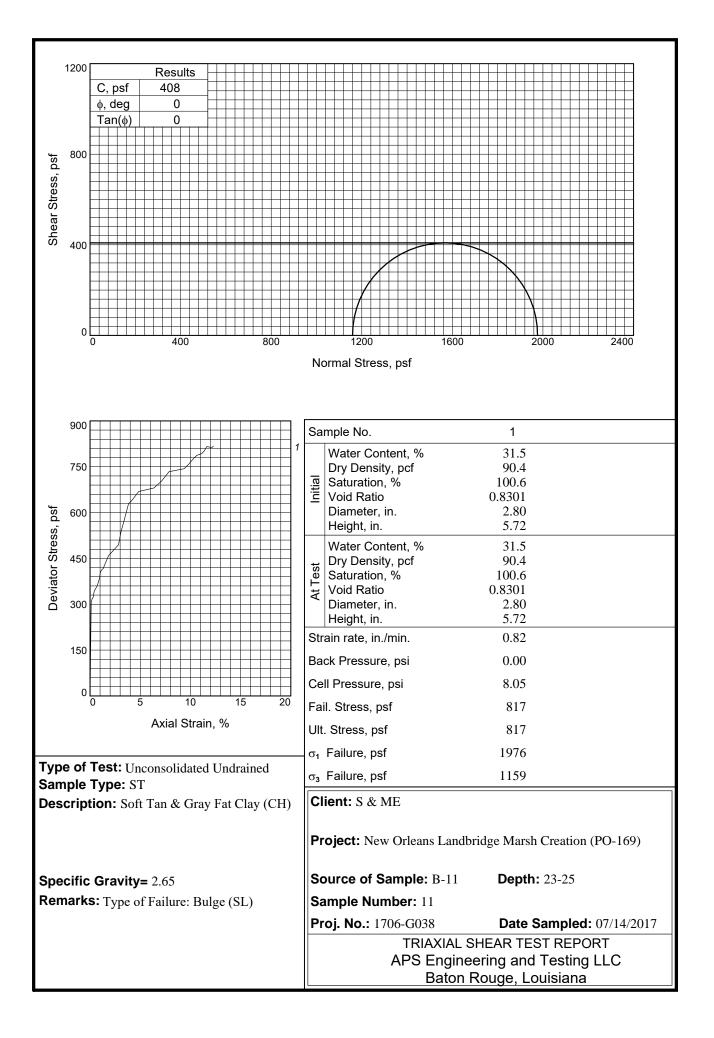


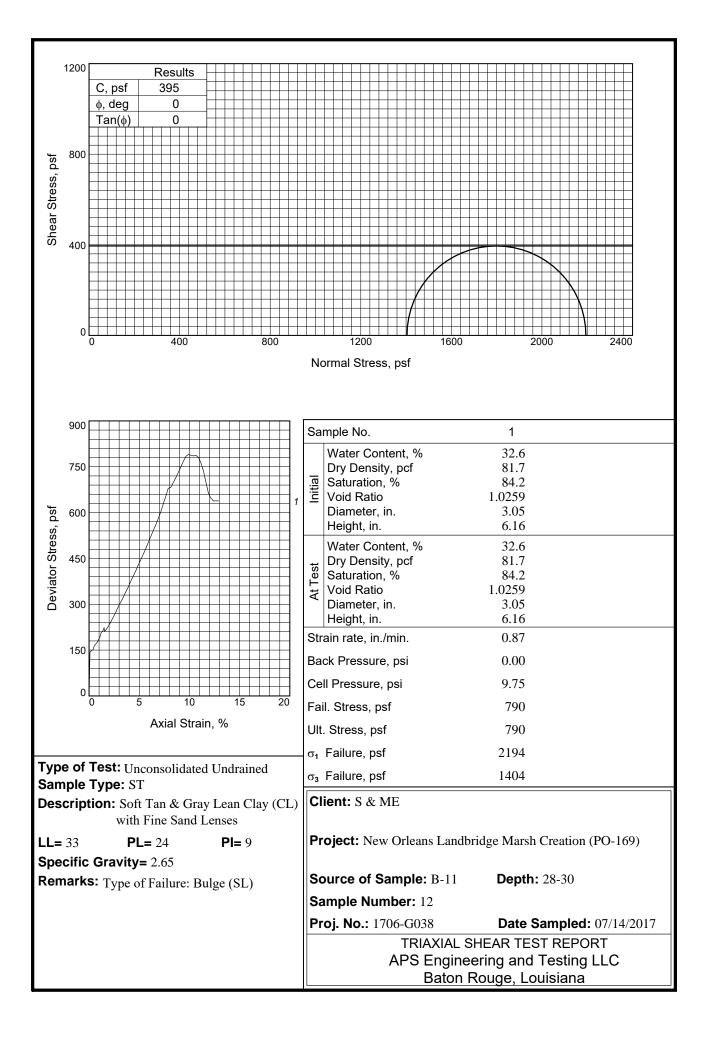


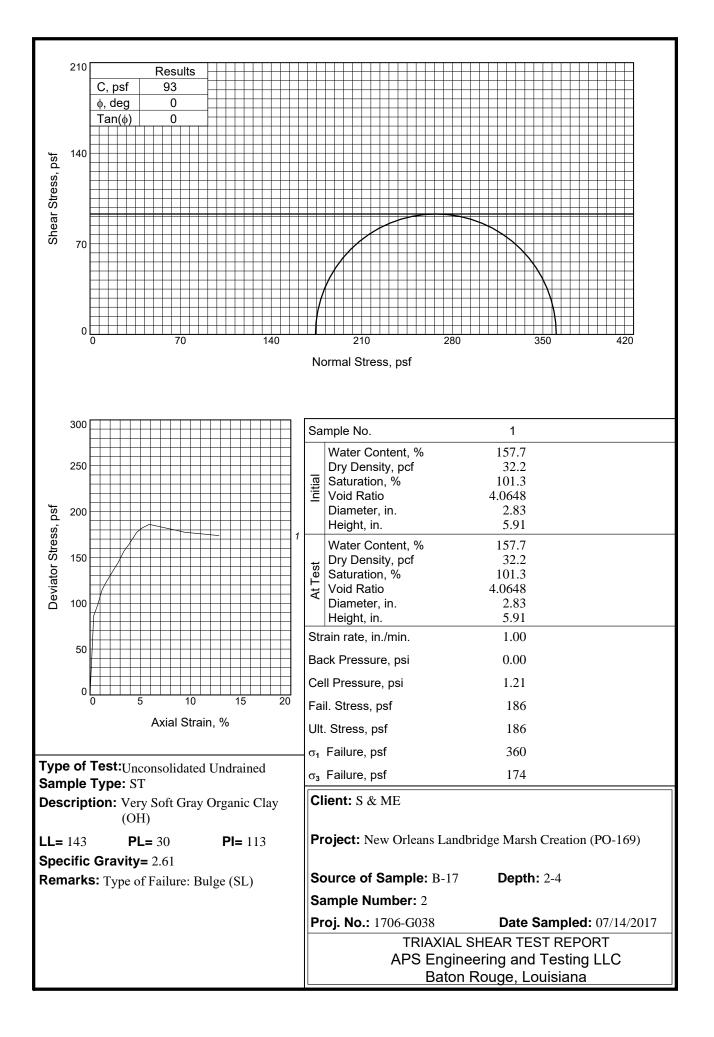


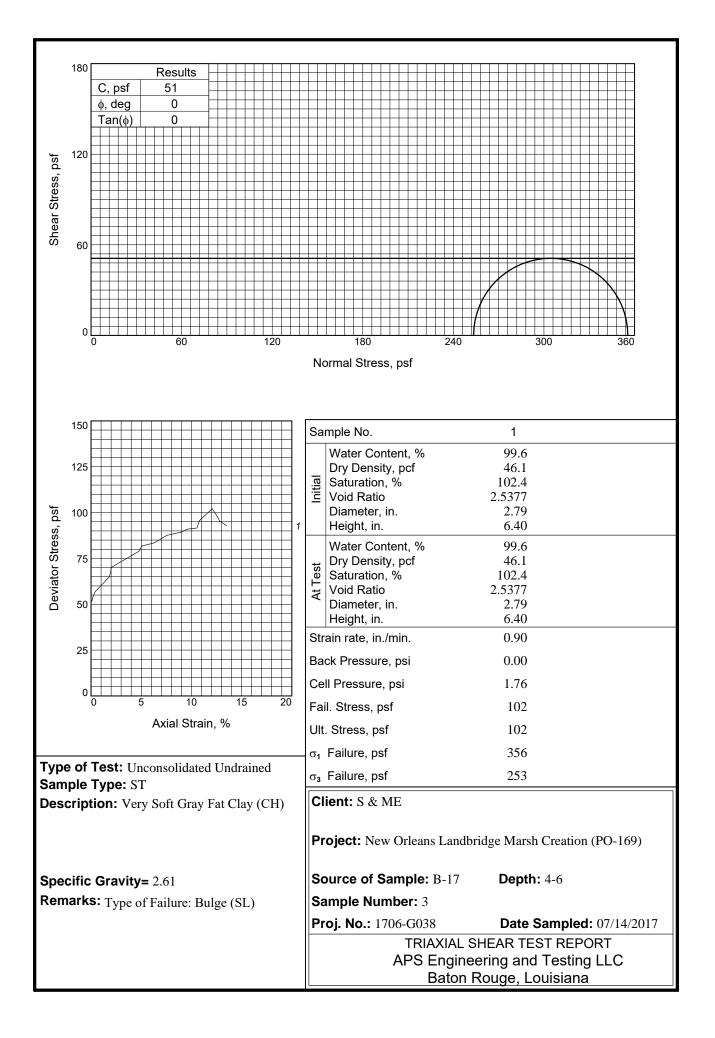


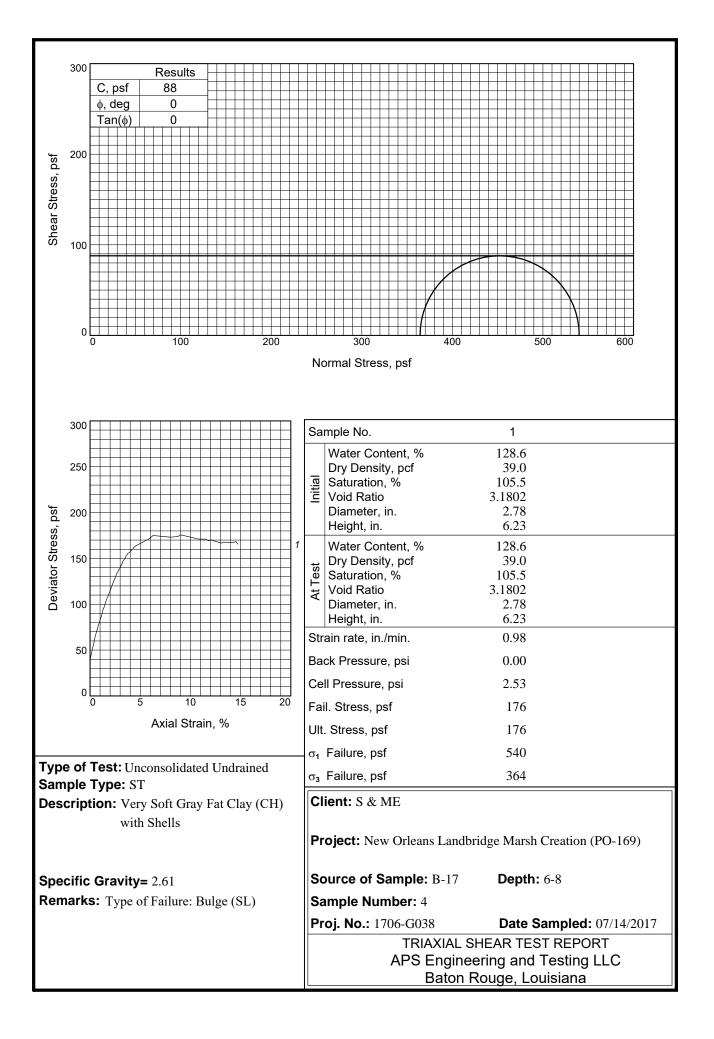


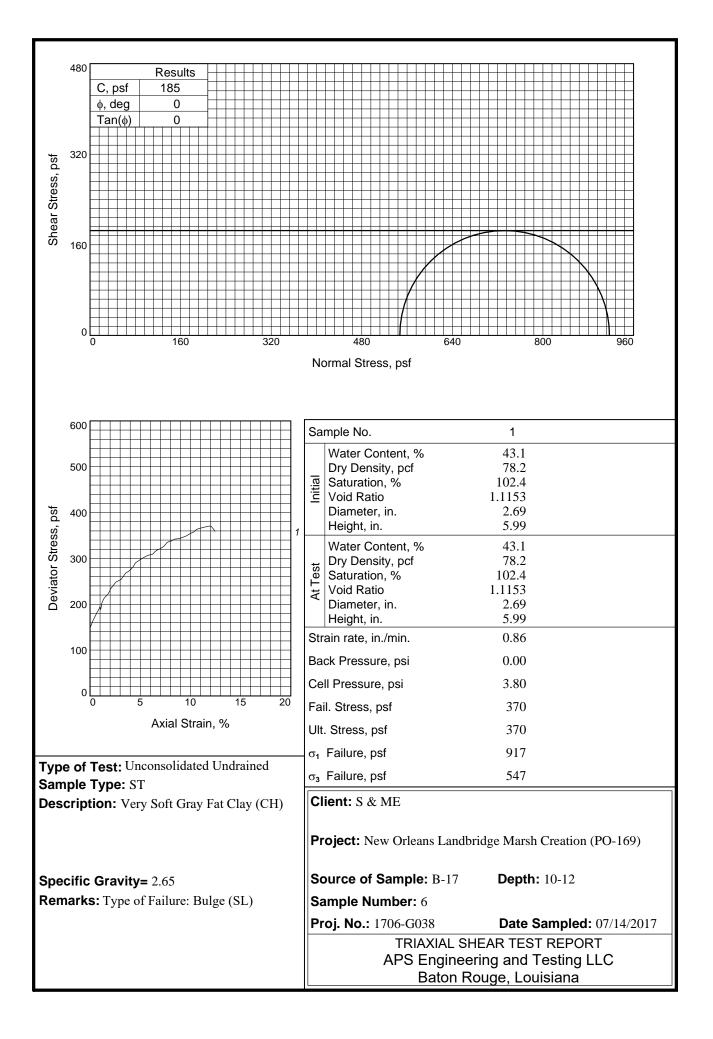


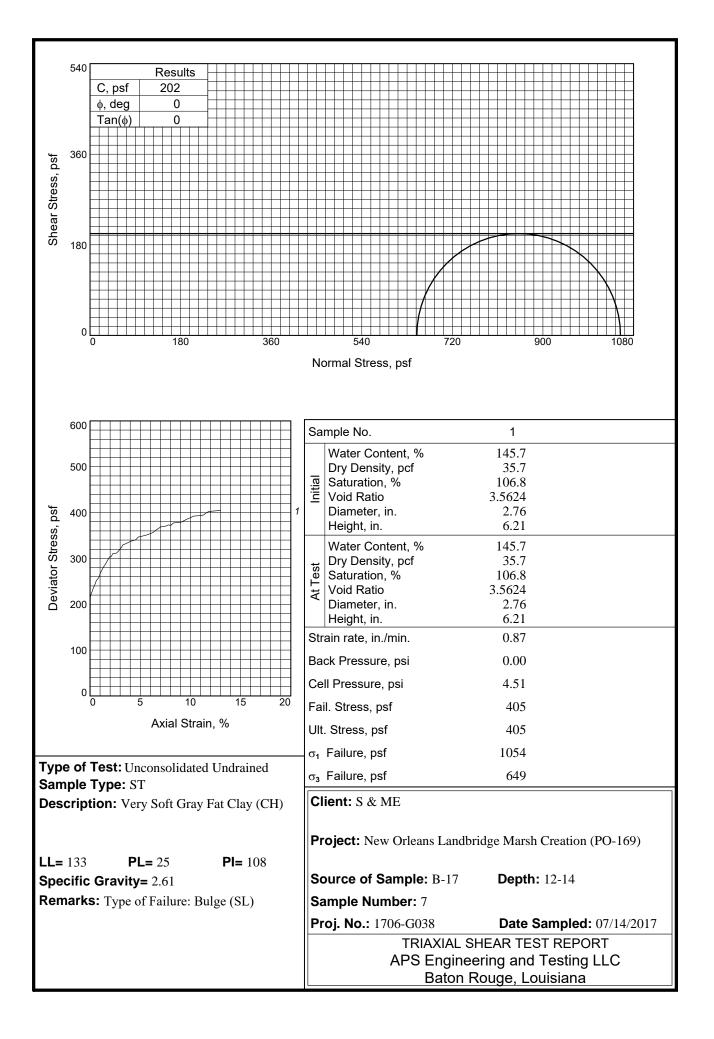


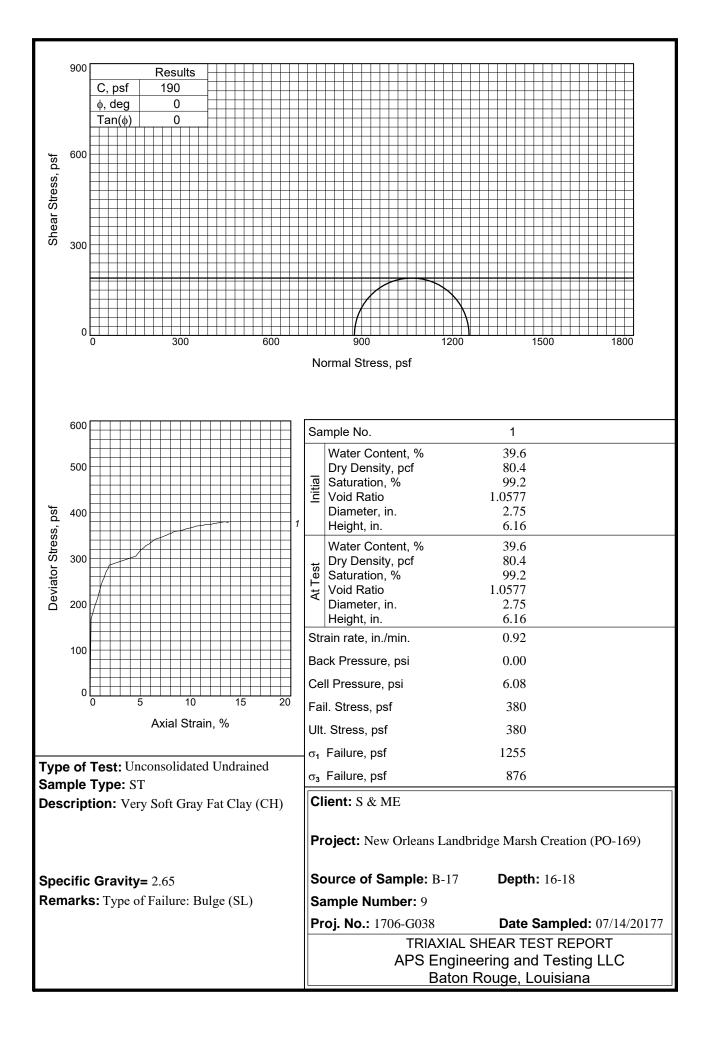


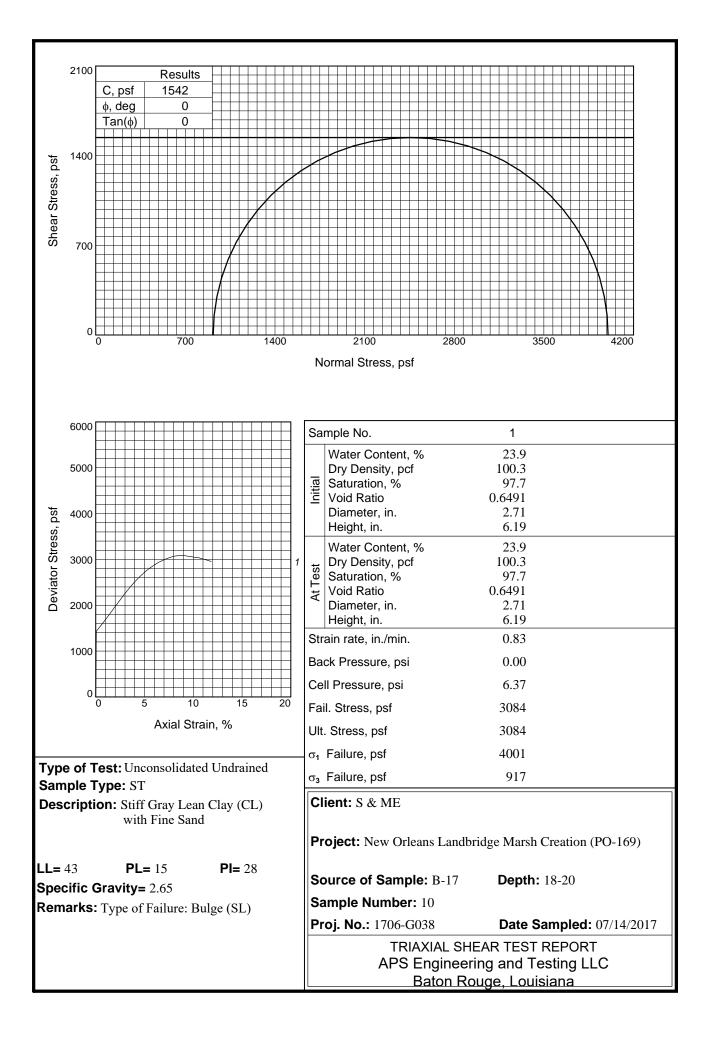


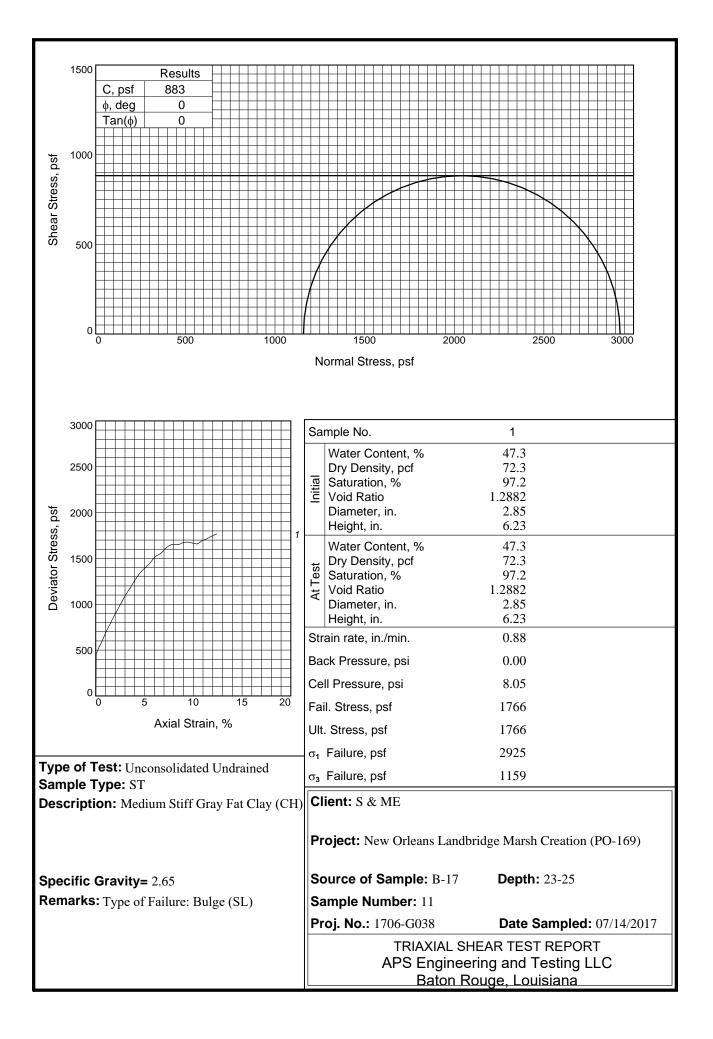




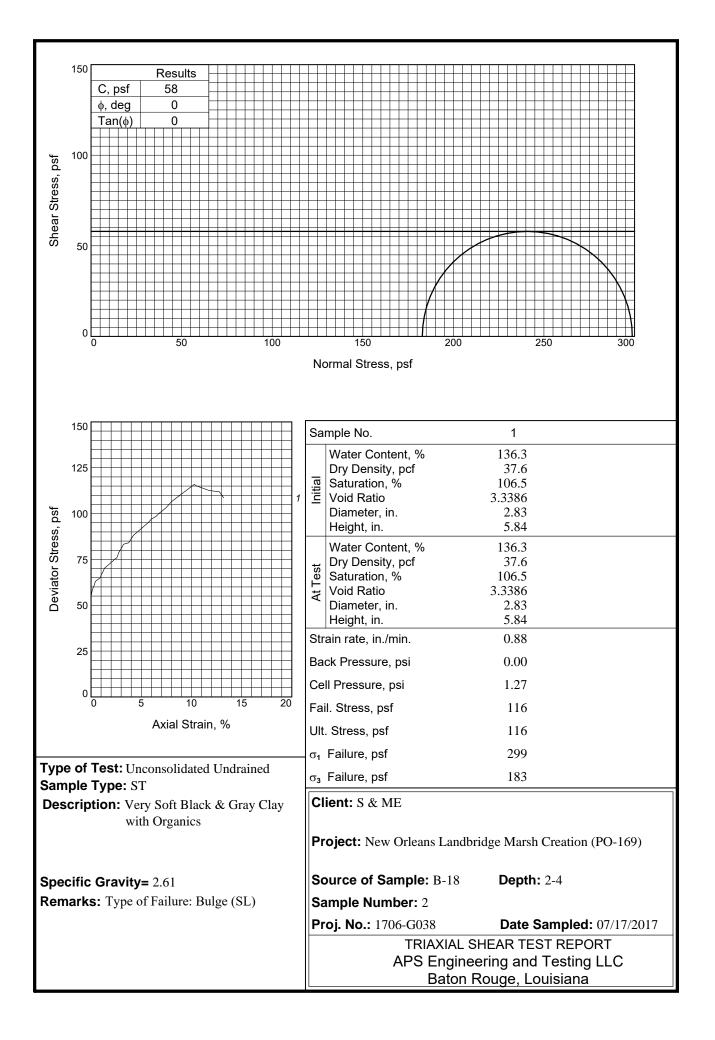


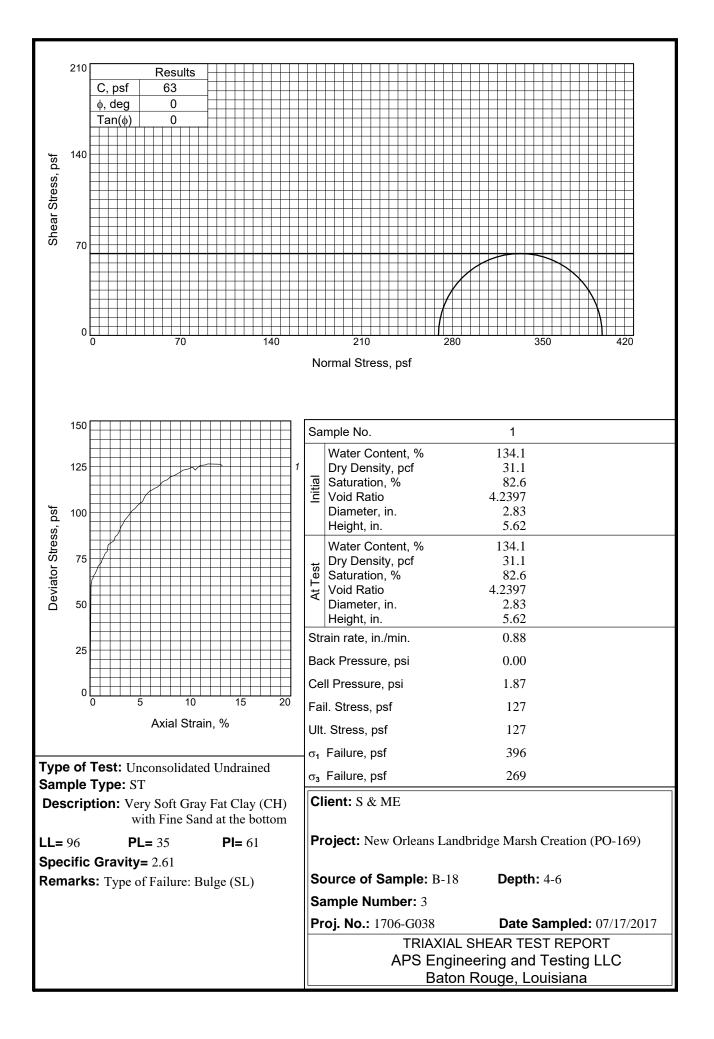


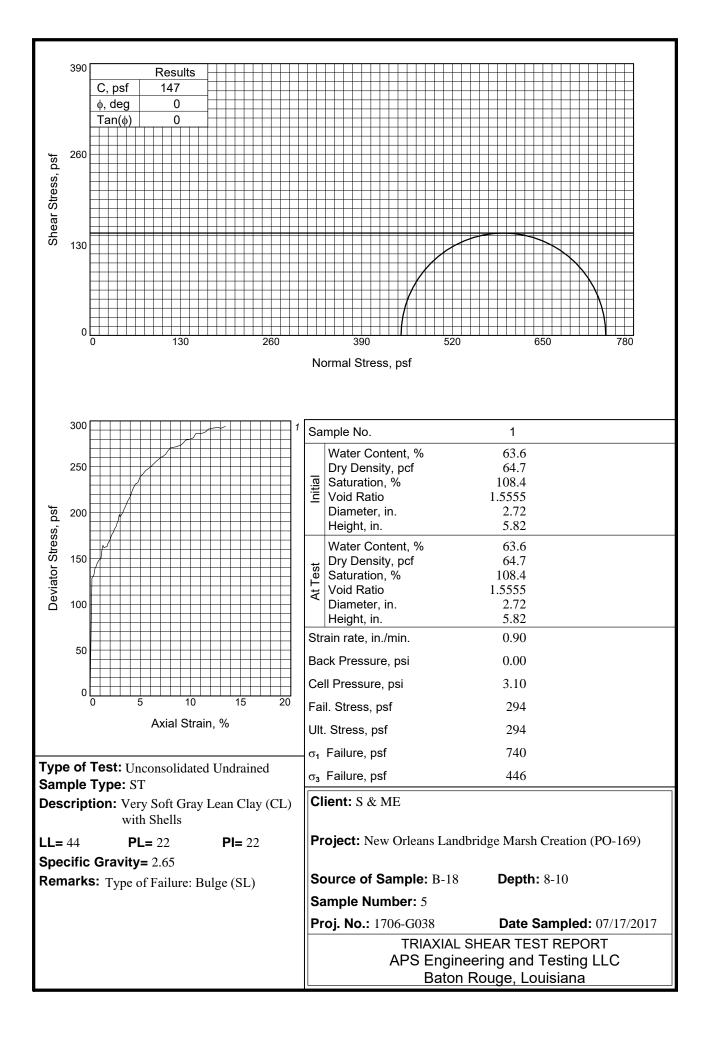


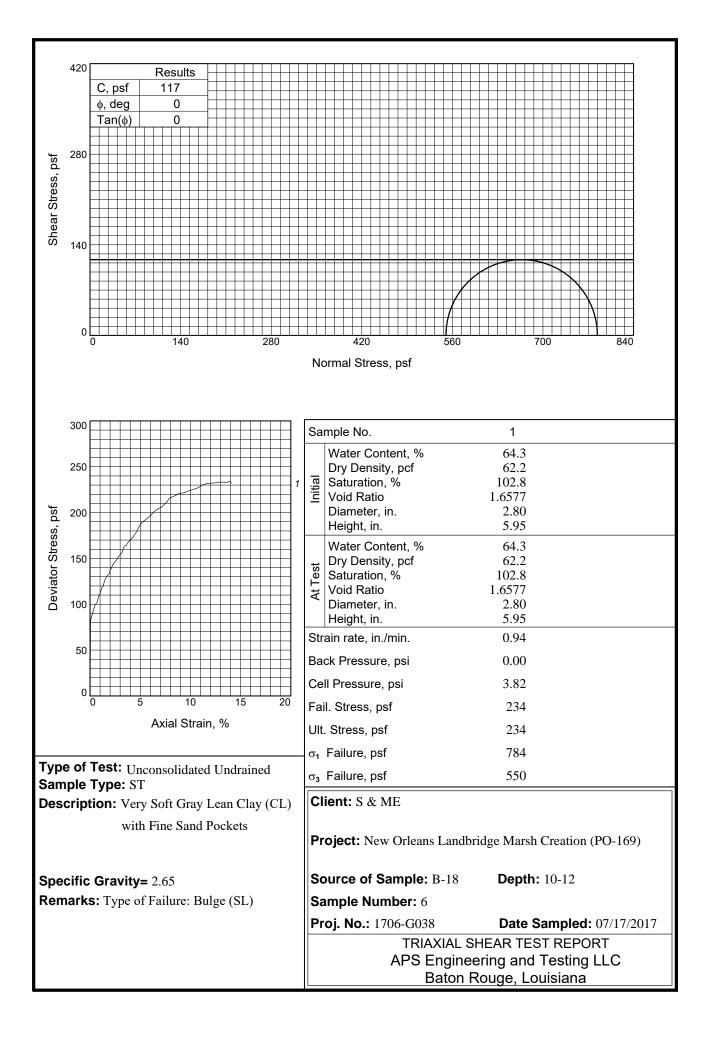


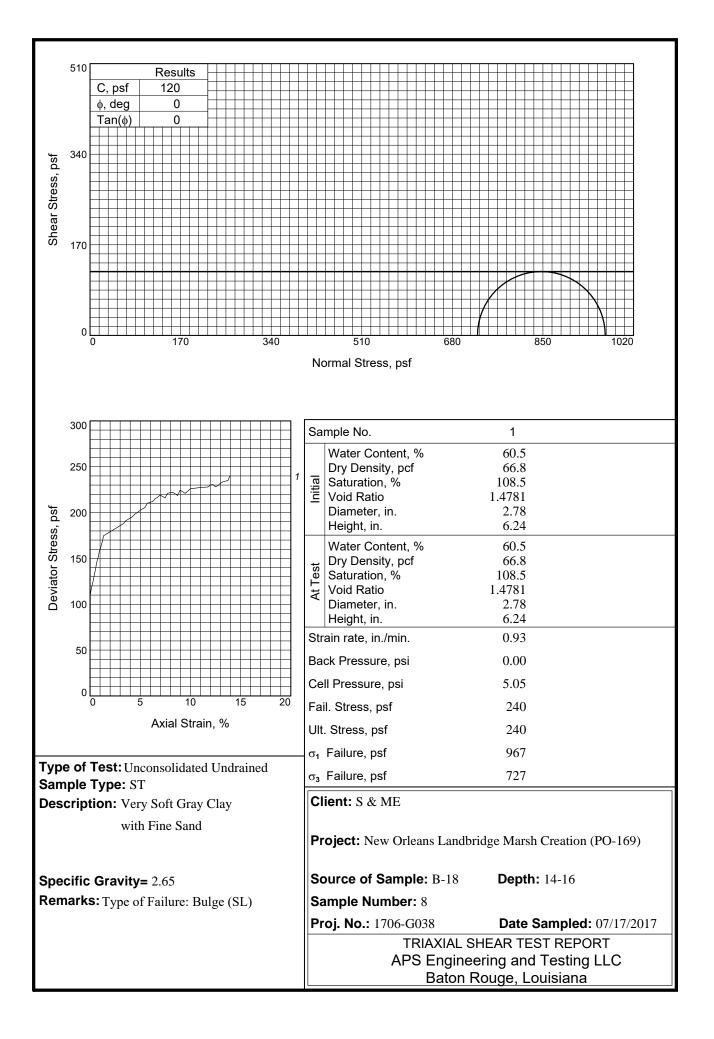


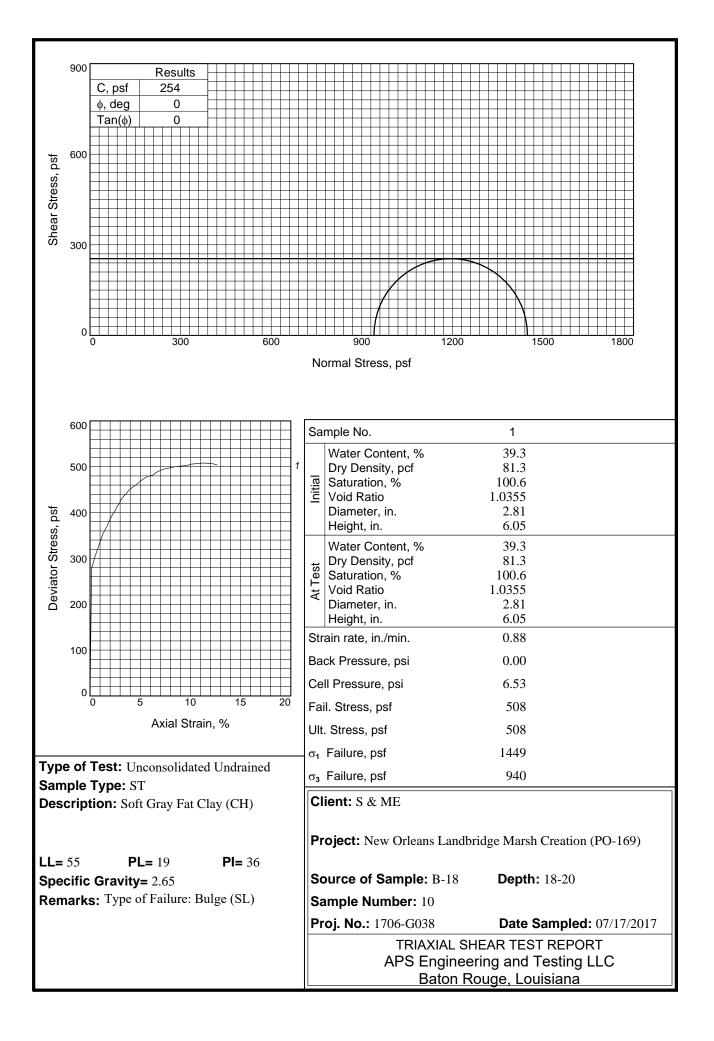


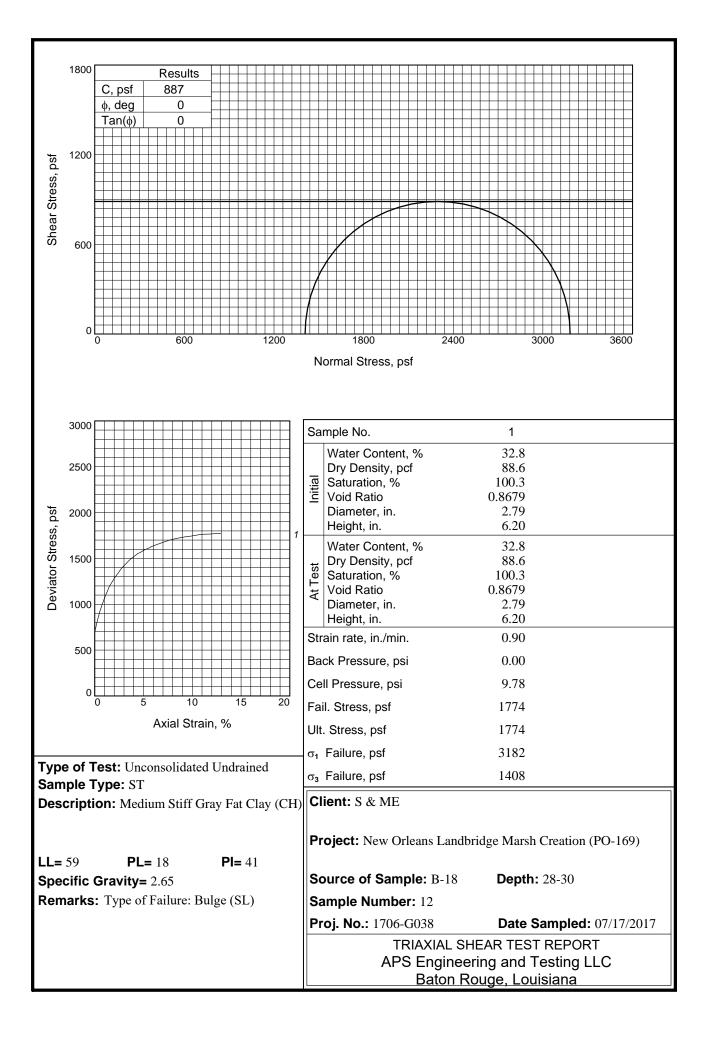


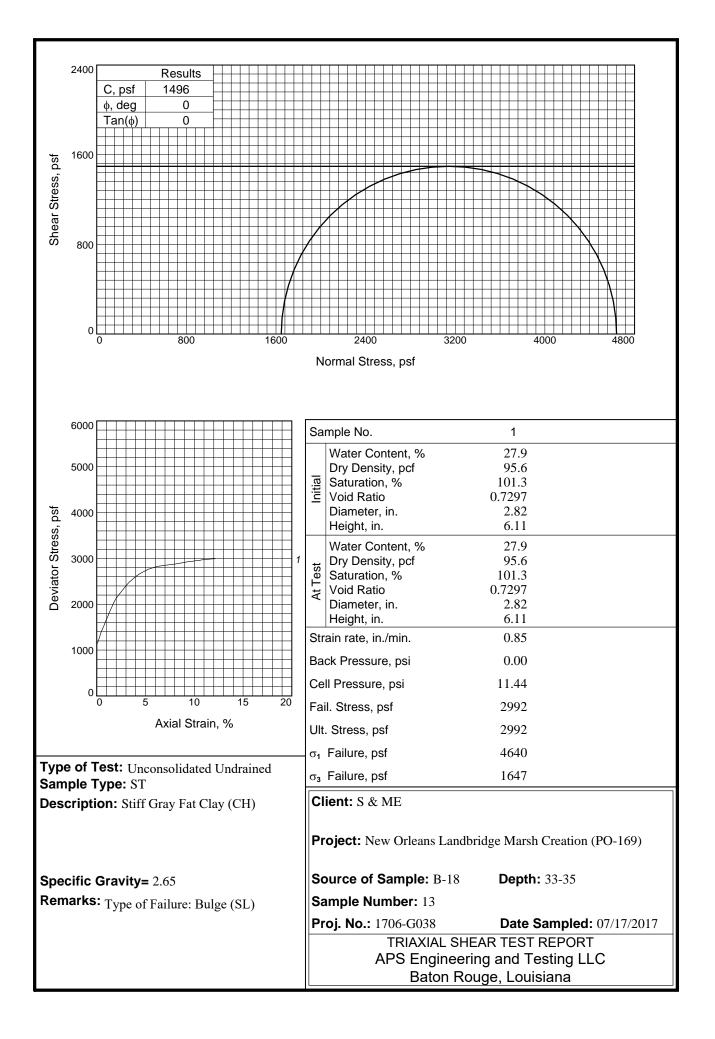


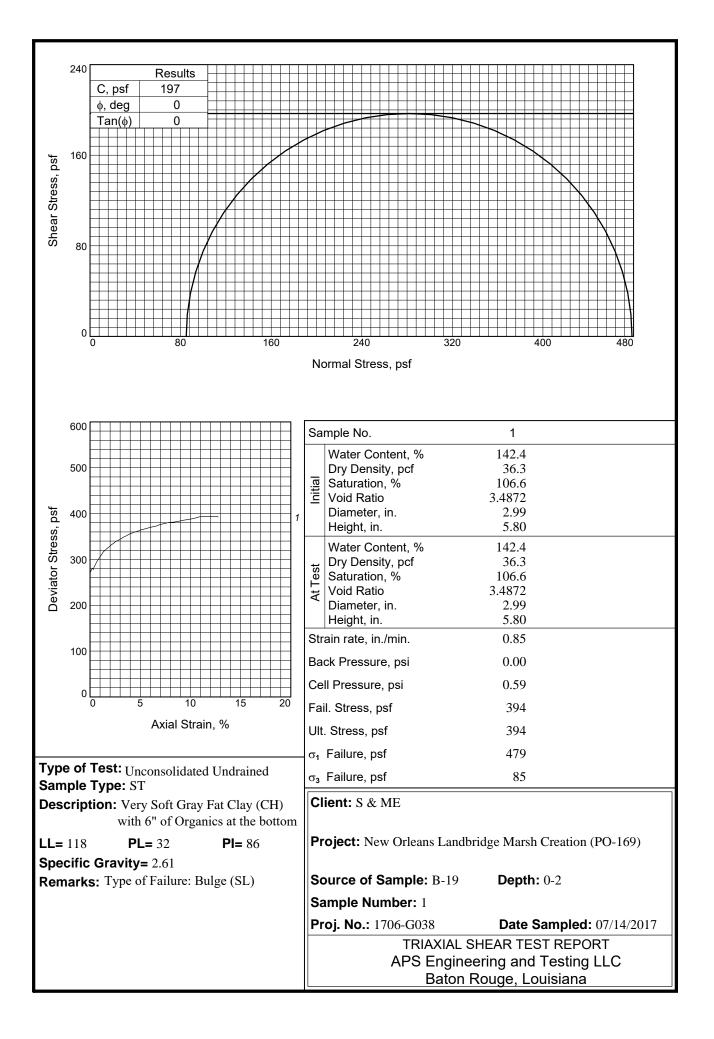


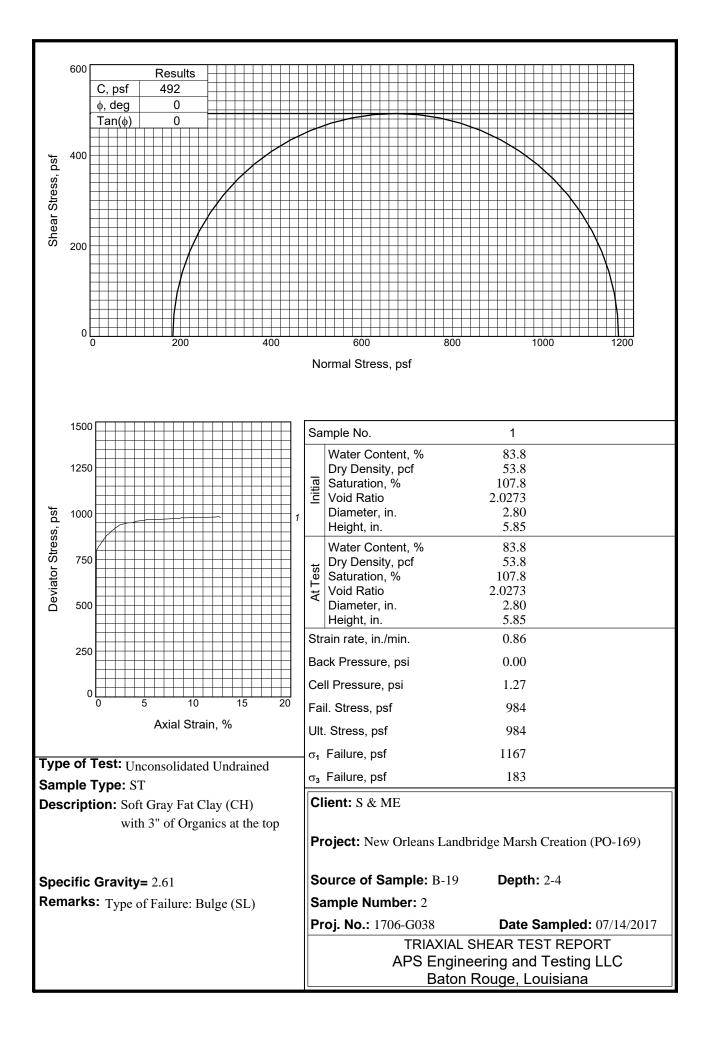


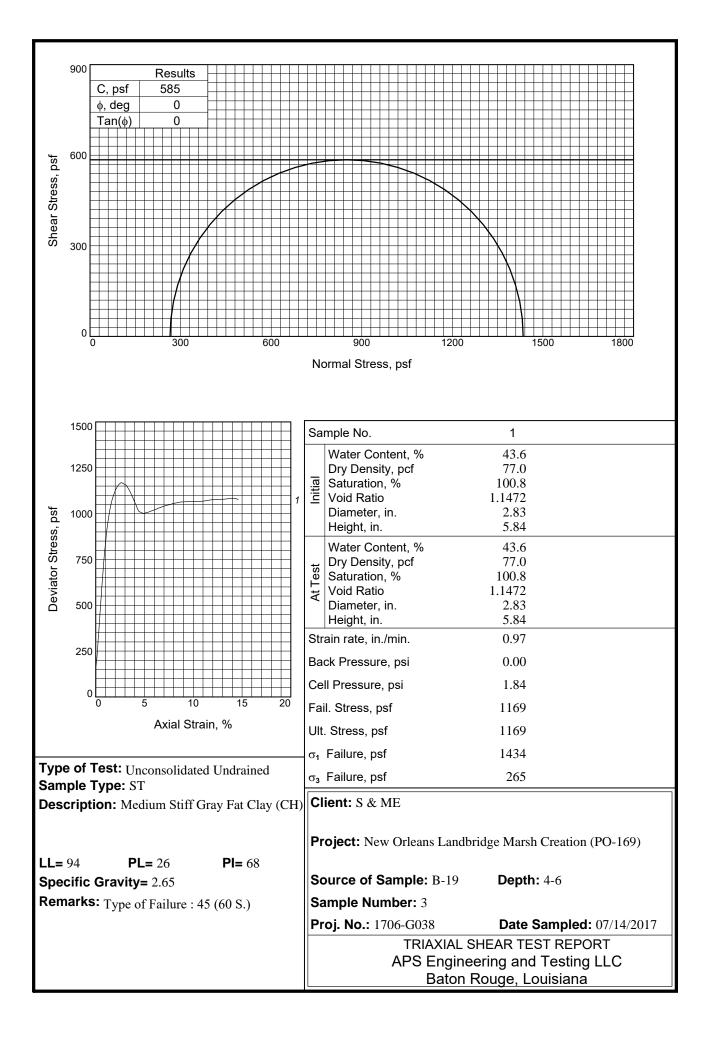


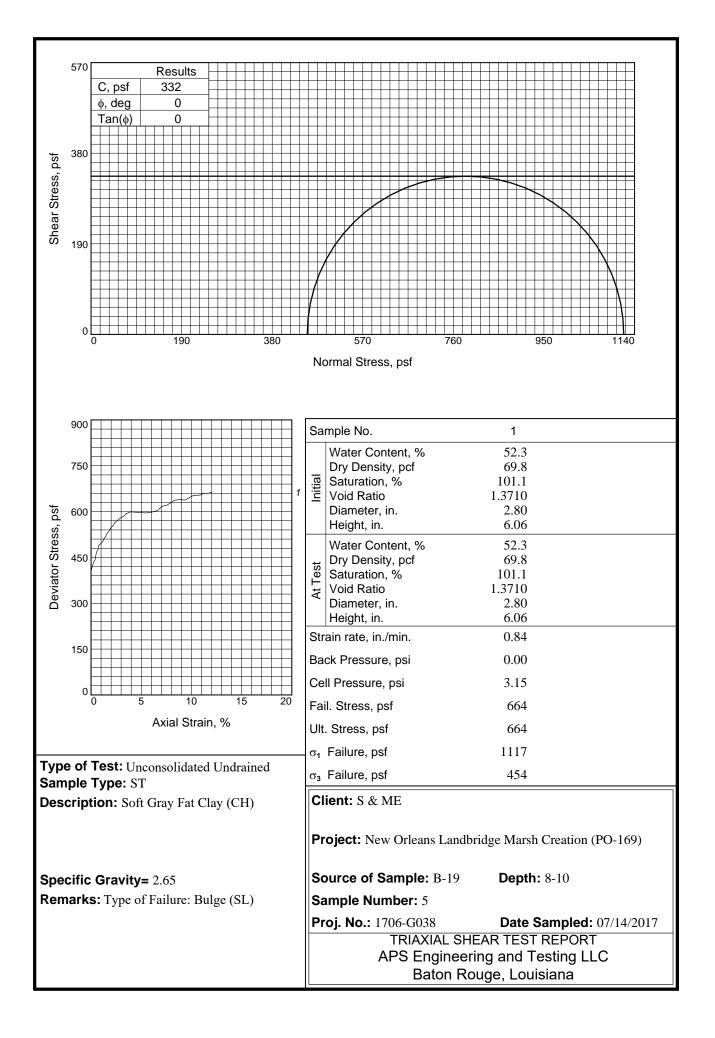


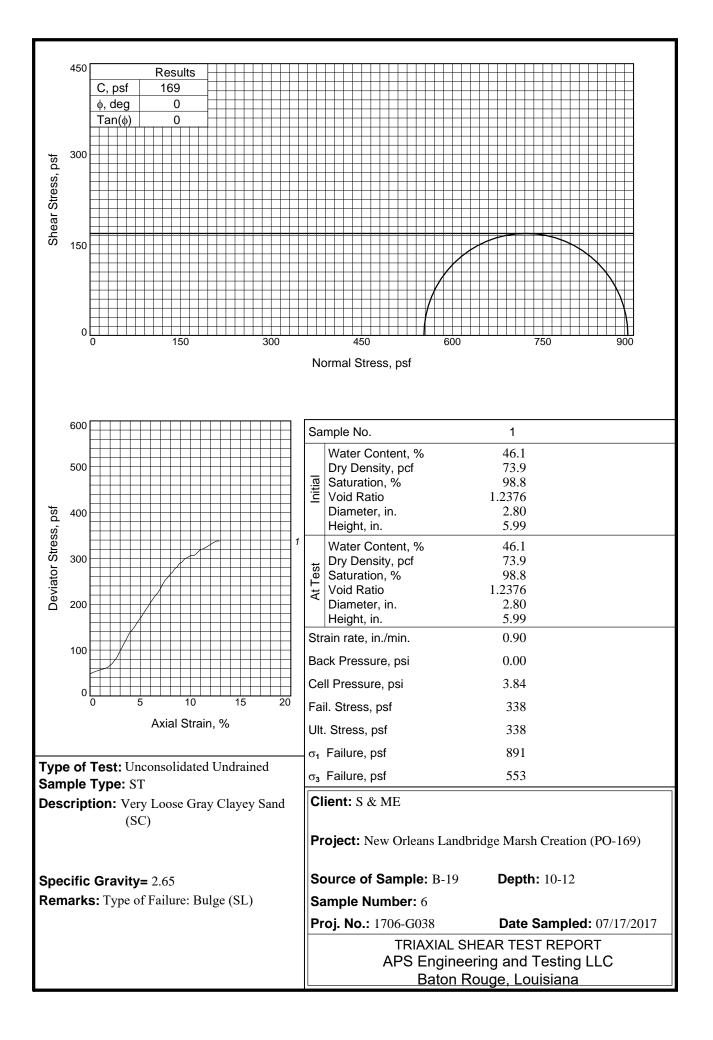


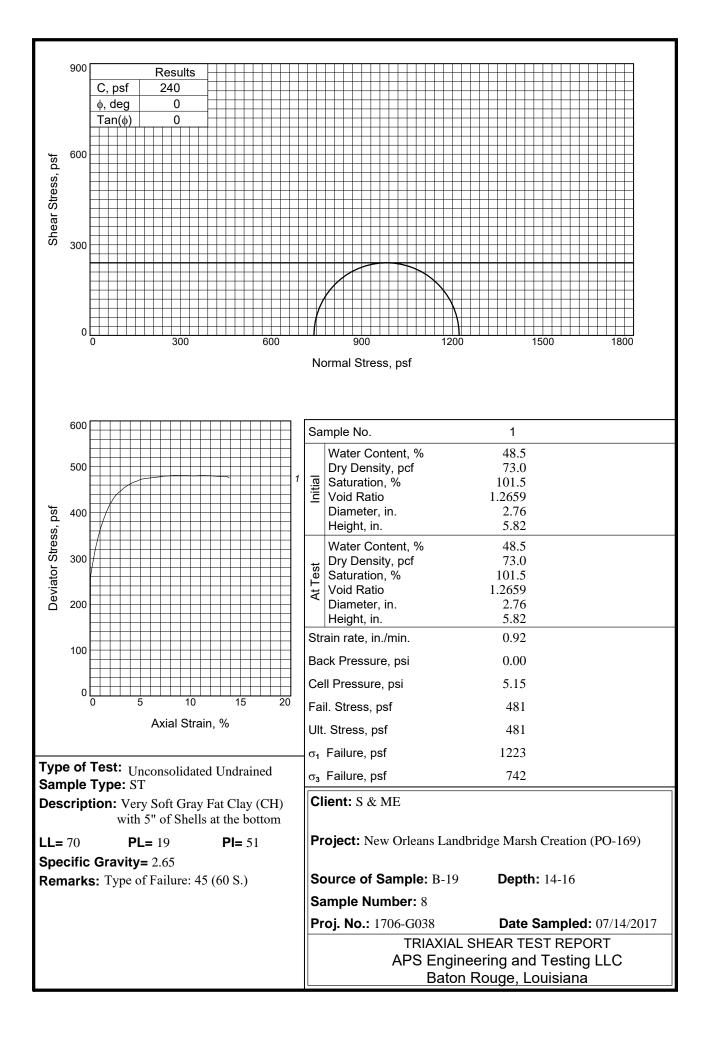


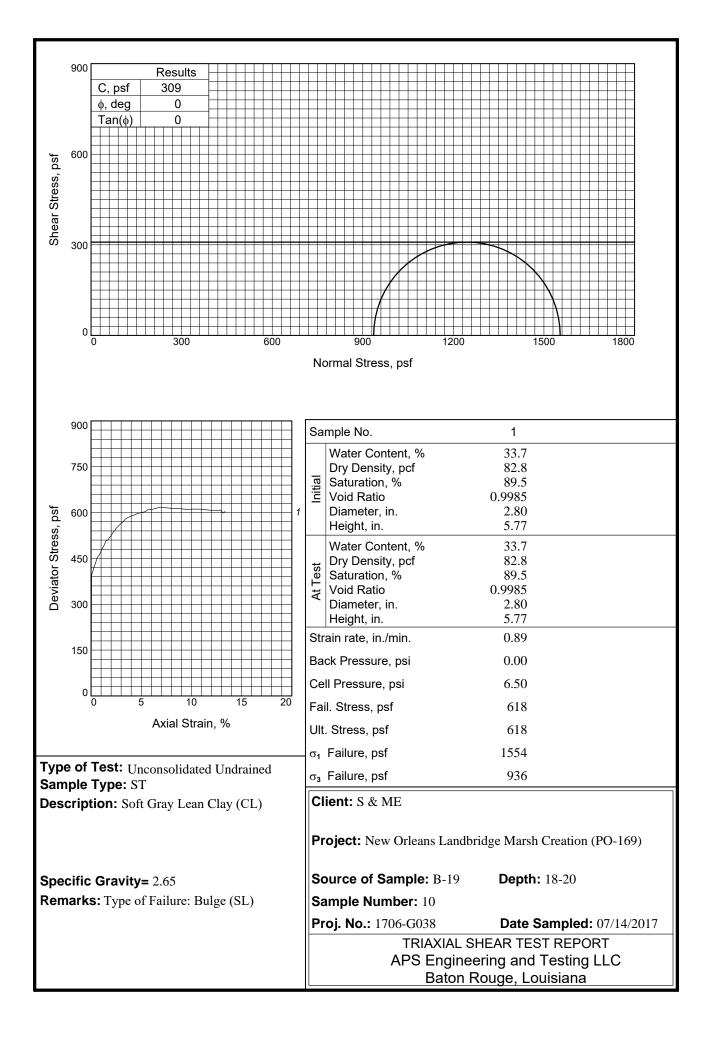


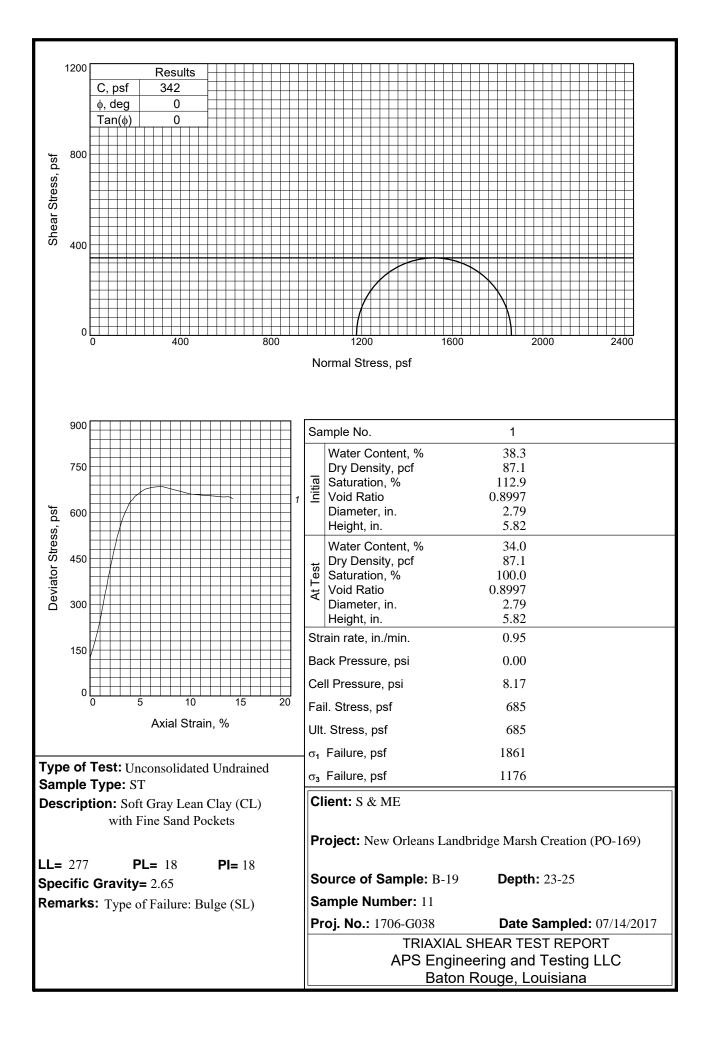


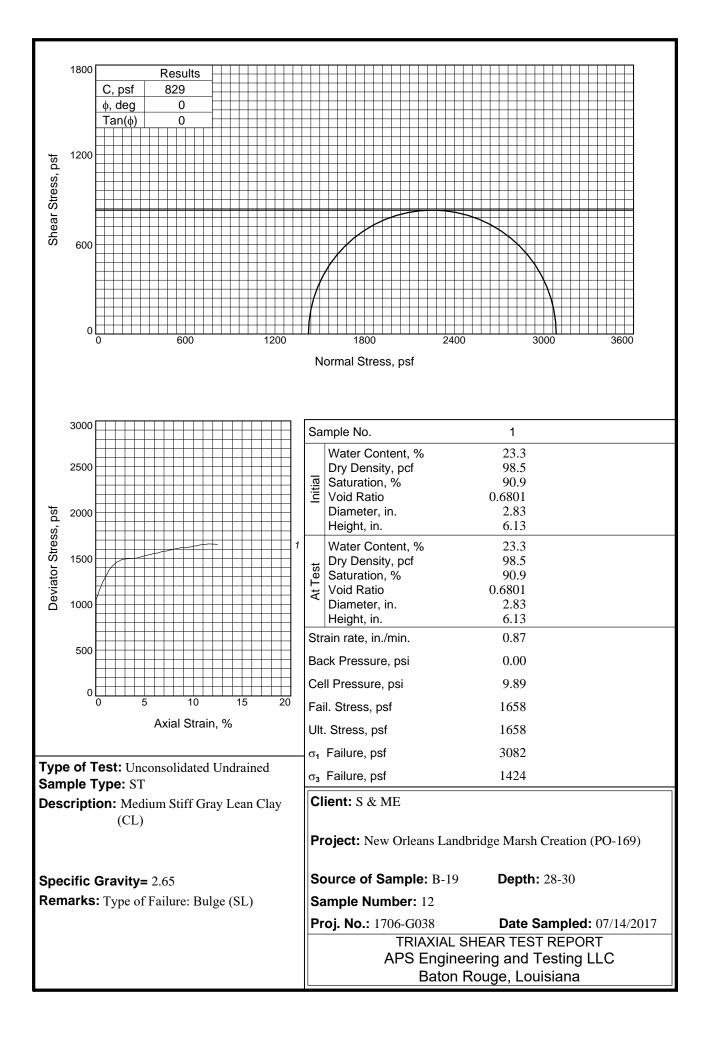












S&ME, Inc., 2736 O'Neal Lane, Suite A Baton Rouge, LA 70816

- ATTN: Mr. Venu Tammineni, P.E. Senior Engineer
- Subject: Low Stress Consolidation Test Results New Orleans Landbridge Marsh Creation Orleans Parish, Louisiana APS File No.: 1706-G038

Dear Mr. Tammineni:

APS has completed the Low Stress Consolidation testing of the two borrow area samples that were homogenized from Soil Borings B1 through B6. Sample 1 (B123) was prepared using Soil Borings B1, B2 and B3 and Sample 2 (B456) was prepared using Soil Borings B4, B5 and B6.

Please review these test results and contact our office at (225) 456 5714 for any questions or comments.

Respectfully Submitted by, APS Engineering and Testing, LLC

SVSI

Sairam Eddanapudi, P.E. Project Manager

Low Stress Consolidation Test Procedure

- A composite sample of the prepared slurry (from Settling Column Test) was obtained to perform the Self Weight Consolidation Test.
- The initial moisture content, atterberg limits, hydrometer and percent fines (-200) tests were performed on the samples according to ASTM procedures.
- Then the slurry was prepared with a pre-determined moisture content equal to two to three times its liquid limit.
- The slurry was placed into the consolidometer setup and the initial weight was measured.
- The load cell was lowered in order to contact the slurry sample. It was very critical to perform this task with the minimum disturbance to the sample prior to loading.
- It is also very important to commence the test as practically as possible after the slurry was placed into the ring setup.
- The incremental loading cycles with a minimum applied duration of 24 hours were as follows: 1, 2, 5, 10, 25, 50, 100, 200 and 400 psf.
- The final weight of the consolidated sample with the consolidometer setup and the final moisture content of the consolidated sample were measured.
- The Casagrande (or Log time) and Taylor (or Root time) methods were employed to analyze the results to determine the coefficient of consolidation, cv.

The properties, weights and low stress test results of sample 1 (B123) and sample 2 (B456) are presented in the following tables.

Sample	Initial Water	Liquid	Plastic	Plasticity	Percentage of		
ID	Content of Slurry (%)	Limit (LL)	Limit (PL)	Index (PI)	Clay	Silt	Sand
B123	199.6	64	24	40	13.5	83.2	3.3
B456	158.2	67	24	43	25.7	72.5	1.8

TABLE 1.0: Properties of Slurry Samples

TABLE 2.0: Slurry Sample initial (before test) and final (after test) weights

Sample ID	Initial Water Content of Slurry (%)	Initial weight of Slurry Sample (grams)	Final weight of Slurry sample (grams)	Final weight of oven dry sample (W _{solids}) (grams)
B123	199.6	98.17	56.98	32.77
B456	158.2	96.35	56.54	37.32

Sample 1 (B123)

- Ring Volume = 80.4 cm^3
- Initial Void Ratio (e_o) of Sample 1 = $V_v (=V_w) / V_s = 65.4 / 15 = 4.36$
- Compression Index (C_c) = (4.3582 1.1788) / LOG (400 / 1) = 1.22

Applied Pressure(ဝ်)	Initial Height (H _i)	d ₁₀₀	Final Height (H _f)	Drainage Length (H _d)	T ₅₀	Т ₉₀	e ₁₀₀	Δe ₁₀₀
1	1.0000	0.0003	0.9996	0.49989	10	36	4.3582	0.00180
2	0.9996	0.0007	0.9993	0.49971	6	24	4.3561	0.00394
5	0.9993	0.0016	0.9984	0.49942	9	21.2	4.3516	0.008415
10	0.9984	0.396	0.5930	0.39785	550	993	2.2374	2.12260
25	0.5930	0.430	0.5697	0.29067	79	343	2.0552	2.30480
50	0.5697	0.4804	0.5196	0.27234	40	143	1.7851	2.57490
100	0.5196	0.5175	0.4788	0.24962	34	157	1.5862	2.77380
200	0.4788	0.5705	0.4549	0.23344	26	125	1.4388	2.92120
400	0.4549	0.5935	0.4039	0.21471	17	52	1.1788	3.18120

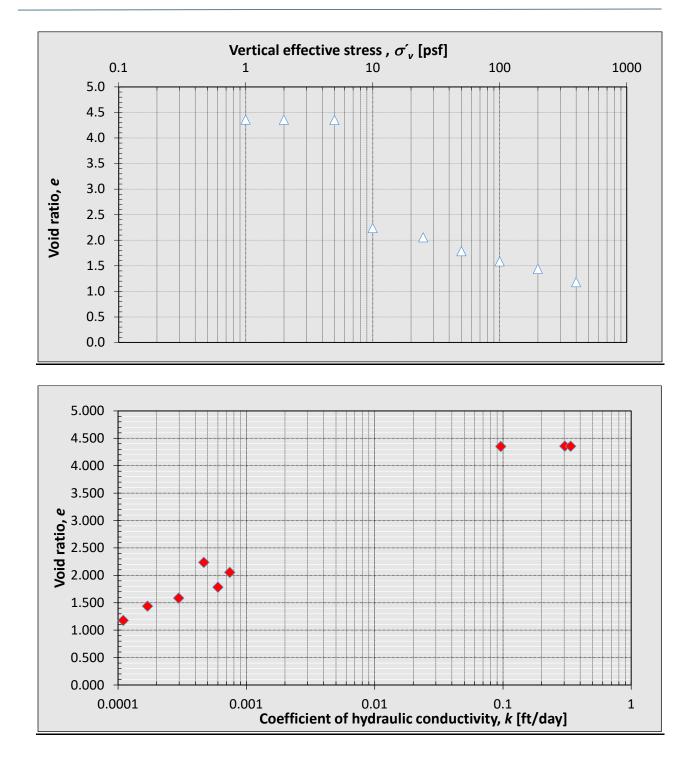

TABLE 3.0: SAMPLE 1 (B123) TEST RESULTS

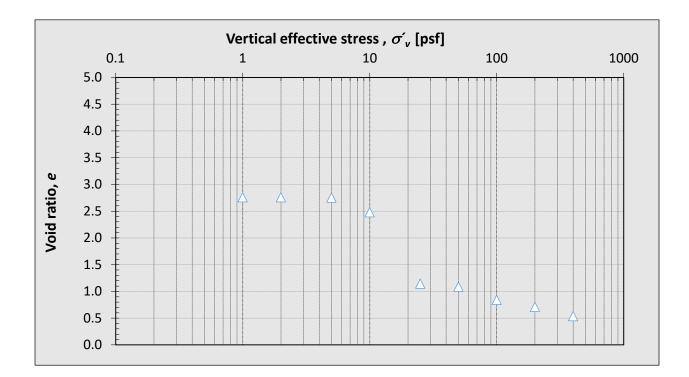
TABLE 4.0: SAMPLE 1 (B123) TEST RESULTS

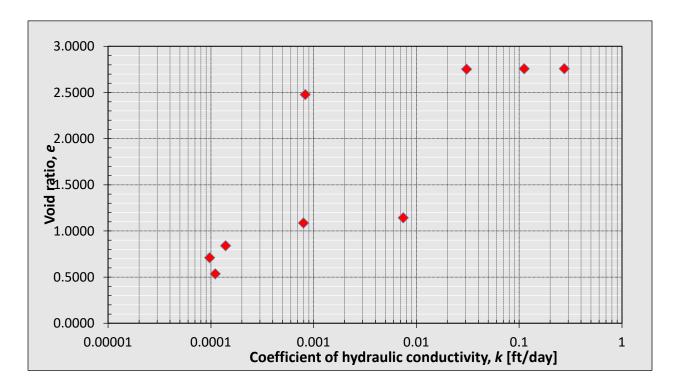
Applied Pressure(Ϭ່)	C _{αs}	Cv (ft2 / min)	K (ft / min)
1	0.0087	3.4186E-05	0.000211049
2	0.0083	5.6935E-05	0.000234326
5	0.0076	3.7914E-05	6.68749E-05
10	0.0072	3.9371E-07	3.24079E-07
25	0.0070	1.4631E-06	5.1614E-07
50	0.0055	2.5366E-06	4.17601E-07
100	0.0039	5.5071E-06	2.06368E-07
200	0.0021	2.8674E-06	1.1801E-07
400	0.0013	3.7099E-06	7.6345E-08

Sample 2 (B456)

- Ring Volume = 80.4 cm^3
- Initial Void Ratio (e_o) of Sample 1 = $V_v (=V_w) / V_s = 59.03 / 21.37 = 2.76$
- Compression Index (C_c) = (2.76 0.5360) / LOG (400 / 1) = 0.85

Applied Pressure(ဝ်)	Initial Height (H _i)	d ₁₀₀	Final Height (H _f)	Drainage Length (H _d)	T ₅₀	T ₉₀	e ₁₀₀	∆e ₁₀₀
1	1.0000	0.0004	0.9996	0.4999	11	33.60	2.7584	0.0016
2	0.9996	0.0006	0.9993	0.4997	18	45.80	2.7576	0.0024
5	0.9993	0.002	0.9980	0.4994	28	68.90	2.7526	0.0074
10	0.9980	0.075	0.9251	0.4808	450	1296.00	2.4780	0.2820
25	0.9251	0.43	0.7249	0.4125	15.8	23.50	1.1432	1.6168
50	0.7249	0.445	0.5314	0.3141	40	625.00	1.0868	1.6732
100	0.5314	0.5105	0.4856	0.2542	75	225.00	0.8405	1.9195
200	0.4856	0.545	0.4461	0.2392	45	182.25	0.7108	2.0492
400	0.4461	0.5915	0.4036	0.2124	16.5	110.25	0.5360	2.2240


TABLE 5.0: SAMPLE 2 (B456) TEST RESULTS


TABLE 4.0: SAMPLE 2 (B456) TEST RESULTS

Applied Pressure(ဝ်)	C _{αs}	C _v (ft2 / min)	K (ft / min)
1	0.0002	4.38E-05	0.00019119
2	6E-05	3.21E-05	7.78427E-05
5	0.0005	2.13E-05	2.14135E-05
10	0.0189	1.05E-06	5.76412E-07
25	0.0950	4.26E-05	5.17942E-06
50	0.0640	9.2951E-07	5.53505E-07
100	0.0110	1.69181E-06	9.67139E-08
200	0.0080	1.7528E-06	6.76354E-08
400	0.0067	2.40997E-06	7.67117E-08

Final Report:

Settling Properties of Fine-Grained Sediments Which May be Hydraulically Dredged: New Orleans Landbridge Shoreline Stabilization & Marsh Creation Project (PO-169)

(S&ME Job No. 458517006)

Submitted to:

Gerald J. Hauske, P.E., Principal Engineer Venu Tammineni, P.E., Senior Engineer S&ME, Inc. 2014 W. Pinhook Road, Suite 603 Lafayette, LA 70508 Phone: (337) 408-3103 Email: <u>jhauske@smeinc.com</u> <u>vtammineni@smeinc.com</u>

Submitted by:

William M. Moe, Ph.D., P.E. Principal and Project Manager SCTCS Group LLC LBTC, Building 3000 8000 Innovation Park Drive Baton Rouge, LA 70820 Phone: (225) 803-3945 Email: wmoe@sctcs.com

September 26, 2017

1.0 Introduction, Scope, and Objectives

The objective of the testing reported here was to evaluate the settling properties of fine-grained sediments which may be hydraulically dredged as part of the New Orleans Landbridge Shoreline Stabilization & Marsh Creation Project (PO-169)(S&ME Job No. 458517006).

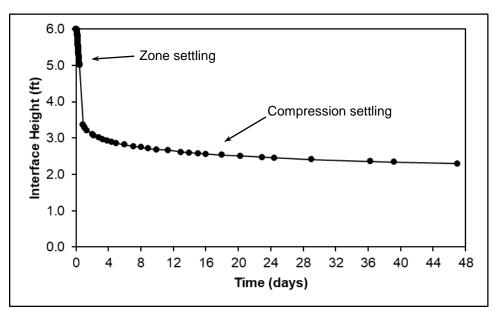
2.0 Experimental Procedures and Results

2.1 Materials Provided for Testing

Seven five-gallon buckets of water from the proposed dredging area were provided by S&ME for laboratory testing. The salinity of the seven water samples was measured gravimetrically with drying at 180 °C¹. Results are reported in Table 1 in units of parts per thousand (ppt).

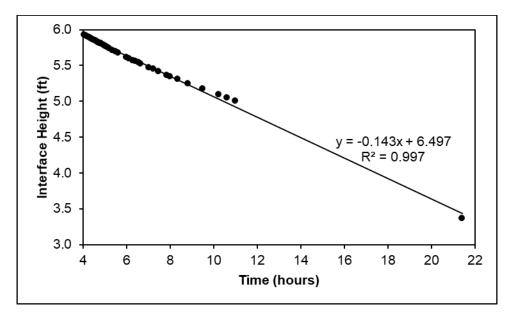
Bucket ID	Salinity (ppt)
B-1 Marsh water sample PO-169, 13' depth	1.17
B-2 Marsh water sample PO-169, 16.5' depth	1.12
B-3 Marsh water sample PO-169, 10' depth	1.09
B-4 Marsh water sample PO-169, 15' depth	1.15
B-5 Marsh water sample PO-169, 6' depth	1.16
B-6 Marsh water sample PO-169, 5' depth	1.22
B-20 Marsh water sample PO-169, 6.5' depth	1.07

Table 1. Salinity measured in water samples provided from the proposed dredge location


Four five-gallon buckets of sediment from the proposed dredging area were provided for testing. Two of the buckets contained a composite of sediment from borings B-4, B-5, and B-6. The other two buckets contained composited sediment from boring B-1, B-2, and B-3. The contents of the two buckets of material from borings B-4, B-5, and B-6 were combined together in a single container and homogenized via mechanical mixing. Subsamples were then collected by personnel from APS Design and Testing, LLC (APS) prior to the remainder being used for settling column testing. For the B-1, B-2, and B-3 composite material, the contents of each bucket were homogenized separately. Separate subsamples were collected by APS personnel from each of the two buckets of homogenized materials from B-1, B-2, and B-3 prior to the remainder being used for settling used for settling column testing.

2.2 Pilot-Scale Settling Column Test Results for Composite of Samples from Boring ID numbers B-4, B-5, and B-6

For the sediment from borings B-4, B-5, and B-6, slurry was prepared by mixing the composited sediment with equal volumes of water from each of the B-4, B-5, and B-6 marsh sampling locations plus tap water supplemented with synthetic sea salts (Instant Ocean) to match the average salinity of the three water samples (average salinity of 1.18 parts per thousand (ppt)). Slurry containing the fine-grained fraction of sediments was obtained by thoroughly mixing the slurry and then

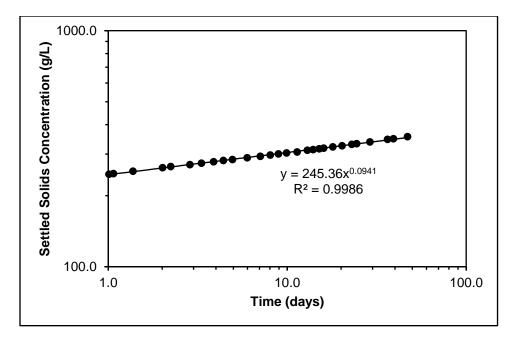

allowing coarse grained materials, to separate by differential settling as described in the US Army Corps of Engineers Manual No. 1110-2-5027¹. The fine-grained sediment slurry was loaded into a large-scale (8.0 inch ID) column while mixing with air sparging as described in the US Army Corps of Engineers Manual No. 1110-2-5027¹. Solids concentrations in the slurry at the start of the settling test were measured in samples collected along the height of the column at one foot intervals (see Table A1 in Appendix A for tabulated data). The average particulate concentration at the start of the settling test was 135.8 g/L.

A clear sediment-water interface was observed shortly after the start of the settling test (< 1 hour), indicating zone settling. The height of the sediment-water interface above the bottom of the column was measured and recorded over a period lasting more than 46 days as depicted in Figure 1 (see Table B1 in Appendix B for tabulated data). As shown in Figure 1, zone settling was observed during the first day of the settling test, followed by compression settling thereafter.

Figure 1: Interface height as a function of time during the pilot-scale settling test of fine-grained sediment slurry prepared from composited sediment from borings B-4, B-5, and B-6 (C_o =135.8 g/L).

Data for the time interval of 4 to 22 hours of the settling test, during which relatively rapid zone settling was clearly observed, is depicted separately in Figure 2. A linear regression was performed with the resulting equation and correlation coefficient depicted on the graph. The slope of the regression line, which corresponds to the zone settling velocity, was 0.143 ft/hr (3.4 ft/day).

Figure 2: Interface height as a function of time during the zone settling portion of the pilot-scale settling test of fine-grained sediment slurry prepared from composited sediment from borings B-4, B-5, and B-6 (C_o =135.8 g/L).


For the portion of the settling test during which compression settling was observed, the concentration in the settled solids at each time interval was calculated using the following equation (equation 3-11 in ref. 1).

Where:

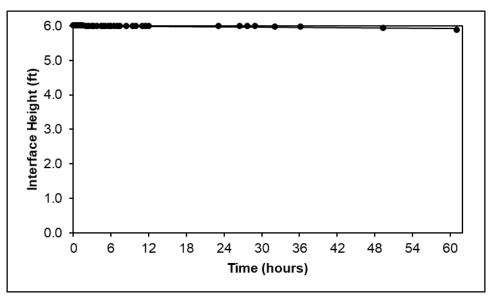
C = slurry suspended solids concentration at time t (g/L) C_o = initial slurry suspended solids concentration (g/L) H_i = initial slurry height (ft) H_t = height of the interface at time t (ft)

The corresponding suspended solids concentration as a function of time during compression settling is depicted in Figure 3.

$$C = \frac{C_o H_i}{H_t}$$

Figure 3: Concentration of settled solids as a function of time during the compression settling portion of the pilot-scale settling test of finegrained sediment slurry prepared from composited sediment from borings B-4, B-5, and B-6.

For analysis of flocculent settling as described in the US Army Corps of Engineers Manual No. 1110-2-5027¹, water samples were collected from the clarified layer above the sediment-water interface for measurement of total suspended solids (TSS) following Standard Method 2450D². The first of these samples was collected 7.5 hours after the start of settling when the sediment-water interface was sufficiently below the uppermost sample port to allow sample collection. Subsequent samples were collected at six additional time steps (ranging from total settling durations of 9 to 81 hours). Tabulated data are provided in Table C1 (Appendix C). The TSS concentration in the initial sample collected above the sediment-water interface at a time of 7.5 hours was 127 mg/L. The TSS concentration subsequently decreased to less than 25 mg/L in all samples collected after a total settling time of 48 hours.

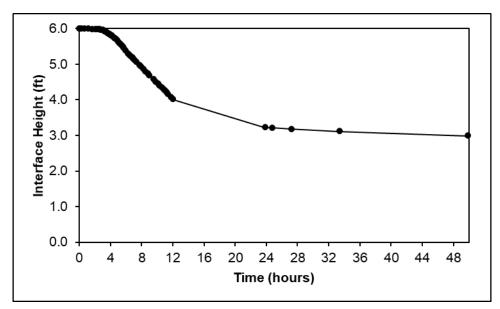

2.3 Pilot-Scale Settling Column Test Results for Composite of Samples from Boring ID numbers B-1, B-2, and B-3

Test # 1

For the sediment from borings B-1, B-2, and B-3, slurry was prepared by mixing composited sediment with equal volumes of water from each of the marsh water sample locations B-1, B-2, and B-3 plus tap water supplemented with synthetic sea salts (Instant Ocean) to match the average salinity of the three water samples (average salinity of 1.13 parts per thousand (ppt)). Slurry containing the fine-grained fraction of sediments was obtained by thoroughly mixing the slurry and then allowing coarse grained materials, to separate by differential settling as described in the US Army Corps of Engineers Manual No. 1110-2-5027¹. Because the particulate concentration in the resulting slurry was below the target concentration for testing, additional sediment was added,

the material was thoroughly remixed, and then coarse grained materials were again allowed to separate by differential settling. The fine-grained sediment slurry was loaded into a large-scale (8.0 inch ID) column while mixing with air sparging as described in the US Army Corps of Engineers Manual No. 1110-2-5027¹. Solids concentrations in the slurry at the start of the settling test were measured in samples collected along the height of the column at one foot intervals (see Table A2 in Appendix A for tabulated data). The average particulate concentration at the start of the settling test was 149.2 g/L.

A very small but clearly visible sediment-water interface was observed two hours after the start of the settling test. The height of the sediment-water interface above the bottom of the column was measured and recorded over a period lasting 61.1 hours as depicted in Figure 4 (see Table B2 in Appendix B for tabulated data). As shown in Figure 4, the amount of settling was quite small, with the interface settling only 0.1 inch after one day of settling and 0.7 inches total after 49.3 hours of settling. To assess whether flocculent settling was the dominant process occurring in the settling column, samples were withdrawn from side ports located at 5.5 and 4.0 ft above the bottom of the column at a time of 61.1 hours. The particulate concentrations measured in these samples, 150.0 and 149.7 g/L, respectively, indicate that flocculent settling was not a dominant process and the test was started at a particulate concentration in the compression settling regime.


Figure 4: Interface height as a function of time during the first pilot-scale settling test conducted with fine-grained sediment slurry from the composited B-1, B-2, and B-3 sediments (C_o =149.2 g/L).

Test #2

The fine-grained sediment present in the settling column at the end of the first pilot-scale test was removed from the column, transferred to a mixing barrel, and diluted with additional tap water supplemented with synthetic sea salts (Instant Ocean) to match the average salinity of the B-1, B-2, and B-3 water samples (1.13 parts per thousand (ppt)). After thorough remixing, the fine-grained sediment slurry was loaded into a large-scale (8.0 inch ID) column while mixing with air sparging as described in the US Army Corps of Engineers Manual No. 1110-2-5027¹. Solids concentrations

in the slurry at the start of the settling test were measured in samples collected along the height of the column at one foot intervals (see Table A3 in Appendix A for tabulated data). The average particulate concentration at the start of the settling test was 108.5 g/L.

A clear sediment-water interface was observed shortly after the start of the settling test (< 1 hour), indicating zone settling. The height of the sediment-water interface above the bottom of the column was measured and recorded over a period lasting approximately two days as depicted in Figure 5 (see Table B3 in Appendix B for tabulated data). As shown in Figure 5, zone settling was observed during the first day of the settling test, followed by a transition to compression settling thereafter.

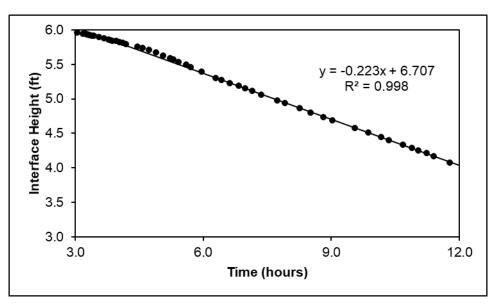
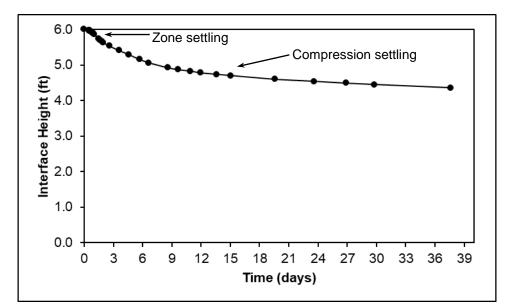


Figure 5: Interface height as a function of time during the second pilotscale settling test conducted with fine-grained sediment slurry from the composited B-1, B-2, and B-3 sediments (C_o =108.5 g/L).

Data for the time interval of 3 to 12 hours of the settling test, during which relatively rapid zone settling was clearly observed, is depicted separately in Figure 6. A linear regression was performed with the resulting equation and correlation coefficient depicted on the graph. The slope of the regression line, which corresponds to the zone settling velocity, was 0.223 ft/hr (5.35 ft/day).

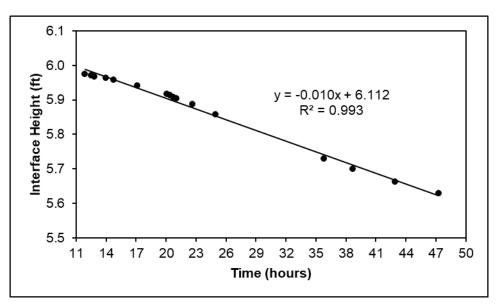
For analysis of flocculent settling as described in the US Army Corps of Engineers Manual No. 1110-2-5027¹, water samples were collected from the clarified layer above the sediment-water interface for measurement of total suspended (TSS) following Standard Method 2450D². The first of these samples was collected 6 hours after the start of settling when the sediment-water interface was sufficiently below the uppermost sample port to allow sample collection. Subsequent samples were collected at additional time steps out to a total settling duration of 48 hours. Tabulated data are provided in Table C2 in Appendix C. The TSS concentration in the initial sample collected above the sediment-water interface at a time of 6 hours was 778 mg/L. The TSS concentration subsequently decreased to the range of 58 to 72 mg/L in ports sampled at a time of 48 hours. During the interval when the TSS concentrations above the sediment water interface were decreasing, it was visually observed that a layer of lighter colored sediments accumulated at the

top of the sediment-water interface. At the time when the test was terminated (t=49.92 hours), the thickness of the light colored sediment layer was approximately 0.6 inches thick.


Figure 6: Interface height as a function of time during the zone settling portion of the second pilot-scale settling test conducted with fine-grained sediment slurry from composite B-1, B-2, and B-3 sediments ($C_o=108.5$ g/L).

Test #3

In order to obtain a full settling curve for fine-grained sediment at a concentration between the initial test (C_o =149.2 g/L) which exhibited compression settling and the second test (C_o =108.5 g/L) where rapid zone settling was observed, in consultation with S&ME, it was decided to restart the pilot-scale settling test using an intermediate concentration.


A portion of the clarified water present at the top of the settling column at the termination of the second settling test with composite sediment from boring B-1, B-2 and B-3 was decanted, and the remaining sediments were re-suspended by air sparging, transferred to a mixing barrel, and combined with additional fine-grained sediments prepared from the B-1, B-2, and B3 composite. After thorough mixing to homogenize the materials, the fine-grained sediment slurry was loaded into a large-scale (8.0 inch ID) column while mixing with air sparging as described in the US Army Corps of Engineers Manual No. 1110-2-5027¹. Solids concentrations in the slurry at the start of the settling test were measured in samples collected along the height of the column at one foot intervals (see Table A4 in Appendix A for tabulated data). The average particulate concentration at the start of the settling test was 128.6 g/L.

A clear sediment-water interface was observed shortly after the start of the settling test (< 1 hour), indicating zone settling. The height of the sediment-water interface above the bottom of the column was measured and recorded over a period lasting more than 40 days as depicted in Figure 7 (see Table B4 in Appendix B for tabulated data). As shown in Figure 7, behavior that was well-described as zone settling was observed during the time interval of 0.5 to 2 days of the settling test, followed by compression settling thereafter.

Figure 7: Interface height as a function of time during the third pilotscale settling test of fine-grained sediment slurry prepared from composited sediment from borings B-1, B-2, and B-3 (C_0 =128.6 g/L).

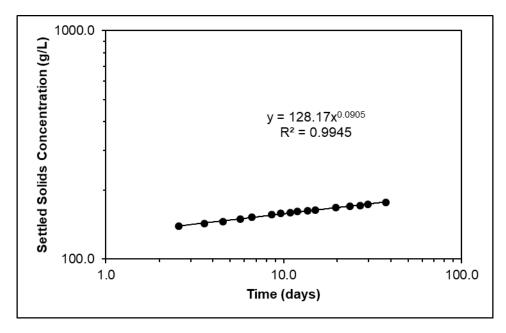
Data for the time interval of 11 to 48 hours of the settling test, during which zone settling behavior was dominant, is depicted separately in Figure 8. A linear regression was performed with the resulting equation and correlation coefficient depicted on the graph. The slope of the regression line, which corresponds to the zone settling velocity, was 0.010 ft/hr (0.24 ft/day).

Figure 8: Interface height as a function of time during the zone settling portion of the third pilot-scale settling test of fine-grained sediment slurry prepared from composited sediment from borings B-1, B-2, and B-3 (C_0 =128.6 g/L).

For the portion of the settling test during which compression settling was observed, the concentration in the settled solids at each time interval was calculated using the following equation (equation 3-11 in ref. 1).

 $C = \frac{C_o H_i}{H_t}$

Where:

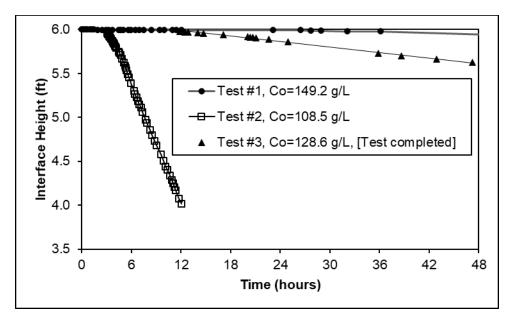

C = slurry suspended solids concentration at time t (g/L)

 C_o = initial slurry suspended solids concentration (g/L)

 H_i = initial slurry height (ft)

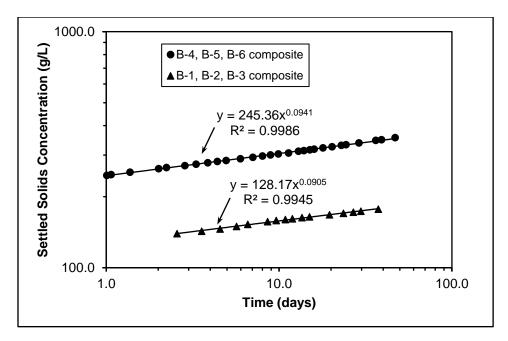
 H_t = height of the interface at time t (ft)

The corresponding suspended solids concentration as a function of time during compression settling is depicted in Figure 9.


Figure 9: Concentration of settled solids as a function of time during the compression settling portion of the third pilot-scale settling test ($C_o=128.6$ g/L) of fine-grained sediment slurry prepared from composited sediment from borings B-1, B-3, and B-3.

For analysis of flocculent settling as described in the US Army Corps of Engineers Manual No. 1110-2-5027¹, water was collected from the clarified layer above the sediment-water interface for measurement of total suspended (TSS) following Standard Method 2450D². The first of these samples was collected 86 hours after the start of settling when the sediment-water interface was sufficiently below the uppermost sample port to allow sample collection. Because the TSS concentration in samples collected for characterization of flocculent settling in the zone above the sediment-water interface was low, the mass of suspended solids retained on the filters was lower than 2.5 mg, the minimum mass required for an acceptable analysis following Standard Method 2450D². Consequently, the TSS concentration for all samples from flocculent settling above the

sediment-water interface is reported here as <25 mg/L (calculated as the minimum residue mass required for acceptable analysis, 2.5 mg, divided by the sample volume filtered, 0.10 L)


2.4 Data Comparisons

For comparison purposes, the settling behavior observed during the initial two days of the first pilot-scale settling column test conducted using composited sediment from borings B-1, B-2, and B-3 (C_o =149.2 g/L) is shown in comparison with the data from the zone settling portion of the data collected during test 2 (C_o =108.5 g/L) and test 3 (C_o =128.6 g/L) for the B-1, B-2, and B-3 composite sediment. As clearly shown in Figure 10, the zone settling behavior (or lack of zone settling in the case of the first test) heavily depended on the initial concentration of fine-grained particulates in the test.

Figure 10: Interface height as a function of time during the first two days of the first pilot-scale column settling test conducted using finegrained sediment from B-1, B-2, and B-3 (C_o =108.5 g/L) along with zone settling data from pilot-scale settling column test 2 (C_o =108.5 g/L) and test 3 (C_o =128.6 g/L).

Also for comparison purposes, the compression settling behavior of the settled solids in the pilotscale settling column test conducted using fine-grained sediment slurry prepared from the B-4, B-5, and B-6 composited sediment (C_o =135.8 g/L) is shown below in Figure 11 along with the data from the settled solids in the pilot scale settling column test conducted to completion for finegrained sediment slurry prepared using B-1, B-2, and B-3 composited sediment (C_o =128.6 g/L). As shown in the figure, the two composited sediment samples exhibited markedly different compression settling, with the B-4, B-5, and B-6 composite sample compacting to a much higher solids concentration than did the B-1, B-2, and B-3 composite sample.

Figure 11: Concentration of settled solids as a function of time during the compression settling portion of the pilot-scale settling test conducted with fine-grained sediment slurry prepared from composite sediment from borings B-4, B-5, and B-6 compared with fine-grained sediment slurry prepared from composite sediment from borings B-1, B-3, and B-3.

2.5 Material Recovery at the Conclusion of Settling Column Testing

At the end of the settling column test conducted using fine-grained sediment slurry prepared from the B-4, B-5, and B-6 composite material, clarified water was decanted from above the sediment water interface to a level of 3.0 ft. The settled solids were resuspended by sparging compressed air into the bottom of the column for a period lasting 15 minutes. Approximately four gallons of the resuspended sediment was drained from a side port into a five gallon bucket for use in subsequent testing.

At the end of the final settling column test conducted using fine-grained sediment slurry prepared from the B-1, B-2, and B-3 composite material, clarified water was decanted from above the sediment water interface to a level of 4.5 ft. The settled solids were resuspended by sparging compressed air into the bottom of the column for a period lasting 15 minutes. Approximately four gallons of the resuspended sediment was drained from a side port into a five gallon bucket for use in subsequent testing.

As requested by S&ME, the resuspended sediment samples described above were delivered to APS Design and Testing LLC (APS) for additional testing.

3.0 References

- [1] US Army Corps of Engineers (1987) *Engineering and Design Confined Disposal of Dredged Material*, Engineer Manual No. 1110-2-5027.
- [2] American Public Health Association (1998) *Standard Methods for the Examination of Water and Wastewater*, 20th Edition, American Water Works Association, Water Pollution Control Federation, Washington, DC.

Appendix A

Table A1. Particulate concentrations measured in samples collected from side ports at the start (t=0) of the pilot-scale settling column test for fine-grained slurry prepared from composited sediment from borings B-4, B-5, and B-6.

Port height (ft)ª	Particulate Conc. (g/L)
1.0	136.6
2.0	136.0
3.0	136.0
4.0	135.5
5.0	135.0
6.0	135.5
Average	135.8

^a As measured from the bottom of the column

Table A2. Particulate concentrations measured in samples collected from side ports at the start (t=0) of the first pilot-scale settling column test for fine-grained slurry prepared from composited sediment from borings B-1, B-2, and B-3 [Note: test was terminated before completion.]

Port height (ft)ª	Particulate Conc. (g/L)
1.0	150.6
2.0	149.9
3.0	149.2
4.0	148.5
5.0	148.7
6.0	148.3
Average	149.2

^a As measured from the bottom of the column

Table A3. Particulate concentrations measured in samples collected from side ports at the start (t=0) of the first pilot-scale settling column test for fine-grained slurry prepared from composited sediment from borings B-1, B-2, and B-3 [Note: test was terminated before completion.]

Port height (ft)ª	Particulate Conc. (g/L)
1.0	108.4
2.0	109.7
3.0	108.3
4.0	107.6
5.0	107.8
6.0	108.9
Average	108.5

^a As measured from the bottom of the column

Table A4. Particulate concentrations measured in samples collected from side ports at the start (t=0) of the third pilot-scale settling column test for fine-grained slurry prepared from composited sediment from borings B-1, B-2, and B-3. Test was run to completion.

Port height (ft)ª	Particulate Conc. (g/L)
1.0	129.9
2.0	129.1
3.0	128.2
4.0	127.9
5.0	128.3
6.0	128.0
Average	128.6

^a As measured from the bottom of the column

Appendix B

Table B1. Settling data for the pilot-scale settling column test for fine-grained slurry prepared from composited sediment from borings B-4, B-5, and B-6

The height of the sediment-water interface above the bottom of the column was recorded as a function of time as summarized in the table below.

		Solids		Settled
Elapsed	Elapsed	Interface	Head	Solids
Time	Time	Height	height	Conc.
(hr)	(days)	(ft)	(ft)	(g/L) ª
0.00	0.000	6.000	6.000	135.8
0.25	0.010	5.996	6.000	135.9
0.53	0.022	5.996	6.000	135.9
1.15	0.048	5.992	6.000	136.0
1.48	0.062	5.990	6.000	136.0
1.75	0.073	5.984	6.000	136.2
2.00	0.083	5.984	6.000	136.2
2.45	0.102	5.983	6.000	136.2
2.67	0.111	5.979	6.000	136.3
2.92	0.122	5.975	6.000	136.4
3.22	0.134	5.971	6.000	136.5
3.43	0.143	5.958	6.000	136.7
3.58	0.149	5.950	6.000	136.9
3.78	0.158	5.942	6.000	137.1
3.87	0.161	5.938	6.000	137.2
3.95	0.165	5.933	6.000	137.3
4.03	0.168	5.925	6.000	137.5
4.10	0.171	5.917	6.000	137.7
4.17	0.174	5.908	6.000	137.9
4.23	0.176	5.900	6.000	138.1
4.28	0.178	5.892	6.000	138.3
4.33	0.181	5.883	6.000	138.5
4.38	0.183	5.875	6.000	138.7
4.43	0.185	5.867	6.000	138.9
4.50	0.188	5.858	6.000	139.1
4.57	0.190	5.850	6.000	139.3
4.62	0.192	5.842	6.000	139.5
4.67	0.194	5.833	6.000	139.7
4.70	0.196	5.825	6.000	139.9

		Solids		Settled
Elapsed	Elapsed	Interface	Head	Solids
Time	Time	Height	height	Conc.
(hr)	(days)	(ft)	(ft)	(g/L) ª
4.75	0.198	5.817	6.000	140.1
4.80	0.200	5.808	6.000	140.3
4.85	0.202	5.800	6.000	140.5
4.95	0.206	5.783	6.000	140.9
5.00	0.208	5.775	6.000	141.1
5.05	0.210	5.767	6.000	141.3
5.10	0.213	5.758	6.000	141.5
5.20	0.217	5.742	6.000	141.9
5.35	0.223	5.717	6.000	142.5
5.50	0.229	5.692	6.000	143.2
5.60	0.233	5.675	6.000	143.6
5.98	0.249	5.617	6.000	145.1
6.12	0.255	5.600	6.000	145.5
6.28	0.262	5.575	6.000	146.2
6.40	0.267	5.558	6.000	146.6
6.53	0.272	5.542	6.000	147.0
6.65	0.277	5.525	6.000	147.5
7.02	0.292	5.475	6.000	148.8
7.22	0.301	5.450	6.000	149.5
7.47	0.311	5.417	6.000	150.4
7.85	0.327	5.367	5.958	151.8
8.00	0.333	5.350	5.958	152.3
8.33	0.347	5.308	5.958	153.5
8.80	0.367	5.250	5.958	155.2
9.50	0.396	5.175	5.942	157.4
10.22	0.426	5.092	5.942	160.0
10.62	0.442	5.050	5.942	161.3
11.00	0.458	5.008	5.942	162.7
21.42	0.892	3.367	5.933	242.0
24.20	1.008	3.308	5.925	246.3
25.63	1.068	3.288	5.925	247.8
33.00	1.375	3.208	5.842	254.0
48.28	2.012	3.100	5.792	262.8

 Table B1. Continued from previous page

		Solids		Settled
Elapsed	Elapsed	Interface	Head	Solids
Time	Time	Height	height	Conc.
(hr)	(days)	(ft)	(ft)	(g/L) ª
53.60	2.233	3.067	5.733	265.7
68.57	2.857	3.008	5.733	270.8
79.50	3.313	2.967	5.725	274.7
93.00	3.875	2.925	5.658	278.6
105.5	4.397	2.892	5.658	281.8
118.7	4.946	2.863	5.658	284.6
143.4	5.974	2.817	5.658	289.3
169.5	7.064	2.775	5.658	293.6
192.7	8.029	2.742	5.658	297.2
214.3	8.931	2.713	5.658	300.4
238.0	9.917	2.688	5.658	303.2
272.5	11.356	2.663	5.658	306.0
311.0	12.958	2.617	5.658	311.4
334.8	13.949	2.600	5.658	313.4
361.7	15.071	2.579	5.658	315.9
383.6	15.985	2.563	5.658	318.0
431.3	17.969	2.533	5.658	321.6
486.2	20.258	2.504	5.658	325.4
551.3	22.972	2.471	5.658	329.8
586.0	24.417	2.454	5.658	332.0
695.8	28.993	2.413	5.658	337.7
871.0	36.292	2.354	5.658	346.1
940.0	39.168	2.338	5.658	348.6
1127.0	46.960	2.292	5.658	355.5

Table B1. Continued from previous page

		Solids		Settled
Elapsed	Elapsed	Interface	Head	Solids
Time	Time	Height	height	Conc.
(hr)	(days)	(ft)	(ft)	(g/L)
0.00	0.000	6.000	6.000	149.2
0.25	0.010	6.000	6.000	149.2
0.50	0.021	6.000	6.000	149.2
0.75	0.031	6.000	6.000	149.2
1.00	0.042	6.000	6.000	149.2
1.50	0.063	6.000	6.000	149.2
2.00	0.083	5.995	6.000	149.3
2.50	0.104	5.995	6.000	149.3
3.00	0.125	5.995	6.000	149.3
3.25	0.135	5.995	6.000	149.3
3.75	0.156	5.995	6.000	149.3
4.50	0.188	5.995	6.000	149.3
4.75	0.198	5.995	6.000	149.3
5.08	0.212	5.995	6.000	149.3
5.65	0.235	5.995	6.000	149.3
6.00	0.250	5.995	6.000	149.3
7.00	0.292	5.995	6.000	149.3
7.50	0.313	5.995	6.000	149.3
8.50	0.354	5.992	6.000	149.4
9.50	0.396	5.992	6.000	149.4
10.00	0.417	5.992	6.000	149.4
11.00	0.458	5.992	6.000	149.4
11.50	0.479	5.992	6.000	149.4
12.08	0.503	5.992	6.000	149.4
23.17	0.965	5.992	6.000	149.4
26.50	1.104	5.992	6.000	149.4
27.75	1.156	5.988	6.000	149.5
29.00	1.208	5.984	6.000	149.6
32.17	1.340	5.979	6.000	149.7
36.20	1.508	5.974	6.000	149.9
49.33	2.056	5.942	6.000	150.7
61.10	2.546	5.888	6.000	152.1

Table B2. Settling data for the first pilot-scale settling column test for fine-grained slurry prepared from composited sediment from borings B-1, B-2, and B-3. [Note: test was terminated at t=61.1 hours]

		Solids		Settled
Elapsed	Elapsed	Interface	Head	Solids
Time	Time	Height	height	Conc.
(hr)	(days)	(ft)	(ft)	(g/L)ª
0.00	0.000	6.000	6.000	108.5
0.30	0.013	6.000	6.000	108.5
0.67	0.028	5.996	6.000	108.6
1.20	0.050	5.992	6.000	108.7
1.72	0.072	5.988	6.000	108.7
2.13	0.089	5.983	6.000	108.8
2.35	0.098	5.979	6.000	108.9
2.50	0.104	5.975	6.000	109.0
2.65	0.110	5.971	6.000	109.0
2.78	0.116	5.967	6.000	109.1
3.05	0.127	5.958	6.000	109.3
3.18	0.133	5.942	6.000	109.6
3.28	0.137	5.933	6.000	109.7
3.33	0.139	5.925	6.000	109.9
3.40	0.142	5.917	6.000	110.0
3.45	0.144	5.908	6.000	110.2
3.57	0.149	5.892	6.000	110.5
3.68	0.153	5.875	6.000	110.8
3.78	0.158	5.858	6.000	111.1
3.83	0.160	5.850	6.000	111.3
3.88	0.162	5.842	6.000	111.4
3.97	0.165	5.833	6.000	111.6
4.05	0.169	5.817	6.000	111.9
4.12	0.172	5.808	6.000	112.1
4.20	0.175	5.792	6.000	112.4
4.47	0.186	5.750	6.000	113.2
4.58	0.191	5.733	6.000	113.5
4.73	0.197	5.708	6.000	114.0
4.90	0.204	5.667	6.000	114.9
5.07	0.211	5.625	6.000	115.7
5.23	0.218	5.583	6.000	116.6
5.30	0.221	5.567	6.000	116.9

Table B3. Settling data for the second pilot-scale settling column test for fine-grained slurry prepared from composited sediment from borings B-1, B-2, and B-3. [Note: test was terminated at t=49.92 hours]

		Solids		Settled
Elapsed	Elapsed	Interface	Head	Solids
Time	Time	Height	height	Conc.
(hr)	(days)	(ft)	(ft)	(g/L)ª
5.43	0.226	5.533	6.000	117.7
5.60	0.233	5.492	6.000	118.5
5.72	0.238	5.458	6.000	119.3
5.97	0.249	5.392	6.000	120.7
6.30	0.263	5.300	5.983	122.8
6.43	0.268	5.267	5.983	123.6
6.63	0.276	5.225	5.983	124.6
6.83	0.285	5.183	5.983	125.6
6.98	0.291	5.150	5.983	126.4
7.15	0.298	5.108	5.975	127.4
7.37	0.307	5.058	5.975	128.7
7.73	0.322	4.975	5.975	130.9
7.92	0.330	4.933	5.975	132.0
8.27	0.344	4.858	5.950	134.0
8.52	0.355	4.800	5.950	135.6
8.82	0.367	4.733	5.950	137.5
9.03	0.376	4.683	5.950	139.0
9.55	0.398	4.575	5.950	142.3
9.87	0.411	4.508	5.950	144.4
10.17	0.424	4.442	5.950	146.6
10.35	0.431	4.400	5.950	148.0
10.68	0.445	4.333	5.950	150.2
10.90	0.454	4.283	5.950	152.0
11.05	0.460	4.250	5.950	153.2
11.23	0.468	4.208	5.950	154.7
11.40	0.475	4.167	5.950	156.2
11.78	0.491	4.075	5.950	159.8
12.03	0.501	4.017	5.908	162.1
23.88	0.995	3.225	5.908	201.9
24.83	1.035	3.208	5.833	202.9
27.23	1.135	3.175	5.833	205.0
33.42	1.392	3.108	5.833	209.4
49.92	2.080	2.988	5.833	217.9

Table B3. Continued from previous page

Table B4. Settling data for the third pilot-scale settling column test for fine-grained slurry prepared from composited sediment from borings B-1, B-2, and B-3. [Note: test was run to completion.]

Elapsed Time	Elapsed Time	Solids Interface Height	Head height	Settled Solids Conc.
(hr)	(days)	(ft)	(ft)	(g/L)ª
0.00	0.000	6.000	6.000	128.6
11.43	0.476	5.979	6.000	129.0
11.90	0.496	5.975	6.000	129.1
12.52	0.522	5.971	6.000	129.2
12.85	0.535	5.967	6.000	129.3
14.02	0.584	5.963	6.000	129.4
14.77	0.615	5.958	6.000	129.5
17.12	0.713	5.942	6.000	129.9
20.10	0.838	5.917	6.000	130.4
20.40	0.850	5.913	6.000	130.5
20.73	0.864	5.908	6.000	130.6
21.05	0.877	5.904	6.000	130.7
22.65	0.944	5.888	6.000	131.1
24.93	1.039	5.858	6.000	131.7
35.83	1.493	5.729	6.000	134.7
38.68	1.612	5.700	6.000	135.4
42.90	1.788	5.663	6.000	136.3
47.27	1.969	5.629	6.000	137.1
61.77	2.574	5.533	6.000	139.4
85.63	3.568	5.408	6.000	142.7
109.50	4.563	5.292	5.975	145.8
136.43	5.685	5.154	5.975	149.7
158.35	6.598	5.058	5.975	152.5
205.97	8.582	4.921	5.975	156.8
231.30	9.638	4.871	5.975	158.4
260.93	10.872	4.821	5.975	160.1
287.10	11.963	4.783	5.975	161.3
326.07	13.586	4.733	5.975	163.0
360.75	15.031	4.696	5.975	164.3
470.57	19.607	4.600	5.975	167.7
565.87	23.578	4.538	5.967	170.0
645.77	26.907	4.488	5.967	171.9
714.78	29.783	4.450	5.958	173.4
902.00	37.583	4.358	5.958	177.0

Appendix C

Table C1. Total suspended solids (TSS) concentrations measured above the sedimentwater interface for characterization of flocculent settling during the pilot-scale column settling test for fine-grained slurry prepared from composited sediment from borings B-4, B-5, and B-6.

			Depth of	
Sample	Port	Head	Sample	
Extraction	Height	Height	Extraction	TSS
Time (hr)	(ft) ^a	(ft) ^a	(ft) ^b	(mg/L)
7.5	5.50	6.00	0.50	127
9.0	5.50	5.96	0.46	70
11	5.50	5.94	0.44	48
24	5.50	5.93	0.43	<25 ^c
24	5.00	5.93	0.93	27
24	4.50	5.93	1.43	33
24	4.00	5.93	1.93	96
24	3.50	5.93	2.43	116
33	5.50	5.84	0.34	<25 ^c
33	5.00	5.84	0.84	<25 ^c
33	4.50	5.84	1.34	<25 ^c
33	4.00	5.84	1.84	<25 ^c
33	3.50	5.84	2.34	35
48	5.50	5.79	0.29	<25 ^c
48	5.00	5.79	0.79	<25 ^c
48	4.50	5.79	1.29	<25 ^c
48	4.00	5.79	1.79	<25 ^c
48	3.50	5.79	2.29	<25 ^c
81	5.50	5.73	0.23	<25 ^c
81	5.00	5.73	0.73	<25 ^c
81	4.50	5.73	1.23	<25 ^c
81	4.00	5.73	1.73	<25 ^c
81	3.50	5.73	2.23	<25 ^c
81	3.00	5.73	2.73	<25 ^c

^a As measured from the bottom of the column

^b Relative to the top liquid level

^c The mass of dry residue retained on the filter was less than 2.5 mg (the minimum required for an acceptable analysis). The result is reported here as <25 mg/L [calculated as the minimum residue mass required for acceptable analysis, 2.5 mg, divided by the sample volume filtered (0.10 L)].

Table C2. Total suspended solids (TSS) concentrations measured above the sedimentwater interface for characterization of flocculent settling during the second pilot-scale column settling test for fine-grained slurry prepared from composited sediment from borings B-1, B-2, and B-3 (Initial slurry particulate concentration, C_o =108.5 g/L)

Sample Extraction Time (hr)	Port Height (ft) ª	Head Height (ft) ª	Depth of Sample Extraction (ft) ^b	TSS (mg/L)
6	5.50	6.00	0.50	778
7	5.50	5.98	0.48	400
8	5.50	5.98	0.48	266
8	5.00	5.98	0.98	880
12	5.50	5.95	0.45	110
12	5.00	5.95	0.95	276
12	4.50	5.95	1.45	592
24	5.50	5.91	0.41	80
24	5.00	5.91	0.91	131
24	4.50	5.91	1.41	134
24	4.00	5.91	1.91	143
24	3.50	5.91	2.41	153
48	5.50	5.83	0.33	58
48	5.00	5.83	0.83	63
48	4.50	5.83	1.33	69
48	4.00	5.83	1.83	71
48	3.50	5.83	2.33	72

^a As measured from the bottom of the column

^b Relative to the top liquid level