GEOTECHNICAL DATA REPORT

PHASE I – PROFESSIONAL GEOTECHNICAL SERVICES

STATE OF LOUISIANA

COASTAL PROTECTION AND RESTORATION AUTHORITY (CPRA)

EAST DELACROIX MARSH CREATION PROJECT

ST. BERNARD PARISH, LOUISIANA

CONTRACT NO. 4400015385

CPRA PROJECT NO. BS-0037, TASK NO. 4

EUSTIS ENGINEERING PROJECT NO. 24431

FOR COASTAL PROTECTION AND RESTORATION AUTHORITY BATON ROUGE, LOUISIANA

> By Eustis Engineering L.L.C. Metairie, Louisiana

TABLE OF CONTENTS

INTRODUCTION .	•						1
PURPOSE .							1
SCOPE OF SERVICE							2
MAGNETOMETER SURVE	Υ.						3
FIELD EXPLORATION							4
General . Undisturbed Soi Cone Penetratio	-						4 5 6
LABORATORY TESTS	•						7
DESCRIPTION OF SUBSUR	FACE SOI	L CONDIT	IONS				8
Area Geology Stratigraphy Depth to Mudlin	e/Depth	to Groun	dwater				8 9 10
LIMITATIONS .							12
FIGURE 1: Site Vicinity Ma FIGURE 2: Boring and CPT FIGURE 3: Subsurface Pro FIGURE 4: Subsurface Pro FIGURE 5: Subsurface Pro	Locatior file – Bor file – Ma	row Area rsh Creat					
APPENDIX I: FURNISHED APPENDIX II: MAGNETOM APPENDIX III: BORING LO APPENDIX IV: CPT RECOR APPENDIX V: CONSOLIDA APPENDIX VI: GRAIN SIZE APPENDIX VII: SETTLING APPENDIX VIII: LOW-PRES	IETER SU GS DS TION TES AND HYI COLUMN	RVEY RES T RESULTS DROMETE DATA	S R TEST R	S			

State of Louisiana Coastal Protection and Restoration Authority Eustis Engineering Project No. 24431 PAGE

GEOTECHNICAL DATA REPORT PHASE I – PROFESSIONAL GEOTECHNICAL SERVICES STATE OF LOUISIANA COASTAL PROTECTION AND RESTORATION AUTHORITY (CPRA) EAST DELACROIX MARSH CREATION PROJECT ST. BERNARD PARISH, LOUISIANA CONTRACT NO. 4400015385 CPRA PROJECT NO. BS-0037, TASK NO. 4 EUSTIS ENGINEERING PROJECT NO. 24431

INTRODUCTION

1. This report contains the results of geotechnical field and laboratory test data obtained for the proposed East Delacroix Marsh Creation Project (Project No. BS-0037). This project is located in Region 2, Breton Basin, St. Bernard Parish, along the east side of the island of Delacroix. Refer to Figure 1 for a site vicinity map. Our geotechnical services for the project were performed in accordance with our revised proposal, dated 30 July 2020. The project is funded under the Coastal Wetland Planning Protection and Restoration Act (CWPPRA) in Priority List 28. Authorization to proceed with these services was provided from the Coastal Protection and Restoration Authority (CPRA) in partnership with National Oceanic and Atmospheric Administration (NOAA). Notice to proceed was received from CPRA on 30 July 2020.

<u>PURPOSE</u>

2. The objective of this project is to create, maintain, and nourish existing deteriorating wetlands by hydraulic dredging material from an inland borrow source located in Lake

Lery. Specifically, four hundred six (406) acres of confined marsh will be placed in designated marsh creation areas formed by constructing earthen containment dikes around the perimeter. Existing berms and the east Delacroix tidal protection levee will also be used as containment. Approximately 12,950 linear feet of terraces will also be strategically designed to serve as sediment retention features and reduce wake erosion adjacent to the marsh creation areas. Proposed terraces will be constructed to el +2.5 (NAVD88). A slight raise to the existing tidal levee along the east side of Delacroix island is also anticipated. Furnished information showing proposed project feature locations is provided in Appendix I.

SCOPE OF SERVICE

- 3. The scope of service for the Phase I portion of the project comprises a geotechnical exploration and subsequent laboratory testing. A separate Phase II scope of service for geotechnical engineering analyses will be developed after review of the results of Phase I by CPRA. Geotechnical exploration to determine subsurface conditions and stratification, and to obtain samples of the various substrata included 37 exploration locations. These locations generally correspond to those identified in a Coastal Use Permit (CUP) obtained by the CPRA. A summary of the locations and designations for the marsh creation area, terrace field, and Lake Lery borrow area is given in Table 1. Our exploration included geotechnical soil borings and cone penetration tests (CPT).
- 4. Soil mechanics laboratory tests, performed on samples obtained from the soil borings, were used to evaluate the physical properties of the subsoils.

FEATURE	BORING DESIGNATION	CPT DESIGNATION	PROPOSED EXPLORATION DEPTH IN FEET		
	BA-1				
	BA-2				
	BA-3				
	BA-4				
	BA-5				
Lake Lery Borrow Area	BA-6	-	15		
Eake Eery Borrow Area	BA-7		10		
	BA-8				
	BA-9				
	BA-10				
	BA-11				
	BA-12				
Delacroix Tidal Levee		LCPT-1	40		
	TB-4*	LCPT-2			
	(Originally Called L-1 and Co-located with LCPT-3; Moved and Renamed in the Field)	LCPT-3			
		LCPT-4*			
		LCPT-5			
		LCPT-6			
	B-1*	CPT-1*			
	B-2*	CPT-2*			
Marsh Creation Area and Terrace Field	B-3*	CPT-3*			
	B-4	CPT-4			
	B-5	CPT-5			
		CPT-6	20		
		CPT-7	30		
	-	CPT-8			
		CPT-9			
		CPT-10			
	B-6*	CPT-11*			
	_	CPT-12			

TABLE 1: SUMMARY OF EXPLORATION PLAN

*Co-located

MAGNETOMETER SURVEY

5. T. Baker Smith, LLC performed a magnetometer survey at each boring and CPT location to ensure no pipelines or obstructions existed at the proposed geotechnical exploration points before Eustis Engineering's field operations. T. Baker Smith ran a closed loop path with the magnetometer. This path completely enclosed the exploration locations at the center and maintained a minimum path over a 25-ft by 25-ft area. T. Baker Smith staked each boring and CPT location. The T. Baker Smith survey crew used an RTK unit at each boring/CPT location and recorded water depth and mudline elevation. Elevations are referenced to North American Vertical Datum of 1988 (NAVD 88) Geoid 12A. T. Baker Smith also installed a tide staff referenced to NAVD88, Geoid 12A in the project area. The topographic and magnetometer survey results by T. Baker Smith are provided in Appendix II.

FIELD EXPLORATION

<u>General</u>

- 6. Prior to commencing field operations, Eustis Engineering completed the following tasks as noted in the scope of service document provided by CPRA:
 - contact the landowner identified by the CPRA by telephone;
 - coordinate with the landowners during waterfowl hunting and alligator nesting seasons, as applicable (Teal season in September);
 - coordinate with St. Bernard Parish Public Works Department for locations within the tidal levee;
 - contact Louisiana One Call to clear underground utilities; and
 - perform magnetometer and hazard surveys (performed by T. Baker Smith) at the proposed soil boring and CPT locations.
- 7. <u>Exploration Locations and Depths.</u> Refer to Appendix II for a summary of the boring and CPT depths and locations. These locations are generally consistent with the CUP provided by CPRA and are based on the furnished location plan provided in Appendix I. T. Baker Smith staked boring locations in Lake Lery and the marsh creation areas based on the

location plan provided in the scope of service document. Note, the boring on the Tidal Levee was moved from the location of LCPT-3 to the location of LCPT-4. GPS coordinates for the boring and CPT locations are shown on the boring and CPT logs in terms of latitude and longitude in Appendices III and IV.

8. The undisturbed type soil test borings within the Lake Lery Borrow were drilled between 3 and 4 September 2020 using a drill rig mounted on pontoons. Airboat mounted equipment was utilized to complete the marsh creation and terrace field borings and CPTs between 8 and 11 September 2020. This third-party equipment was provided by Specialized Environmental Resources, Inc. (SER). CPTs along the tidal levee were completed using our track mounted cone rig between 20 and 21 October 2020. The tidal levee boring was completed using a track mounted Geoprobe[®] rig on 9 November 2020. Upon completion of the drilling operations, each boring was backfilled with cementbentonite grout mix in accordance with current State of Louisiana requirements.

Undisturbed Soil Borings

- 9. Undisturbed samples of cohesive or semi-cohesive subsoils were obtained continuously for the first 20 feet and then at intervals of 5 feet, or changes in stratum, thereafter, using a 3-in. diameter thinwall Shelby tube sampler in accordance with ASTM D1587. Soil samples were retained within the Shelby tubes and transported to our laboratory located in Metairie, Louisiana. The samples were extruded in our laboratory in an effort to preserve sample quality. Detailed descriptive logs of the borings are shown in both tabular and graphical form in Appendix III.
- 10. Pocket penetrometer tests were performed on the soil samples to give a general indication of their shear strength or consistency. The results of these tests are shown on the boring logs under the column heading "PP."

11. Samples of cohesionless and semi-cohesive materials were obtained during the performance of in situ Standard Penetration Tests. This test consists of driving a 2-in. diameter sampler 1 foot into the soil after first seating it 6 inches. A 140-lb weight dropped 30 inches is used to advance the sampler. The number of blows required to drive the sampler is indicative of the relative density of cohesionless soils and the consistency of cohesive soils. The results of the Standard Penetration Tests are shown on the boring logs under the column heading "SPT."

Cone Penetration Tests

- 12. The CPTs were performed using a 10-cm² cross-sectional area cone with a 60° apex angled tip and 150-cm² sleeve area. The soundings were hydraulically advanced into the ground at a rate of approximately 2 cm/sec. The sleeve friction was measured directly using a tension load cell. The testing was performed in accordance with methods and procedures outlined in ASTM D5778-12. During CPT testing, CPT parameters (tip resistance, friction resistance, and pore pressure) were recorded at 5-cm depth intervals.
- 13. Undrained shear strengths in cohesive and semi-cohesive strata and standard penetration blow counts in granular strata are interpreted from the CPT soundings using available software. These CPT plots provide measurements of corrected cone tip resistance (q_t), sleeve friction resistance (f_s), and pore pressure behind the cone tip (u₂). The plots also provide interpreted data based on the measured parameters: undrained shear strength (S_u), equivalent blow count from a SPT (N₆₀), and soil behavior type. These values are interpreted from correlations developed by Robertson et al. (1986) and Lunne, Robertson and Powell (1997), and our engineering experience in southeastern Louisiana. Our standard practice, and that of others in the southeastern Louisiana area, has been to use one site specific correction factor based on a study performed by the U.S. Army Corps of Engineers entitled "Cone Penetration Test Correlations in New Orleans Area Practice,

Report Submitted to the New Orleans District, USACE," by the Department of Civil and Environmental Engineering, Virginia Tech, Blacksburg, Virginia, dated November 2010, and other projects where CPT and 5-in. diameter undisturbed borings were performed. Two correlation methods for interpreting undrained shear strength are presented on the CPT logs. These include $(S_u)(2)$ and $(S_u)(6)$ based on cone factors of $N_k = 15$ and $N_c = 20$, respectively. The plots of interpreted shear strength are included in Appendix IV.

LABORATORY TESTS

- 14. Soil mechanics laboratory tests, consisting of natural water content, unit weight, and one-point unconsolidated undrained triaxial compression shear (OB), were performed on undisturbed samples obtained from the borings. Atterberg liquid limits (LL), plastic limits (PL), organic content tests (ORG), and tests to determine the percent passing the #200 (-200) sieve were performed on selected representative samples to aid in classification of the subsoils and to give an indication of their relative compressibility. The results of these laboratory tests are tabulated on the boring logs in Appendix III.
- 15. In addition, consolidation tests (CONS) were performed on selected representative samples from the borings performed at the project site. These tests were performed to help define the stress history of the site and to develop settlement parameters. The results of these tests are provided on the CONS report sheets in Appendix V.
- 16. Grain size distribution from sieve and hydrometer testing was completed from select samples. The results of these tests are provided in Appendix VI.
- 17. <u>Settling Column.</u> To evaluate the hydraulically dredged material from the proposed borrow area (shown on Figure 2), we performed one settling column test on a composite sample. The samples used to make the composite mixture were determined by CPRA.

The soil and water samples were combined to generate a composite slurry with an approximate concentration of 150 g/L. The test results are presented in Appendix VI. The test was performed in an 8-in. diameter by 8-ft high column. In addition, a particle size distribution curve was obtained for the composite sample used for the settling column test. The settling column data and other additional information are also provided in Appendix VII. The settling column test results will be evaluated and incorporated into the settlement analyses to determine the amount of marsh fill required to be pumped into the marsh creation areas to meet final elevation criterion.

18. Low Pressure Consolidation. We performed one low pressure consolidation test on the same composite material that was used for the settling column test to further define the borrow material's self-weight consolidation properties. A higher concentration of approximately 420 g/L was used for the low-pressure consolidation test. Compression ratios and coefficients of vertical consolidation and estimates of permeability were determined as a function of initial void ratio for each load step to assist in the evaluation of long term self-weight consolidation of the marsh creation fill. The results of this test are provided in Appendix VIII. The low-pressure consolidation test results will be evaluated and incorporated into the settlement analyses to determine the amount of marsh fill required to be pumped into the marsh creation areas to meet final elevation criterion.

DESCRIPTION OF SUBSURFACE SOIL CONDITIONS

Area Geology

19. The project area is located east of Delacroix Island. Surface geology maps available for the project area indicate the marsh creation area is primarily deposits of the St. Bernard delta lobe of the Mississippi River. These deposits are composed of cyclically interbedded interdistributary peat and clay; natural levee silt and clay; distributary sand; delta front sand; and prodelta mud and clay. The near surface soils within the marsh creation area encountered are consistent with relatively recent saline marsh deposits. The saline marsh deposits are composed of extremely soft to very soft organic clays, peat, and humus.

- 20. The island of Delacroix and the subsurface of the adjacent tidal levee are primarily deposits of a meander belt of the distributary course of the Plaquemines and Balize Delta lobes of the Mississippi River. These deposits comprise sandy point bar deposits and natural levee deposits.
- 21. Figures 3, 4 and 5 present the general subsoil profile across the project site for the borrow area, marsh creation area, and tidal levee, respectively.

<u>Stratigraphy</u>

- 22. <u>Marsh Creation and Terrace Borings and CPTs.</u> A review of borings B-1 through B-6 cones CPT-1 through CPT-11 indicates the general stratigraphy for the project area comprises extremely soft to soft gray and brown humus, peat and organic clay to approximate depths of 0 to 5 feet below the mudline. These organic clays were underlain by extremely soft to soft gray clay and silty clay with interbedded strata of very loose to loose gray silty sand, clayey sand, and fine sand and very loose to loose sandy silt and clayey silt to boring termination depths of 30 feet below the mudline. Should these sand layers become problematic or should a more thorough mapping of these layers be necessary prior to construction, a geophysical survey should be implemented. Pockets of shells and shell fragments were also encountered across the site.
- 23. <u>Borrow Area Borings.</u> A review of boring BA-1 through BA-12 indicate a general stratigraphy of alternating stratum of extremely soft to soft dark gray, gray, and brown

humus/organic clay and extremely soft to soft gray clay. Some interbedded strata of very loose gray silty sand and gray silt were also encountered in some of the borrow borings. Pockets of shells and shell fragments were encountered in all borings in the borrow area.

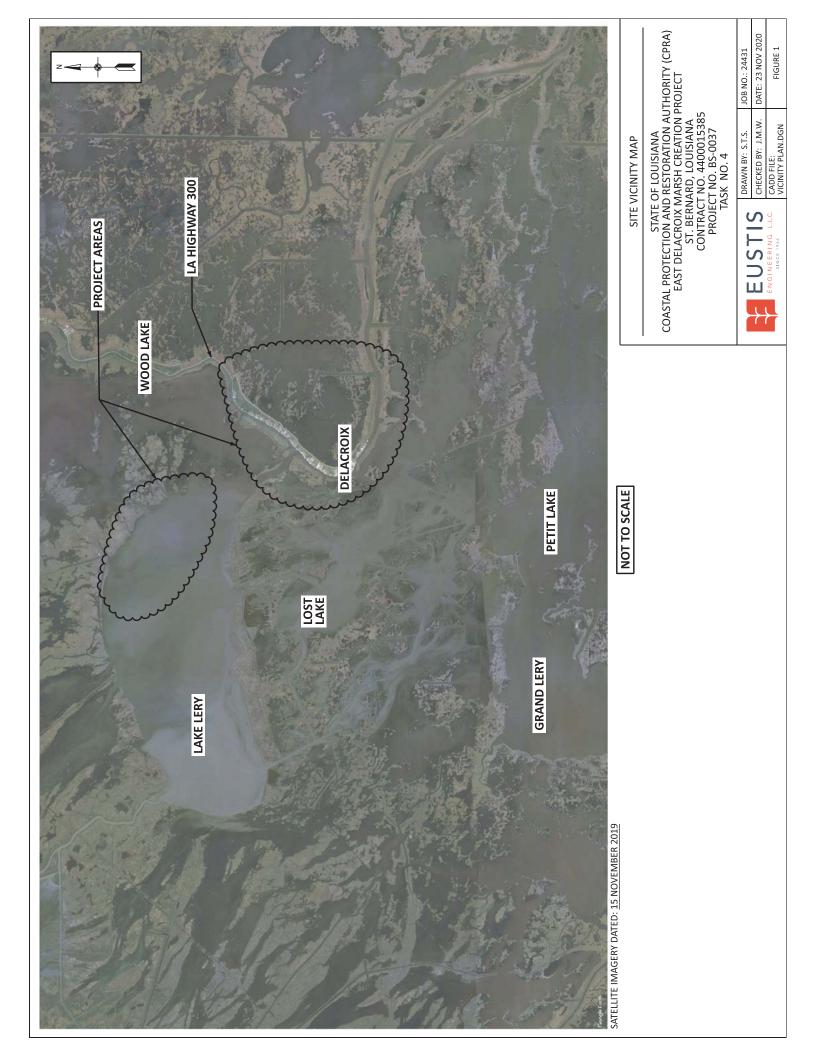
24. <u>Tidal Levee Boring and CPTs.</u> A review of borings LB-4 and cones LCPT-1 through LCPT-6 indicates approximately 5-8 feet of existing levee fill. Geotextile reinforcement was encountered in LB-4. Beneath these stiffer fill materials, we encountered soft gray and tan clay and silty clay. A strata of loose gray silty sand to loose gray clayey silt was encountered in LB-4 at an approximate depth of 19-25 feet below the existing levee crown. Based on the completed CPTs this appears to be a continuous strata of loose coarse grained material that was encountered along the existing levee alignment. Thin layers of black or brown organic clay were also encountered. CPTs 2, 3, 5, and 6 also encountered a second coarse grained stratum approximately 35 to 38 feet below the existing levee crown.

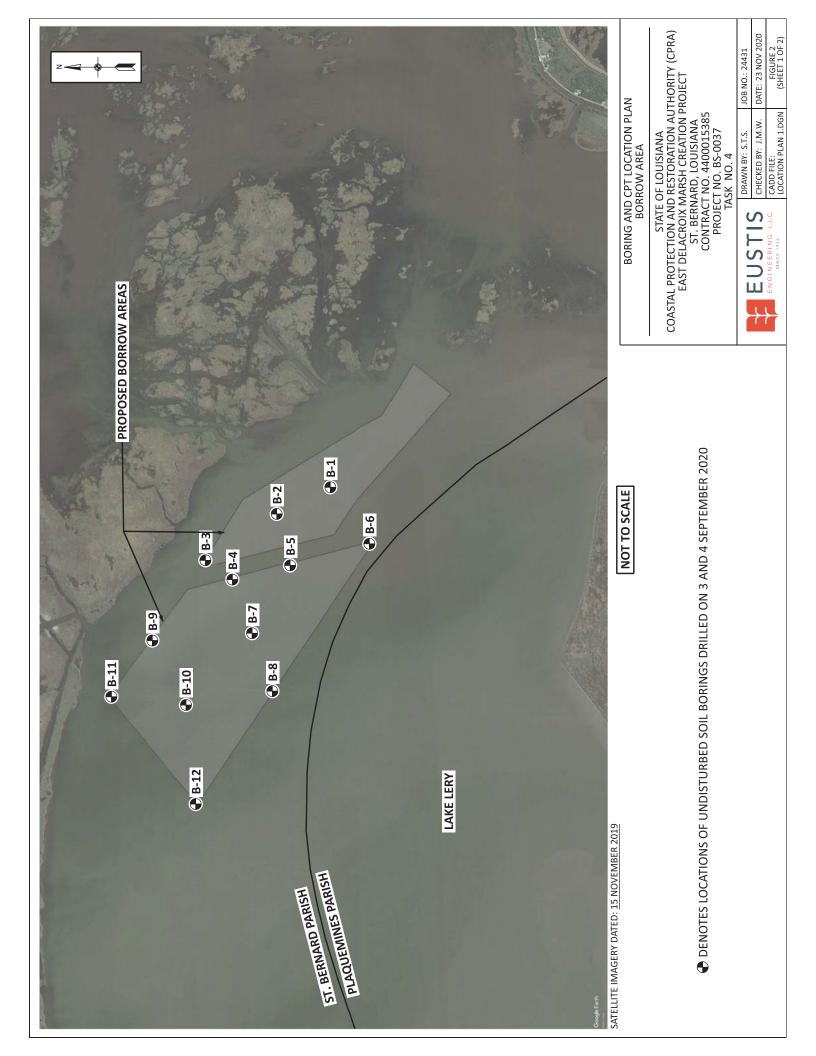
Depth to Mudline/Depth to Groundwater

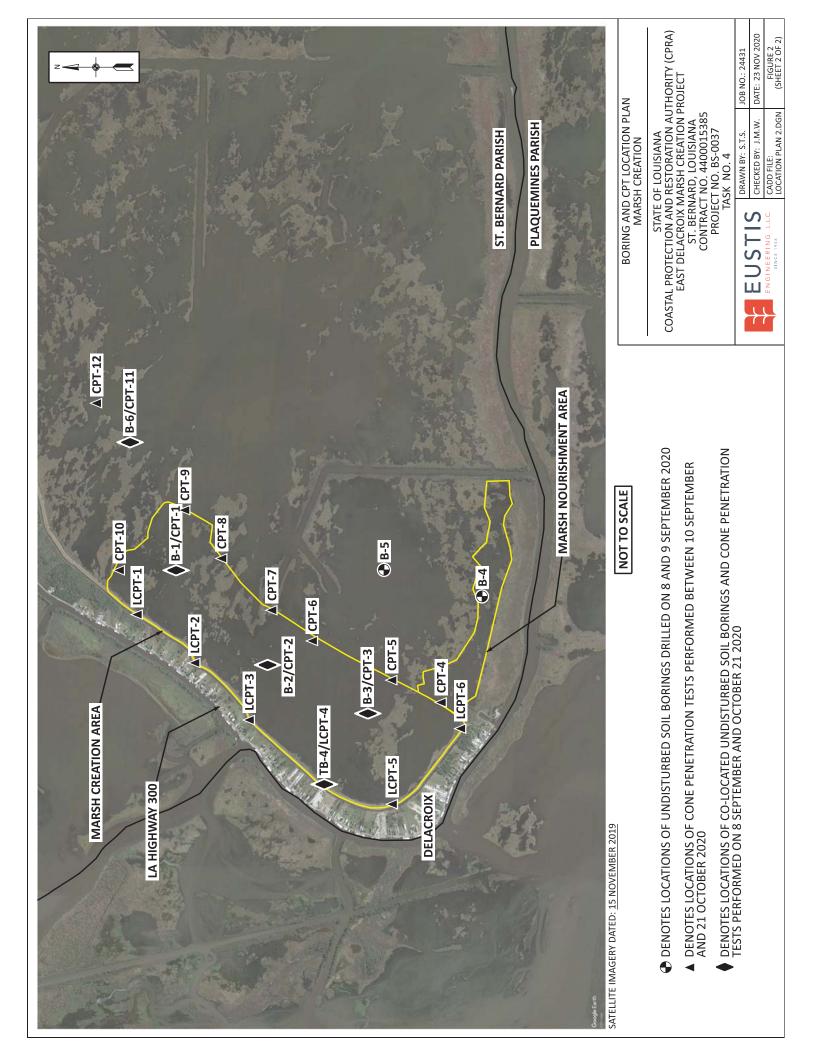
25. Standing water was encountered at most boring and CPT locations during the duration of our field work, as summarized in Table 2. Please note that the approximate depth presented below corresponds to the depth at the time of our exploration. Slight differences to the depths presented in Appendix II are anticipated. The site survey by T. Baker Smith was conducted when the mean water level in the vicinity of the site was approximately el 0.5 ft (NAVD88).

PROJECT FEATURE	EQUIPMENT TYPE	FIELD EXPLORATION POINT DESIGNATION	APPROXIMATE DEPTH OF STANDING WATER IN FEET	
Borrow Area		BA-1	5′	
		BA-2	4'	
		BA-3	4.17′	
		BA-4	4.17′	
		BA-5	5′	
	Pontoon Mounted	BA-6	5′	
	Drill Rig	BA-7	5.75'	
		BA-8	7.5′	
		BA-9	4.67'	
		BA-10	5.92'	
		BA-11	3.33'	
		BA-12	5′	
Marsh Creation/ Terrace Areas		B-1/CPT-1	4'/3'	
		B-2/CPT-2	3.5′/3.5′	
		B-3/CPT-3	4'/3.25'	
		B-4	3.33'	
		B-5	3'	
		CPT-4	3.5′	
	Airboat Mounted	CPT-5	4'	
	Drill/CPT Rig	CPT-6	3.5′	
		CPT-7	2.5′	
		CPT-8	2.5'	
		CPT-9	4.5'	
		CPT-10	2.5′	
		B-6/CPT-11	5.42'/4'	
		CPT-12	4'	

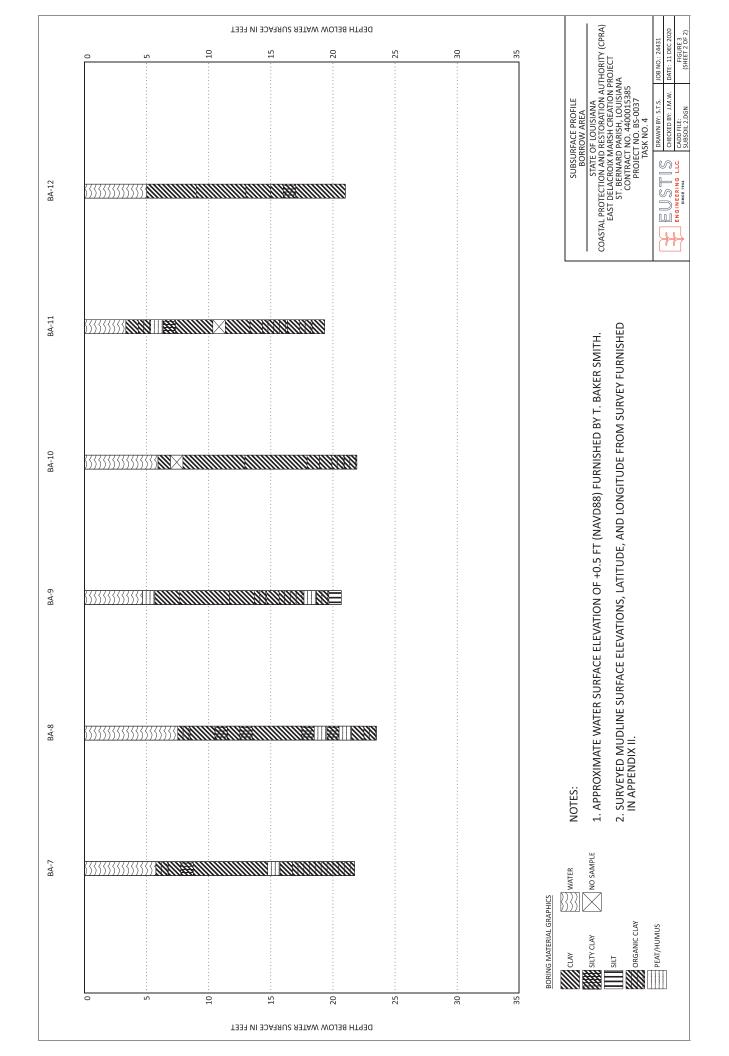
TABLE 2: DEPTH OF STANDING WATER

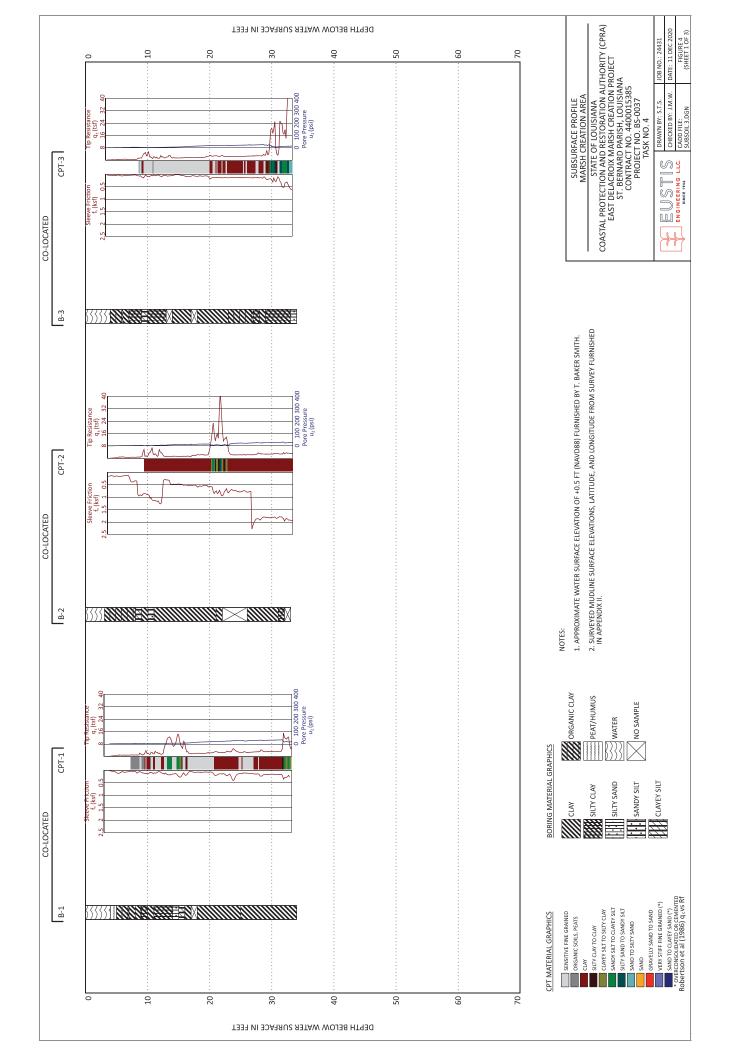

- 26. Borings and CPTs along the tidal levee were completed along the levee centerline. The depth to groundwater was only recorded for TB-4 after a 15-minute waiting period. Water was initially encountered at a depth of 9 feet and had risen to 8 feet after 15 minutes. This time period was not sufficient to determine the stabilized depth to ground water.
- 27. The water depth/depth to ground water will vary with tidal fluctuations; climatic conditions; drainage improvements; and other factors. The water level and site

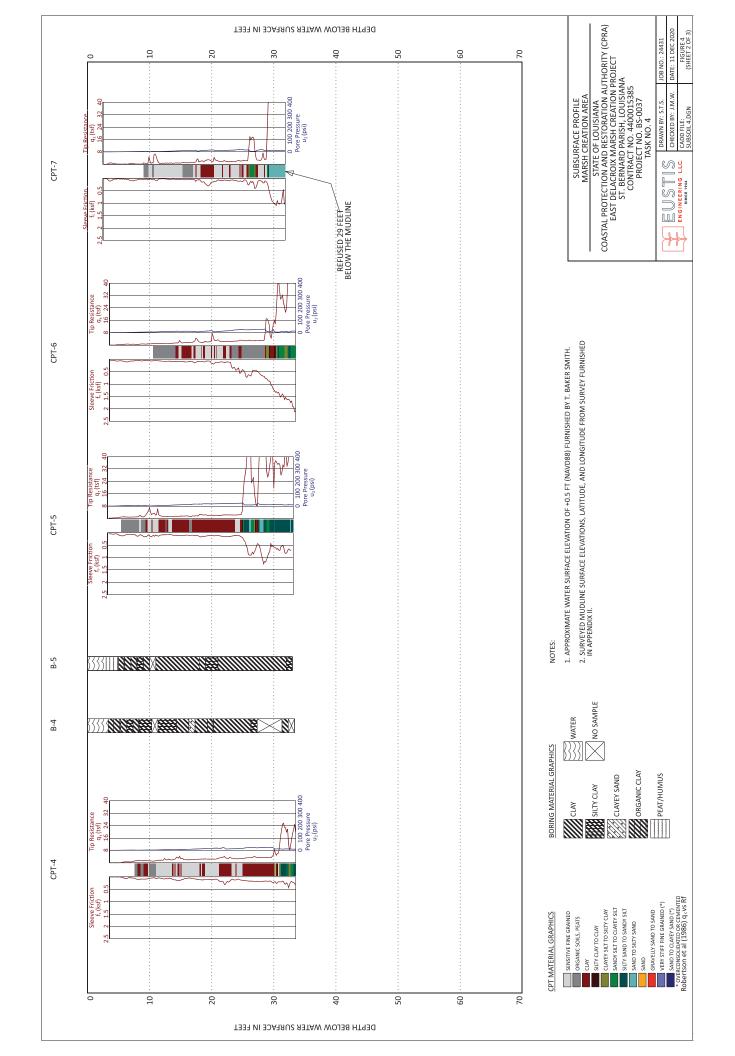

conditions should be investigated by those persons responsible for construction immediately prior to beginning work.

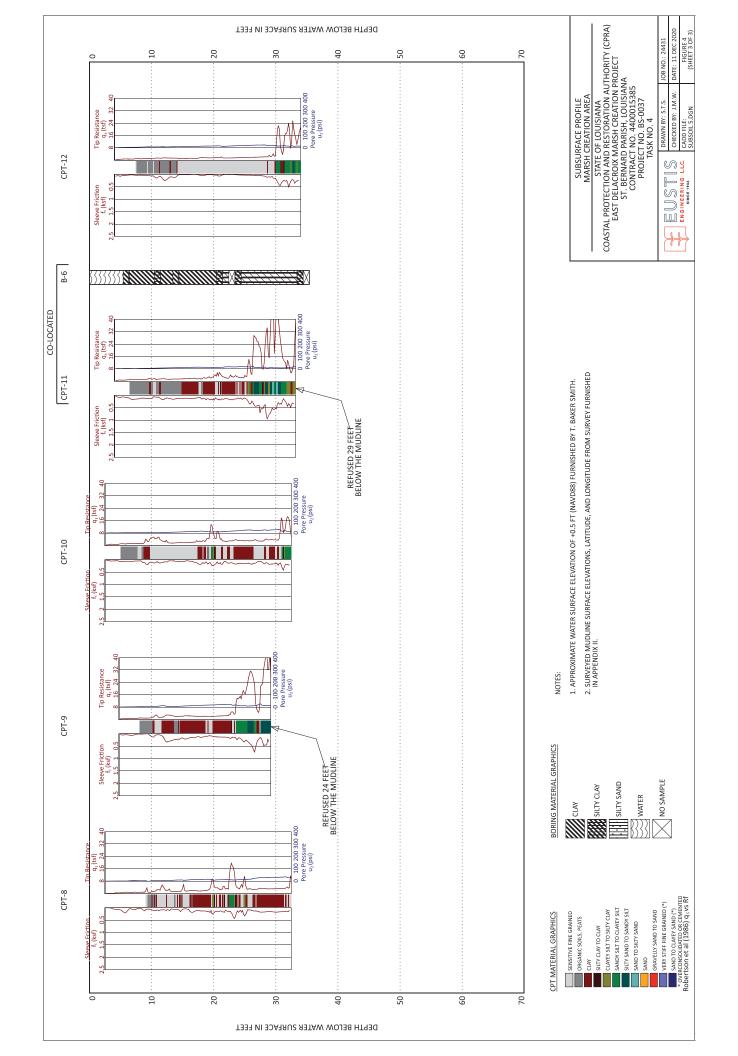

LIMITATIONS

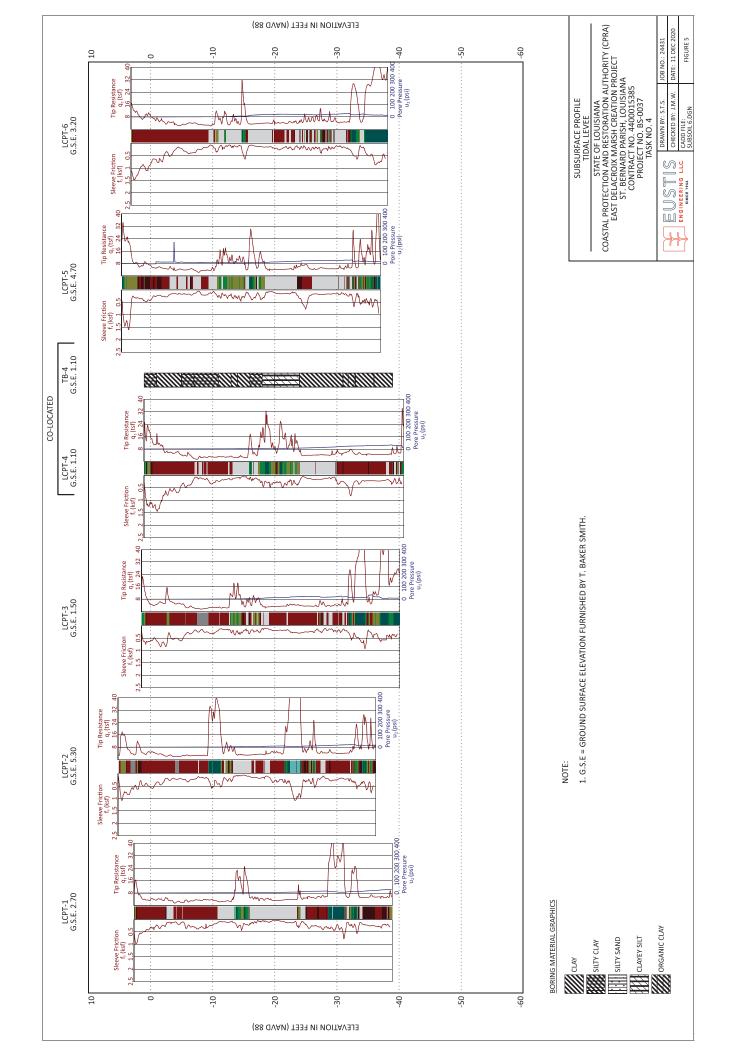
- 28. This report has been prepared in accordance with generally accepted geotechnical engineering practice for the exclusive use of CPRA for specific application to the subject site. In the event of any changes in the nature or location of the proposed marsh creation and ridge restoration features, the information contained in this report shall not be considered valid unless the changes are reviewed and this report is modified and verified in writing. Should these data be used by anyone other than CPRA, the user should contact Eustis Engineering for interpretation of data and to secure any other information pertinent to this project.
- 29. Our findings in this report are based on selected points of field exploration, laboratory testing, and our understanding of the proposed project. Further variations in soil or ground water conditions could exist between and beyond the exploration points. The nature and extent of these variations may not become evident until construction. Variations in soil or ground water may require additional studies, consultation, and possible revisions to our recommendations.
- 30. Eustis Engineering has striven to provide our services in accordance with accepted geotechnical engineering practices in this locality at this time. No warranty or guarantee is expressed or implied. The results of the soil borings, CPTs, and laboratory tests contained in Appendices I through VI of this report may be included in the plans and specifications.


31. The scope of our services does not include an environmental assessment or an investigation for the presence or absence of wetlands and hazardous or toxic materials in the soil; surface water; ground water; or air on, below, or adjacent to the subject property. Furthermore, the scope does not include the investigation or detection of biological pollutants at the site. The term "biological pollutants" includes but is not limited to molds, fungi, spores, bacteria, viruses, and the byproducts of any such biological organisms.









APPENDIX I FURNISHED INFORMATION

East Delacroix Marsh Creation and Terracing (BS-37)

Project Status

Approved Date: 2019Project Area: 597 acresApproved Funds: \$3.64 MTotal Est. Cost: \$39.8 MNet Benefit After 20 Years: 314 acresStatus: Engineering and DesignProject Type: Marsh CreationPPL #: 28

Location

This project is located in Region 2, Breton Basin, St. Bernard Parish.

Problems

Hurricanes Katrina and Rita caused the majority of wetland loss in the project area. Wind erosion and saltwater intrusion have resulted in loss of marsh vegetation and wetland soils. Marsh loss has increased exposure of Delacroix to flooding from the east/southeast. The 1984 to 2018 USGS loss rate is -1.58%/yr for the extended project boundary area.

Drone image of the marsh creation area facing northeast.

Restoration Strategy

The project goal is to create and nourish approximately 406 acres of marsh and construct approximately 12,950 linear feet of terraces (approximately 8 acres) utilizing a layout to help protect the community of Delacroix.

April 2019

Cost figures as of: aaaDatePadPad

Sediment would be hydraulically dredged from Lake Lery and placed in two confined disposal areas creating 353 acres of marsh and nourishing 53 acres of existing marsh. Two creation cells allow a channel for the existing pump station. Approximately 12,950 ft of earthen terraces would be constructed. The side and crown of the terraces would be planted with appropriate bare root plants in one row per side and crown.

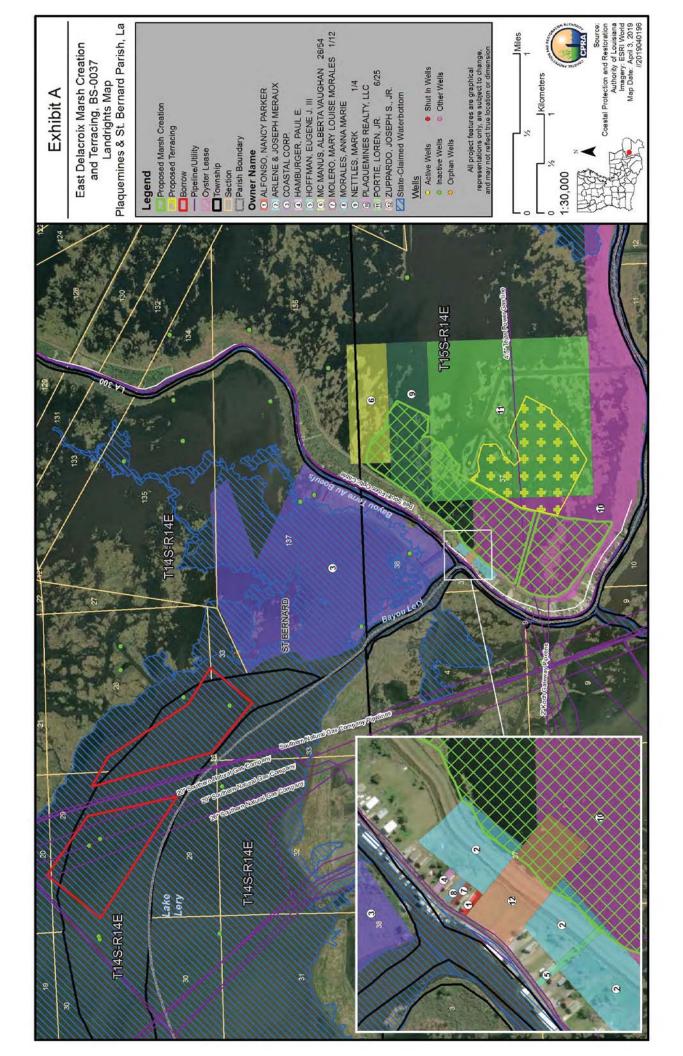
Two additional areas of deteriorating marsh south and east of the proposed project will be investigated should the project be considered for further evaluation. Therefore, data acquisitioned for Engineering & Design will include an additional 114 acres to allow flexibility for analysis of these alternate features.

Progress to Date

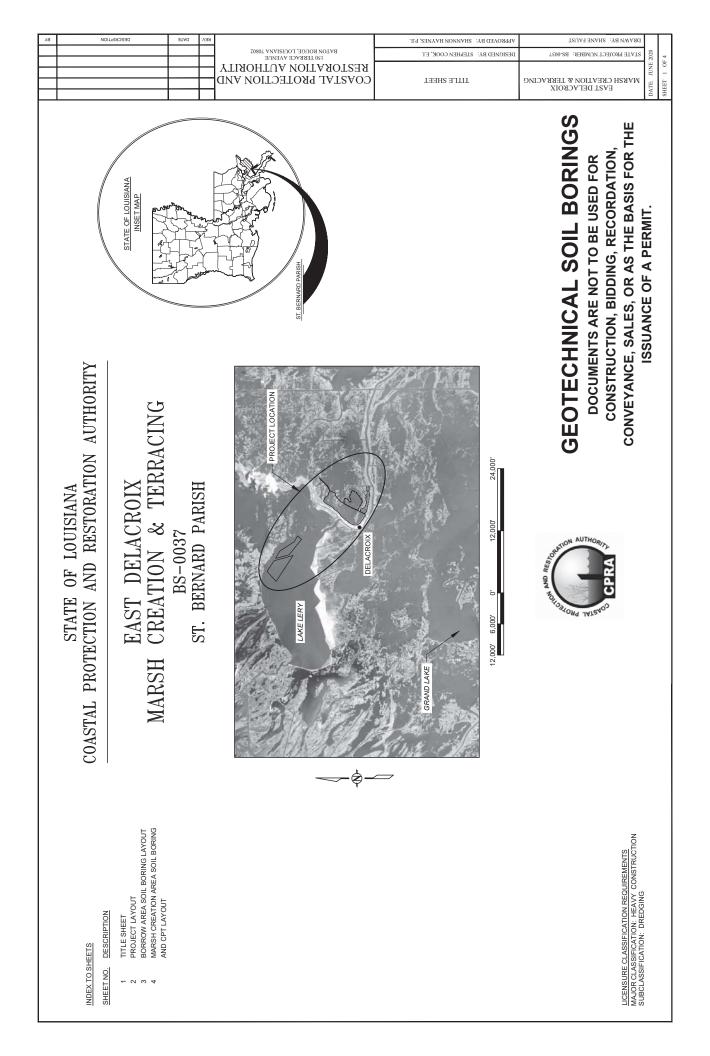
This project was approved for Phase I Engineering and Design in February 2019.

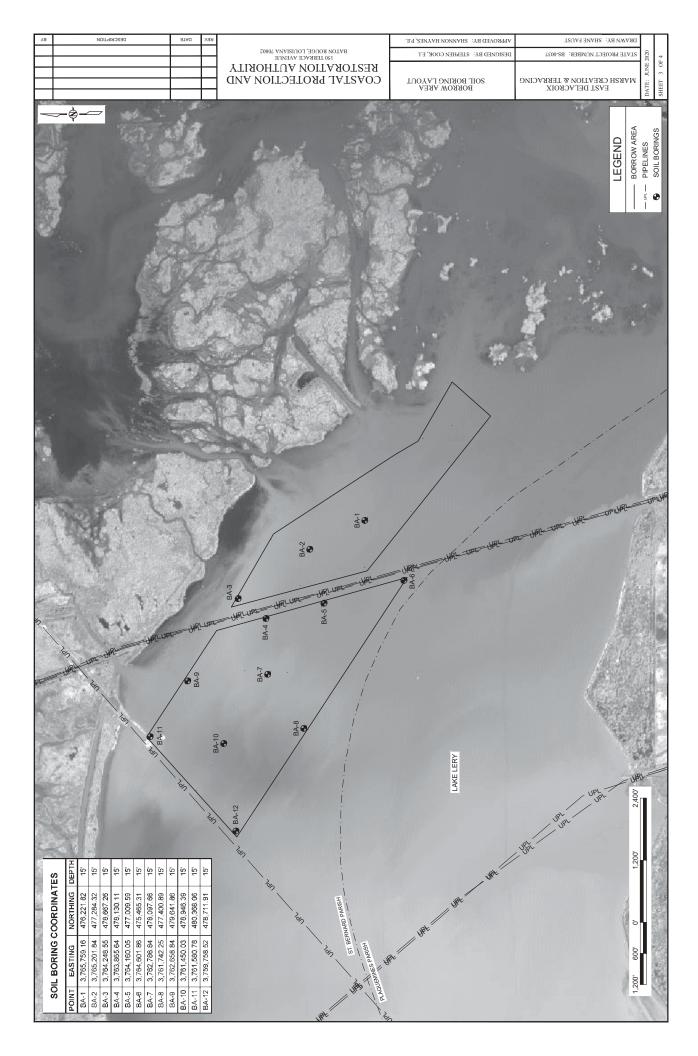
The project is on Priority Project List (PPL) 28.

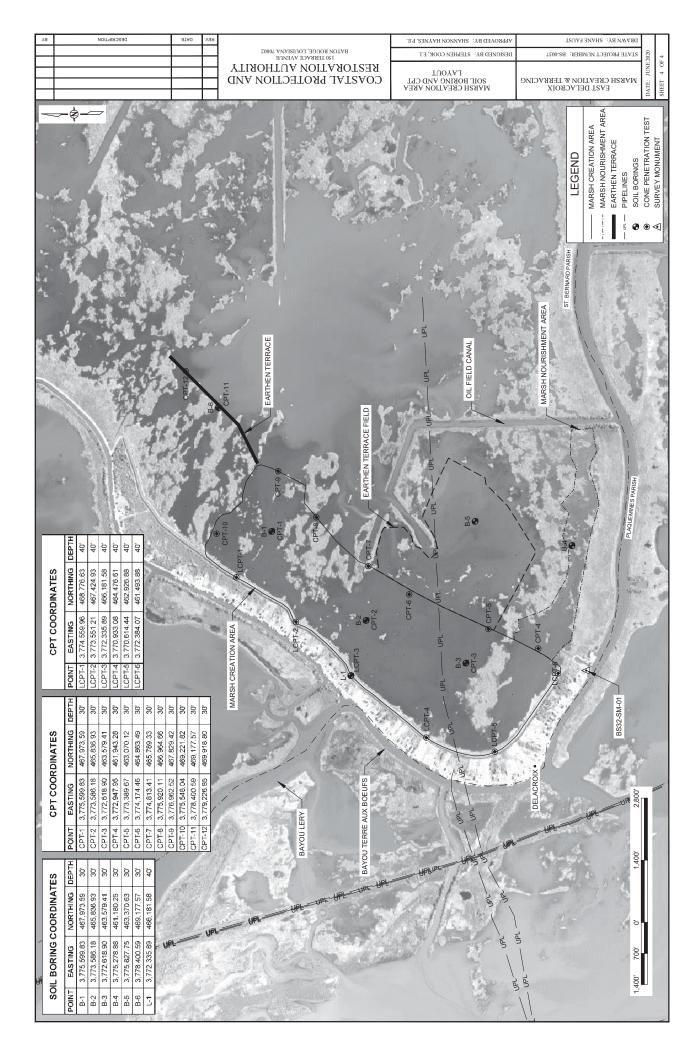
For more information, please contact:

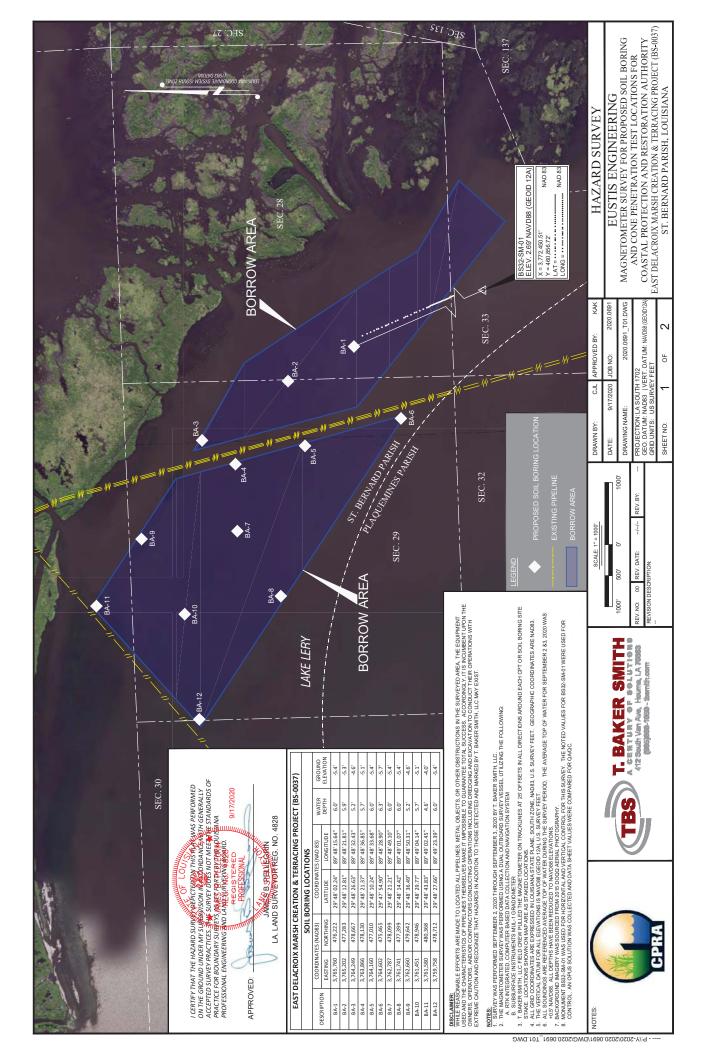


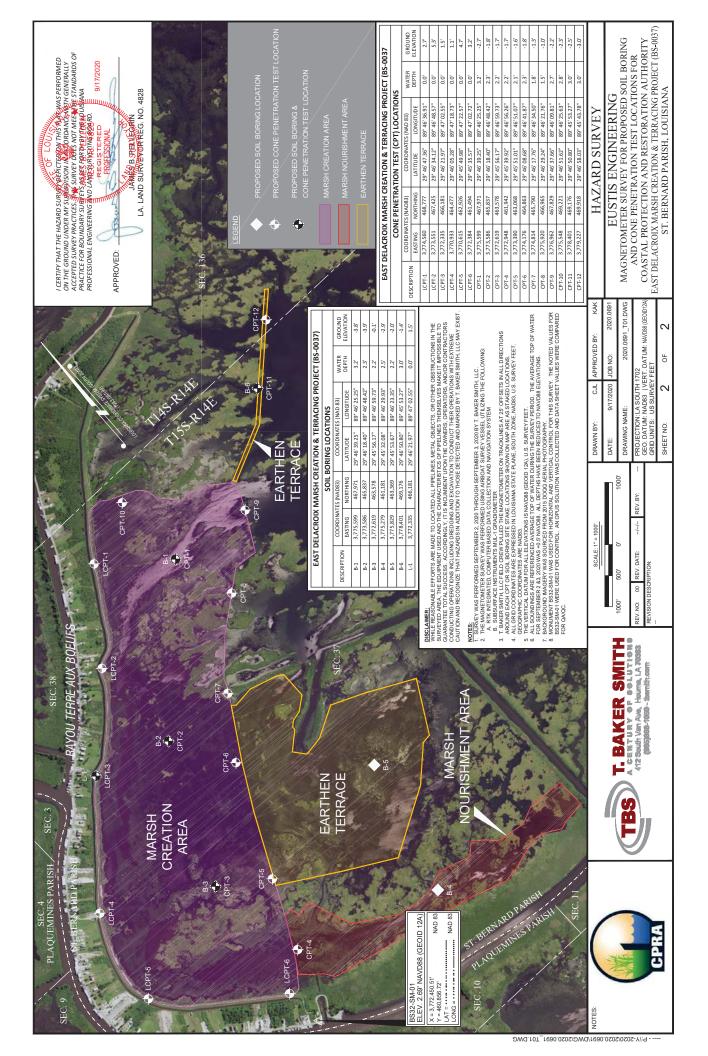
Federal Sponsor: National Marine Fisheries Service Baton Rouge, LA (225) 389-0508



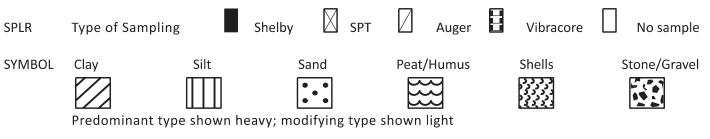

Local Sponsor: Coastal Protection and Restoration Authority Baton Rouge, LA (225) 342-4733







APPENDIX II SITE SURVEY


APPENDIX III BORING LOGS

LEGEND AND NOTES FOR LOG OF BORING AND TEST RESULTS

PP Pocket penetrometer: Resistance in tons per square foot

SPT Standard Penetration Test: Number of blows of a 140-lb hammer dropped 30 inches required to drive 2-in. O.D., 1.4-in. I.D. sampler a distance of 1 foot into the soil after first seating it 6 inches. Values shown have not been corrected.

- USC Unified Soil Classification
- DENSITY Unit weight in pounds per cubic foot

SHEAR TESTS

TYPE

- UC Unconfined compression shear
- OB Unconsolidated undrained triaxial compression shear on one specimen confined at the approximate overburden pressure
- UU Unconsolidated undrained triaxial compression shear
- CU Consolidated undrained triaxial compression shear
- DS Direct shear
- φ Angle of internal friction in degrees
- c Cohesion in pounds per square foot

ATTERBERG LIMITS

- LL Liquid Limit
- PL Plastic Limit
- PI Plasticity Index

OTHER TESTS

- CON Consolidation
- -#200 Percent passing a U.S. No. 200 sieve
- SV Particle size distribution (sieve only)
- PD Particle size distribution (sieve and hydrometer)
- k Coefficient of permeability in centimeters per second
- SP Swelling pressure in pounds per square foot

Other laboratory test results reported on separate figures

GENERAL NOTES

- (1) If a ground water depth is shown on the boring log, these observations were made at the time of drilling and were measured below the existing ground surface. These observations are shown on the boring logs. However, ground water levels may vary due to seasonal fluctuations and other factors. If important to construction, the depth to ground water should be determined by those persons responsible for construction immediately prior to beginning work.
- (2) While the individual logs of borings are considered to be representative of subsurface conditions at their respective locations on the dates shown, it is not warranted that they are representative of subsurface conditions at other locations and times.

	DLaL	e of Lou	State of Louisiana Coastal Protection		DUNING AND LEJI NEJULIJ				<u>2</u>							
EUSTIS ENGINEERING SINCE 1946	East	and R Delacrc CPRA St. Berr	and Restoration Authority East Delacroix Marsh Creation Project CPRA Project No. BS-0037 St. Bernard Parish, Louisiana		Bor	Boring: B-1	4		Proj Dati Latii Loni	ject No e: 09/0 tude: 2 gitude:	Project No: 24431 Date: 09/09/2020 Latitude: 29.77758° Longitude: -89.77368°			Water Total D	Water Depth: See Total Depth: 34.0 ft	See Text 4.0 ft
Scale in PP SPT	Р N Ч Ч К	Symbol	Visual Classification	USC	Sample Number	Depth in Feet	Water Content %	D	Density Wet	Shé Type	Shear Tests		Atterberg Limits LL PL PI	nits PI		Other Tests
			4' Water		S N	0			5		-		-			
			Very soft brown peat w/roots	Pt	1A	4	563									
5 –			Very soft gray organic clay w/decayed	НО	1B	ъ	171	30	81			207	38	169	RO N>	ORG = 14.6%; MINI VANE = 297 PSF
-1			wood a roots w/trace of humus		2A	9	234									
1			Extremely soft gray clay w/few silt	СН	2B	7	125	39	87	OB	0 50	0 167	42	125		
1			Very soft gray & brown organic clay withare of gray & brown organic clay	НО	ЗA	00	149									
+			Soft gray silty powers a silt frage silty clay w/fine sand pockets &	CL	3B	6	35					33	20	13		
10 -			Very soft gray clay w/trace of humus	СН	4A	10	127									
- 0.25			yery soft gray silty clay where of shell	CL	4B	11	33									
			weightents w/clayey silt, trace of fine sand		5Α	12	36	83	112	OB	0 184	30	19	11		
- 0.25			pockets, & shell riggments w/ trace of shell fragments & fine		5B	13	34									
			Medium dense gray silty sand w/trace of	SM	6A	14	30								-#20	-#200 = 27.1% - #200 = 27.1%
15 –			Medium compact gray clayey silt w/few	ML	68	15	26									
			Very soft gray clay W/few silt pockets &	Н	ТA	16	59									
			decayed wood No sample		7B	17										
1			Very soft gray & dark gray clay w/trace of	СН	8A	18	119	39	86	OB	0 185	5 171	30	141		
			tragments W/trace of silt norkets & organic		8B	19	61									
20 -			matter w/trace of organic matter		94	20	80									
-1			w/trace of silt pockets, roots, &		9B	21	106	44	06	OB	0 289	9 142	42	100		
			organic matter w/few shell fragments & trace of silt		10A	22	89									
-1 - 1 -			w/few shell fragments, trace of silt pockets & organic matter		10B	23	110									
25												_		_	_	

Activity of the second participant of the second part for 2431 Second Parity, Louisian More than the second parity in the second parity in the second parity is and the second parity in the second parity is and the secon	+ EUSTI	Star	te ot lou													
PP Strl P2 Strl P3 P Symbol Voual Cassification USC Sympol Motor Density Street P Symbol Voual Cassification USC Sympol Motor Density Street P Sympol Motor USC Sympol P P P P Voual Cassification USC Sympol P P P P Volumer CH Number Density Voual Cassification P P Volumer CH Number Density Volumer P P Volumer CH Number Density Volumer Sympol P Volumer CH Number Density Volumer Sympol P Volumer CH Number Density Volumer Sympol P Volumer CH Z Z Sympol P Symmol P Volumer Z Z Z Z Symmol P P Volumer Symmol Z Z Z Z Z P Volumer Symmol Z Z <	ENGINEERIN SINCE 1946	10	and Re and Re CPRA F St. Bern	issiant Constant Protection estoration Authority ix Marsh Creation Project Project No. BS-0037 iard Parish, Louisiana		Bori	ing: B-	ų		Proj Date Latit Long	ect No: 244. :: 09/09/202 ude: 29.777 itude: -89.7	.31 20 758° 77368°		3 Ĕ	/ater Dep otal Dept	Water Depth: See Text Total Depth: 34.0 ft
1 2 act				Visual Classification	usc	Sample Number	Depth in Feet	Water Content	Dry	lsity Wet	Shear Tes	υ υ	Atterber,	g Limits		Other Tests
Michael fragments & trace of sitt 11A 27 106 Michael fragments & trace of sitt 11B 28 50 Michael fragments & trace of sitt poctets & lenses 11B 28 50 Michael fragments & trace of sitt poctets & lenses 12A 32 70 Michael fragments & trace of sitt poctets & lenses 12A 32 70 Michael fragments & lenses 12B 77 55 95	- 25 -			Very soft gray & dark gray clay w/few shell fragments, trace of silt pockets & organic matter	Ð			٩	pcf	pcf		-	-	-		
Writerie of site portets & later of all non-set and a later of all non-set all				w/shell fragments & trace of silt		11A	27	106								
Africace of site bockets & lenses Mirace of site bockets & lenses 124 23 70 56 56 Wirace of site bockets & lenses 124 33 77 56 56	+ +			w/shell fragments, silt pockets & lenses, & trace of organic matter		11B	28	20								
73 28 w/race of sit pockets & lenses 124 32 70 56 96 w/race of sit pockets & lenses 138 77 56 96 w/race of sit pockets & lenses 138 77 56 96 w/race of sit pockets & lenses 138 77 56 96 w/race of sit pockets & lenses, trace 138 77 56 96 w/race of sit pockets & lenses, trace 138 77 56 96 w/race of sit pockets & lenses, trace 138 77 56 96 w/race of sit pockets & lenses, trace 138 77 56 96	30 -															
128 33				w/trace of silt norkets & lenses		12A	32	70	56	96						MINI VANE = 145 PSF
				w/trace of silt pockets & lenses, trace of decayed wood. & concretions		12B	33	77								
	35 -															
	i i															
	-1 1															
	40 -															
	1 1															
	45 -															

Page 2 of 2

EUSTIS GINT LIBRARY102620 H0013.GLB EE STANDARD BORING LOG 24431.GPJ 12/11/20

	(0	and I ast Delaci CPR/ St. Bei	and Restoration Authority East Delacroix Marsh Creation Project CPRA Project No. BS-0037 St. Bernard Parish, Louisiana		Bori	Boring: B-2	Ņ		Pro Dati Latin	Project No: 24431 Date: 09/09/2020 Latitude: 29.77178° Longitude: -89.78012°	24431 /2020 .77178° 89.7801	.2°		Water De Total De	Water Depth: See Text Total Depth: 33.0 ft
Scale in PP Feet	SPT	S P L Symbol R	Visual Classification	usc	Sample Number	Depth in Feet	Water Content %	Dry	Density Wet	Shea Type	Shear Tests	Atter	Atterberg Limits	PI	Other Tests
0			3'5" Water		NS	0		5	5	4	4				
+ +			Extremely soft gray & brown organic clay w/wood & roots w/wood & roots	НО	1A 1B	3.04 4.04	159 218	24	77			231	49 18	182	ORG% = 19.8%
5 -			w/trace of humus		2A	5.04	270								
-i					2B	6.04	188								
					3A 3R	7.04 8.04	215 30								//s %9 UZ = UUC#-
			Medium compact gray clayers sift writine and pockets & lenses, few clay pockets & lenses, trace of decayed wood, organic	CH M	4 A	9.04	51								
10 -			Watter, & shell tragments Very soft gray clay w/trace of silt	N C	4B	10.04	30								-#200 = 67.9% SV
-1			Iragments Loose gray sandy silt w/trace of clay	СН	5Α	11.04	64					64	27 3	37	
0.25			pockets, sriell fragments, & organic matter Fremely soft grav clav w/trace of silt		5B	12.04	86	51	95	OB	0 57	88	20 6	68	
-1			fragments of city and other of shell of the		6A	13.04	63								
- 0.25			whited of slit pockets & organic matter Wsity sand pockets & few shell		68	14.04	99								
15 -			fragments wrew shell fragments, trace of silty		ТA	15.04	68								
- 0.25			organic matter organic matter witrace of silt pockets		7B	16.04	84								
i			W/LIACE OF ORGANIC MATTER, & Shell Firses, fragments		8A	17.04	81								
0.25			w/trace of slity sand pockets & lenses & trace of shell fragments w/trace of silt pockets & trace of shell		88	18.04	82	53	96	OB	06 0	93	28 6	65	
20 - 0.25			fragments wrfrace of silty sand pockets & lenses wrace of shell fragments		4 B6	20.04	85 44								
i			w/trace of silty sand pockets & lenses		100	71 DA	100								
			Extremely soft gray & tan clay w/trace of slit pockets & decayed wood	H	FUL	71.04	EOT								
0.25			No sample		108	22.04									
10															

Image: constraint of the constr																	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	С В П С		0	anc East Dela CPF St. B	Restoration Authority croix Marsh Creation Project tA Project No. BS-0037 ernard Parish, Louisiana	-	Borin	18: B-	5		Pro Dat Lati Lon	ject No: 24 e: 09/09/2(tude: 29.77 gitude: -89	431)20 '178° .78012°		Υ Υ Υ	/ater Dep otal Dept	th : See Text h : 33.0 ft
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	scale in Feet	dd	SPT					Depth n Feet	Water Content	Den	sity Wet	Shear Te	ests C	Atterber _i	g Limits		Other Test
103 103 5400 62 62 11 26.00 62 24 103 203 11 200 13 20 13 23 103 203 13 10 13 20 13 24 103 203 13 10 13 20 13 24 103 203 13 10 13 20 13 24 103 203 13 203 13 203 24	- 25 -				No sample		+		R	bct	pct		pst	-	-		
0.25 Extremely soft grave lify claw/few fine 0.1 0.25 Extremely soft grave lify claw/few fine 0.1 0.25 Vo sample 128		0.25			Extremely soft gray clay w/trace of fine sand pockets a Penses trace of decayed wood, & shell fragments w/trace of silt pockets & shell fragments			26.04 27.04	62 83	51	6						
0.25 Extremely soft gray silty clay w/few fine CL 12A 31.04 and becokets & trace of decayed wood Clear of a clear of the	30																
	, <u> </u>				Extremely soft gray silty clay w/few fine sand pockets & trace of decayed wood			31.04	60								
	1	ç7.0		X	No sample	-		32.04									
	35																
	· · · – Ŧ																
	40																
	1 1-																
	42 72																
	2 7																
	1 -																

Page 2 of 2

	10 01010	LUG UF)			DUNING AND ILJI NLJULIJ	<u>^</u>							
	East Del East Del CF St.	state of Louisiana Coastal Protection and Restoration Authority East Delacroix Marsh Creation Project CPRA Project No. BS-0037 St. Bernard Parish, Louisiana		Borii	Boring: B-3	ŵ		Proj Dat(Latit Lon	ect No e: 09/0 tude: 2 gitude:	Project No: 24431 Date: 09/08/2020 Latitude: 29.76560° Longitude: -89.78326°)° 326°		Wate Total	Water Depth: See 7 Total Depth: 34.0 ft	See Text 4.0 ft
Scale in PP SPT	S P L Symbol R	bol Visual Classification	USC	Sample Number	Depth in Feet	Water Content %	Del	Density Wet	She Type	Shear Tests	S Ati	Atterberg Limits LL PL PI	Limits PI		Other Tests
0	<u> </u>	4' Water		SN	ο		- -	5		2 	0	-			
ى ۱ - ۱		Extremely soft gray & dark gray organic clay w/wood, roots, humus pockets, & shell regements & lavers	НО	1A 1B	4 2	233 327	16	67	OB	0 12	121 338	8 52	286	0	ORG = 27.4%
		Very soft grant control of the weilt pockets,	Ю	2A	9	96									
1		Extremely soft gray silty clay w/few silt pockets, organic matter, & roots	CL	2B	2	92					37	7 21	16		
		w/some organic matter		3A 2 B	∞ σ	41									
		Loose gray clayey silt w/trace of shell fragments	ML	38	ת	55									
I		Extremely soft gray silty clay w/trace of silt pockets & shell fragments	CL	4A	10	34									
		w/trace of silt & clay lenses, & shell		4B	11	41	79	112			34	t 22	12		
		w/trace of shell fragments		5A	12	36									
		No sample		58	13										
1		Extremely soft gray clay w/silt pockets &	СН	6A	14	60									
15 -		will had ments with sand pockets & lenses, & trace		68	15	65	61	100	OB	0 16	165 59	9 21	38		
		w/few silt pockets & trace of shell tragments		ZА	16	91									
1		No sample		78	17										
1		Extremely soft gray clay w/few silt	СН	8A	18	82									
- 0.25		w/silty sand pockets & lenses, & trace		8B	19	58	63	100	OB	0 12	124 64	t 22	42		
20 -		w/trace of silt pockets		9A	20	95									
- 0.25		w/trace of silt pockets		9B	21	94									
		w/trace of silt pockets & shell		10A	22	96									
- 0.25		Extrements of gray organic clay w/few sift pockets, organic matter, roots, & trace of shell fragments	НО	10B	23	122	38	84	OB	0	82 176	6 55	121		

	Water Depth : See Text Total Depth : 34.0 ft	Atterberg Limits LL PL PI					AC % 0' / C = 007#-					 	 	_
	Project No : 24431 Date : 09/08/2020 Latitude : 29.76560° Longitude : -89.78326°	Shear Tests Vet Type \ D Sf										 	 	_
BORING AND TEST RESULTS	Boring: B-3	Sample Depth Water Densit Number in Feet Content Dry Dcf		11B 28 77	33 55 57	12A 32	CC 071							
State of Louisiana Coastal Protection	and Restoration Authority East Delacroix Marsh Creation Project CPRA Project No. BS-0037 St. Bernard Parish, Louisiana	S P Visual Classification USC L Symbol Visual Classification USC	Extremely soft gray organic clay w/few OH slit pockets, organic matter, roots, & trace of shell fragments Extremely soft gray slity_clay w/organic CL		Extremely soft gray silty clay w/fine sand CL	_	L. A. Loose gray silty and w/few clay,lenses & SM							
+		Scale in PP SPT Feet		- 0.25	30	- 0 3E	c7.0 +	35 -	1 1	40 -	+ +	 45 -	 	- 50

Page 2 of 2

			State of Louisiana Coastal Drotection	5												
EUSTIS ENGINEERING SINCE 1946	Eas	and R and R CPRA St. Ber	East Delacroix Marsh Creation Authority East Delacroix Marsh Creation Project CPRA Project No. BS-0037 St. Bernard Parish, Louisiana		Bor	Boring: B-4	4		Prr Da Lor	Project No: 24431 Date: 09/08/2020 Latitude: 29.75891° Longitude: -89.77498°	o: 244§ 38/202 29.7589 :-89.7	81 0 7498°		~ ~	Water Dep Fotal Dept	Water Depth: See Text Total Depth: 33.3 ft
Scale in PP SpT		P S S S S S S S S S S S S S S S S S S S	Viend Plancification		Sample	Depth	Water		Density	-у Ч	Shear Tests		Atterberg Limits	g Limits		Atop.
					Number	in Feet	Content %	Dry pcf	Wet	Type	•	c Dsf	LL PL	F		
			40" Water		sn	o										
			Everomoly coff brown 0 and remain day	D D	1A	3.33	231									
1			w/roots & humus pockets	5	18	4.33	167	30	80	OB	0	179	136 42	2 94		ORG = 17.7%
2			Extremely soft gray clay w/organic	Ю	2A	5.33	152									
			Extremely soft gray silty clay w/organic	CL	2B	6.33	76									
ł			Extremely south and & brown organic clay	НО	3A	7.33	89									
			Extremely soft gray silty clay w/some	C	38	8.33	114									
10			pockets w/silt pockets & lenses		4A	9.33	45	76	111	OB	0	146	42 13	3 29		
2			No sample		4B	10.33										
			Extremely soft gray silty clay	C	5A	11.33	40									
			w/trace of silt pockets & organic		5B	12.33	44						36 19	9 17		
			w/trace of shell fragments		6A	13.33	55									
1 E _ 0.25			Extremely soft gray clay w/trace of silt	СН	6B	14.33	60	61	98	OB	0	118	70 20	0 50		
<u>5</u>			w/some shell fragments		ТA	15.33	65									
0.25			Gray clay & gray & white reef shell	sc	7B	16.33	26									-#200 = 24.3% SV
1			Extremely soft to soft gray clay w/silt	Э	8A	17.33	57									
0.25			pockets & trace of sheil haginetics Wysit pockets & trace of shell fragments		8B	18.33	59									
			Soft grave organic clay w/few shell	НО	9A	19.33	118	39	85	OB	0	273	142 34	4 108		
0.25			Gray Martine and a supervision of the set of	CH	9B	20.33	72									-#200 = 65.1% SV
			pockets, & organic matter w/some shell fragments & few silt		10A	21.33	77									
0.25			wotkets wytrace of silt pockets & organic matter		10B	22.33	61	64	103	OB	0	144	75 31	1 44		
1																

The first production of the first product the fi		ł	ť	1 3												
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			10	ate of Lo and F st Delacr CPRA St. Ber	utsiana Coastal Protection testoration Authority oix Marsh Creation Project A Project No. BS-0037 inard Parish, Louisiana		Bor	ing: B.	4		Project No: 2 Date: 09/08/ atitude: 29.7 ongitude: -8	4431 2020 5891° 9.77498°		Wat Tota	ter Deptl	h: See Text : 33.3 ft
0.35 Gray Regression (Section Control (Section Contro) (Section Control (Section Control (Section Control (Secti	Scale in Feet	dd	SPT		Visual Classification	USC	Sample Number	Depth in Feet	Water Content %	Densit Dry Dcf	Typ	Tests C Dsf	Atterbei LL P	g Limits L PI		Other Tests
0.25 118 27.33 0.15 0.16 123 133 83 0.15 0.13 123 133 83 0.15 0.13 123 133 83 0.15 0.13 123 123 133 0.15 0.13 123 133 13 0.15 0.13 123 133 13 0.15 0.13 123 123 13 0.15 0.13 123 123 13 0.15 0.13 123 13 13	+ + + C7 -				Gray clay w/gray & white reef shell & shell fragments, trace of fine sand pockets, & organic matter Extremely soft gray silty clay w/shell fragments	CT CH	11A	26.33	54							
0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.24 0.23 0.25 0.24 0.24 0.25 0.25 0.25 0.24 0.24 0.24 0.24 0.25 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2	30	0.25			No sample		118	27.33								
0.25 No sample	 				Extremely soft gray clay w/silty sand pockets & shell fragments	Н	12A	31.33	83							
	i	0.25		X	No sample		12B	32.33								
	35 -															
	i i															
	40 -															
	-i i															
	45															
	- 20															

EUSTIS GINT LIBRARY102620 H0013.GLB EE STANDARD BORING LOG 24431.GPJ 12/11/20

Edition of the second of the s	state of Louisiana Coastal Protection and Restoration Authority East Delacroix Marsh Creation Project CPRA Project No. BS-0037 St. Bernard Parish, Louisiana											
			Boring: B-5	: B-5		Proj Datu Latij Lonj	Project No: 24431 Date: 09/08/2020 Latitude: 29.76491 Longitude: -89.773	Project No: 24431 Date: 09/08/2020 Latitude: 29.76491° Longitude: -89.77316°	ŝ	Wat Tota	er Deptl	Water Depth : See Text Total Depth : 33.0 ft
	ol Visual Classification		Sample Depth Number in Feet	oth Water eet Content	Dry	Density Wet	Shei Type	Shear Tests e • C	Atterbe LL F	Atterberg Limits LL PL PI		Other Tests
	3 Water		R N		5			5		-		
	Extremely soft brown humus w/roots	Pt	1A 3 1B 4	541								ORG% = 53.8%
	w/ vous Extremely soft brown & gray organic clay	НО	2A 5									
	Extremely soft gray & dark gray clay	СН	2B 6	130	37	86	OB	0 34	97 2	23 74		ORG% = 8.7%
	Shell fragment pockets, or game marter, we shell tragment is the stress of the soft game of	НО										
	Extremely soft gray silty clay w/organic	55	4A 8	0 89	59	100	OB	0 56	66 2	26 40		
10 - 1	Figure 1 for the soft gray clay w/few shell figure of silt pockets, & sandy	5			}							
	No sample Externation control and the foll	СН	5A 11	1 97								
	FAUERINENT SUIT BANK MANNEN fragmenter W/trace of sift pockets, shell		5B 12	2 73	57	98	OB	0 107	78 2	21 57		
	Iragments, & organic matter w/silt pockets. Irace of organic matter of tracements		6A 13	3 82								
	where of silt pockets & shell		6B 14	4 83					95 1	18 77		
15 -	W/Second Second Se		7A 15	83								
	w/trace of silt pockets & organic matter											
	w/trace of silt pockets, roots,		8A 17	7 94	48	93	OB	0 139	102 3	36 66		
	Extremely soft grave trace of decayed wood	Н										
	Very soft gray silty clay w/trace of	CL	9A 19	9 67								
20 - 0.25	Writeree of Series clayey silt lenses,		9B 20	0 44	77	111	OB	0 132	43 2	22 21		
	Very soft gray clay w/silt pockets & trace	С	10A 21	1 83								
+ 0.25	w/silt pockets & trace of shell fragments		10B 22	2 70								

and												
	East Dela CPF St. B	East Delacrois Muthority East Delacrois Marsh Creation Project CPRA Project No. BS-0037 St. Bernard Parish, Louisiana	Bo	Boring: B-5	ц		Project N Date: 09, Latitude: Longitud	Project No: 24431 Date: 09/08/2020 Latitude: 29.76491° Longitude: -89.77316°	316°		Water Depi Total Deptl	Water Depth: See Text Total Depth: 33.0 ft
	мч				Water	Density		Shear Tests	Atte	Atterberg Limits		
		01 Visual Classification	USC Number	ir in Feet	Content - %	Dry Dry	Wet Type	+	C LL	PL PI		Other Tests
		Very soft gray clay w/silt pockets & trace of shell fragments w/trace of silt pockets & organic	CH 11A	26	82		96 08	0	69 97	26 71		
- 0.25		matter w/silt pockets	11B	27	94							
		w/few silt pockets & trace of shell fragments	12A	31	92							
0.25		Very soft gray silty clay	CL 12B	32	44	77 1	111 OB	0	207 37	18 19		
70 75 75 75 75 75 75 75 75 75 75 75 75 75												

Page 2 of 2

		Miliciana Coasta Drotoction				-		2							
	East Delac CPRJ CPRJ St. Bei	state of courstaine coastal Protection and Restoration Authority East Delacroix Marsh Creation Project CPRA Project No. BS-0037 St. Bernard Parish, Louisiana		Bor	Boring: B-6	9		Proj Datí Latit Lon _ŝ	ect Nc e: 09/C :ude: 2 șitude	Project No: 24431 Date: 09/09/2020 Latitude: 29.78078° Longitude: -89.76480°	1) 3480°		3Ĕ	Water Depth: Total Depth: 3	Water Depth: See Text Total Depth: 35.4 ft
ein PP	SPT Symbol R	Visual Classification	usc	Sample Number	Depth in Feet	Water Content %		Density Wet	Sh Type	Shear Tests		Atterberg Limits LL PL PI	g Limits L PI		Other Tests
		5'5" Water		s n	Þ		5	5		-		-			
د ا		Extremely soft brown organic clay	НО	1A	5.42	159									ORG = 8.6%
		W/IIUIIUS POCKETS Extremely soft gray w/silt pockets,	CH	1B	6.42	61									
		w/trace of silt pockets, organic w/trace of silt pockets, organic		2A	7.42	64	62	102				79 21	1 58		
		where of silt pockets, decayed wood,		2B	8.42	87									
10 -		w/roce of silty sand pockets & lenses, w/rece of accaved wood & organic		3A	9.42	78									
		Extremely soft grav silty clav w/trace of	CL	38	10.42	75									
		decayed wood Extracterely soft gray clay w/trace of silty sand morkers of parses trace of silty	СН	4A	11.42	106	0		(
- 0.25		wood, & organic matter w/few sift pockets. trace of shell		4B	12.42	41	80	113	08	0	112	42 13	3 29		
i		Extremely soft grav & brown organic clav	НО	5A	13.42	137									
15 -		W/trace of clay pockets Extremely soft gray & brown clay w/trace of silt, pockets & organic matter	н	5B 6A	14.42 15.42	55 131									
		w/few organic matter & numus w/few organic matter. & trace of siltv		6B	16.42	113									
+		sand pockets & lenses w/silt pockets, few roots, & organic		ΤA	17.42	74	56	98	OB	0	100 1	101 26	5 75		
0.25		matter w/trace of silt pockets & decayed		7B	18.42	95									
		wood w/trace of organic clay pockets,		8A	19.42	107					-1	137 44	4 93		
0.25		Extremely soft gray silty clay where of decayed wood	CL	8B	20.42	39									
		Very loose gray clayey silt w/trace of silty	ML	9A	21.42	42	79	112	OB	0	181				
0.25		No sample		9B	22.42										
		Extremely soft gray silty clay	CL	10A	23.42	56									
0.25			ML	10B	24.42	35	87	117	OB	0	553				

EUSTIS GINT LIBRARY102620 H0013.GLB EE STANDARD BORING LOG 24431.GPJ 12/11/20

Image: Second Parish Classifier And Parish Parish Classifier And Parish	And the compariant constant rotation with the contrast of the		\rightarrow				DOJ	OF BOF	BORING	AND TEST	TEST R	RESULTS	<u>TS</u>								
PP Standa Value Value Uses Value Density Standa Value	PP Strict TAAA PP Strip B B B B B B B B B B B B B B B B B B B	LUI ^a		ING STATE	East	e or L(and Delaci CPR/ St. Bei	ouisiana Coastal Protection Restoration Authority roix Marsh Creation Project A Project No. BS-0037 rnard Parish, Louisiana		Bori	ng: B-	Ģ		Pro Dat Lati	ject N e: 09/ tude:	0: 2445 09/202 29.780	31 0 78° 6480°			Water D Total De	Water Depth: See Text Total Denth: 35.4 ft	ee Text L ff
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Try 3rt L Symbol Valued Cassification USC Nimbol Infereit Content Dury Vert 0.35 M M M M M M M M M 0.35 M M M M M M M M M 0.35 M M M M M M M M 0.35 M M M M M M M M 0.35 M M M 28.42 28 M M 0.45 M M M 28.42 28 M M 0.35 M M M 28.42 28 M M 0.45 M M 11.8 29.42 28 M M 0.35 M M M 11.18 29.42 25 101 126 08 0.35 M M M M M 34.42 25 101 126 0.35 M M M M M M M M M 0.35 M M M </th <th>Scale i</th> <th>SINCE 194</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th>alame</th> <th>4trad</th> <th>Water</th> <th>Der</th> <th></th> <th>ς Γ</th> <th>iear Test</th> <th>s</th> <th>Atterbe</th> <th>irg Limits</th> <th></th> <th>_</th> <th></th>	Scale i	SINCE 194						alame	4trad	Water	Der		ς Γ	iear Test	s	Atterbe	irg Limits		_	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	0.25 0.25 Mill 25.42 28 0.25 0.25 2600665 % lineses % trace of clay 11A 26.42 28 0.25 0.05 26000000000000000000000000000000000000	Feet		145		Symbol			umber	in Feet	Content %	Dry pcf	Wet pcf	Type		C Dsf	-	-		đ	Other Tests
$ \begin{array}{ c c c c c } \hline 123 \\ \hline 025 \\ \hline 02$	0.25 0.25 0.25 11A 28.42 28 0.25 p00/kets;and pockets & trace of clay 11B 29.42 28 0.25 0.25 12B 3.42 25 101 0.25 12B 3.42 25 101 126	67 I	 				Loose gray clayey silt w/trace of silty clay pockets & lenses	ML													
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$ \begin{array}{c cccc} \hline 0.25 \\ \hline 0.1 \\ 128 \\ \hline 0.25 \\ \hline 0.1 \\ 128 \\ \hline 0.25 \\ \hline 0.1 \\ 128 \\ \hline 0.2 \\ \hline 0.1 \\ \hline 0.2 \\ \hline 0.2$						w/fine cand nockets & trace of clav		11A	28.42	28									-#200	-#200 = 76.3% SV
$\frac{1}{12}$	0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.20 0.26 0.25 0.25 0.01 0.26 0.20 0.26 0.25 0.20 0.26 0.20 0.20 0.20 0.20 0.20 0.20	30	0.25				pockets and pockets & trace of clay pockets		11B	29.42	28										
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	0.25 124 3.42 25 101 126 08 0 0.25 101 128 3.42 25 101 126 0 0 0 0 0 0 0		+ +																		
0.25 0.25 0.26 0.28 0.28	0.25 0.26 128 128		i i				Very stiff gray silty clay w/fine sand & clayev silt bockets	CL	12A	33.42	25	101	126	OB		3038				-#200 =	-#200 = 82.8% -#200 = 82.8%
		L	0.25				No sample		12B	34.42											
		35	 																		
			— i																		
		40																			
ζξ ζ			i i																		
		45																			
			i																		
	20	0 2																			
22																					

ł	Sta	te of Lo	State of Louisiana Coastal Protection		אוער	ן נ		DUNING AND LEST RESULTS					
	Eas	and R and R CPRA St. Ber	East Delacroix Marsh Creation Authority East Delacroix Marsh Creation Project CPRA Project No. BS-0037 St. Bernard Parish, Louisiana		Borii	Boring: BA-1	1-1		Project No: 24431 Date: 09/04/2020 Latitude: 29.80062° Longitude: -89.80435°	ئ		Water Depth: Total Depth: 2	Water Depth: See Text Total Depth: 21.0 ft
Scale in Feet PP SPT	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	Symbol	Visual Classification	usc	Sample Number	Depth in Feet	Water Content %	Density Dry Drf	/ Shear Tests Wet Type \ C	Attei	Atterberg Limits LL PL PI	PI	Other Tests
			5' Water		ŝ	Þ							
2			Extremely soft gray & dark gray clay W/few shells, shell fragments, rew sand bockets, roots, & trace of decayed wood	СН	1A NS	യ വ	105	41	84	79	35 4	44	ORG = 7.0%
			Extremely soft gray clay w/few sand	СН	2A	7	76	50	89	62	20 4	42	-#200 = 94.1% PD
			fragments, organic matter, & trace of shell fragments fragments organic matter		2B	00	80	55	66				
			& trace of shell fragments w/few slit pockets, organic matter, & roots		3A	б	70	62	105	79	21 5	58	
10 -			No sample		NS	10							
			Extremely soft gray clay w/few silt	СН	4A	11	59	99	105	78	21 5	57	
			pockets, trace of roots, & organic matter w/few silt pockets & trace of organic		4B	12	57	89	107				
-1			w/few silt pockets & trace of organic		ξA	13	78	58	104	111	36 7	75	
			wffew silt pockets & trace of organic		58	14	77	56	66				
15 -			w/few silt pockets & trace of organic		6A	15	81	55	100	101	22 7	79	
			w/few silt pockets & trace of organic		68	16	77	54	95				
			w/few silt pockets & trace of organic		ТA	17	95	50	98	105	23 8	82	
			w/few silt pockets & trace of organic		7B	18	97	48	94				
			w/silt pockets, wood, & trace of fine		84	19	97	49	97	89	25 6	64	-#200 = 98.4% PD
20 -			sand w/silt pockets, wood, & organic matter		8B	20	82	55	66				
L													

EEGSTIS Exact Delacroix Marsh Creation Project ENGINE FRING Est Delacroix Marsh Creation Project ENGINE FRING St. Bernard Parish, Louisiana Engine in PP SPT Feet P 0 P 10 P <t< th=""><th>nsc</th><th>Boring: BA-2</th><th>Ig: BA</th><th></th><th></th><th>,</th><th></th><th></th><th></th><th></th><th></th><th></th></t<>	nsc	Boring: BA-2	Ig: BA			,						
Scale in PP SPT R Symbol Feet PP SPT R Symbol 10	nsc)	7		Proj Dat(Latil Lon	Project No: 24431 Date: 09/04/2020 Latitude: 29.80356° Longitude: -89.80606°	131 20 356° 80606°		Wat Tota	Water Depth: See Total Depth: 20.0 ft	i: See Text 20.0 ft
Feet rr 3r1 L Symbol 5	nsc	alumes	h+no h+no	Water	Density	sity	Shear Tests		Atterberg Limits	t Limits		
		Number	in Feet	Content - %	Dry Dry	Wet pcf	Type 🔶	C Dsf	IL PL	Ы		Other Tests
		s	D									
	CH	1A	4	152	40	101		-	120 26	94		
	ells, cL	1B	5	58	69	109						
	1	2A	9	56	69	107			47 19	28		-#200 = 98.1% PD
	GH	2B	7	67	62	103						
		ЗA	00	77	53	94						
	er, Pt	3B	6	221	26	82		-	347 69	278		ORG = 38.8%
	НО	4A	10	85	48	88			76 20	56		
	ic OH	4B	11	147	33	81						
	НО	5A	12	130	33	77			320 110	0 210		ORG = 30.7%
	GH	5B	13	136	35	83						
		6A	14	125	30	68		-	134 29	105		-#200 = 96.6% PD
w/wood roots, & trace of shell Iragments No sample		NS	15									
No sample	CH	ТA	16	131	38	89			140 30	110		
Extremely sort gray clay w/tew slit]	7B	17	124	39	88						
Pockets, decayed wood, & roots W/few slift pockets, decayed wood,		8A	18	101	44	88			129 41	88		
		8B	19	118	42	92						
								_		_	_	

\rightarrow		, 1 30 0 1 - T 3	LOG OF		DRING	AND	BORING AND TEST RESULTS	ESULT	اہ ا					
EUST	S	East Delac CPR/	East Delacroix Marsh Creation Project CPRA Project No. BS-0037		Borin	Boring: BA-3	'n		Proje Date	Project No: 24431 Date: 09/04/2020				
ENGINEERING SINCE 1946	N G	51. Be	st. Bernard Parisn, Louisiana						Latit Long	Latitude: 29.80740° Longitude: -89.80901°	1°		Water Depth: See Total Depth: 20.2 ft	water Depth: See lext Total Depth: 20.2 ft
Scale in pp	срт Срт	N 9 1		()	Sample	Denth	Water	Density	sity	Shear Tests	Atter	Atterberg Limits	its	
	-	L Symbol R		nsc	Number	in Feet	Content - %	Dry pcf	Wet pcf	Type $igstarrow C C Definition C Definition$	1	ЪГ	Ы	Other Tests
			4'2" Water		sz	þ								
1			Extremely soft grav & brown organic clay	НО	1A	4.17	117	34	74		111	27 8	84	-#200 = 99.7% PD
2 2			w/snell tragments & trace of roots Extremely soft gray clay w/silty,sand	СН	1B	5.17	62	52	85					
1			pockets, organic matter, & snell Tragments	Н	2A	6.17	159	36	93		56	18	38	
1			Extrements sort gray & dark gray cray Worganic matter & roots Fyrtements soft gray wherganic	Н	2B	7.17	75	57	66					
1			matter & roots and use who game		ЗA	8.17	69	61	104					
			Extremely soft dark gray clay w/shell	СН	3B	9.17	193	27	80		83	21 (62	ORG = 4.6%
10 -			Fragments & trace of organic clay layers Extremely soft gray clay w/shell	СН	4A	10.17	78	58	104		55	19	36	
i			No sample		NS	11.17								
1			Extremely soft gray organic clay	НО	5Α	12.17	113	44	93		191	86 1	105	-#200 = 94.1% PD
I			Vrongenite intercer, roots, or if ace of strent No sample		NS	13.17								
		\langle			6A	14.17	225	23	74		239	52 1	187	ORG = 14.6%
15 –			Extremely soft gray & dark gray organic clay	НО	68	15.17	210	25	78					
1			w/few decayed wood		ТA	16.17	118	44	95		104	38	66	
1			Extremely soft gray clay w/silt pockets & some organic matter	Ъ	7B	17.17	121	42	92					
1 1			Extremely soft dark gray organic clay w/decaved wood & frace or gray clay	НО	8A	18.17	203	28	84		193	78 1	115	
20 -			Extremely soft gray clay &/silt pockets, trace of organic matter, & shell	Е	8B	19.17	107	46	94					
1														
i														
L 25 _														
NOTES: Mudline	Surface	Elevation free		Appendi	x II. Eleva	tions in A	ppendix II	are base	d on wate	r depth and water	surface	elevatio	on measured i	in the field.

State of Lou and Re East Delacro	State of Louisiana Coastal Protection LOG OF and Restoration Authority East Delacroix Marsh Creation Project	BO		EVI K		Proiect No: 24431			
Pro	CPRA Project No. BS-0037 St. Bernard Parish, Louisiana	Borin	Boring: BA-4	4	L L D	Date: 09/04/2020 Latitude: 29/80594° Longitude: -89.81024°		Water Total [Water Depth: See Text Total Depth: 20.1 ft
	Visual Classification	USC Sample Number	Depth in Feet	Water Content -	Density Dry Wet	Shear Tests Type	Atterberg Limits	imits PI	Other Tests
4'2"	4'2" Water	ŝ	D		-	-	-		
Extre few o	Extremely soft gray clay w/silt pockets, tew organic matter, trace of clay pockets, & shell fragments	CH 1A NS	4.17 5.17	67	48 80		54 18	36	
Extre pocke	No sample Extremely soft gray clay w/few silt pockets & shell fragments	CH 2A	6.17	85			73 17	56	
/~ /~	w/few silt pockets & shell fragments w/few silt pockets & shell fragments	3A 2B	6.17	62 62	58 94		54 21	33	
No sã	No sample	NS	9.17						
Extre	Extremely soft gray clay w/silt, organic matter, & shell fragments		10.17	58			60 17	43	
Extre w/tr	Extremely soft dark gray organic clay w/trace of humus pockets & gray clay Extremely soft gray & dark gray humus	0H 4B Pt 5A	11.17	210 268	26 81 21 76		322 72	250	ORG = 26.5%
Extre	Extremely soft dark gray organic clay	OH 5B	13.17	212	23 71				
Extre w/tp	w/uace or gray cray rerises & roots Extremely soft brown & gray humus w/trace of organic clay & gray clay	Pt 6A	14.17	296			313 76	237	
Wtreever	pockets Extremely soft brown & gray organic clay w/trace of humus & gray clay pockets w/trace of decayed wood & shell	OH 6B 7A	16.17	249 232	21 /5 25 83		118 28	06	-#200 = 92.2% PD
Extre	Fragments Extremely soft to soft gray clay w/trace	CH 7B	17.17	107	42 88				
s ≥ 5	wood & shell haghrenus w/few silt pockets	8A	18.17	94	47 91				
Ň	w/clayey silt layers & fine sand lenses	88	19.17	32	77 101		57 21	36	-#200 = 93.0% PD

The manual of the second of	DIG	Te of Lo	State OI FOUISIANA COASTAI PROLECHON												
Sertin Letter PP SPT P L F Symbol Valuet Density Strant Tests Strant Tests 0 -	USTIS NGINEERING SINCE 1946	and R t Delacr CPRA St. Ber	Restoration Authority oix Marsh Creation Project v Project No. BS-0037 mard Parish, Louisiana		Borir	ıg: B⊿	1-5		Proj Date Latit Long	ect No: 2 ⁴ =: 09/04/2 tude: 29.8 gitude: -89	4431 2020 0284° 9.80936°		SĔ	Water Depth: See 1 Total Depth: 21.0 ft	th: See Text th: 21.0 ft
5 - 0	PP SPT				Sample Number	Depth in Feet	Water Content %	D	nsity Wet	Shear ⁻ Type	Tests C nsf	Atterbei LL P	Atterberg Limits LL PL PI		Other Tests
$ \begin{array}{c ccccc} & & & & & & & & & & & & & & & & &$			5' Water		s z	Þ		5	5		5	1			
$\begin{bmatrix} 1 & 1 & 1 & 1 & 1 & 1 \\ 10 & -1 & -1 & -1 & -1 & -1 \\ 10 & -1 & -1 & -1 & -1 & -1 \\ 10 & -1 & -1 & -1 & -1 & -1 \\ 10 & -1 & -1 & -1 & -1 & -1 \\ 10 & -1 & -1 & -1 & -1 & -1 \\ 10 & -1 & -1 & -1 & -1 & -1 \\ 10 & -1 & -1 & -1 & -1 & -1 \\ 10 & -1 & -1 & -1 & -1 & -1 \\ 10 & -1 & -1 & -1 & -1 & -1 \\ 10 & -1 & -1 & -1 & -1 & -1 \\ 10 & -1 & -1 & -1 & -1 & -1 \\ 10 & -1 & -1 & -1 & -1 & -1 \\ 10 & -1 & -1 & -1 & -1 & -1 \\ 10 & -1 & -1 & -1 & -1 & -1 \\ 10 & -1 & -1 & -1 & -1 & -1 \\ 10 & -1 & -1 & -1 & -1 & -1 \\ 11 & -1 & -1$	1		Extremely soft brown & gray organic clay W/silty sand pockets. organic matter.	НО	1A	ъ	89	44	83				27 97		
10 No sample NS 8 73 58 100 10 Extremely soft grav clay w/few sifty sand CH 3A 9 73 58 100 11 Extremely soft grav clay w/few sifty sand CH AA 11 56 64 99 15 Extremely soft grav clay w/few sifty sand CH AA 11 56 64 99 15 Extremely soft grav w/grav clay Pt 222 28 89 89 15 Extremely soft grav w/grav clay Pt 13 222 28 89 16 Molecary soft grav w/grav clay NS 14 222 28 89 16 Molecary soft grav w/grav clay NS 14 20 27 28 89 17 No NS 14 17 130 42 9 30 18 Molecary soft grav of grav soft sock so trace of organic 7A 17 130 42 9 30 19 Wish wishty sand bockets & trace of social A 19 88 54 <	1 1		& shell fragments	Э	1B 2A	9	93 64	44 63	85 104				18 33		-#200 = 97.6% PD
10			No sample		NS	00									
10 - 10 - 10 - 10 - 10 - 10 - 10 - 10 -			Extremely soft gray clay w/few silty sand pockets, organic matter, & shell	СН	3A	б	73	58	100				18 41		
15 Extremely soft gray clay w/few silty sand CH 4A 11 56 64 99 15 Extremely soft Brown humus w/gray clay Pt 29 87 29 87 15 Extremely soft Brown humus w/gray clay Pt 5A 13 222 28 89 16 Worden Karpen Vorganic clay N NS 14 20 87 17 No sample No sample 66 15 118 40 87 17 No sample Wile 7A 17 130 42 93 18 Worden Kartace of organic 68 16 93 48 93 18 Worden Kartace of organic 7A 17 130 42 95 19 Wilew silty sand pockets & trace of organic 7A 17 130 42 95 10 Wilew silty sand bockets & trace of organic 7A 17 130 42 95 10 Wilew silty sand bockets & trace of organic 8A 19 88 54 101 11		X	Tragments No sample		NS	10									
15 4B 12 204 29 87 15 Extremely soft dark gray organic clay 0H 5A 13 222 28 89 15 Widecayed wood & frace of gray clay 0H 5A 13 222 28 89 No sample No sample NS 14 22 28 89 No sample No sample NS 14 22 28 89 No sample No sample NS 14 22 28 89 No sample No sample NS 14 22 28 89 No sample No sample NS 14 40 87 Wifew silt pockets & trace of organic CH 68 16 93 48 Wifew silt pockets & decayed wood 7A 17 130 42 95 Wifew silt pockets & decayed wood 7A 17 130 42 95 Wifew sile pockets & decayed wood & shell 7B 88 54 101 Wifew shell fragments & trace of shell Nifew shell fragments & trace of shell 88 20 67 49 83	1		Extremely soft gray clay w/few silty sand	сн	4A	11	56	64	66				26 38		
15 - 5A 13 222 28 89 15 - No NS 14 22 28 89 15 - NS 14 22 28 89 16 NS 14 20 87 17 130 42 93 48 93 18 w/figw silt pockets & trace of organic 7A 17 130 42 95 19 w/silty sand pockets & trace of organic 7A 17 130 42 95 11 tragements 78 18 79 58 104 11 tragements 84 19 88 54 101 11 tragements & trace of shell 84 19 88 54 101 11 tragements & trace of shell 88 20 67 49 83 12 trace of shell 88 20 67 49 83 13 w/fiew shell fragments & trace of 88 20 67 101 <	1		Extreme shell traven humus w/gray clay	Pt	4B	12	204	29	87						
15 No sample NS 14 15 Extremely soft gray clay w/organic CH 6A 15 118 40 87 15 Extremely soft gray clay w/organic Extremely soft gray clay w/organic CH 6A 15 118 40 87 16 w/few silt pockets & trace of organic Eds 16 93 48 93 17 130 73 17 130 42 95 17 w/silty sand pockets & trace of organic 78 18 79 58 104 20 Matter 8A 19 88 54 101 17 nagments w/few silty sand & trace of shell 88 20 67 49 83 20 organic matter 88 20 67 49 83 83	1		Extremely soft dark gray organic clay Widecaved wood & trace of gray clay	Ю	5A	13	222	28	89				58 115		ORG = 11.1%
Extremely soft gray Clay W/organic CH 6A 15 118 40 87 matter, roots, & sifty sand pockets k matter, roots, & sifty sand pockets 6B 16 93 48 93 matter wffw silt pockets & trace of organic 7A 17 130 42 95 w/silty sand pockets & decayed wood & shell 7A 17 130 42 95 w/silty sand bockets & trace of shell 7B 18 79 58 104 w/fwe silty sand & trace of shell 8B 20 67 49 83 w/few silty sand & trace of shell 8B 20 67 49 83 wffew silty sand & trace of organic matter 8B 20 67 49 83	i		No sample		NS	14									
wyfew silt pockets & trace of organic 6B 16 93 48 93 watter w/silty sand pockets & decayed wood 7A 17 130 42 95 wyfrace of decayed wood & shell 7A 17 130 42 95 wyfrace of decayed wood & shell 7B 18 79 58 104 wyfew silty sand & trace of shell 8A 19 88 54 101 magments wyfew silty sand & trace of 8B 20 67 49 83	5 –		Extremely soft gray clay w/organic matter, roots, & slity sand pockets	CH	6A	15	118	40	87				48 107		-#200 = 93.4% PD
 Wisity and pockets & decayed wood 7A 17 130 42 95 Wytrace of decayed wood & shell 7B 18 79 58 104 7B 19 104 7B 19 104 7B 19 104 7B 18 104 7B 19 104 7B 19 104 7B 19 104 7B 19 104 7B 18 104	1		w/few silt pockets & trace of organic		6B	16	93	48	6						
w/trace of decayed wood & shell 7B 18 79 58 104 regments tragments 8A 19 88 54 101 w/few shell fragments 8B 20 67 49 83 organic matter organic matter 8B 20 67 49 83			w/silty sand pockets & decayed wood		ТA	17	130	42	95				44 73		
Wyfew shell fragments & trace of shell R8 54 101 Wyfew shell fragments & trace of shell 88 20 67 49 83 wyfew shell fragments & trace of 88 20 67 49 83 Organic matter			w/trace of decayed wood & shell		7B	18	79	58	104						
In agriculture In agriculture 10 67 49 Mrifewishell Indiants & trace of 88 20 67 49 Organic matter organic matter 9 9 9			w/few silty sand & trace of shell		8A	19	88	54	101				28 68		
			ir aguiterus w/few shell fragments & trace of organic matter		88	20	67	49	83						
	1														
	-1														

Image: Including Including The propertion. Brought Including Durit: Including The propertion. Brought Including The propertion. Brought Including The propertion. Brought Including The propertion. Brought Including The propertion including The propertion		State of Lo and l East Delacu	State of Louisiana Coastal Protection and Restoration Authority East Delacroix Marsh Creation Project							Project No: 24431					
Image: construction in the constructine constructine construction in the construction in the constructi	S .	CPR, St. Be	A Project No. BS-0037 rnard Parish, Louisiana			۵. ۵	ρ		Date Latit Long	e: 09/04/2020 tude: 29.79858 gitude: -89.808	3° 803°		Water Total D	Depth: So Depth: 21.0	ee Text D ft
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	срт			-	Sample	Depth	Water		nsity	Shear Tests	Att	erberg L	mits		ŀ
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	-				Number	in Feet	Content %		Wet pcf	•		PL	Ы		ther lests
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		\$`````````````````````````````````````	5' Water		SN	0									
01 24 7 130 37 86 75 130 37 86 28 8 72 55 95 95 95 95 95 CL 38 10 41 67 95 95 95 95 CL 38 10 41 67 95			Extremely soft gray & dark gray clay w/shell fragments, trace of shells, & silt	СН	1A NC	u v	62	58	95		72	23	49		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		X	No sample			ו ס			;		1	:			
2B 8 72 55 95 3A 9 80 53 95 CL 3B 10 41 67 95 CL 3B 10 41 67 95 CL 3B 11 99 41 67 95 CL 5A 11 99 41 67 95 N 11 99 41 83 95 95 N 12 13 60 64 103 90 17 5B 14 91 48 114 93 91 95 17 6B 16 16 14 91 66 13 91 6B 16 96 114 96 91 96 27 29 7A 17 28 92 118 96 92 47 8B 13 66 64 96 13 96 96 47 8B 20 13 96 69 </td <td></td> <td></td> <td>Extremely soft gray clay w/few silt</td> <td>Н</td> <td>2A</td> <td>7</td> <td>130</td> <td>37</td> <td>86</td> <td></td> <td>75</td> <td>19</td> <td>56</td> <td></td> <td></td>			Extremely soft gray clay w/few silt	Н	2A	7	130	37	86		75	19	56		
3A 9 80 53 95 CL 3B 10 41 67 35 CH 4A 11 99 41 83 CH 4A 11 99 41 83 CH 5A 13 60 41 83 CH 5A 13 60 41 83 CH 5A 13 60 64 103 CH 5B 14 91 48 114 6B 14 91 48 114 56 27 29 7A 13 66 114 91 69 143 56 21 33 7A 13 28 56 118 56 27 29 8B 20 63 164 96 56 27 29 8B 20 53 13 56 23 47 56 23 43 8B 20 53 103 55 24 56 <			Tragments W/few silt pockets. organic matter.		2B	00	72	55	95						
Image: Clip and the clip a			& shell fragments & roots		ЗA	6	80	53	95						
CH 4A 11 99 41 83 N S 11 99 41 83 CH S 13 60 64 103 CH S 13 60 64 103 CH S 13 60 64 103 S 14 91 48 91 56 27 29 S S 15 68 114 56 27 29 S S 12 28 13 66 22 47 S S 14 91 56 23 47 S 19 69 57 96 69 5 47 S 19 69 57 96 65 27 47 S 50 13 66 53 47 5 5 47 S 50 13 66 53 47 5 5 47 S 50 56 101 5 </td <td></td> <td></td> <td>Extremely soft gray silty clay w/shell</td> <td>CL</td> <td>3B</td> <td>10</td> <td>41</td> <td>67</td> <td>95</td> <td></td> <td>42</td> <td>22</td> <td>20</td> <td></td> <td></td>			Extremely soft gray silty clay w/shell	CL	3B	10	41	67	95		42	22	20		
NS 12 CH 5A 13 60 64 103 5B 14 91 48 91 6A 15 68 68 114 6B 16 50 64 95 7A 17 28 92 118 7H 78 17 28 92 7A 17 28 92 118 7H 78 13 66 53 8M 19 69 57 96 8B 20 63 57 96 8B 20 63 62 101 8B 20 63 62 101			Extremely set goes Extremely soft gray clay w/silt pockets, shell fragments, & organic matter	Н	4A	11	66	41	83		50	17	33		
CH 5A 13 60 64 103 5B 14 91 48 91 6A 15 68 68 114 6A 15 68 68 114 5M 7A 17 28 92 CH 7B 18 84 56 103 CH 7B 18 84 56 103 8 19 69 57 96 65 22 43 8 20 63 62 101 65 22 43			No sample		NS	12									
58 14 91 48 91 63 15 68 114 68 134 64 16 50 68 144 68 144 7A 16 7A 16 23 47 8 7A 17 28 92 118 8 19 56 103 69 23 47 8 19 69 51 188 65 23 43 8 19 69 57 96 65 24 43 8 19 69 51 101 65 24 43 9 63 101 65 24 43 44 <td></td> <td></td> <td>Extremely soft gray clay W/organic</td> <td>СН</td> <td>5A</td> <td>13</td> <td>60</td> <td>64</td> <td>103</td> <td></td> <td>56</td> <td>27</td> <td>29</td> <td>-#20</td> <td>0 = 82.3% PD</td>			Extremely soft gray clay W/organic	СН	5A	13	60	64	103		56	27	29	-#20	0 = 82.3% PD
6A 15 68 68 14 6B 16 50 64 95 7N 7N 71 28 92 47 7N 7N 17 28 92 47 7N 7N 13 28 92 118 8N 19 56 103 55 22 43 8N 19 69 57 96 65 23 43 8N 19 69 57 96 65 23 43 8N 20 63 62 101 65 23 43			wood, & sherring menus w/organic matter, wood, & shell		5B	14	91	48	91						
68 16 50 64 96 7A 8 7A 69 22 47 7B 7B 13 28 118 95 118 8B 20 69 57 96 57 43 56 103 8B 20 63 65 22 43 56 101 56 23 47			With service with the service of the		6A	15	68	68	114						
SM 7A 17 28 92 118 CH 7B 7B 8 13 65 13 8B 20 63 62 101 65 22 43			Wolldsmonthered bockets, shell fragments,		6B	16	50	64	96		69	22	47		
7B 18 84 56 103 8B 19 65 22 8B 200 63 65 8B 101 65 23			Loose Bray silty sand w/few clay pockets	SM	7A	17	28	92	118					-#20	0 = 22.3% SV
84 19 69 57 96 88 20 63 101 65 89 63 101 101 101			Extremely soft gray clay w/few fine sand	СН	7B	18	84	56	103						
88 20 63 62			w/few fine sand pockets & trace of		8A	19	69	57	96		65	22	43		
			w/few fine sand pockets & trace of shell tragments		8B	20	63	62	101						

1000	C+0+0	101300		5	DUNINU AND ILJI NEJULIJ	;			2						
	East	e ol Lol and R Delacrc CPRA St. Berr	State of Louisiana Coastal Protection and Restoration Authority East Delacroix Marsh Creation Project CPRA Project No. BS-0037 St. Bernard Parish, Louisiana		Borii	Boring: BA-7	L-1		Proj Date Latit Long	Project No: 24431 Date: 09/03/2020 Latitude: 29.80486° Longitude: -89.81354°	431 020 0486° 1.81354°		Wa Tot	Water Depth: See 1 Total Depth: 21.8 ft	h: See Text : 21.8 ft
Scale in PP SpT	<u>∽ -</u>		Vicual Characteria		Sample	Depth	Water	Der	Density	Shear Tests	ests	Atterberg Limits	t Limits	Γ	Othos Tocks
	L R	юатус	VISUAI CIASSIFICATION	nsu	Number	in Feet	Content %	Dry pcf	Wet pcf	Type 🔶	C psf	LL PL	Ы		Uther lests
	v (5'9" Water		s z	٥									
2			r	ō	14	5.75	131	34	62			100 29	71		ORG = 7.0%
			Extremely soft brown & dark gray organic clay w/many roots, vegetation, & trace of humus lenses	ы	1B	6.75	64	5 °S	95						
			Extremely soft gray clay w/silt pockets, ofgants matter, shell fragments, & trace	G G	2A	7.75	88	54	101			41 17	24		
ł	243		Extremely soft gray silty clay w/clay	СН	2B	8.75	59	67	107			57 17	40		
10 -			<u>\tragments</u> Extremely soft gray clay w/trace of sand		ЗA	9.75	61	61	66			53 23	30		-#200 = 95.5% PD
			ienses & pockets, organic matter, roots, & shell fragments W.Shells & shell fragments		3B	10.75	87	53	66						
			w/Shell fragments "		4A	11.75	58	65	102			69 25	44		-#200 = 95.5% PD
	~~~		roots, & shell tragments w/few silt pockets, roots & shell		4B	12.75	65	61	100						
			tragments w/silty sand pockets, roots, & shell		5Α	13.75	68	63	105			56 20	36		
15 -			rragments Soft brown & gray humus w/organic clay	Pt	58	14.75	245	20	70						ORG = 9.0%
			Soft gray, & brown clay w/organic clay	CH	6A	15.75	115	35	76			275 58	217		
	200		lenses, slit pockets, decayed wood, shell fragments, & trace of organic matter	НО	68	16.75	159	30	77						
			Very soft to soft gray, tan, & brown organic clay w/sift pockets, decaved		ТA	17.75	144	34	83			275 73	202		
	777		wood, humus pockets, & shell frågments w/few silt pockets, wood, roots,		7B	18.75	157	30	76						
20 -			w tace of pockets, wood, & roots w/rew slit pockets, wood, & trace of		8A	19.75	156	33	84			143 30	113		
			clay lenses w/few silt pockets & wood		88	20.75	130	42	97						
3E	_										-				

Bernard Parish, Louisiana       and Restoration Authority       Exponential       Exponential       Exponential       Point       Propriet       Proprint       Propriet										
Scale in Feet     PP     SPT     Spm log     Visual Classification     USC       0     -     -     -     -     -     -       0     -     -     -     -     -     -       5     -     -     -     -     -     -       10     -     -     -     -     -     -       10     -     -     -     -     -     -       10     -     -     -     -     -     -       10     -     -     -     -     -     -       10     -     -     -     -     -     -       11     -     -     -     -     -     -       12     -     -     -     -     -     -       13     -     -     -     -     -     -       14     -     -     -     -     -     -       15     -     -     -     -     -     -       15     -     -     -     -     -     -       15     -     -     -     -     -     -       15     -     -     -     -	Bori	Boring: BA-8	8-1		Projec Date: Latitu Longit	Project No: 24431 Date: 09/03/2020 Latitude: 29.80379° Longitude: -89.81701°	٥	Х Ч	Water Depth: See 1 Total Depth: 22.5 ft	<b>th</b> : See Text h: 22.5 ft
0       76" Water         5       -         -       -         -       -         -       -         -       -         -       -         -       -         -       -         -       -         -       -         -       -         -       -         -       -         -       -         -       -         -       -         -       -         -       -         -       -         -       -         -       -         -       -         -       -         -       -         -       -         -       -         -       -         -       -         -       -         -       -         -       -         -       -         -       -         -       -         -       -         -       -         -       -	USC Sample Number	Depth in Feet	Water Content %	Density	Vet	Shear Tests Type	Atterbe LL	Atterberg Limits		Other Tests
10 - Extremely soft dark grav & grav Organic Gay with accord shell fragments of shell fragments of signation bookets shell fragments and write action of signation of solution o	2 2	0	2		5 0	_	-	-		
<ul> <li>Clady Wytrace of shell fragments &amp; slitt Extremely soft dark gray &amp; gray clay withace of slitty clay leftses withace of slitty clay leftses withace of slitty clay with and withace of slitty clay with and withace of slitty clay with and withace of slitty clay with and matter, few fine sand, with a solid fragments, slitt pockets, worganic matter, few fine sand, trace of shell fragments, slitt pockets, worganic with solid fragments, slitt with solid fragments, slitty clay witrace of betrevely solit gray slitty slitty clay witrace of betre</li></ul>	OH 1A	7.5	127	33	74		144	26 118		
<ul> <li>Kylinterse of silty clay lenses</li> <li>Kyltace of silty clay lenses</li> <li>Kyltace of silty clay lenses, roots, &amp; shell vay</li> <li>Kyltace of silty clay lenses, roots, &amp; shell ragments</li> <li>Katternely soft gray clay worganic</li> <li>Katternely soft gray clay worganic</li> <li>Katternely soft gray clay witrace of shell</li> <li>Kitine sand, trace of shell fragments, silt wood, trace of shell</li> <li>Kitine sand, trace of shell fragments, witrace of shell fragments, witrace of shell fragments, witrace of shell fragments, shell fragments, shell fragments, shell fragments, witrace of sh</li></ul>	CH 1B	8.5	107	38	79					
<ul> <li>Extremely soft dark gray &amp; gray slith clay</li> <li>Extremely soft dark gray clay w/organic</li> <li>Extremely soft gray clay w/organic</li> <li>Extremely soft gray slith clay w/organic</li> <li>Extremely soft gray slith clay w/organic</li> <li>Extremely soft gray slith clay w/organic</li> <li>Extremely soft gray clay w/organic</li> <li>Montagram and trace of shell</li> <li>Within sand, trace of shell fragments, w/wood, shell fragments, w/wood, shell fragments, w/wood, shell fragments, w/reace of shell fragments, w/wood, shell fragments, w/wood, shell fragments, w/wood, shell fragments, w/reace of shell fragments, w/wood, shell fragments, w/wood, shell fragments, w/wood, shell fragments, w/reace of shell fragments, w/wood, shell fragments, w/wood, shell fragments, w/reace of shell fragments, w/wood, shell fragments, w/few clay</li> </ul>	2A	9.5	75	55	95		118	23 95		
<ul> <li>Kyrtaenely soft gray clay worganic Extremely soft gray clay worganic Extremely soft gray clay worganic Extremely soft gray clay worganic matter, few fine sand, &amp; trace of shell reagnents, sitt pagments with a sitt wyrtae of shell fragments, sitt wyrtae of shell fragments, sitt worganic matter</li> <li>Wifine sand, trace of shell fragments, worganic matter</li> <li>Wifine sand, trace of shell fragments, worganic matter</li> <li>Wifine sand, trace of shell fragments, worganic matter</li> <li>Wifine sand, trace of shell fragments, word, shell fragments, with same same same same same same same same</li></ul>	CL 2B	10.5	70	59	101					
<ul> <li>Extremely soft grave of shell fragments</li> <li>Extremely soft grave soft sy w/organic</li> <li>Extremely soft grave clay w/organic</li> <li>Extremely soft grave clay w/organic</li> <li>Extremely soft grave clay w/trace of shell</li> <li>W/trace of shell fragments</li> <li>w/fine sand, trace of shell fragments,</li> </ul>	CH 3A	11.5	81	56	102		23	18 35		
<ul> <li>mätter, féw finð sánd, &amp; träce of shell ragments</li> <li>Kræmely soft gray clay w/trace of shell ragments, silt bookers, &amp; organic matter</li> <li>W/trace of shell fragments, &amp; silt</li> <li>W/fine sand, trace of shell fragments,</li> <li>W/fine sand, trace of shell fragments,</li> <li>Ø organic matter</li> <li>Ø organic matte</li></ul>	CL 3B	12.5	75	58	102					-#200 = 92.9% PD
<ul> <li>Fixtremely soft start clay vitrace of shell fragments witrace of shell ragments witrace of shell fragments a slit witrace of shell fragments, witrace of shell fragments, with wood, trace of shell fragments, witrace of shell fragments, witrac</li></ul>	CH 4A	13.5	77	56	98		62	17 45		
Wifine sand, trace of shell fragments, wood, trace of shell fragments, with ood, trace of shell fragments, with ood, trace of shell fragments, Extremely soft grag & brown humus Extremely soft grag & brown humus Extremely, soft grag shelf ragments	48	14.5	76	56	66					
<ul> <li></li></ul>	5A	15.5	77	52	92		09	18 42		-#200 = 88.6% PD
Extremely not and a shell fragments decayed wood & shell fragments Extremely soft gray & prown humus Extremely, soft gray silty clay w/few clay	58	16.5	81	52	93					
Extremely soft gray & brown humus w/wood & shelf fragments Extremely soft gray silty clay w/few clay	CL 6A	17.5	67	61	101					
WWW Extremely, soft gray silty clay w/few clay	Pt 6B	18.5	262	22	80		303	89 214		
pockets, snell fragments, & organic		19.5	77	55	98		48	18 30		
Extremely soft brown humus w/trace of		20.5	241	23	78					ORG = 21.4%
Extremely soft gray value wood		21.5	78	57	101		99	19 47		
Extrements writine saint lavers, trace of organic clay writine saint lavers, trace of organic matter, & shell fragments	0H 8B	22.5	199	28	82					

Insurance of antitation of a stand of		ť	of Jo of Lo	Survey Constal Brotoction												
International         Visual Classification         User         Mathematication         User         Mathematication         User         Mathematication         Mathematication         User         Mathematication         Mathematication         User         Mathematication         Mathmatimation         Mathmatimation         <		n E	ate of the and I st Delaci CPR/ St. Bei	ausiana Coastan Froceduon Restoration Authority roix Marsh Creation Project A Project No. BS-0037 rnard Parish, Louisiana		Borir	ıg: BA	6-		Pro Dat Lati Lon	ject No: 24 e: 09/03/2 tude: 29.83 gitude: -89	.431 020 1014° 1.81398°		×ř	Vater Dept otal Dept	th: See Text n: 20.7 ft
R         Value         Muner         Instant         Muner         Muner<	đ	ЪТ			USC	Sample	Depth	Water Content	Der	lsity	Shear T	ests	Atterbe.	rg Limits		Other Tests
$\frac{48}{10} \text{ Water}$						Number	In Feet	%	ury pcf	pcf	Type 🔶	ر psf				
$ \frac{1}{1000000} \frac{1}{10000000000000000000000000000000000$				4'8" Water		SN	0									
Image: Construction of the stability of	2 -			Extremely soft dark gray humus w/roots	Pt	1A	4.67	486	11	67						ORG = 29.1%
	i			Extremely soft dark gray & gray clay.	СН	1B	5.67	127	44	100						
-     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     - <td></td> <td></td> <td></td> <td>w/few roots, fine sañd pockets, shélls &amp; shell fragments w/silty člav lavers &amp; shell fragments</td> <td></td> <td>2A</td> <td>6.67</td> <td>68</td> <td>55</td> <td>93</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>-#200 = 95.7% PD</td>				w/few roots, fine sañd pockets, shélls & shell fragments w/silty člav lavers & shell fragments		2A	6.67	68	55	93						-#200 = 95.7% PD
Antent ragments, a concretents, wigging matter swell ragments, a concretents, wigging wigging matter wigging wigging matter wigging wigging matter wigging clay point matter, wigging clay point matter, wigging clay point aments, a concretents, wigging clay point aments, a concretent aments, a concretent ame				Extremely soft gray clay w/trace of wood,	СН	2B	7.67	82	53	96						
				snell tragments, & concretions w/w.ood, fine sand lenses, trace of		ЗA	8.67	73	56	98						
<ul> <li></li></ul>	- 0			w/organic matter, shell fragments,		3B	9.67	43	62	88						
Imagments     Insertions     32     75     32     75       Imagments     Manuality specifies, trade of shell     1     1     1     1     1       Imagments     Manuality specifies, trade of shell     1     1     1     1     1     1       Imagments     Manuality specifies, trade of shell     1     1     1     1     1     1     1       Imagments     Manuality specifies, trade of shell     1     1     1     1     1     1     1     1       Imagments     Manuality specifies, trade of shell     0H     5     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     <	i			& trače of sandy člay lenseš & pockets w/some wood, organic matter, & shell		4A	10.67	76	52	91						
Handling in the interviewed of steel is the interviewed in the interviewed is the interviewed in the interviewed is the interviewed in the interviewed is the interviewed				tragments Extremely soft dark gray & gray clay	СН	4B	11.67	132	32	75						
Hertemely and frameties: % wood fra				w/organic clay pockets, trace of shell fragments, &r pots w/organic clay norkets, organic		5Α	12.67	136	35	82						
-     -     14.67     139     34     82     77       -     Extremely soft grave dayls gravely     -     -     -     -     -       -     Extremely soft grave dayls gravely     -     -     -     -     -       -     Extremely soft grave dayls gravely     -     -     -     -     -     -       -     Extremely soft grave dayls gravely     -     -     -     -     -     -       -     Extremely soft grave of shell     -     -     -     -     -     -     -       -     Extremely soft grave of shell     -     -     -     -     -     -     -       -     Extremely soft grave or specification of shell regenetics     -     138     22     73     23     24     131       -     -     -     -     -     -     -     -     -     -       -     -     -     -     -     -     -     -     -     -       -     -     -     -     -     -     -     -     -     -       -     -     -     -     -     -     -     -     -     -       -     - <t< td=""><td>i</td><td></td><td></td><td>Extremely soft grav &amp; dark grav organic</td><td>НО</td><td>5B</td><td>13.67</td><td>217</td><td>24</td><td>75</td><td></td><td></td><td></td><td></td><td></td><td>ORG = 10.3%</td></t<>	i			Extremely soft grav & dark grav organic	НО	5B	13.67	217	24	75						ORG = 10.3%
Extremely sortigation attraction of % frace of shell from the formation of th	5			clay w/organic matter, clay Tenses, trace	СН	6A	14.67	139	34	82						
Extremely soft gray organic clay       7A       16.67       138       37       89       119       29       90         Whunus poors gray organic clay       F       7B       17.67       238       24       81       130       34       146         Extremely soft dark grav & gravy layers       F       7B       17.67       238       24       81       186       136       33       86       138       146         Extremely soft dark grave gravy granic       OH       8A       18.67       156       33       86       138       146         Fattemely soft dark grave grave strated strates of ML       ML       8B       19.67       30       85       110       34       146         Very loose gray sitt w/fine sand & clay       ML       8B       19.67       30       85       110       34       146				Extremely soft gray & dark gray clay w/organic matter, wood, & trace of shell	НО	6B	15.67	208	25	78						
w/wood & gray clay layers     7B     17.67     238     24     81       Extremely soft dark gray & gray humus     Pt     RA     18.67     156     33     86       Extremely soft dark gray & gray organic     OH     RA     18.67     156     33     86       Extremely soft dark grav & gray organic     OH     RA     18.67     156     33     86       Extremely soft dark grav & grav organic     OH     RA     18.67     30     85     110       Very loose grav sit w/fine sand & clay     ML     88     19.67     30     85     110	i			Extremely soft gray organic clay		ΤA	16.67	138	37	89						
With the second strates of shell tragments with the second strates of shell tragments Clay wight clay wight clay with tragments Clay wight clay with seard & clay with loss gray silt wiftine sand & clay enses enses enses enses enses enses enses enses enses enses enses enses enses enses enses enses enses enses enses enses enses enses enses enses enses enses enses enses enses enses enses enses enses enses enses enses enses enses enses enses enses enses enses enses enses enses enses enses enses enses enses enses enses enses enses enses enses enses enses enses enses enses enses enses enses enses enses enses enses enses enses enses enses enses enses enses enses enses enses enses enses enses enses enses enses enses enses enses enses enses enses enses enses enses enses enses enses enses enses enses enses enses enses enses enses enses enses enses enses enses enses enses enses enses enses enses enses enses enses enses enses enses enses enses enses enses enses enses enses enses enses enses enses enses enses enses enses enses enses enses enses enses enses enses enses enses enses enses enses enses enses enses enses enses enses enses enses enses enses enses enses enses enses enses enses enses enses enses enses enses enses enses enses enses enses enses enses enses enses enses enses enses enses enses enses enses enses enses enses enses enses enses enses enses enses enses enses enses enses enses enses enses enses enses enses enses enses enses enses enses enses enses enses enses enses enses enses enses enses enses enses enses enses enses enses enses enses enses enses enses enses enses enses enses enses enses enses enses enses enses enses enses enses enses enses enses enses enses enses enses enses enses enses enses enses enses enses enses enses enses enses enses ense	i			Extremely soft dark gray & gray humus	Pt	7B	17.67	238	24	81						
And the stand all fragments     Shell tragments     30     85     110       Very loose gray slit w/fine sand & clay     ML     8B     19.67     30     85     110				W/wood & trace of shell fragments	НО	8A	18.67	156	33	86						
	- 0;			clay w/gray clay layers, wood, & trace of Shell fagments Very loose gray silt w/fine sand & clay Verse loose	ML	8B	19.67	30	85	110						-#200 = 87.4% PD
	i															

Construction     Series     Part Delacroix Marsh Creation Project       Construction     Construction     Series       Edition     Pp     Spr     Indication       State Learning     State Delacroix Marsh Creation Project     Scale       Scale     Pp     Spr     Indication       State Project No. BS-0037     State Delacroix Marsh Creation Project       State Project No. BS-0037     State Delacroix Marsh Creation Project       State Project No. BS-0037     State Delacroix Marsh Creation Project       State Project No. BS-0037     State Delacroix Marsh Creation Project       State Project No. BS-0037     State Delacroix Marsh Creation Project       State Project No. BS-0037     State Delacroix Marsh Creation Project       State Project No. BS-0037     State Delacroix Marsh Creation Project       State Project No. BS-0037     State Delacroix Marsh Creation Project       State Project No. BS-0037     State Delacroix Marsh Creation Project       State Project No. BS-0037     State Delacroix Marsh Creation Project No. BS-0037       State Project No. BS-0037     State Delacroix Marsh Creation Project No. BS-0037       State Project No. BS-0037     State Delacroix Marsh Project No. BS-0037       State Project No. BS-0037     State Delacroix Marsh Project No. BS-0037       State Project No. BS-0037     State Delacroix Marsh Project State Delacroix No. BS-0037 <th< th=""><th>- roject</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></th<>	- roject										
Scale in PP SPT P		B	Boring: BA-10	BA-10			Project No: 24431 Date: 09/03/2020 Latitude: 29.80827° Longitude: -89.81782°	5		Water Depth: See   Total Depth: 21.9 ft	i <b>th:</b> See Text h: 21.9 ft
15 15 15 15 15 15 15 15 15 15		lisc Sa	Sample Dep	Depth	Water	Density	Shear Tests	Atter	Atterberg Limits		Other Tests
2				_	lient	Dry W pcf p	Wet Type 🛉 C	LL	PL PI		001161 16202
			SN SN								
		СН			156	35	06	151	24 127		
	$\left\{ \right\}$		2A 6.9	6.92 7.92	67	62	103	151	26 125		
		5	-		74		103				
15	n nagments oots & shell		3A 9.9	9.92	68	63 1	105				
15	sand pockets		3B 10.	10.92	57	63 1	100	67	17 50		
15 - 15 - 15 - 15 - 15 - 15 - 15 - 15 -	, shell fragments,		4A 11.	11.92	70	60 1	102	80	17 63		-#200 = 72.1% PD
	Ises	СН	4B 12.	12.92 1	122	39 8	85				
15 -	wood vood, & shell		5A 13.	13.92 1	101	47 9	94	132	27 105		
	: shell fragments		5B 14.	14.92 1	116	44	94				
wisilt pockets, wood, & trace of shell	d, & trace of shell		6A 15.	15.92 8	89	47 8	89	138	40 98		
v/siltents	d, & shell		6B 16.	16.92 1	113	44 9	94				
Extremely soft gray & tan clay w/few		СН	7A 17.		158	35	91	124	29 95		ORG = 9.0%
	-	СН	7B 18.	18.92 1	144	40	98				
20 - Extremely pockets, was whether the second seco		НО	8A 19.	19.92 1	136	39 6	92	196	26 170		
& Shell fragments, or game marter, see a second fragments, extremely soft grav & dark grav organic clav wood organic matter, shell fragments, a wood	$\{ \{$	НО	8B 20.	20.92	167	37 9	66				

EUSTIS	State Of LO and F	State of Louisiana Coastal Protection											
ENGINEERING SINCE 1946	East Delacr CPR/ St. Ber	and Restoration Authority East Delacroix Marsh Creation Project CPRA Project No. BS-0037 St. Bernard Parish, Louisiana		Borin	Boring: BA-11	·11		Proj Date Latitu Long	Project No: 24431 Date: 09/03/2020 Latitude: 29.81217° Longitude: -89.81735°	35°		Water De Total Dep	Water Depth: See Text Total Depth: 19.3 ft
Scale in PP SPT Feet	S P L Symbol R	Visual Classification	usc	Sample Number	Depth in Feet	Water Content %		Density Wet	Shear Tests Type		Atterberg Limits LL PL PI	hits PI	Other Tests
		3'4" Water		SN SN	Þ		5	5	-				
+ +		Extremely soft gray clay w/few silty clay pockets, shell fragments, & organic	СН	1A	3.33	79	57	103		123	21	102	
2		Extremely soft gray & brown organic clay w/organic matter, shell fragments, &	Pt OH	1B 2A	4.33 5.33	253 288	24 24	84 93		231	57	174	ORG = 15.5%
i		Extremely soft gray & brown humus w/clay layers, shell fragments, & trace of	CL	2B	6.33	58	62	98					
		Extremely soft gray silty clay w/silt	Н	ЗA	7.33	80	50	91		57	19	38	
		Extremely soft gray clay w/silt pockets, shell fragments, & riace of roots w/silf pockets & shell fragments		38	8.33	09	89 5	108		7			
10 -		W/few silt pockets, shell fragments, & roots No sample		4A 4B	9.33 10.33	2	61	103		14/	4	100	
1		Extremely soft gray clay w/silt pockets,	Ю	5Α	11.33	76	56	66		57	19	38	-#200 = 83.7% PD
1		shell tragments, & trace of wood w/silt pockets, shell fragments,		5B	12.33	122	37	82					
		& trace of wood Extremely soft dark gray, & gray, clay	СН	6A	13.33	140	36	85		116	38	78	
L L		w/organic clay layers, slit pockets, organic matter, wood, & shell fragments	Ю	68	14.33	207	27	82					ORG = 11.9%
		w/shell fragments & decayed wood w/few silty sand pockets, shell		7A	15.33	97	46	91		150	32	118	
		ragments, wood, & trace of clay	Э	7B	16.33	133	37	86					
 I		Very sort gray clad w/rew slity sand pockets, shell fragments, wood Very soft gray 8, brown organic flav w/silt	НО	8A	17.33	188	30	88					
		Very soft gray clay w/trace of silt pockets	Е	8B	18.33	64	61	100		94	30	64	
20 +													
+ +													
- 25 —													

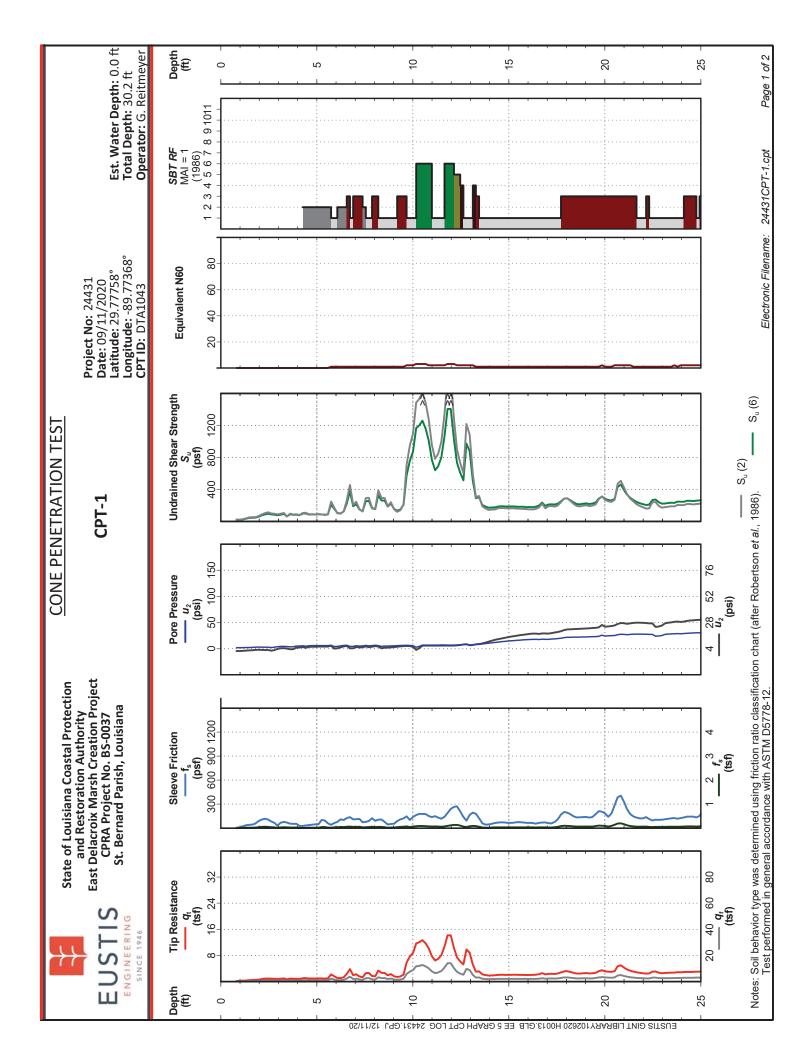
EUSTIS		DIALE OF EQUISION COOSED FOR CONTRACTOR											
SINCE 1946	and n ist Delacr CPRA St. Ber	and Restoration Authority East Delacroix Marsh Creation Project CPRA Project No. BS-0037 St. Bernard Parish, Louisiana		Borin	Boring: BA-12	-12		Proj Date Latit Long	Project No: 24431 Date: 09/03/2020 Latitude: 29.80765° Longitude: -89.82345°	°	25	Water Depth: See 1 Total Depth: 21.0 ft	<b>th:</b> See Text h: 21.0 ft
Scale in PP SPT Feet	S P L Symbol	Visual Classification	usc	Sample Number	Depth in Feet	Water Content	Dry	Density Wet	Shear Tests	Atterb	Atterberg Limits		Other Tests
0		5' Water		ŝ	o				•		-		
5 -		Extremely soft gray clay w/silt pockets,	СН	1A	S	101	41	83		96	21 75		
		w/silt pockets & shell fragments		1B	9	75	58	102					
-		w/silt pockets & shell fragments		2A	7	122	44	66		58	21 37		
		w/silt pockets & shell fragments		2B	∞	75	58	102					
1		Extremely softigray clay w/silty sand	Н	ЗA	6	86	59	109		54	18 36		-#200 = 97.8% PD
10 -		pockets & shell fragments w/silty sand pockets & shell fragments		3B	10	91	56	107					
		w/silty sand pockets & shell fragments		4A	11	83	55	101		80	18 62		
		w/silty sand pockets & shell fragments		4B	12	86	57	105					
1		Extremely soft gray clay w/silt pockets,	Ю	5Α	13	96	49	95		61	20 41		
		wood, & snell tragments w/silt pockets, wood, & shell		5B	14	57	67	105					
15 -		Extremely soft gray clay w/silty clay	Н	6A	15	70	58	66		71	17 54		
1		Wood wood was ciller class of and class	CL	68	16	84	52	97					-#200 = 99.6% PD
		Exulements shell fragments, organic matter,	Э	ТA	17	70	67	114		79	26 53		
		Extremely soft gray clay w/few silt pockets, organic matter, & shell		7B	18	76	56	66					
		W/tragments & concretions		8A	19	94	57	111		73	19 54		
20 -		Whew slift's and pockets, wood, & shell fragments & shell fragments		8B	20	97	52	102					
-1													
- L													

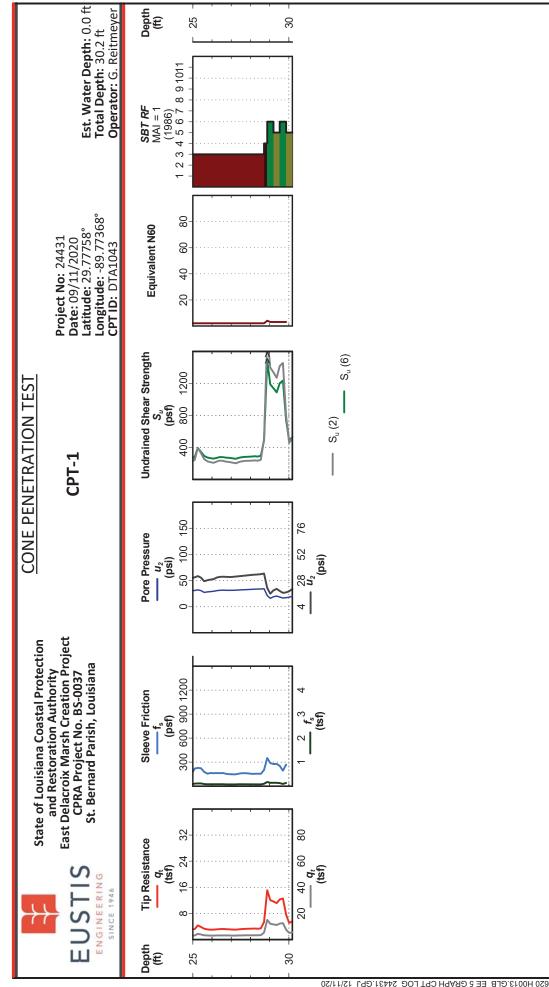
Tent of transmission       Boring: TB-4       Project No: 243-31       Evention: 1.1.09/2000-3       Evention: 1.1.09/2000-3         Control control       Control control       Description: 2.1.09/2000-3       Description: 2.1.09/2000-3       Description: 2.1.09/2000-3         Project No: Scoop       Control control       Description: 2.1.09/2000-3       Description: 2.1.09/2000-3       Description: 2.1.09/2000-3         Project No: Scoop       Description: 2.1.09/2000-3       Description: 2.1.09/2000-3       Description: 2.1.09/2000-3       Description: 2.1.09/2000-3         Project No: Scoop       Description: 2.1.09/2000-3       Description: 2.1.09/2000-3       Description: 2.1.09/2000-3       Description: 2.1.09/2000-3         Project No: Scoop       Description: 2.1.09/2000-3       Description: 2.1.09/2000-3       Description: 2.1.09/2000-3       Description: 2.1.09/2000-3         Project No: Scoop       Description: 2.1.09/2000-3       Description: 2.1.09/2000-3       Description: 2.1.09/2000-3       Description: 2.1.09/2000-3         Project No: Scoop       Description: 2.1.09/2000-3       Description: 2.1.09/2000-3       Description: 2.1.09/2000-3       Description: 2.1.09/2000-3         Project No: Scoop       Description: 2.1.09/2000-3       Description: 2.1.09/2000-3       Description: 2.1.09/2000-3       Description: 2.1.09/2000-3       Description: 2.1.09/2000-3         Project No: Scoop       Descripti					DOJ	OF B(	<b>BORING AND TEST</b>	AND		RESULTS	S								
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		TIS RING 946	state o ar East Del Cf St.	of Lou and Ré elacro CPRA I . Bern	iisiana Coastal Protection estoration Authority iix Marsh Creation Project Project No. BS-0037 iard Parish, Louisiana		Bori	ng: TB	4-1		Proj Date Latil	ect No e: 11/0 tude: 2 gitude:	: 2443 9/2020 9.7681 -89.78	833°		ΞΟΫ́	levation: atum: NA Vater Dep otal Deptl	1.1 VVD88 <b>th</b> : See Text <b>h</b> : 40.0 ft	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$							Samla	Danth Danth	Water	Der	nsity	She	ear Tests		vtterber ₍	g Limits			
$ \frac{1}{12} = \frac{1}{12}$				/mbol	Visual Classification	USC	Number	in Feet	Content %	Dry pcf	Wet pcf	Type	-		-	-		Other Tests	
$ \frac{1}{10} = \frac{1}{10}$					Soft brown silty clay w/roots, gravel, & shell fragments	CL	PB-1 ۲۸	0 0	39										
$ \frac{1}{2} = \frac{1}{10} $							2B 2B	0.5 1.5	24 32	85	113	C							
$ \frac{1}{12} = \frac{1}{12}$	- 1.50				Stiff gray & brown clay w/shell rragments, slity sand pockets, & organic matter	Н	3A	2	30										
$ \frac{1}{10} = \frac{1}{100} = \frac{1}$							NS	n											
$ \begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 &$	1				Geotextile reinforcements		4A	4 L	41	79	112	OB							
$\frac{1}{10} = \frac{100}{10} = 100$	i				Soft gray & brown silty clay w/wood, roots. & trace of clay bockets	CL	5A 5A	o o	47										
$ \frac{1}{10} = \frac{1}{10}$	ł			Ĥ			NS	7											
$ \frac{10}{10} - \frac{1}{10} + \frac{1}{10$	1 1				Soft gray silty clay w/silty sand pockets & trace of decayed wood	CL	6A	œ	55	99	103	OB							
$15 - \frac{1}{10} - \frac{1}$							6B	6	43	80	114	OB							
$15 \begin{array}{c} 1 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\$							PB-7	10	36										
$\frac{15}{10} = \frac{100}{10} = 10$					Soft gray clay w/few silty sand pockets & trace of decayed wood (flocculated)	СН	8A	12	75	55	96	OB							
$15 \xrightarrow{10}{10} = 1 = 10 = 10 = 10 = 10 = 10 = 10 = $							8B	13	81										
20 - 20ft grav slitty clay w/slitt pockets, CH 9B 15 68 55 98 0B 0 266 94 22 72 56 98 0B 0 266 94 22 72 56 98 0B 0 266 94 22 72 50 56 98 0B 0 266 94 22 72 50 56 56 56 56 56 56 56 56 56 56 56 56 56					Soft black organic clay w/decayed wood & trace of gray clay pockets	НО	9A	14	188	32	91	OB						ORG = 16.3%	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$					Soft gray & tan clay w/silt pockets, organic matter, & decayed wood	СН	9B	15	68										
20 							10A	16	73	56	98	OB							
20 - Loose gray Glaves slit witing sand, trace ML 11A 18 40 Loose gray Glaves slit witing sand, trace ML 11B 19 32 11B 19 32 11B 19 32 11B 19 32 11B 19 32 12A 23 33 12A 23 33					Soft gray silty clay w/few silty sand pockets & lenses, & few decayed wood	CL	10B	17	80										
20 - Loose gray clayers, & trace of shell fragments ML 11B 19 32 	0011						11A	18	40										
25 12A 23 33 12B 24 35					Loose gray clayey silt w/fine sand, trace clay layers, & trace of shell fragments	ML	11B	19	32									-#200 = 76.7% SV	>
75 - 128 24 35 24 35 24 35 24 35 24 35 24 35 24 35 24 35 24 35 24 35 24 35 24 35 24 35 24 35 24 35 24 35 24 35 24 35 24 35 24 35 24 35 24 35 24 35 24 35 24 35 24 35 24 35 24 35 24 35 24 35 24 35 24 35 24 35 24 35 24 35 24 35 24 35 24 35 24 35 24 35 24 35 24 35 24 35 24 35 24 35 24 35 24 35 24 35 24 35 24 35 24 35 24 35 24 35 24 35 24 35 24 35 24 35 24 35 24 35 24 35 24 35 24 35 24 35 24 35 24 35 24 35 24 35 24 35 24 35 24 35 24 35 24 35 24 35 24 35 24 35 24 35 24 35 24 35 24 35 24 35 24 35 24 35 24 35 24 35 24 35 24 35 24 35 24 35 24 35 24 35 24 35 24 35 24 35 24 35 24 35 24 35 24 35 24 35 24 35 24 35 24 35 24 35 24 35 24 35 24 35 24 35 24 35 24 35 24 35 24 35 24 35 24 35 24 35 24 35 24 35 24 35 24 35 24 35 24 35 24 35 24 35 24 35 24 35 24 35 24 35 24 35 24 35 24 35 24 35 24 35 24 35 24 35 24 35 24 35 24 35 24 35 24 35 24 35 24 35 24 35 24 35 24 35 24 35 24 35 24 35 24 35 24 35 24 35 24 35 24 35 24 35 24 35 24 35 24 35 24 35 24 35 24 35 24 35 24 35 24 35 24 35 24 35 24 35 24 35 24 35 24 35 24 35 24 35 24 35 24 35 24 35 24 35 24 35 24 35 24 35 24 35 24 35 24 35 24 35 24 35 24 35 24 35 24 35 24 35 24 35 24 35 24 35 24 35 24 35 24 35 24 35 24 35 24 35 24 35 24 35 24 35 24 35 24 35 24 35 24 35 24 35 24 35 24 35 24 35 24 35 24 35 24 35 24 35 24 35 24 35 24 35 24 35 24 35 24 35 24 35 24 35 24 35 24 35 24 35 24 35 24 35 24 35 24 35 24 35 24 35 24 35 24 35 24 35 24 35 24 35 24 35 24 35 24 35 24 35 24 35 24 35 24 35 24 35 24 35 24 35 24 35 24 35 24 35 24 35 24 35 24 35 24 35 24 35 24 35 24 35 24 35 24 35 24 35 24 35 24 35 24 35 24 35 24 35 24 35 24 35 24 35 24 35 24 35 24 35 24 35 24 35 24 35 24 35 24 35 24 35 24 35 24 35 24 35 24 35 24 35 24 35 24 35 24 35 24 35 24 35 24 35 24 35 24 35 24 35 24 35 24 35 24 35 24 35 24 35 24 35 24 35 24 35 24 35 24 35 24 35 24 35 24 35 24 35 24 35 24 35 24 35 24 35 24 35 24 35 24 35 24 35 24 35 24 35 24 35 24 35 24 35 24 35 24 35 24 35 24 35 24 35 24 35 24 35 24 35 24 35 24 35 24 35 24 35 24 35 24 35 24 35 24 35 24 35 24 35 24 35 24 35 24 35 24 35 24 35 24 35 24 35 24 35 24 35 24 35 24				$\sum$															
75 - 128 23 33 - 128 24 35 - 24 35 - 24 35 - 24 35 - 24 35 - 24 35 - 24 35 - 24 35 - 24 35 - 24 35 - 24 35 - 24 35 - 24 35 - 24 35 - 24 35 - 24 35 - 24 35 - 24 35 - 24 35 - 24 35 - 24 35 - 24 35 - 24 35 - 24 35 - 24 35 - 24 35 - 24 35 - 24 35 - 24 35 - 24 35 - 24 35 - 24 35 - 24 35 - 24 35 - 24 35 - 24 35 - 24 35 - 24 35 - 24 35 - 24 35 - 24 35 - 24 35 - 24 35 - 24 35 - 24 35 - 24 35 - 24 35 - 24 35 - 24 35 - 24 35 - 24 35 - 24 35 - 24 35 - 24 35 - 24 35 - 24 35 - 24 35 - 24 35 - 24 35 - 24 35 - 24 35 - 24 35 - 24 35 - 24 35 - 24 35 - 24 35 - 24 35 - 24 35 - 24 35 - 24 35 - 24 35 - 24 35 - 24 35 - 24 35 - 24 35 - 24 35 - 24 35 - 24 35 - 24 35 - 24 35 - 24 35 - 24 35 - 24 35 - 24 35 - 24 35 - 24 35 - 24 35 - 24 35 - 24 35 - 24 35 - 24 35 - 24 35 - 24 35 - 24 35 - 24 35 - 24 35 - 24 35 - 24 35 - 24 35 - 24 35 - 24 35 - 24 35 - 24 35 - 24 35 - 24 35 - 24 35 - 24 35 - 24 35 - 24 35 - 24 35 - 24 35 - 24 35 - 24 35 - 24 35 - 24 35 - 24 35 - 24 35 - 24 35 - 24 35 - 24 35 - 24 35 - 24 35 - 24 35 - 24 35 - 24 35 - 24 35 - 24 35 - 24 35 - 24 35 - 24 35 - 24 35 - 24 35 - 24 35 - 24 35 - 24 35 - 24 35 - 24 35 - 24 35 - 24 35 - 24 35 - 24 35 - 24 35 - 24 35 - 24 35 - 24 35 - 24 35 - 24 35 - 24 35 - 24 35 - 24 35 - 24 35 - 24 35 - 24 35 - 24 35 - 24 35 - 24 35 - 24 35 - 24 35 - 24 35 - 24 35 - 24 35 - 24 35 - 24 35 - 24 35 - 24 35 - 24 35 - 24 35 - 24 35 - 24 35 - 24 35 - 24 35 - 24 35 - 24 35 - 24 35 - 24 35 - 24 35 - 24 35 - 24 35 - 24 35 - 24 35 - 24 35 - 24 35 - 24 35 - 24 35 - 24 35 - 24 35 - 24 35 - 24 35 - 24 35 - 24 35 - 24 35 - 24 - 25 - 24 - 25 - 24 - 25 - 24 - 25 - 25				$\square$															
25 1 12B 24	1 1						12A	23	33									-#200 = 75.0%	
							12B	24	35										



All contractions and control of the contraction of	$\rightarrow$	0 0 1 0 1 0 1	يام اغم			DUNINU AND ILJI NEJULIJ	1			<u>2</u>							
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		East De State C	or Lou and Re elacro CPRA   t. Bern	usiana Coastal Protection estoration Authority aix Marsh Creation Project Project No. BS-0037 ard Parish, Louisiana		Borir	ıg: TB	4		Proj Dati Latij Lonj	ect No: e: 11/05 tude: 25 gitude:	24431 //2020 1.76813	30°		Elevation: 1.1 Datum: NAVD88 Water Depth: See 1 Total Depth: 40.0 ft	on: 1.1 NAVD8 Depth: epth: 40	Elevation: 1.1 Datum: NAVD88 Water Depth: See Text Total Depth: 40.0 ft
$\frac{1}{1000}$ $1$	dd	<u>ง                                    </u>	ymbol		<u> </u>	Sample Number	Depth in Feet	Water Content %		nsity Wet	She Type	ar Tests		erberg Lim	PI		Other Tests
0-00       0-00       0-0       0-0       0-0       0-0       0-0       0-0       0-0       0-0       0-0       0-0       0-0       0-0       0-0       0-0       0-0       0-0       0-0       0-0       0-0       0-0       0-0       0-0       0-0       0-0       0-0       0-0       0-0       0-0       0-0       0-0       0-0       0-0       0-0       0-0       0-0       0-0       0-0       0-0       0-0       0-0       0-0       0-0       0-0       0-0       0-0       0-0       0-0       0-0       0-0       0-0       0-0       0-0       0-0       0-0       0-0       0-0       0-0       0-0       0-0       0-0       0-0       0-0       0-0       0-0       0-0       0-0       0-0       0-0       0-0       0-0       0-0       0-0       0-0       0-0       0-0       0-0       0-0       0-0       0-0       0-0       0-0       0-0       0-0       0-0       0-0       0-0       0-0       0-0       0-0       0-0       0-0       0-0       0-0       0-0       0-0       0-0       0-0       0-0       0-0       0-0       0-0       0-0       0-0       0-0 <td< td=""><td>- 72</td><td></td><td></td><td>Stiff gray clay w/few slit pockets &amp; lenses, &amp; trace of shell fragments</td><td>ъ</td><td></td><td></td><td></td><td>5</td><td>5</td><td></td><td>-</td><td></td><td></td><td></td><td></td><td></td></td<>	- 72			Stiff gray clay w/few slit pockets & lenses, & trace of shell fragments	ъ				5	5		-					
0.50     0.50     0.60     0.60     0.60     0.60     0.60     0.60     0.60     0.60     0.60     0.60     0.60     0.60     0.60     0.60     0.60     0.60     0.60     0.60     0.60     0.60     0.60     0.60     0.60     0.60     0.60     0.60     0.60     0.60     0.60     0.60     0.60     0.60     0.60     0.60     0.60     0.60     0.60     0.60     0.60     0.60     0.60     0.60     0.60     0.60     0.60     0.60     0.60     0.60     0.60     0.60     0.60     0.60     0.60     0.60     0.60     0.60     0.60     0.60     0.60     0.60     0.60     0.60     0.60     0.60     0.60     0.60     0.60     0.60     0.60     0.60     0.60     0.60     0.60     0.60     0.60     0.60     0.60     0.60     0.60     0.60     0.60     0.60     0.60     0.60     0.60     0.60     0.60     0.60     0.60     0.60     0.60     0.60     0.60     0.60     0.60     0.60     0.60     0.60     0.60     0.60     0.60     0.60     0.60     0.60     0.60     0.60     0.60     0.60     0.60     0.60     0.60						13A 13B	28 29	80 83	53 54	96 97	OB 0B			29	71		
0.00       0.01       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0 <td< td=""><td></td><td></td><td></td><td>Stiff gray &amp; brown organic clay w/trace of organic matter</td><td>НО</td><td>44 4</td><td>33</td><td>150</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>ORG = 48 1%</td></td<>				Stiff gray & brown organic clay w/trace of organic matter	НО	44 4	33	150									ORG = 48 1%
2014       2014         Soft agric/card w/few sith pockets & trace       CH         Soft agric/card w/few sith pockets & trace       CH         15A       38       76         15B       33       76         15B       135       135         15B       135       145         15B       135       145         15B       135       145         15B       135       145         15B       145       145         15B       145 <t< td=""><td>· I ·</td><td></td><td></td><td>Medium stiff gray &amp; brown clay w/trace of silt pockets &amp; organic matter</td><td>Б</td><td>148</td><td>34</td><td>111</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	· I ·			Medium stiff gray & brown clay w/trace of silt pockets & organic matter	Б	148	34	111									
				Soft gray clay w/few silt pockets & trace of organic mater	СН		2	c r									
	40 -					15A 15B	8 6 8 6	76 56	65	102	OB				43		
65 - · · · · · · · · · · · · · · · · · · ·	1 1 1																
	45 -																
	- <u>i</u> iii																

NOTES: Ground Surface Elevation from survey furnished in Appendix II.


Page 2 of 2

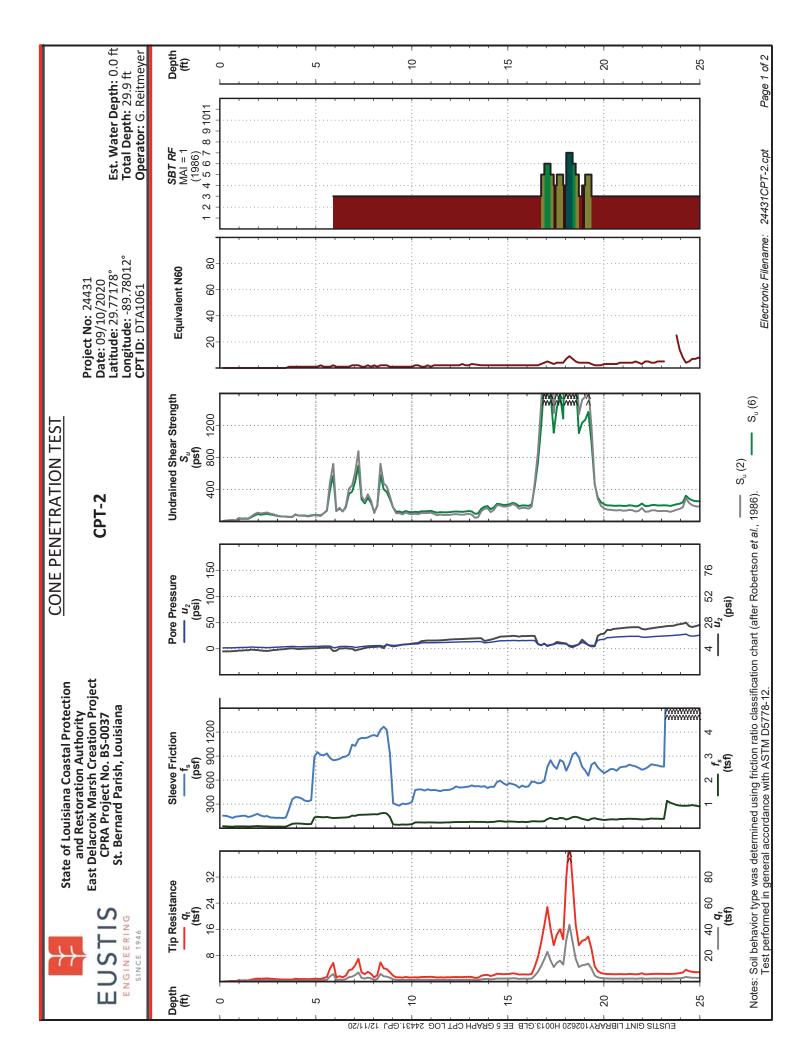

APPENDIX IV CONE PENETRATION TEST RESULTS

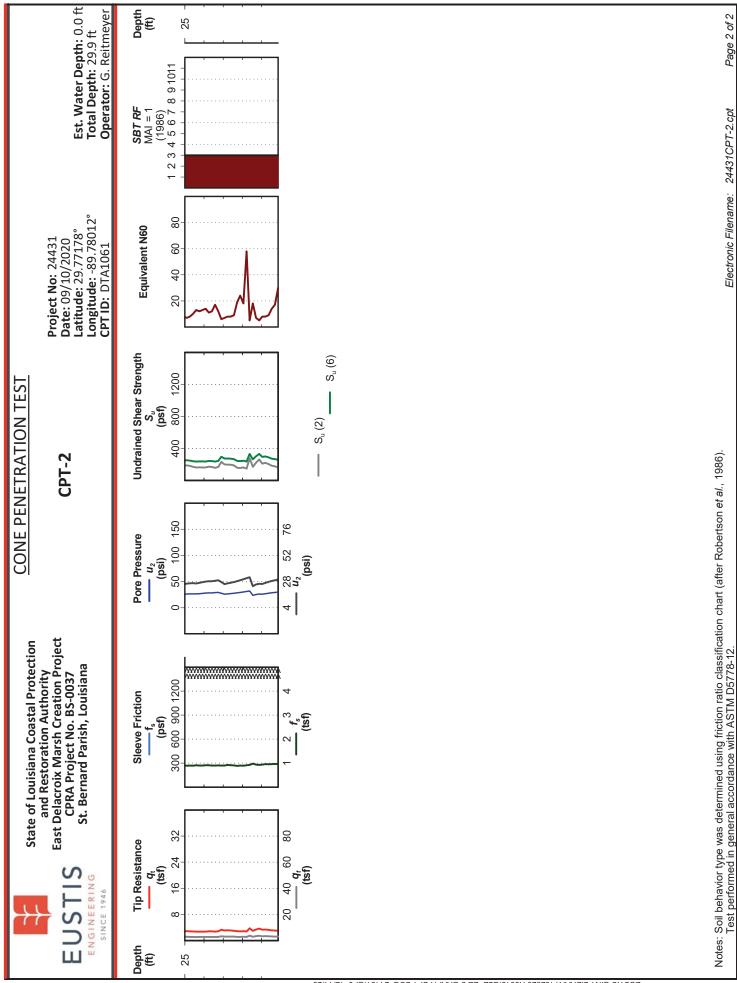


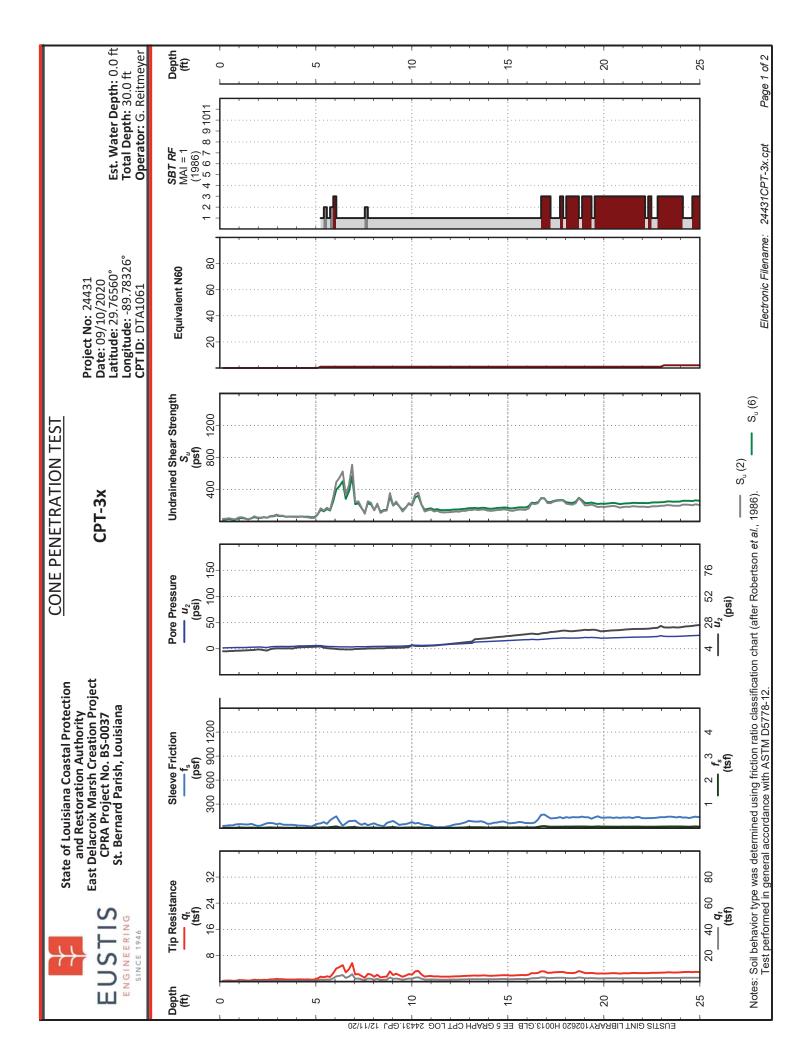


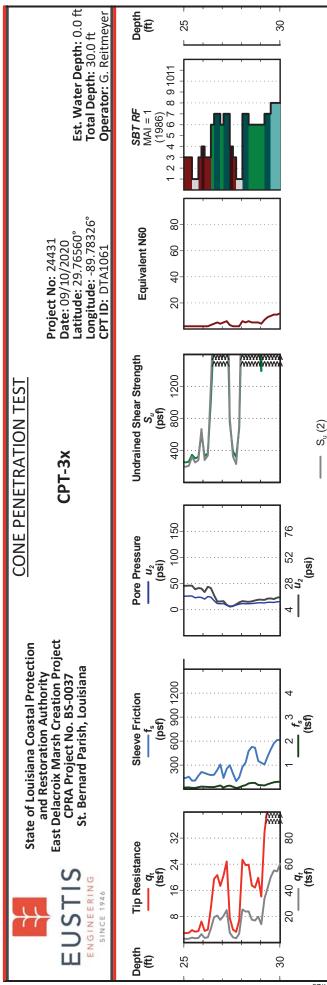
*OVERCONSOLIDATED OR CEMENTED







Page 2 of 2


Electronic Filename: 24431CPT-1.cpt

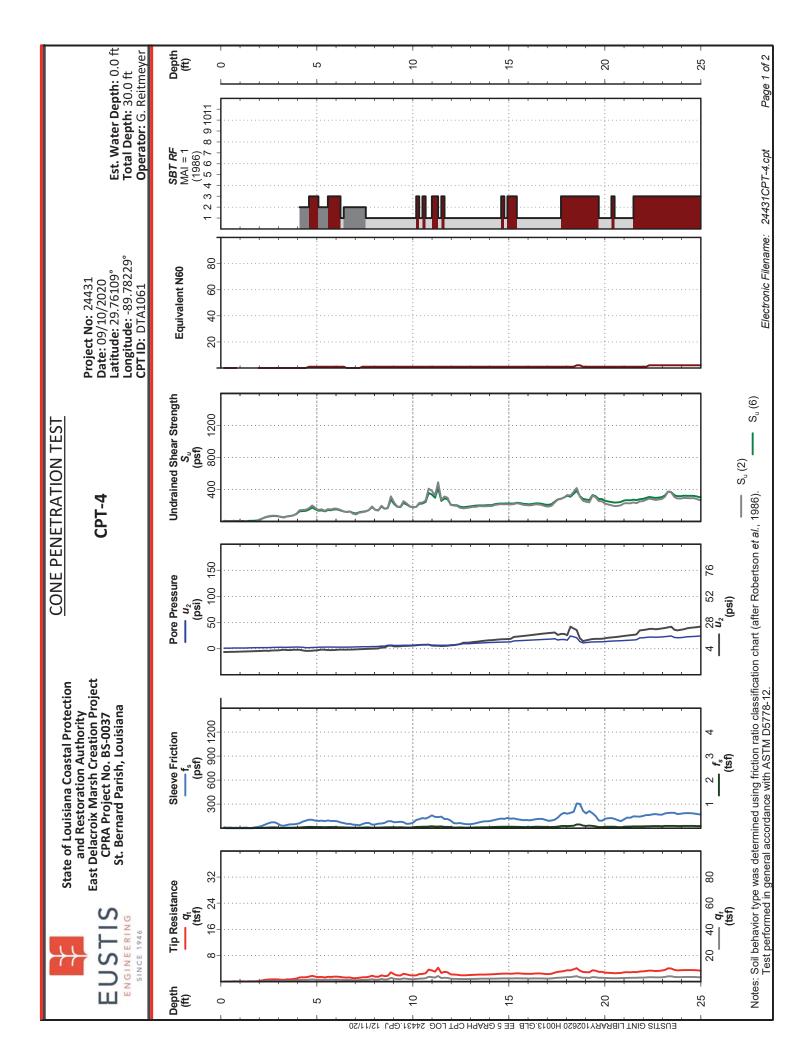
EUSTIS GINT LIBRARY102620 H0013.GLB EE 5 GRAPH CPT LOG 24431.GPJ 12/11/20

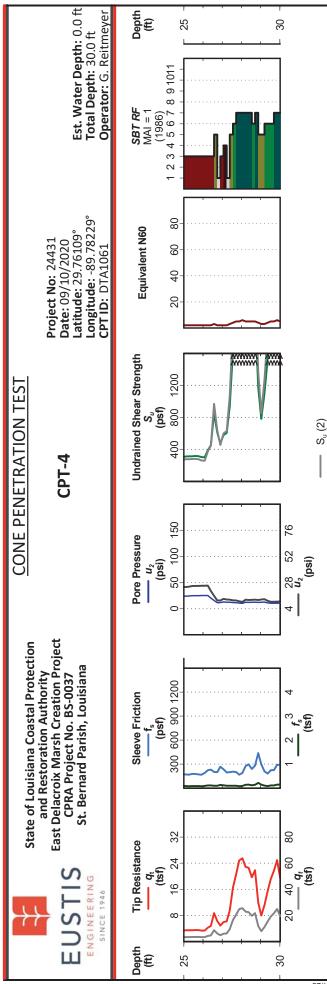









S_u (6)

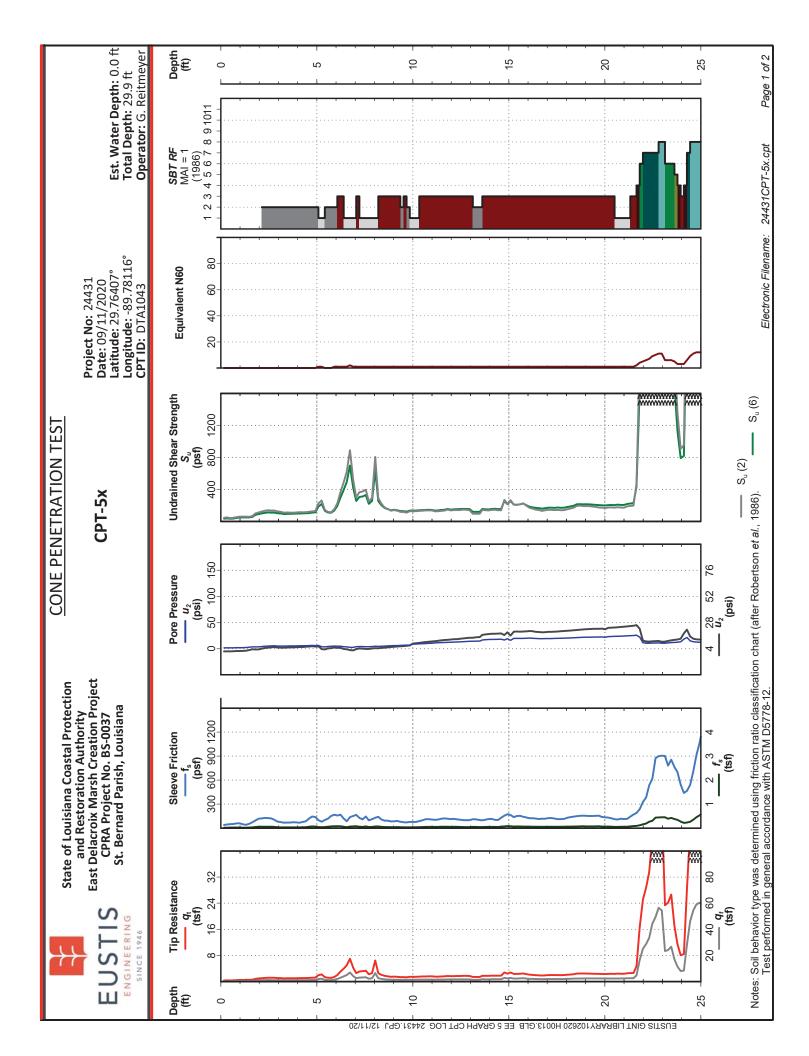


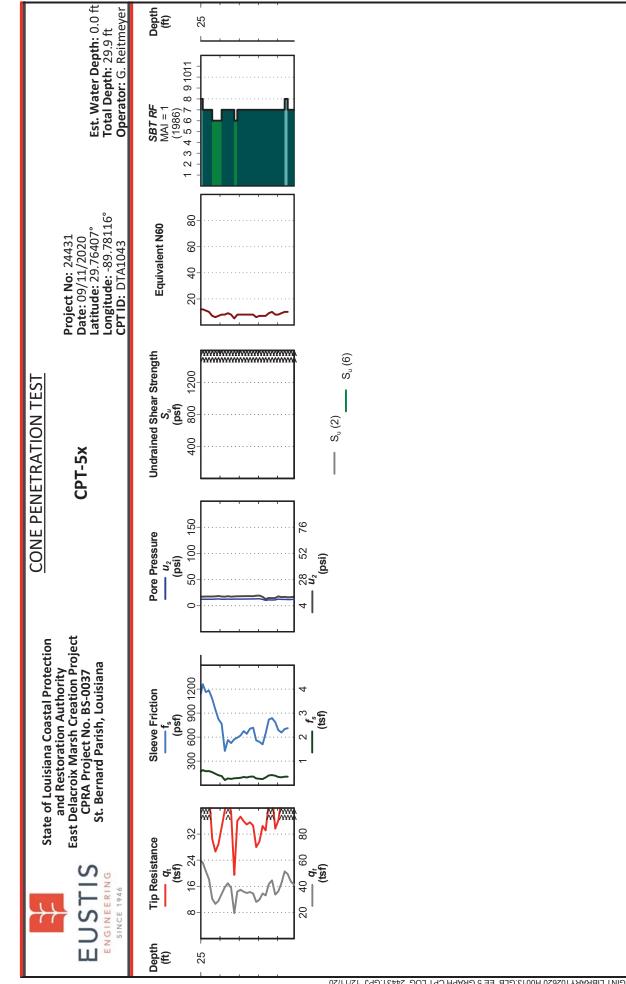

Page 2 of 2

Electronic Filename: 24431CPT-3x.cpt

EUSTIS GINT LIBRARY102620 H0013.GLB EE 5 GRAPH CPT LOG 24431.GPJ 12/11/20



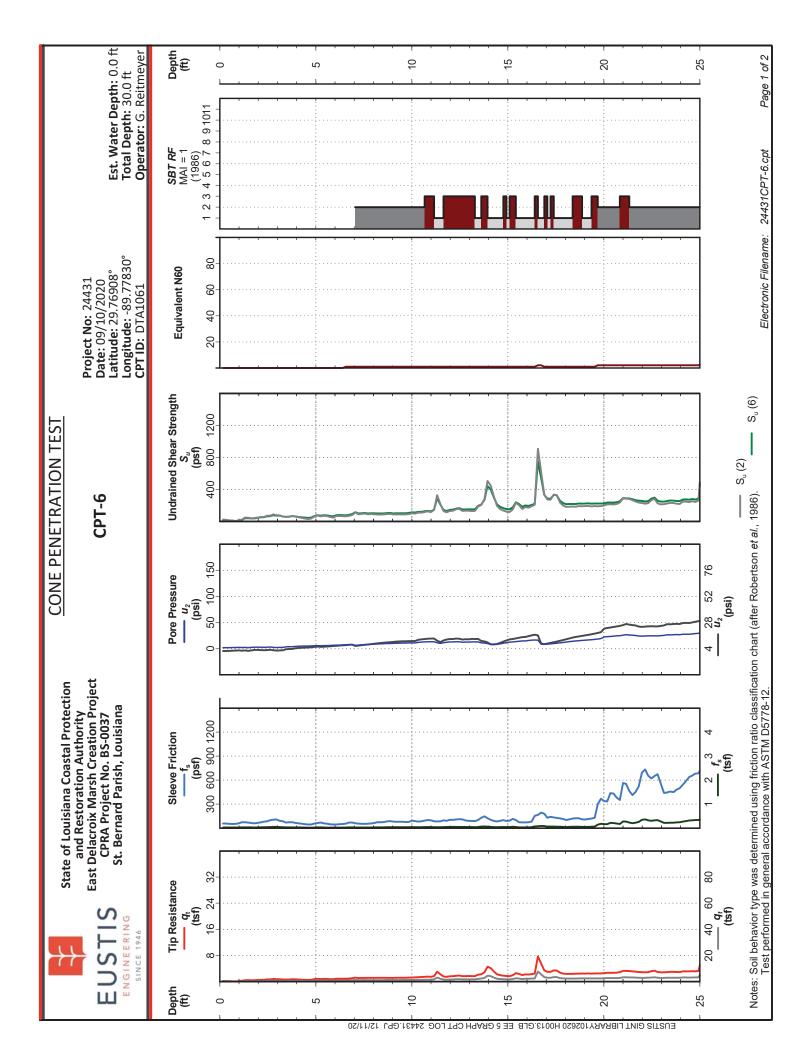


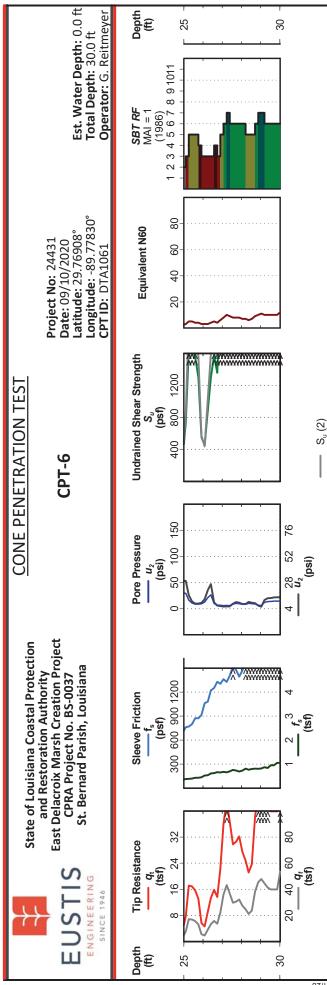


S_u (6)



Page 2 of 2

Electronic Filename: 24431CPT-4.cpt



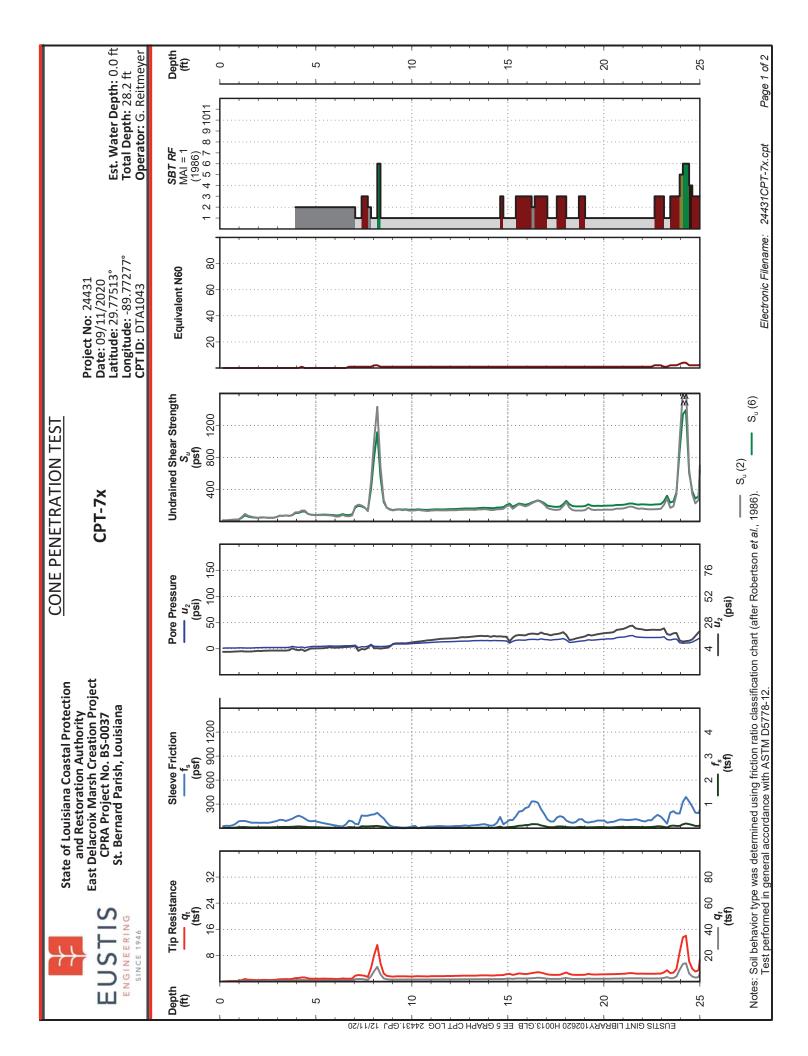



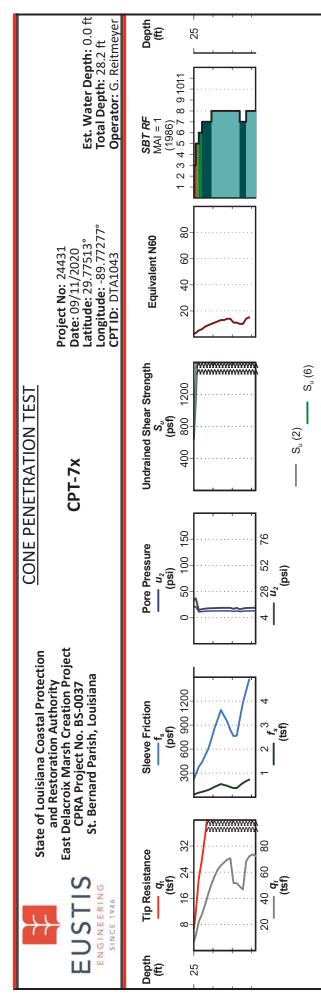

# Notes: Soil behavior type was determined using friction ratio classification chart (after Robertson *et al.*, 1986). Test performed in general accordance with ASTM D5778-12.

Page 2 of 2

Electronic Filename: 24431CPT-5x.cpt

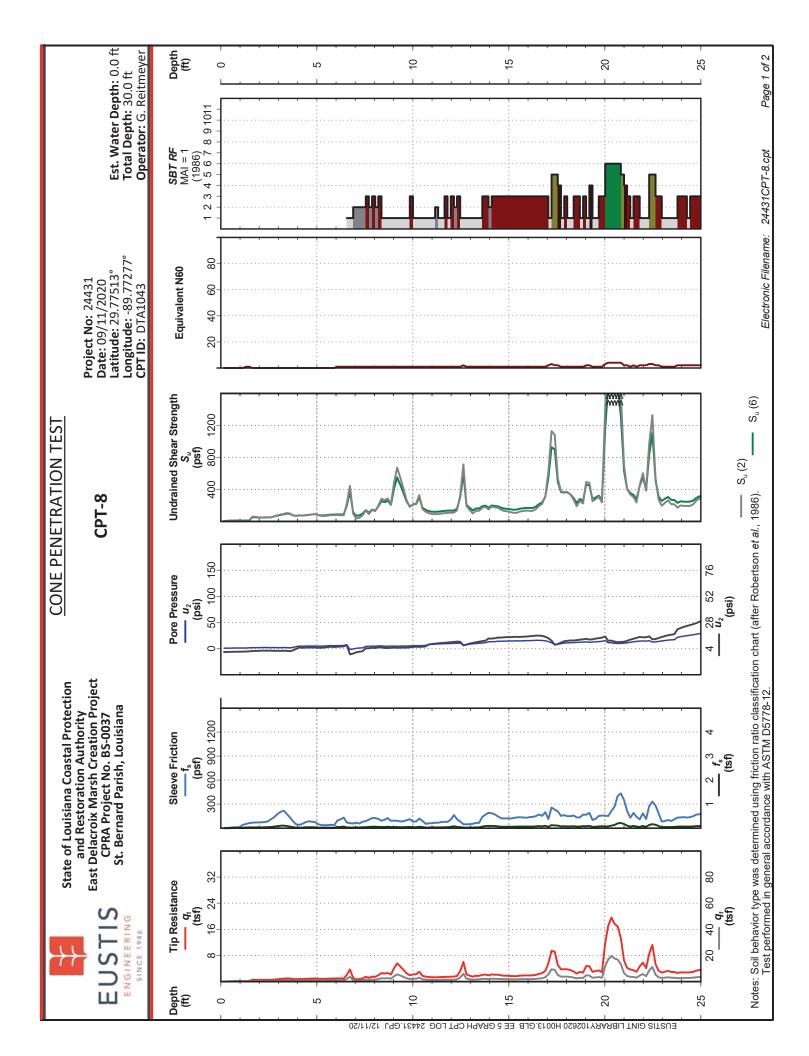


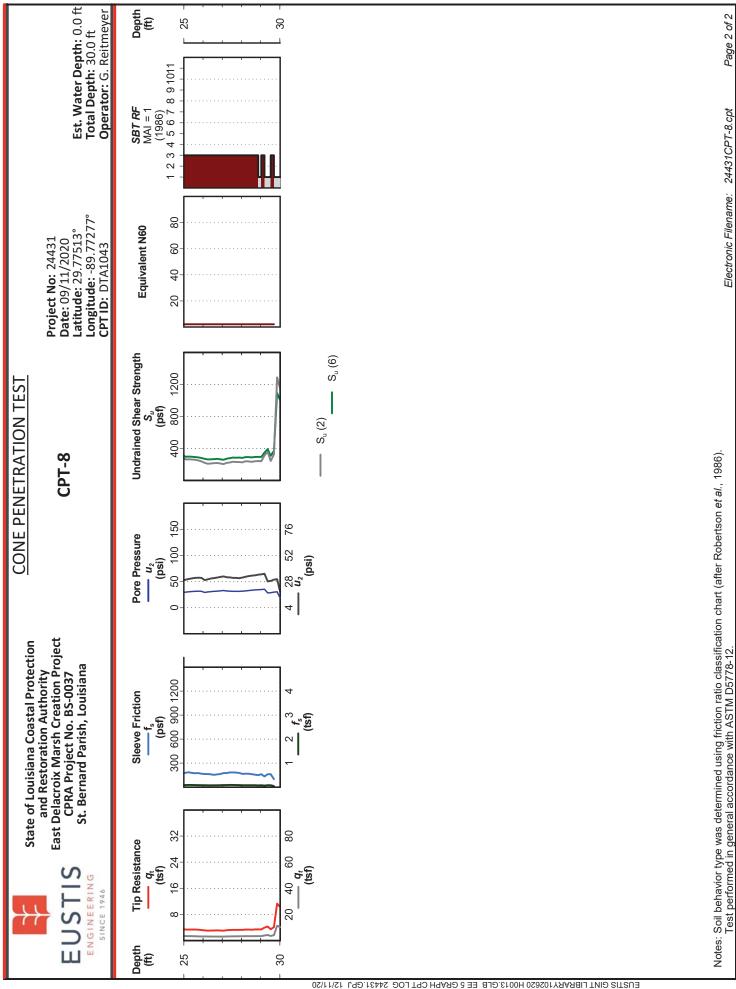


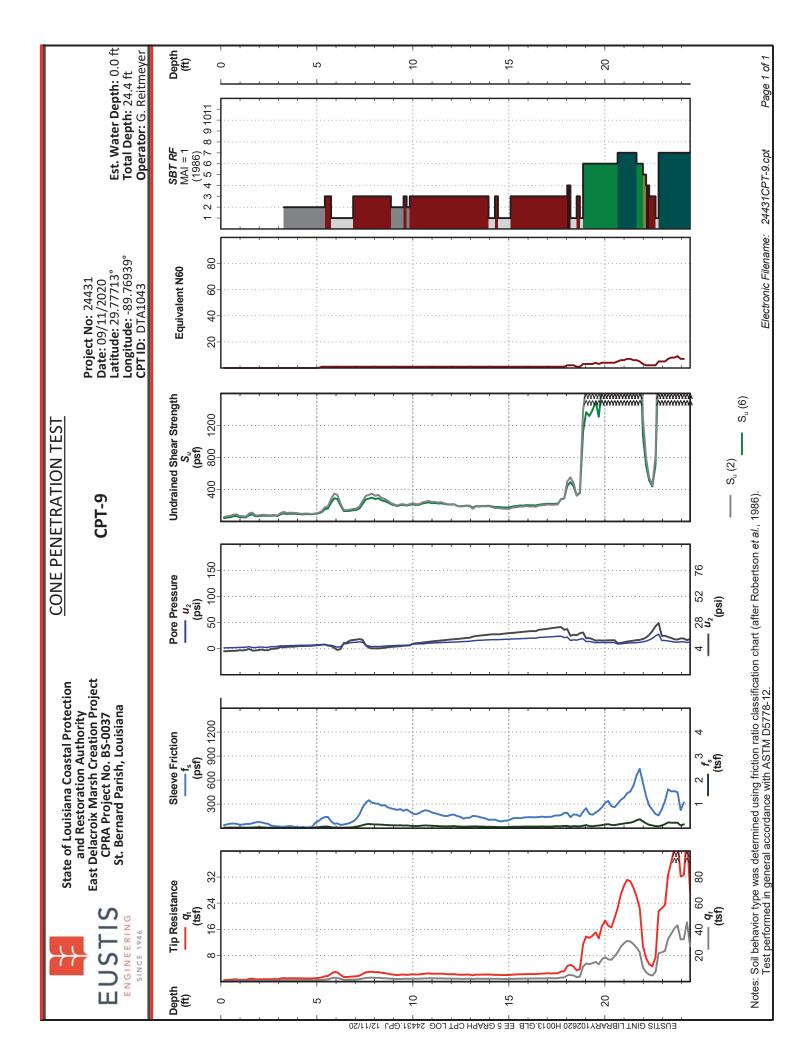


S_u (6)

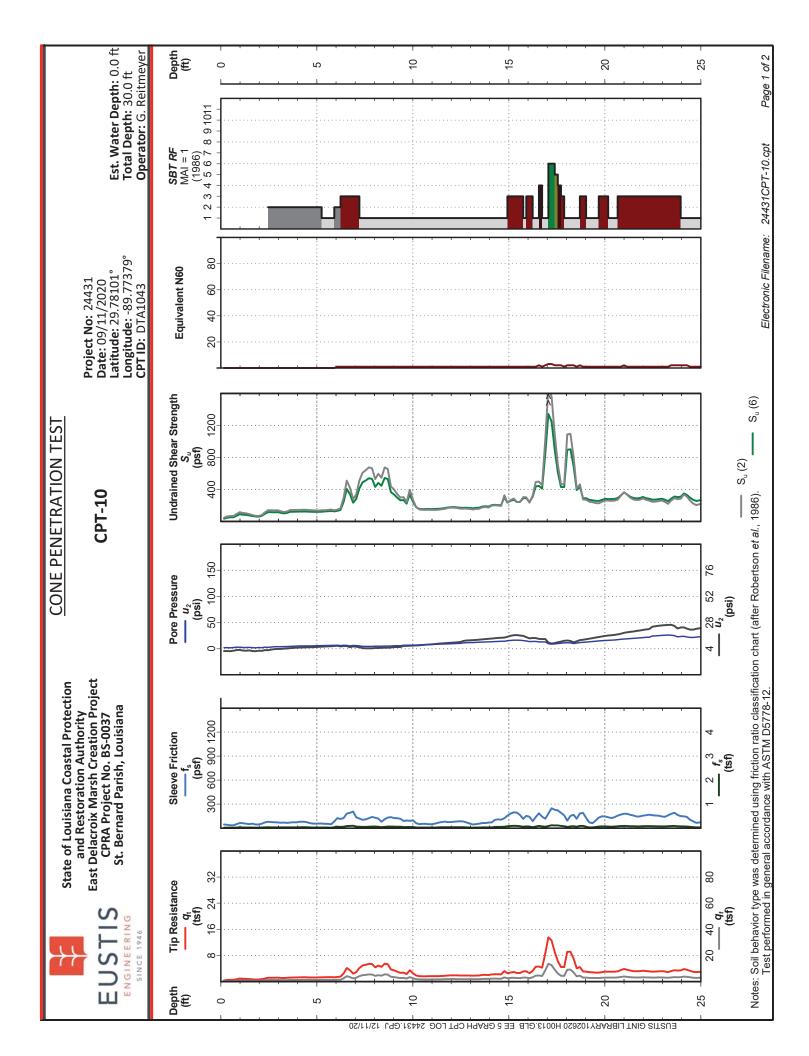


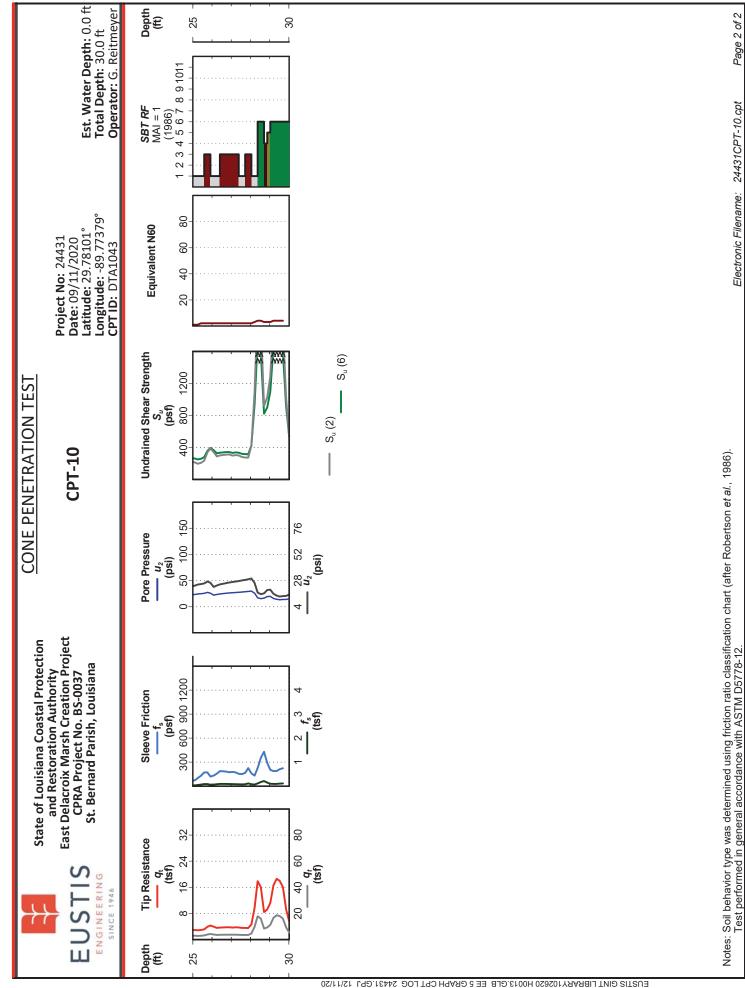
Page 2 of 2


Electronic Filename: 24431CPT-6.cpt



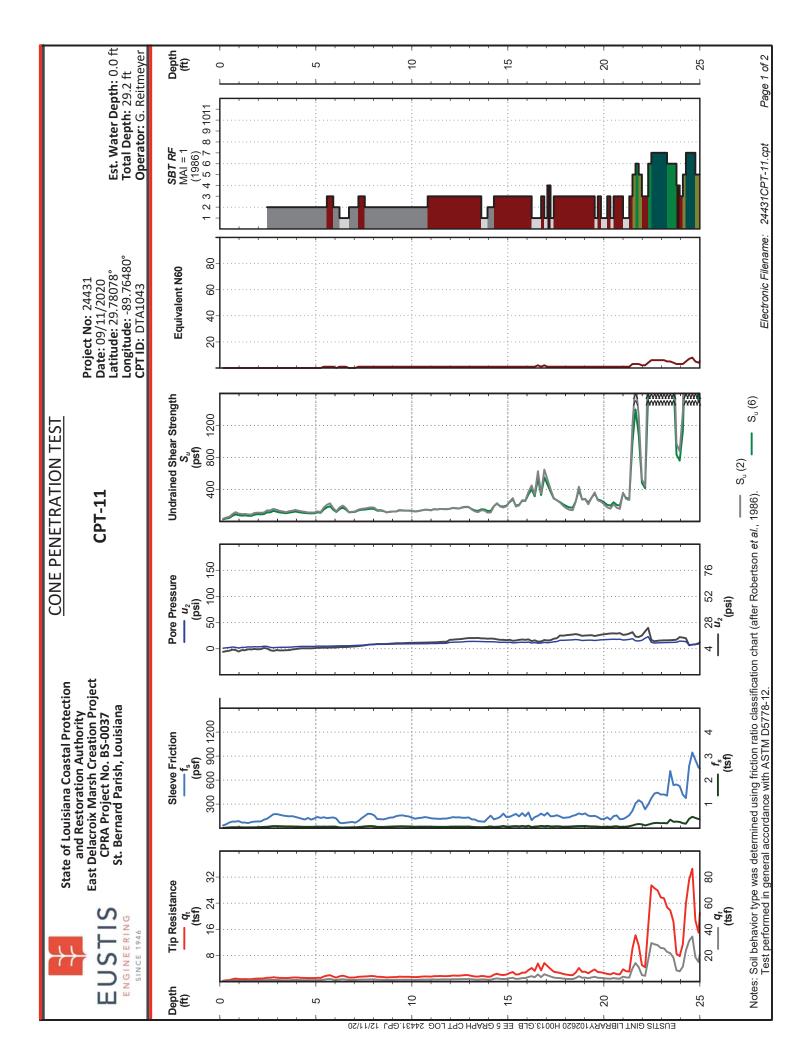



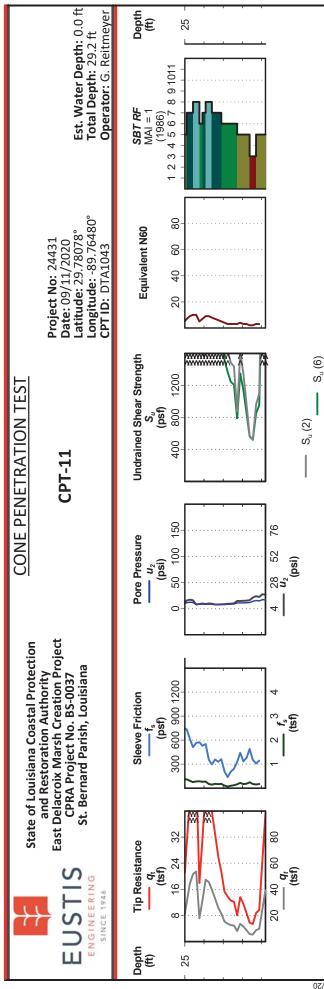


Page 2 of 2


Electronic Filename: 24431CPT-7x.cpt





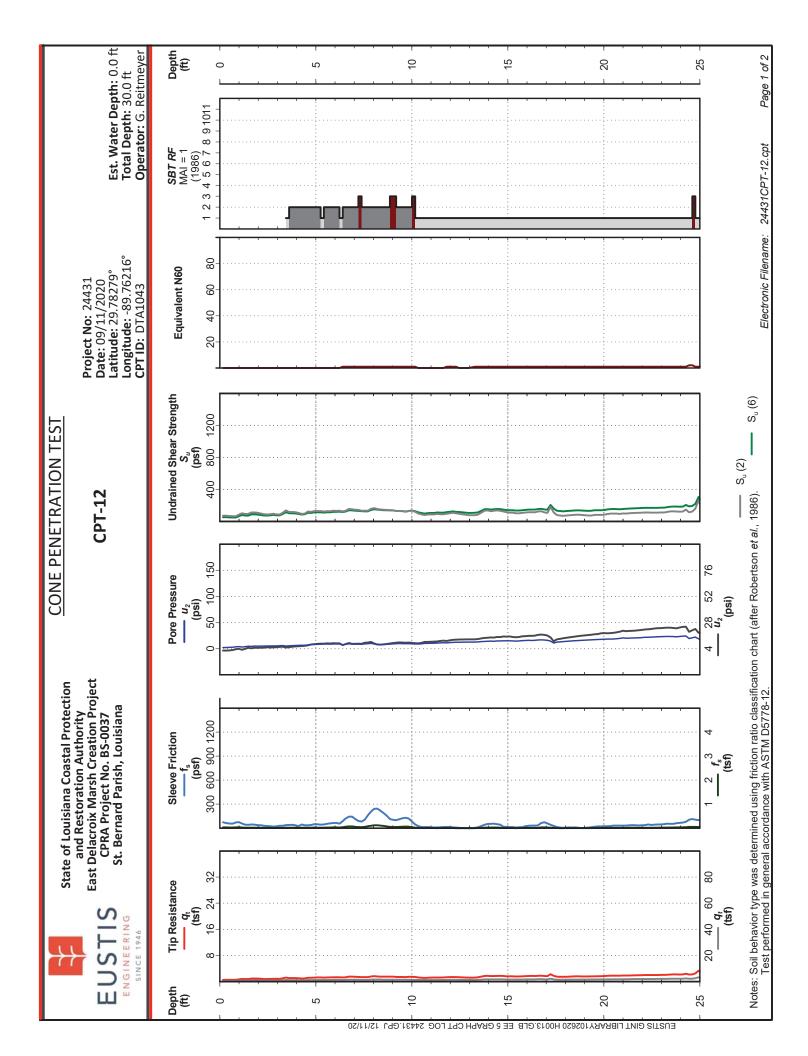


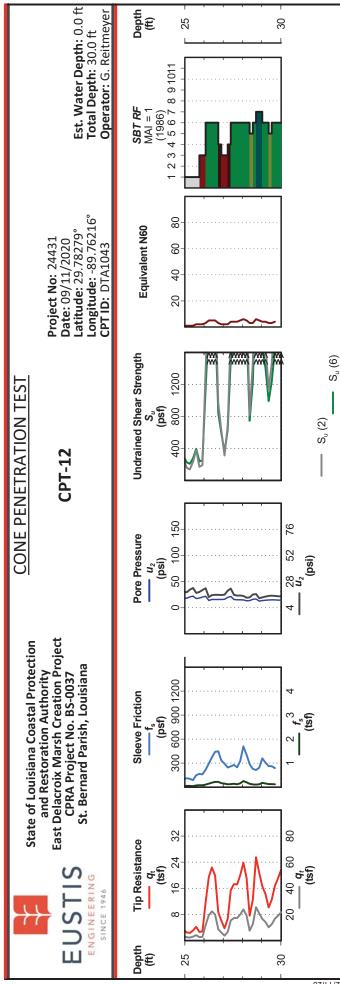





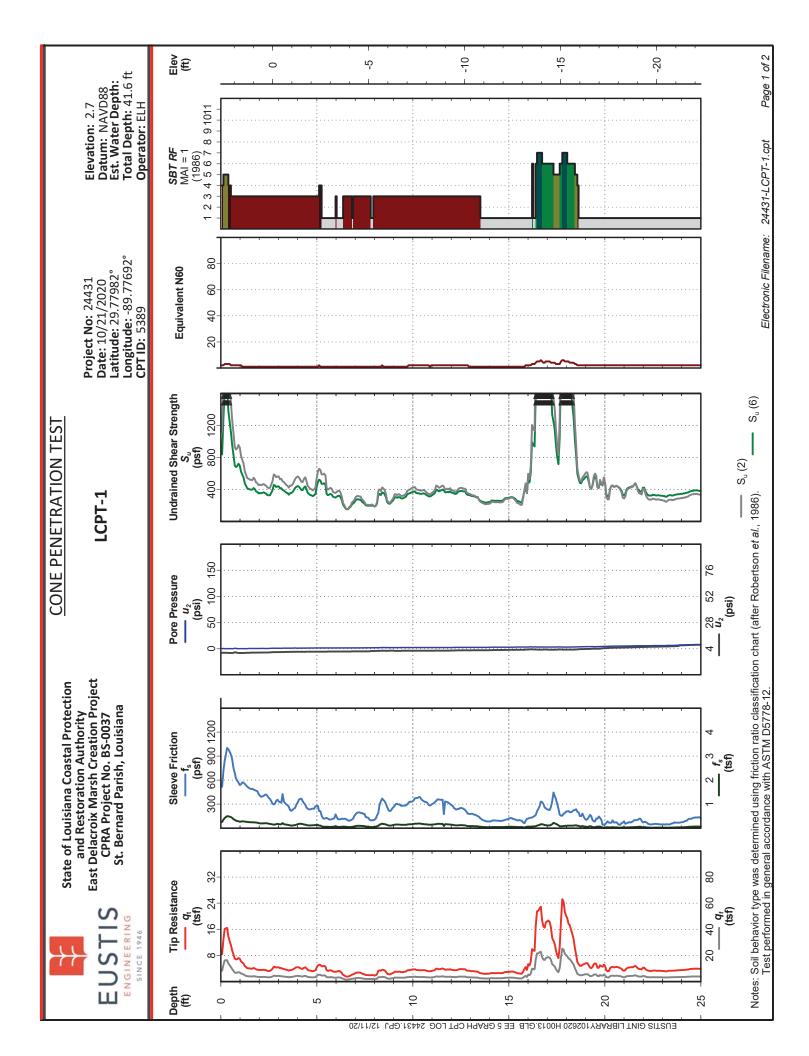

Page 2 of 2

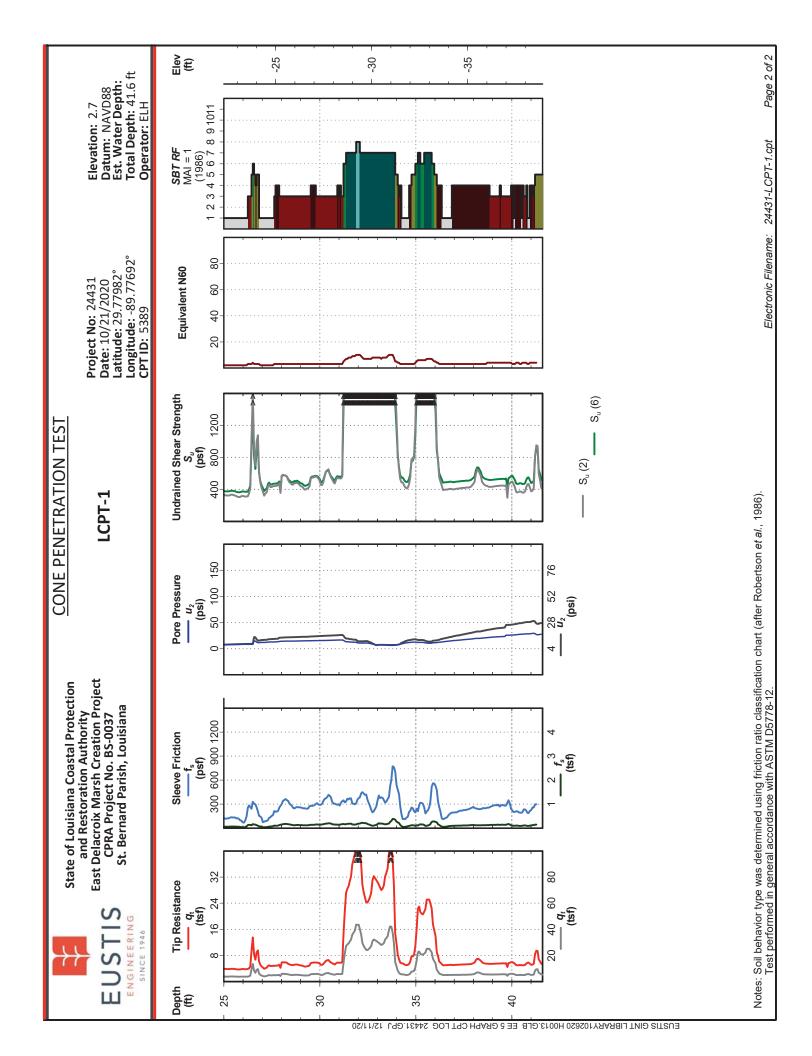
Electronic Filename: 24431CPT-10.cpt

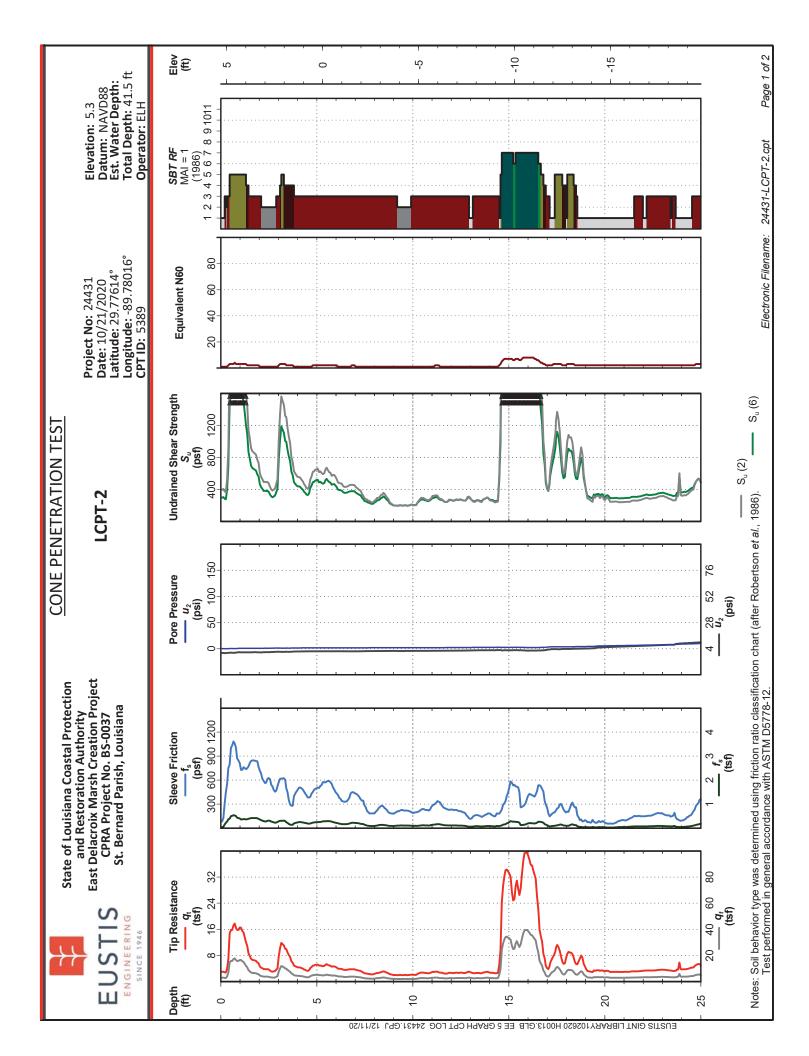


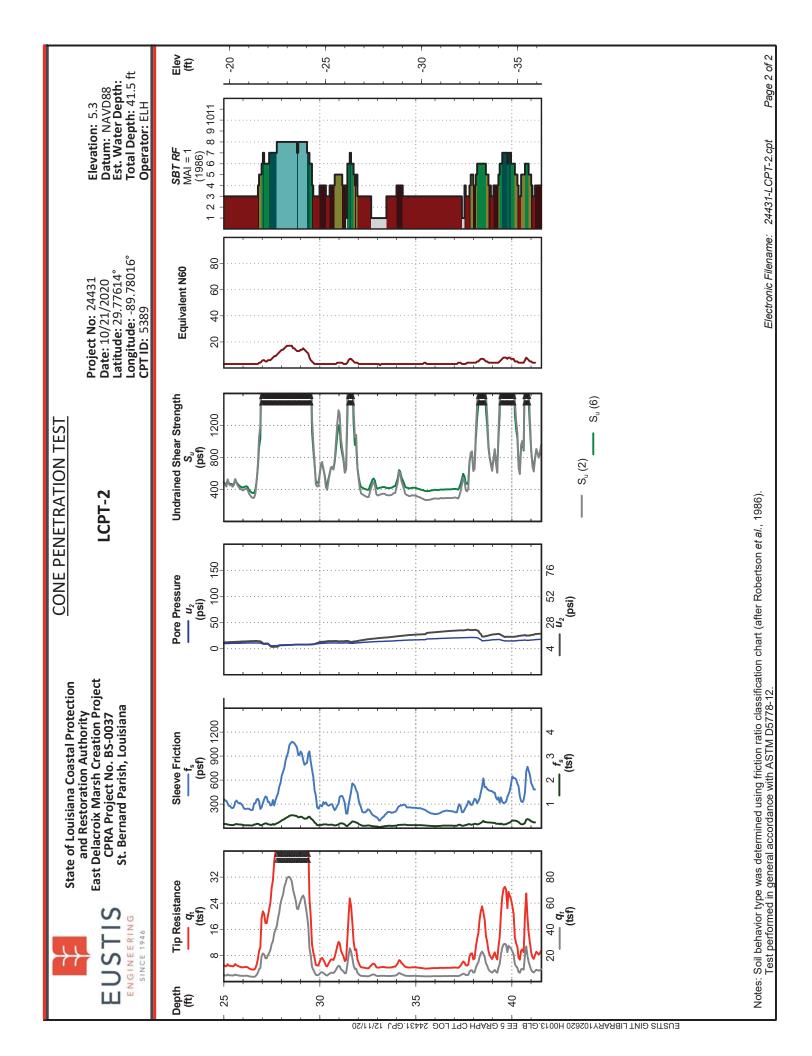



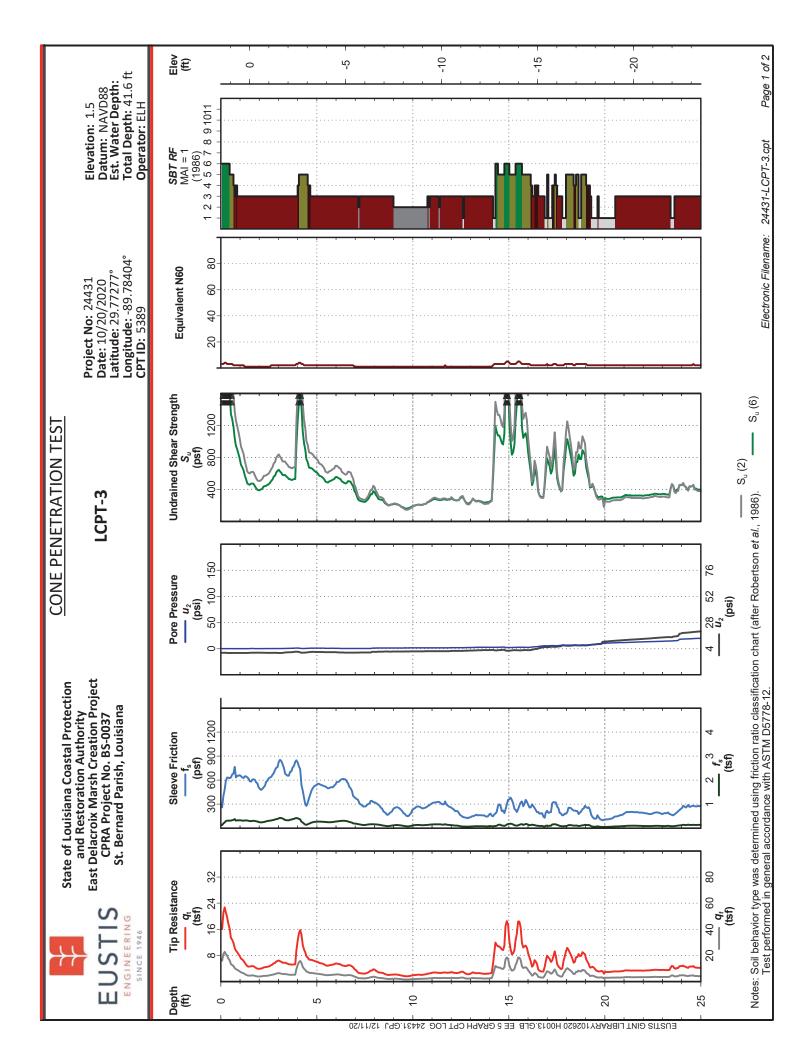


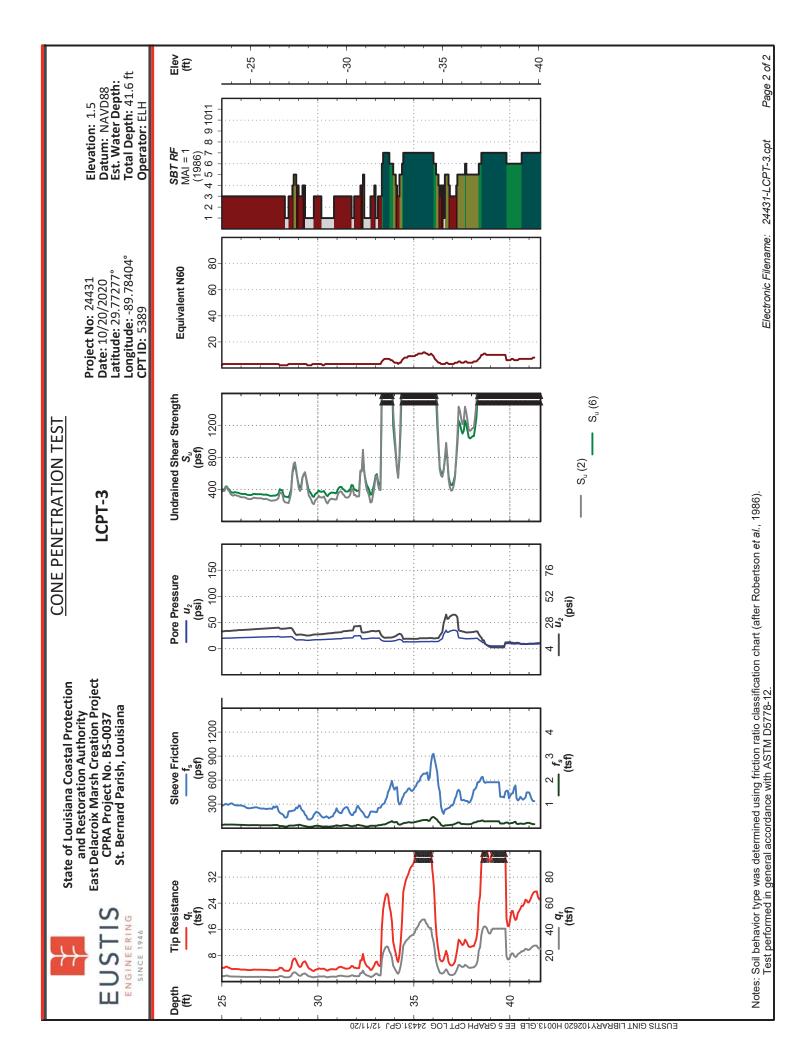


Page 2 of 2

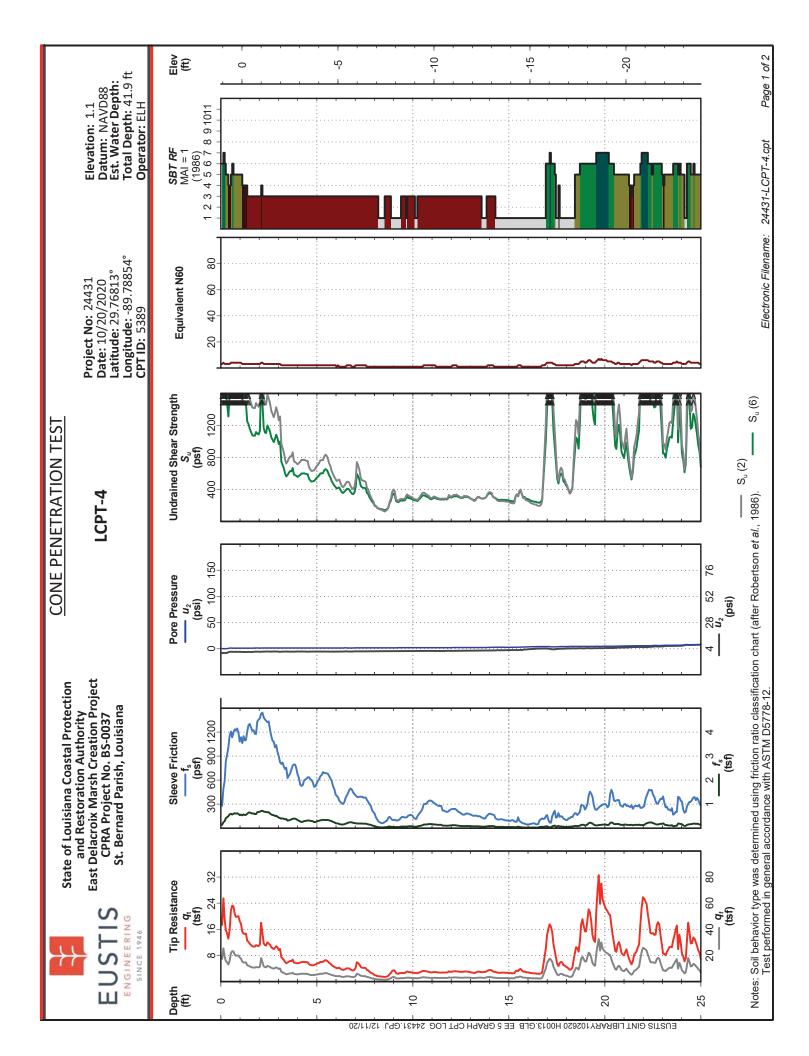

Electronic Filename: 24431CPT-11.cpt

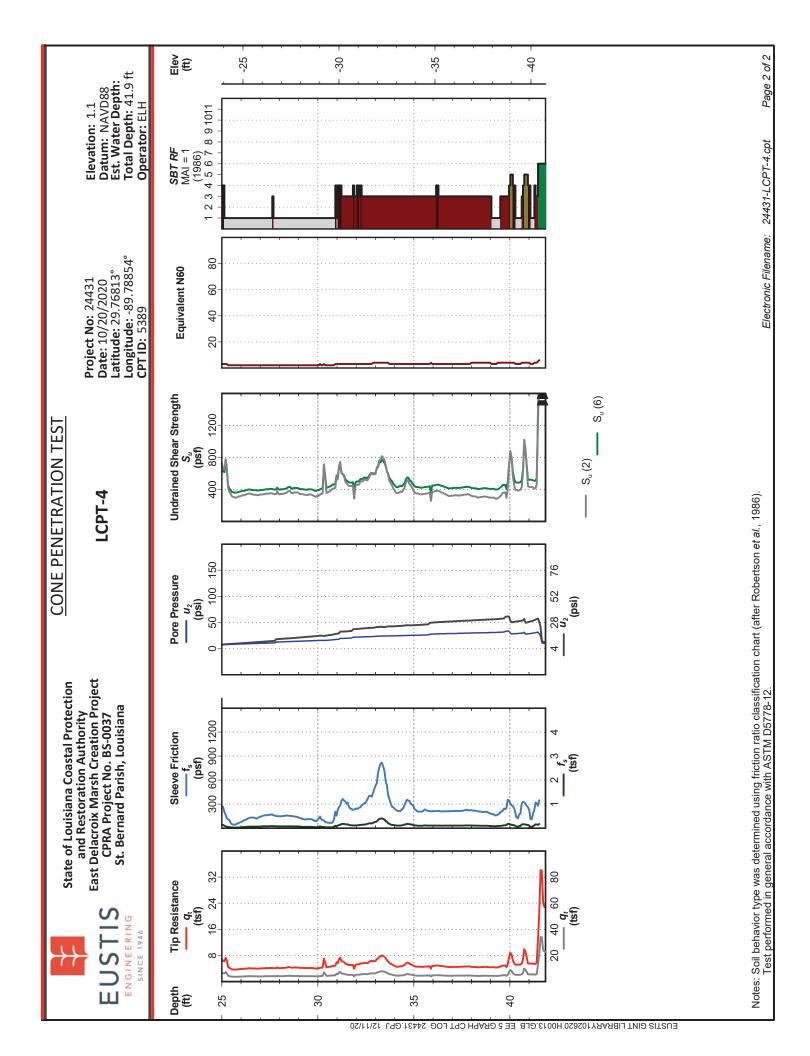


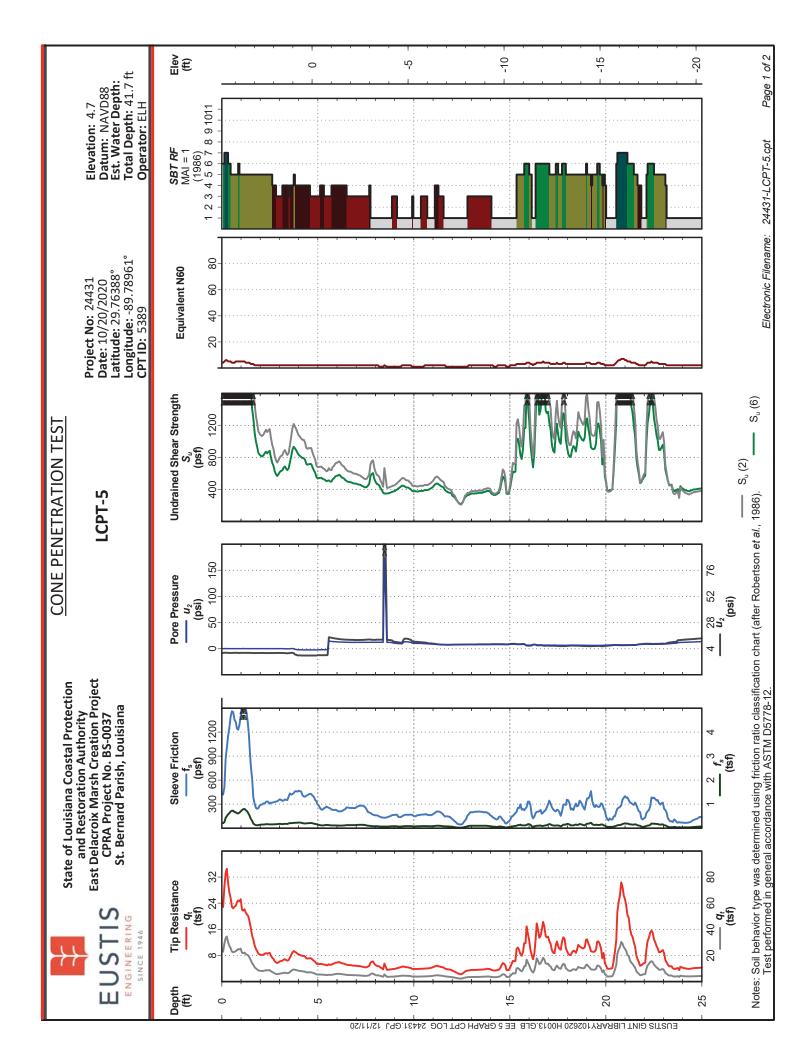



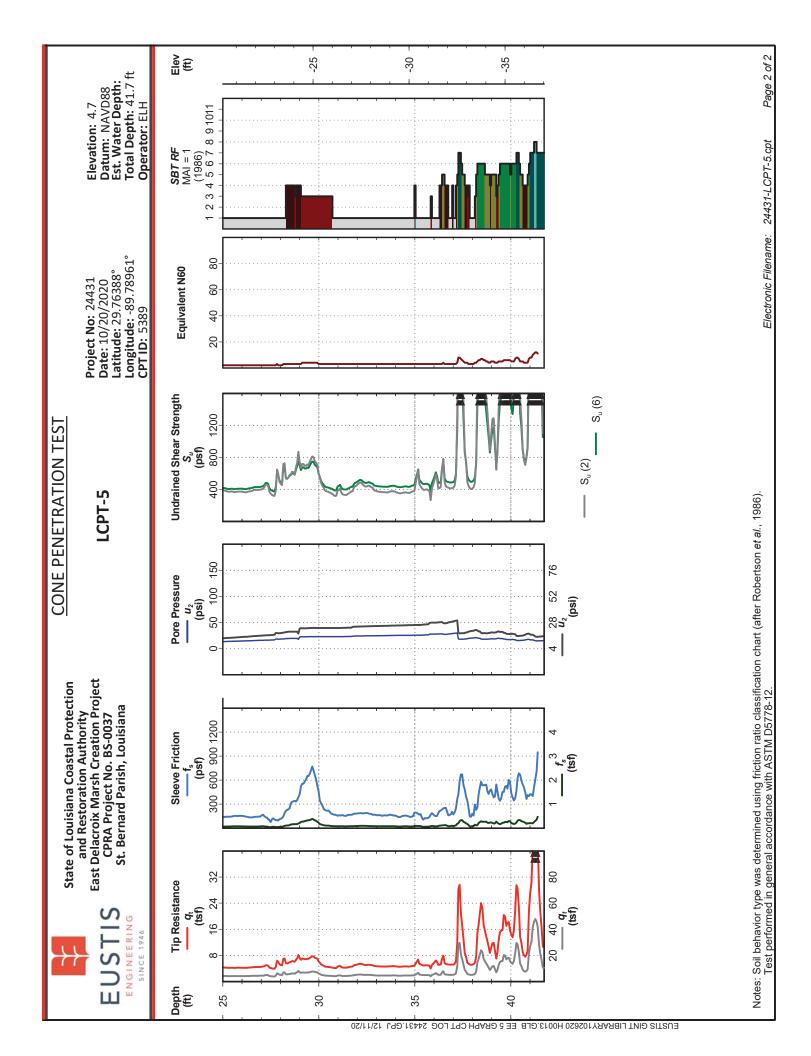



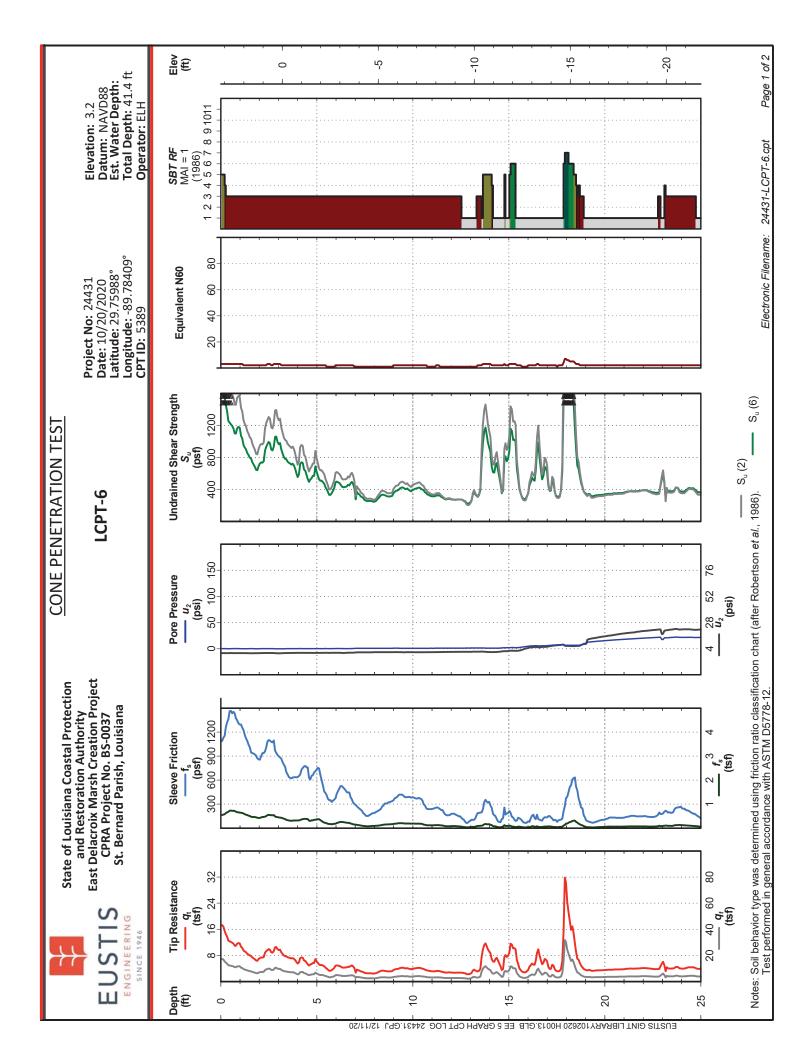



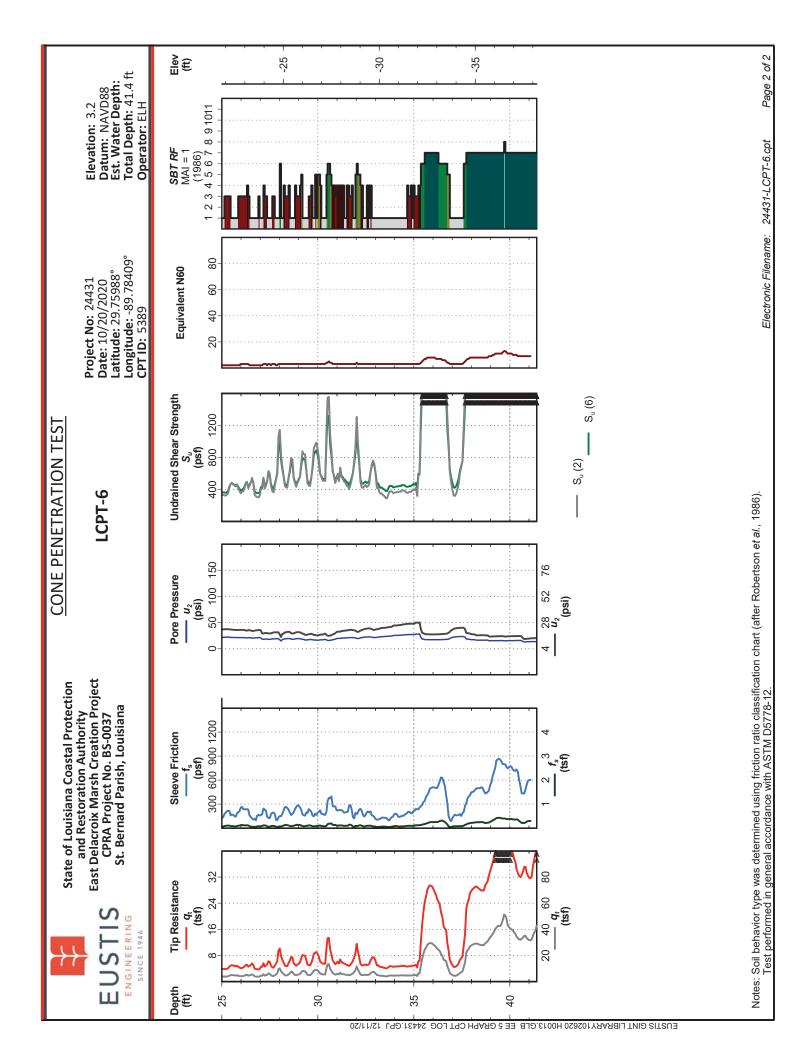














# **CPT Correlations**

References are in parenthesis next to the appropriate equation.

# **General**

 $\overline{p_a}$ =atmospheric pressure (for unit normalization) qt=corrected cone tip resistance (tsf) f_s=friction sleeve resistance (tsf)  $R_{f} = 100\% \cdot (f_{s}/q_{t})$ u₂=pore pressure behind cone tip (tsf) u₀=hydrostatic pressure

$$B_{q} = (u_{2}-u_{0})/(q_{t}-\sigma_{v_{0}})$$

$$Q_{t} = (q_{t}-\sigma_{v_{0}})/\sigma'_{v_{0}}$$

$$F_{r} = 100\% \cdot f_{s}/(q_{t}-\sigma_{v_{0}})$$

$$I_{c} = ((3.47-logQ_{t})^{2} + (logF_{r}+1.22)^{2})^{0.5}$$

$$I_{SBT} = ((3.47-log(q_{c}/p_{a}))^{2} + (logF_{r}+1.22)^{2})^{0.5}$$

$$I_{c J\&D} = \sqrt{\left\{3 - \log\left(Q_t \cdot (1 - B_q)\right\}^2 + [1.5 + 1.3 \cdot \log\left(F_r\right)]^2\right\}}$$
 27

$$I_{c J\&B} = \sqrt{\left\{3 - \log\left(Q_t \cdot \left(1 - B_q\right) + 1\right\}^2 + \left[1.5 + 1.3 \cdot \log\left(F_r\right)\right]^2\right\}}$$
 28

 $\label{eq:Komplexity} \begin{array}{ll} \underline{\textbf{K}_{o}} \\ \overline{\textbf{K}_{0}} \left(1\right) & \textbf{K}_{o} = (1\text{-sin}\phi)\text{OCR}^{\text{sin}\phi} \\ \overline{\textbf{K}_{0}} \left(2\right) & \textbf{K}_{o} = 0.1(\textbf{Q}_{t}) \end{array}$ 

# **Stress History**

OCR = $\sigma_p / \sigma'_v$	0	
OCR (1)	$\sigma_{\rm p}$ = 0.33(q _t – $\sigma_{\rm vo}$ ) - clays	8
OCR (2)	$\sigma_{\rm p}$ = 0.53(u ₂ - u _o ) - clays	9
OCR (3)	$\sigma_{p}' = 0.60(q_{t} - u_{2}) - clays$	9
OCR (4)	OCR = $0.25 Q_t^{1.25}$ – clays	37
	$OCD = \begin{bmatrix} 0.192*(q_t/p_a)^{0.22} & \frac{1}{\sin(0^{t}-0.27)} \end{bmatrix}$	25
OCR (5)	OCR = $\left[\frac{0.192*(q_t/p_a)^{0.22}}{(1-\sin(\phi')\cdot(\sigma'_{\nu_0}/p_a^{-0.31}))}\right]^{\sin(\phi'-0.27)}$ - sands	35
OCR (6)	$\sigma_{p'} = .101 \cdot p_a^{0.102} \cdot G_{max}^{0.478} \cdot \sigma_{v0}^{\prime 0.420} - \text{all soils}$	36

# N-Value

 $\overline{N_{60}} = (q_t/p_a)/[8.5(1-l_c/4.6)]$ 

6

2 23

1

# Undrained Shear Strength

S _u (1)	$S_u = (u_2 - u_o)/N_u$	where $7 \le N_u \le 9$	10
S _u (2)	$S_u = (q_t - \sigma_{vo})/N_{kT}$	where $15 \le N_{kT} \le 20$	11
S _u (3)	$S_u = 0.091 * ((\sigma'_{vo}^{0.2}) * (q_t - \sigma_{vo})^{0.8}$		21
S _u (4)	$S_u = (q_c - \sigma_{vo})/N_k$	where $15 \le N_k \le 20$	11
S _u (5)	$S_u = q_t / N_c$	where XXX $\leq N_c \leq YYY$	
S _u (6)	$S_u = q_c/N_c$	where XXX $\leq N_c \leq YYY$	

# **Effective Cohesion**

c' = 0.02 * σ _p Drained Fric		38
φ´(1)	$\phi' = 17.6 + 11.0 \text{Log}[q_t/(\sigma_{vo}')^{0.5}]$ $\phi' = \arctan[0.1 + 0.38 \text{Log}(q_t/\sigma_{vo}')]$	1 13
	$\varphi' = 30.8 \text{Log}[(f_s/\sigma_{vo}')+1.26]$ (for clays or sands)	13
φ (3) φ΄ (4)	$\phi' = 29.5 B_0^{-0.121} (0.256 + 0.33 B_a + Log(Q_t))$	24
Ψ (-)	$\psi = 23.0 \text{ D}_{q} = (0.200 \pm 0.00 \text{ D}_{q} \pm 209(\text{Q}_{t}))$	<b>2</b> -7
Unit Weight		
$\rho = \gamma/\gamma_w$		
$\rho = 0.8 \text{Log}(V$	/ _s ) V _s in m/sec	17
	nsity and Void Ratio	
D _R (1)	$D_R = 100(q_{c1}/305)^{1/2}$ where, $q_{c1} = q_{c1}$	c/(σ _{vo} ′) ^{1/2}
D _R (1) D _R (2)	$ \begin{array}{l} D_{\rm R} = 100(q_{\rm c1}/305)^{1/2} & \text{where, } q_{\rm c1} = q_{\rm c1} \\ D_{\rm R} = -1.292 + 0.268 ln(q_{\rm c} \cdot (\sigma_{\rm vo}{'}^{-0.5})) \end{array} $	18
D _R (1) D _R (2) D _R (3)	$ \begin{array}{l} D_{R} = 100(q_{c1}/305)^{1/2} & \text{where, } q_{c1} = q_{c1} \\ D_{R} = -1.292 + 0.268 ln(q_{c} \cdot (\sigma_{vo}'^{-0.5})) \\ D_{R} = (1/2.41) \cdot ln(q_{c1}/15.7) \end{array} $	
D _R (1) D _R (2) D _R (3)	$ \begin{array}{l} D_{\rm R} = 100(q_{\rm c1}/305)^{1/2} & \text{where, } q_{\rm c1} = q_{\rm c1} \\ D_{\rm R} = -1.292 + 0.268 ln(q_{\rm c} \cdot (\sigma_{\rm vo}{'}^{-0.5})) \end{array} $	18
D _R (1) D _R (2) D _R (3)	$ \begin{array}{l} D_{R} = 100(q_{c1}/305)^{1/2} & \text{where, } q_{c1} = q_{c1} \\ D_{R} = -1.292 + 0.268 ln(q_{c} \cdot (\sigma_{vo}'^{-0.5})) \\ D_{R} = (1/2.41) \cdot ln(q_{c1}/15.7) \end{array} $	18 3
D _R (1) D _R (2) D _R (3) D _R (4) D _R (5)	$\begin{array}{l} D_{\text{R}} = 100(q_{\text{c1}}/305)^{1/2} & \text{where, } q_{\text{c1}} = q_{\text{c1}}\\ D_{\text{R}} = -1.292 + 0.268 \text{ln}(q_{\text{c}} \cdot (\sigma_{\text{vo}}'^{-0.5}))\\ D_{\text{R}} = (1/2.41) \cdot \text{ln}(q_{\text{c1}}/15.7)\\ D_{\text{R}} = 1/2.91 * \text{ln}((q_{\text{c}}/(61*\ \sigma'_{\text{vo}}^{0.71}))*100\\ D_{\text{R}} = 100^{*}(0.268*\text{ln}((q_{\text{t}}/p_{\text{a}})/(\sigma'_{\text{vo}}/p_{\text{a}})^{\Lambda}0.5) - 0.675) \end{array}$	18 3 20
D _R (1) D _R (2) D _R (3) D _R (4)	$\begin{array}{l} D_{\text{R}} = 100(q_{\text{c1}}/305)^{1/2} & \text{where, } q_{\text{c1}} = q_{\text{c1}}\\ D_{\text{R}} = -1.292 + 0.268 \text{ln}(q_{\text{c}} \cdot (\sigma_{\text{vo}}'^{-0.5}))\\ D_{\text{R}} = (1/2.41) \cdot \text{ln}(q_{\text{c1}}/15.7)\\ D_{\text{R}} = 1/2.91 * \text{ln}((q_{\text{c}}/(61*\ \sigma'_{\text{vo}}^{0.71}))*100\\ D_{\text{R}} = 100^{*}(0.268*\text{ln}((q_{\text{t}}/p_{\text{a}})/(\sigma'_{\text{vo}}/p_{\text{a}})^{\Lambda}0.5) - 0.675) \end{array}$	18 3 20

1

 $\frac{\text{Compressibility}}{M(1) = R_m E_D \text{ where } R_m = \text{function}(I_D, K_D) \text{ see the following table}$ 22

I _D <= 0.6	$R_{M} = 0.14 + 2.36 \log K_{D}$
l _D >= 3	$R_{M} = 0.5 + 2 \log K_{D}$
0.6 < I _D < 3	$R_{M}$ = $R_{M,D}$ + (2.5 - $R_{M,D}$ )log $K_{D}$
	$R_{M,D} = 0.14 + 0.15(I_D - 0.6)$
K _D > 10	$R_{M} = 0.32 + 2.18 \log K_{D}$
R _M < 0.85	R _M = 0.85

M (2)
 M = 
$$q_c \cdot 10^{(1.09-0.0075D} R^{\circ}$$
 sands
 1

 M (3)
 M =  $8.25 (q_t - \sigma_{vo})$ 
 clays
 1

 M (4)
 M =  $\alpha \cdot G_{max}$  where  $0.02 < \alpha < 2$  and  $G_{max}$  is from Vs
 33

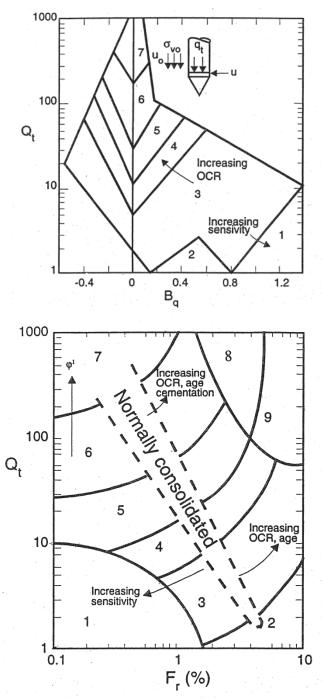
# **Rigidity Index**

$$I_R = exp\left[\left(\frac{1.5}{M} + 2.925\right) \cdot \left(\frac{q_t - \sigma_{vo}}{q_t - u_2}\right) - 2.925\right] \text{ where } M = 6\sin\phi' / (3 - \sin\phi') \quad 39$$

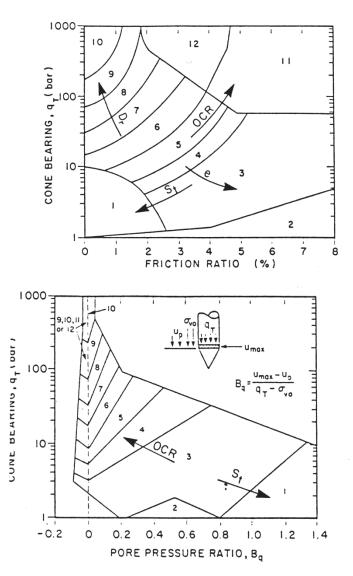
# **Sensitivity**

S _t (1)	$S_{t} = 7.5/R_{f}$	2
S _t (2)	$S_t = (q_t - \sigma_{vo})/(15 \cdot f_s)$	2

<u>Fines Content</u> FC =  $[(3.58-log(q_t))^2+(1.43+log(R_f))^2]^{1.8}$ FC =  $[5.31(I_{cfs})^{2.31}]+9.61$ , where  $I_{cfs} = [(1.95-LogQ_t)^2+(logF_r+1.78)^2]^{0.5}$ 4


# Shear Wave Velocity

Hydraulic Conductivity		
$V_s(3) = (10.1 \cdot \log q_t - 11.4)^{1.67}$ $V_s(4) = 118.8 \cdot \log f_s + 18.5$ $G_{max} = \rho V_s^2$	$\cdot (rac{f_s}{q_t} \cdot 100)^{0.3}$ (all soils) – m/s and kPa 31 (all soils) – m/s and kPa	32
$V_s(2) = 1.75 \cdot q_t^{0.627}$	(clays) - m/s and kPa	30
$V_{s}(1) = 277 \cdot q_{t}^{0.13} \cdot \sigma_{vo}^{\prime 0.27}$	(sands) - m/s and MPa	29


<u>Hydraulic Conductivity</u> Lookup based on SBT and SBTn (1986 and 1990)

40





# Non-Normalized Soil Behavior Types – Robertson & Campanella (1986)



# References

- 1. Kulhawy, F. H., and Mayne, P. W., (1990), "Manual for estimating soil properties for foundation design.", *Report EL-6800,* EPRI, Palo Alto, CA.
- 2. Lunne, T., Robertson, P.K., and Powell, J.J.M. (1997) Cone Penetration Testing in Geotechnical Practice
- Baldi, G, Bellotti, R., Ghionna, V., Jamiolkowski, M. and Pasqualini, E. (1986), Interpretation of CPTs and CPTUs; 2nd part: drained penetration of sands, Proceedings of the 4th International Geotechnical Seminar, Singapore.
- 4. Syms, Frank (2001), Savannah River Site Bechtel Corporation, CPTU Fines Content Determination, Calculation No. K-CIC-G-00065 Revision 0.
- 5. Marchetti, S. (1980), "In-situ tests by flat dilatometer.", *Journal of Geotechnical Engineering*, Vol. 107, GT3
- 6. Jefferies, M. G. and Davies, M. P., (1993), "Use of CPTu to estimate equivalent SPT N₆₀", *ASTM Geotechnical Testing Journal*, Vol. 16, No. 4
- Robertson, P. K., Campanella, R. G., Gillespie, D. and Grieg, J. (1986), "Use of piezometers cone data". *Proceedings of the ASCE Specialty Conference In Situ '86: Use of In Situ Tests in Geotechnical Engineering*, Blacksburg, VA
- 8. Mayne, P. W., (1995), "Profiling yield stresses in clays by in situ tests.", *Transportation Research Record No. 1479: Engineering Properties and Practice in Overconsolidated Clays*. National Academy Press, Washington, D.C.
- 9. Chen, B. S. Y., and Mayne, P. W., (1996), "Statistical relationships between piezocone measurements and stress history of clays", *Canadian Geotechnical Journal*, Vol. 33, No. 3
- 10. Mayne, P. W. and Holtz, R. D., (1988), "Profiling stress history from piezocone soundings.", *Soils and Foundations*. Vol 28, No. 1
- 11. Aas, G., Lacasse, S., Lunne, T. and Höeg, K. (1986), "Use of in situ tests for foundation design on clay", *Proceedings of the ASCE Specialty Conference In Situ '86: Use of In Situ Tests in Geotechnical Engineering*, Blacksburg, VA
- Schmertmann, J. H., (1988) Guidelines for Using the CPT, CPTu, and Marchetti DMT for Geotechnical Design: Volume III – DMT Test Methods and Data Reduction. FHWA-PA-87-024+84-24
- 13. Robertson, P. K., and Campanella, R. G., (1983), "Interpretation of cone penetrometer test: Part I: Sand". *Canadian Geotechnical Journal*, 20(4)
- 14. Masood & Mitchell (1993)
- 15. Robertson, P. K., and Campanella, R. G., (1991), "Use and interpretation of research Dilatometer". *Canadian Geotechnical Journal*, 28(1)
- 16. Marchetti, S. (1997), "The flat Dilatometer design applications", Third Geotechnical Engineering Conference, Cairo University
- 17. Mayne (1999) Course Notes
- 18. Jamiolkowski et al (1985)
- 19. Reyna & Chameau (1991)
- 20. Lunne & Christofferson (1983)

21. Wright, S. G, and Duncan, J. M. (2006), Notes for the Short Course "Shear Strength & Slope Stability"

22. Mayne, P.W. "Equivalent CPT Method for Calculating Shallow Foundation Settlements in the Piedmont Residual Soils Based on the DMT Constrained Modulus Approach." http://geosystems.ce.gatech.edu/Faculty/Mayne/papers/

23. Robertson, P.K. (2010) "Soil behavior type from the CPT: an update" 2nd International Symposium on Cone Penetration Testing, Huntington Beach California

24. Mayne, P.W. and Campanella, R.G., "Versatile Site Characterization by Seismic Piezocone," *Proceedings, 16th International Conference on Soil Mechanics and Geotechnical Engineering*, Vol. 2 (Osaka), Millpress, Rotterdam, The Netherlands, 2005, pp. 721–724.

25. Zhang Z. and Tumay, M. (1999) "Statistical to Fuzzy Approach Toward CPT Classification" *Journal of Geotechnical Engineering*, Vol. 125, No 3

26. Schneider et al. (2008) "Analysis of Factors Influencing Soil Classification Using Normalized Piezocone Tip Resistance and Pore Pressure Parameters" *Journal of Geotechnical Engineering*, November 2008

27. Jefferies, M.G. and M.P. Davies, "Use of CPTu to Estimate Equivalent SPT N60," *Geotechnical Testing Journal*, Vol. 16, No. 4, Dec. 1993, pp. 458–468.

28. Jefferies, M. and Been, K. 2006. *Soil Liquefaction: A Critical State Approach*, Taylor and Francis Group, London: 480 p.

29. Baldi, G., R. Bellotti, V.N. Ghionna, M. Jamiolkowski, and D.C.F. LoPresti, "Modulus of Sands from CPTs and DMTs," *Proceedings, 12th International Conference on Soil Mechanics and Foundation Engineering*, Vol. 1, Rio de Janeiro, Brazil, 1989, Balkema, Rotterdam, The Netherlands, pp. 165–170.

30. Mayne, P.W. and G.J. Rix, "Correlations Between Shear Wave Velocity and Cone Tip Resistance in Clays," *Soils & Foundations*, Vol. 35, No. 2, 1995, pp. 107–110.

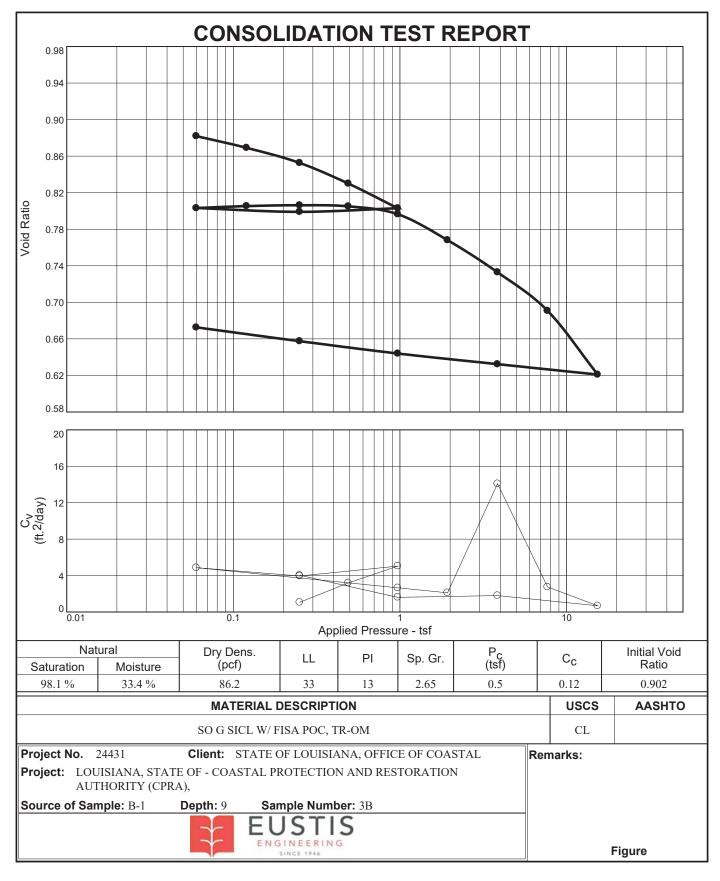
31. Hegazy, Y.A. and P.W. Mayne, "Statistical Correlations Between *Vs* and CPT Data for Different Soil Types," *Proceedings, Symposium on Cone Penetration Testing*, Vol. 2, Swedish Geotechnical Society, Linköping, Sweden, 1995, pp. 173–178.

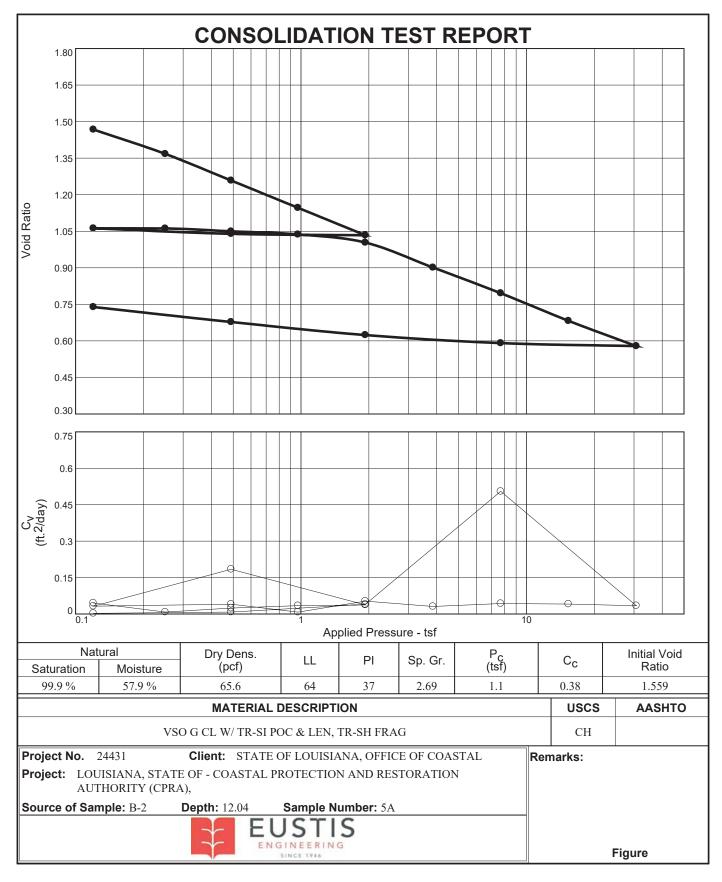
32. Mayne, P.W., "The 2nd James K. Mitchell Lecture: Undisturbed Sand Strength from Seismic Cone Tests," *Geomechanics and Geoengineering*, Vol. 1, No. 4, 2006, pp. 239–247.

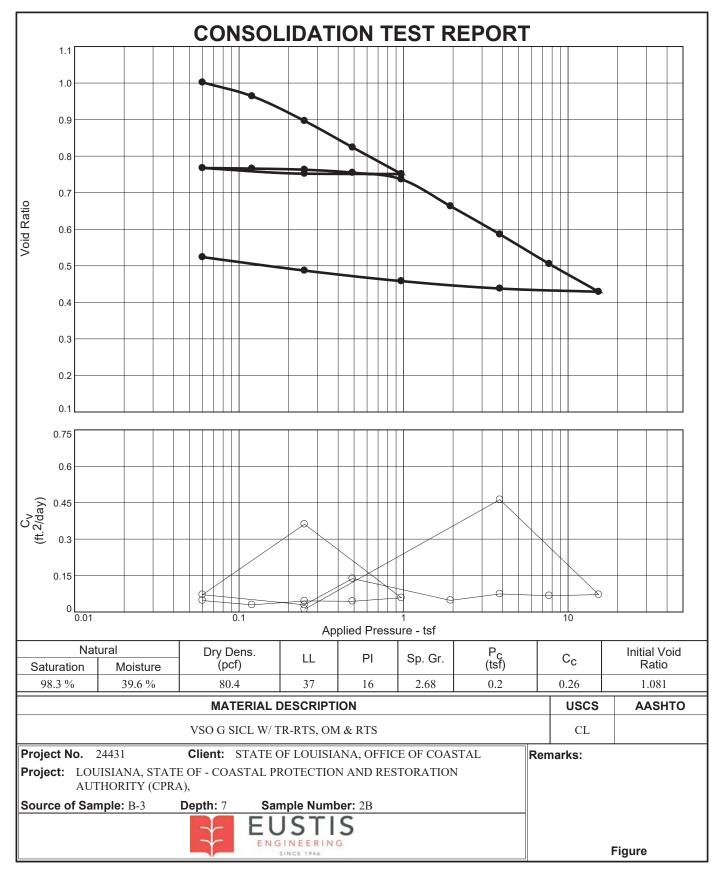
33. Burns, S.E. and P.W. Mayne, "Interpretation of Seismic Piezocone Results for the Evaluation of Hydraulic Conductivity in Clays," *Geotechnical Testing Journal*, Vol. 25, No. 3, 2002b, pp. 333–340.

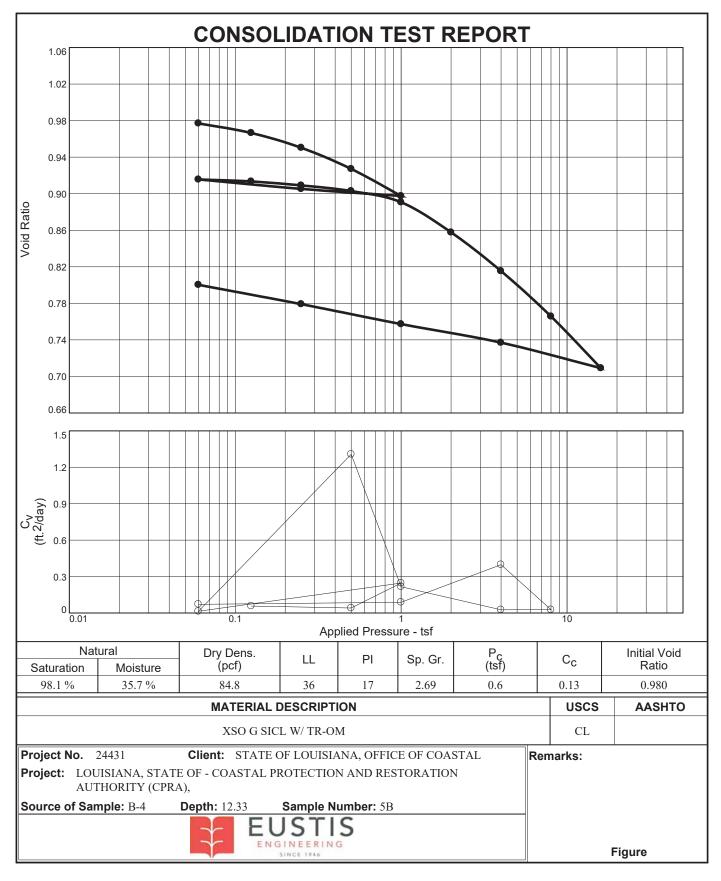
34. Jamiolkowski, M., D.C.F. LoPresti, and M. Manassero, "Evaluation of Relative Density and Shear Strength of Sands from Cone Penetration Test and Flat Dilatometer Test," *Soil Behavior and Soft Ground Construction* (GSP 119), American Society of Civil Engineers, Reston, Va., 2001, pp. 201–238.

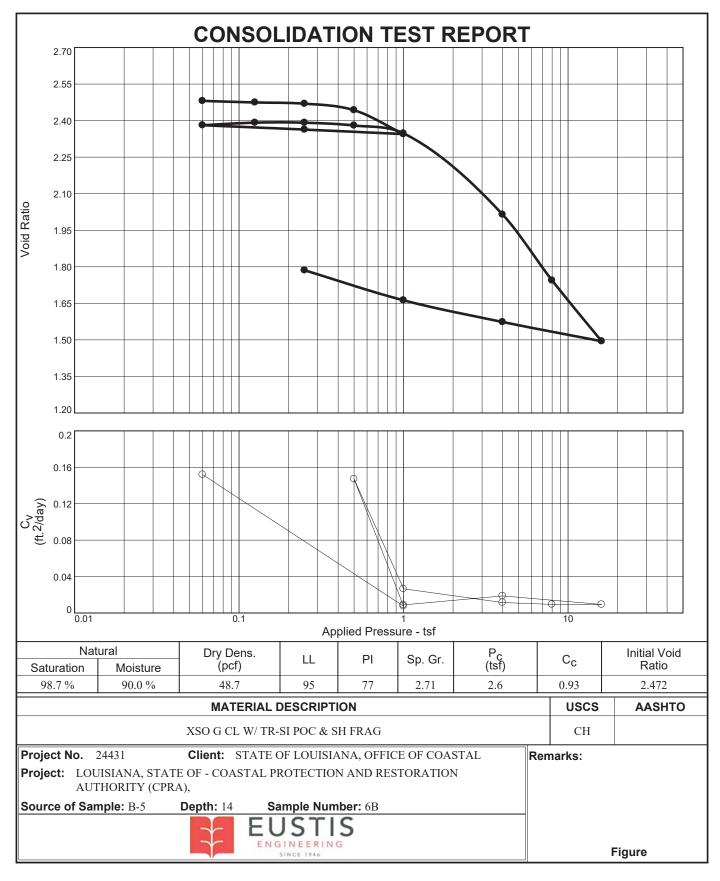
35. Mayne, P.W., "Integrated Ground Behavior: In-Situ and Lab Tests," *Deformation Characteristics of Geomaterials*, Vol. 2 (Proc. Lyon, France), Taylor & Francis, London, United Kingdom, 2005, pp. 155–177.

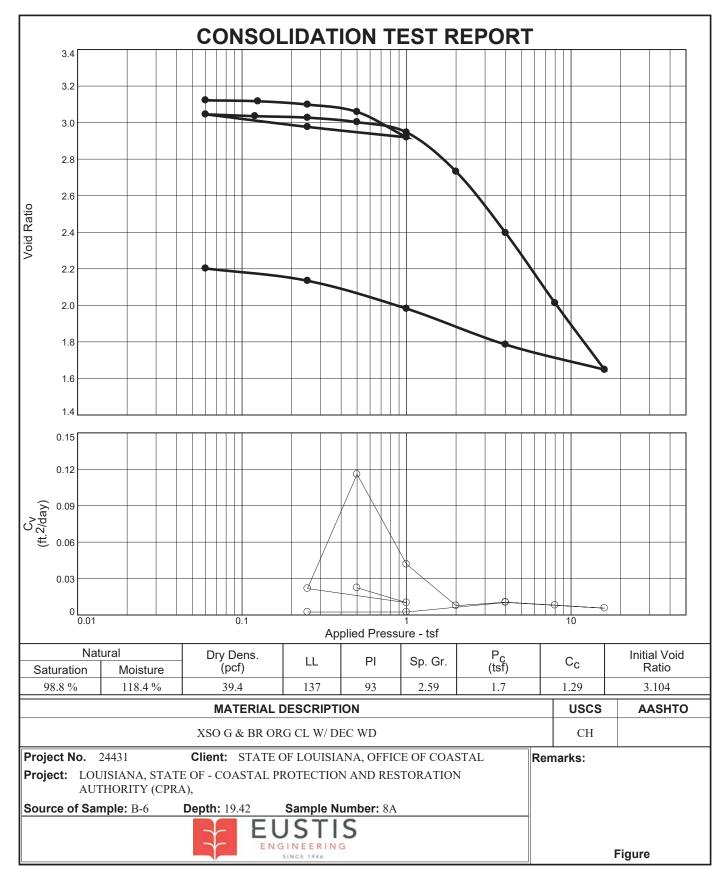

36. Mayne, P.W. and D.A. Brown, "Site Characterization of Piedmont Residuum of North America," *Characterization and Engineering Properties of Natural Soils*, Vol. 2, Swets and Zeitlinger, Lisse, The Netherlands, 2003, pp. 1323–1339.


37. Robertson, P.K. (2009) "Performance based earthquake deisng using the CPT", Keynote lecture, IS-Tokyo 38. Mayne, P.W. and H.E. Stewart, "Pore Pressure Response of *K*0 Consolidated Clays," *Journal of Geotechnical Engineering*, Vol. 114, No. 11, 1988, pp. 1340–1346.

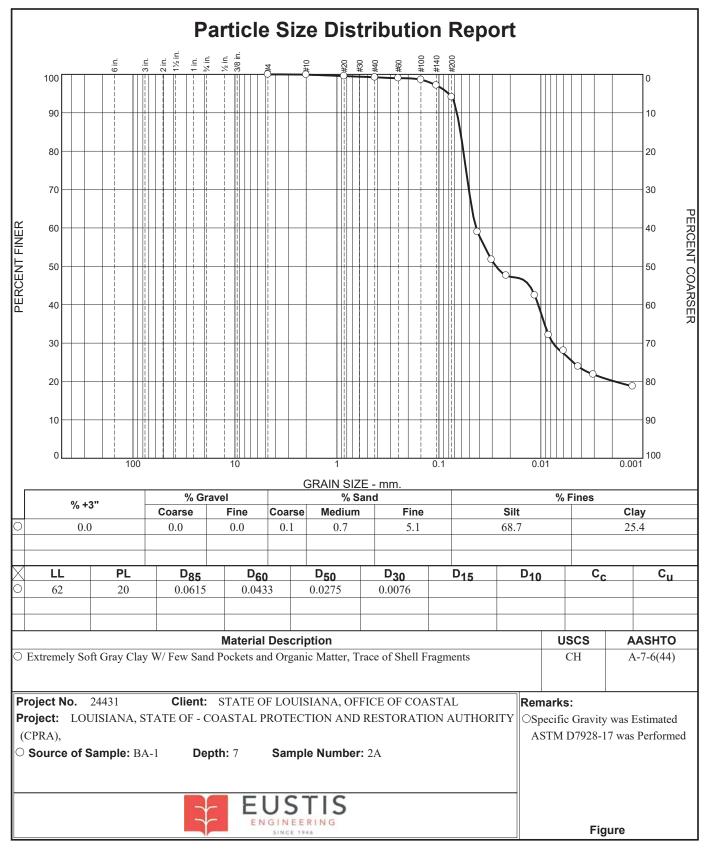

39. Mayne, P.W., "Stress-Strain-Strength-Flow Parameters from Enhanced In-Situ Tests," *Proceedings, International Conference on In-Situ Measurement of Soil Properties and Case Histories*, Bali, Indonesia, 2001, pp. 27–48.

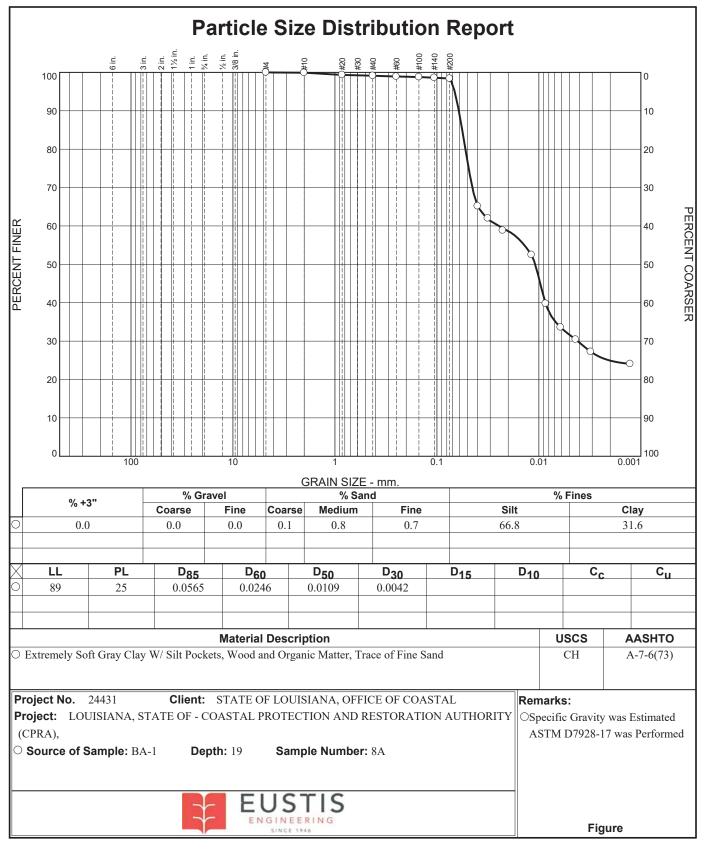

40. Robertson, P.K. and Cabal, K.L. "Guide to Cone Penetration Testing for Geotechnical Engineering" Gregg Drilling & Testing, Inc. 2009 pp 41-42.

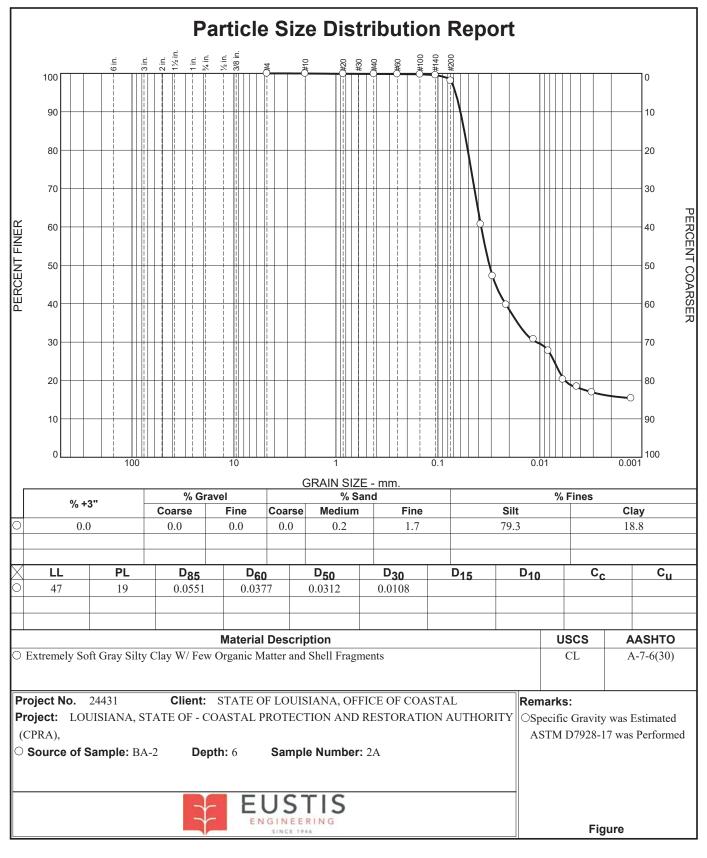

APPENDIX V CONSOLIDATION TEST RESULTS

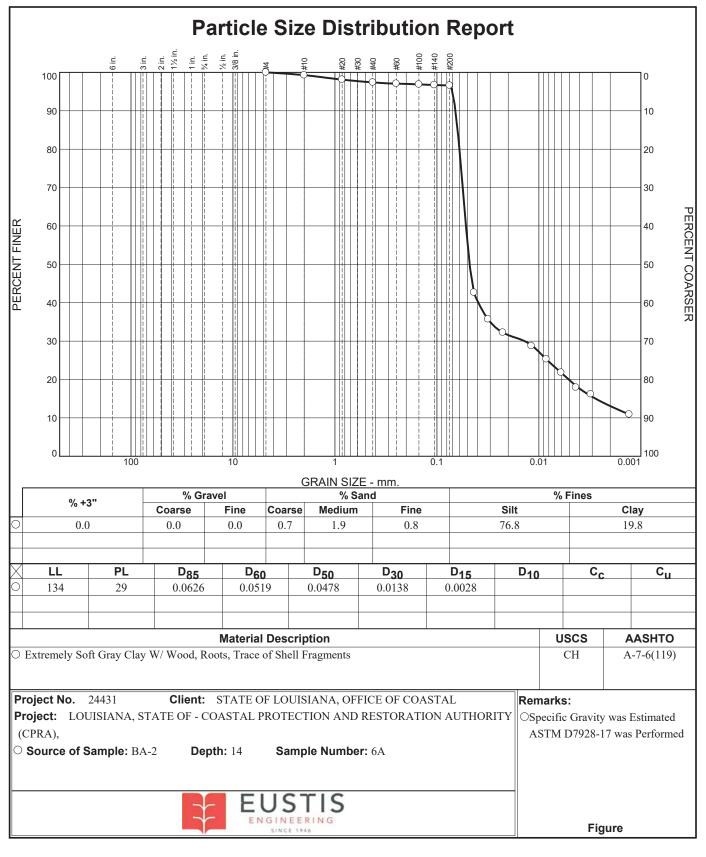


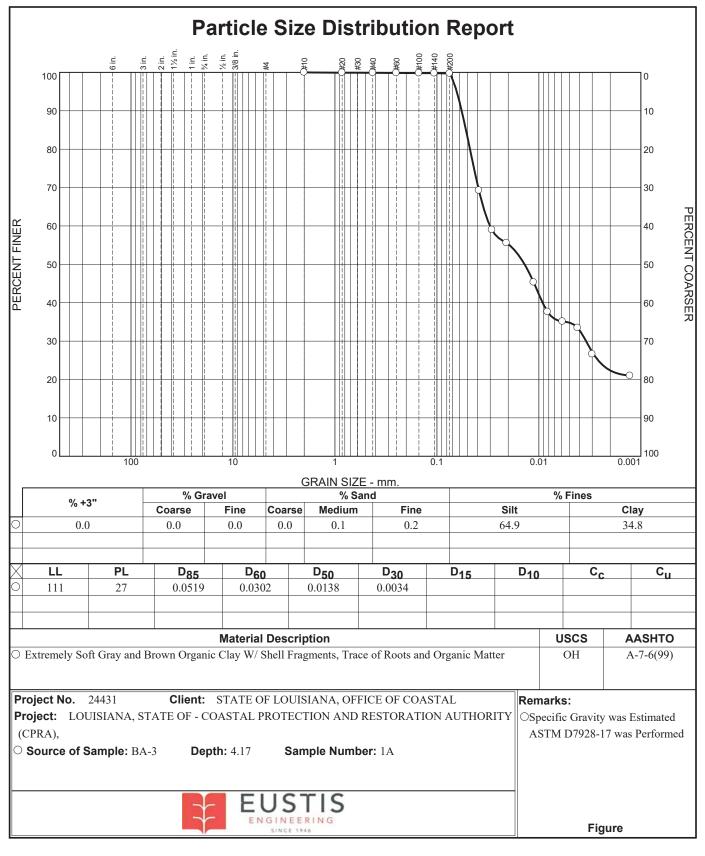


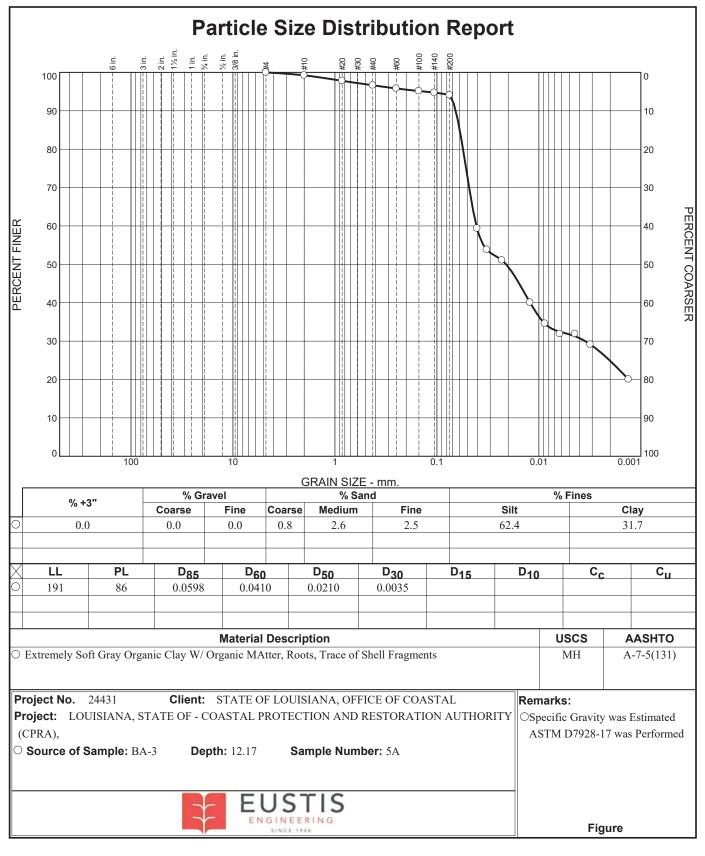



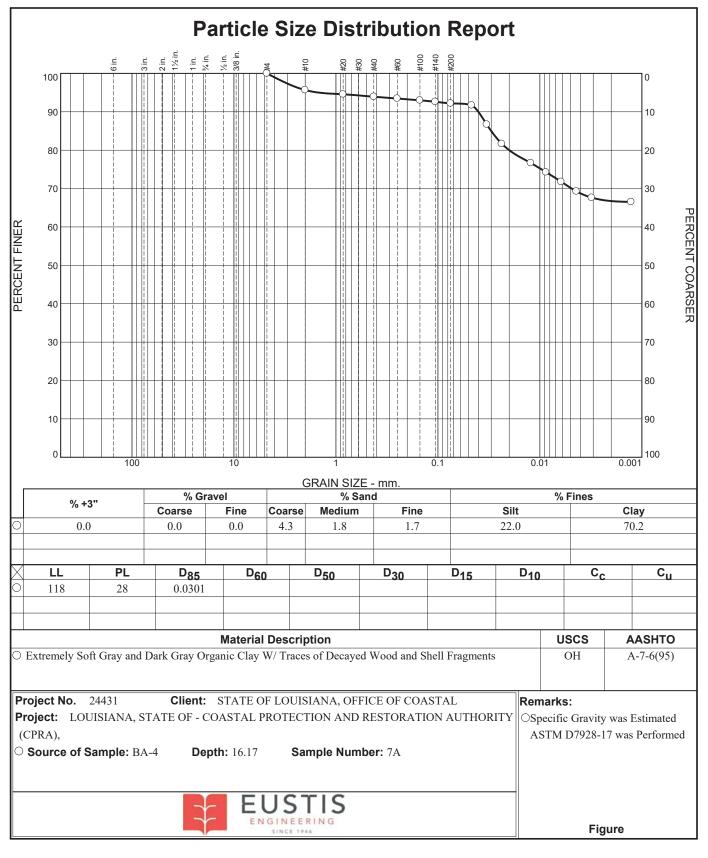



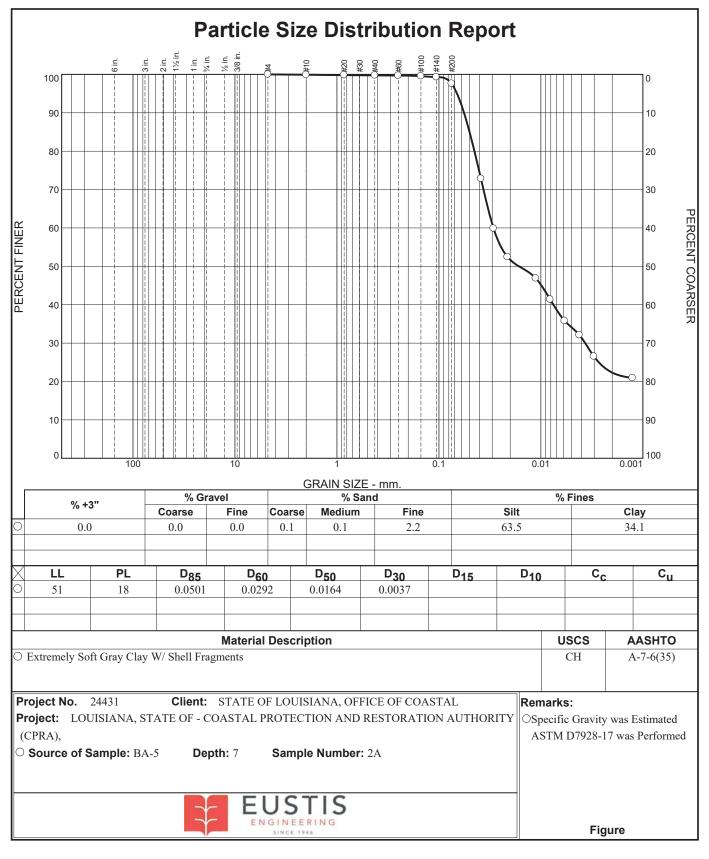



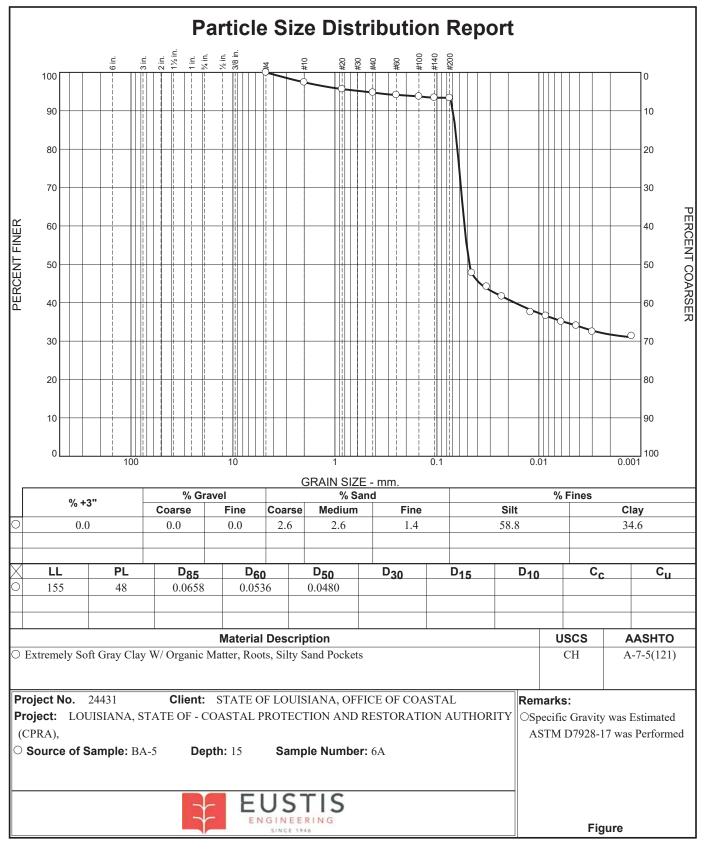


APPENDIX VI GRAIN SIZE TEST RESULTS

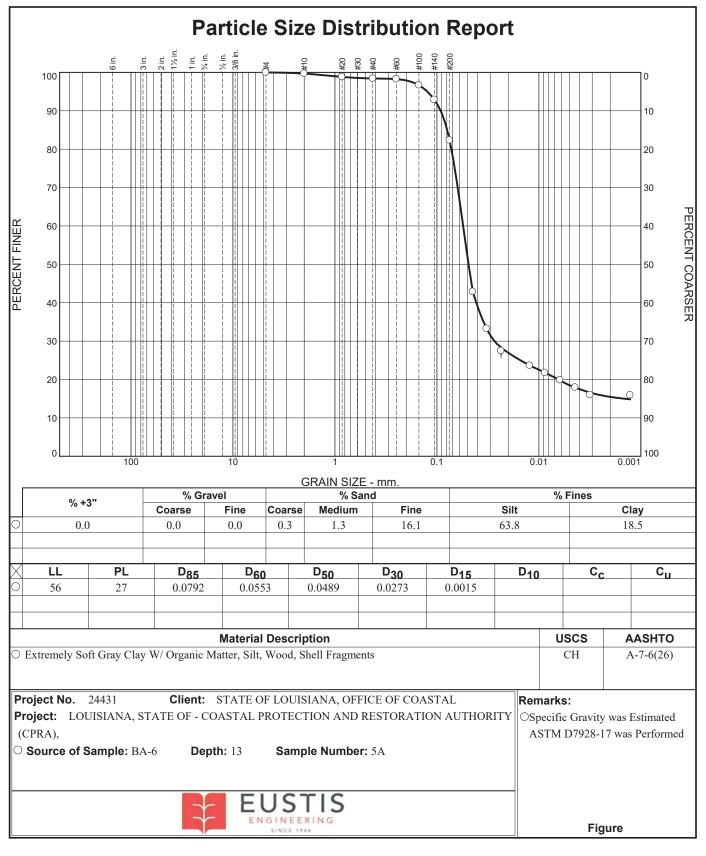


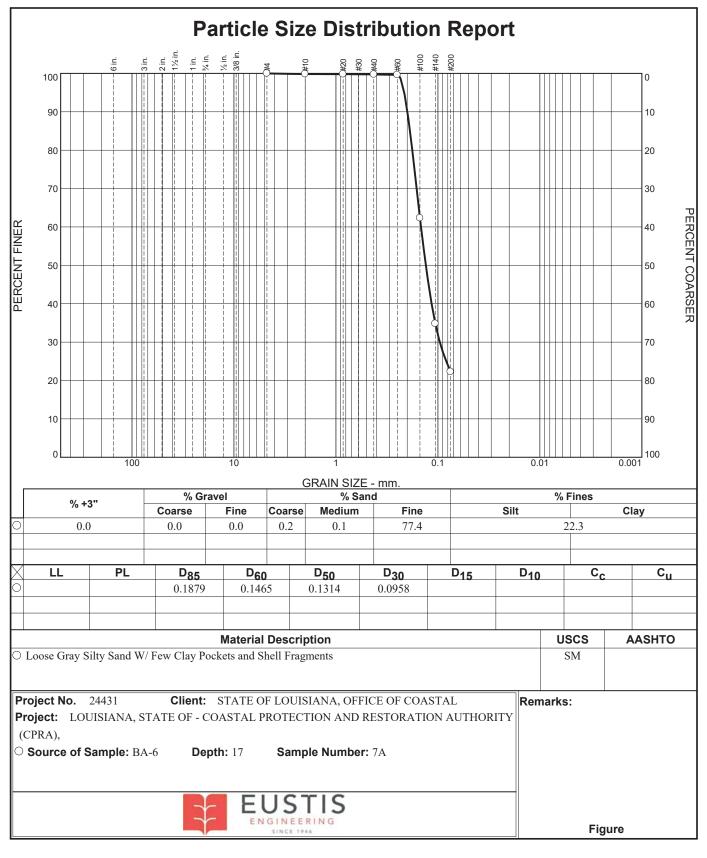



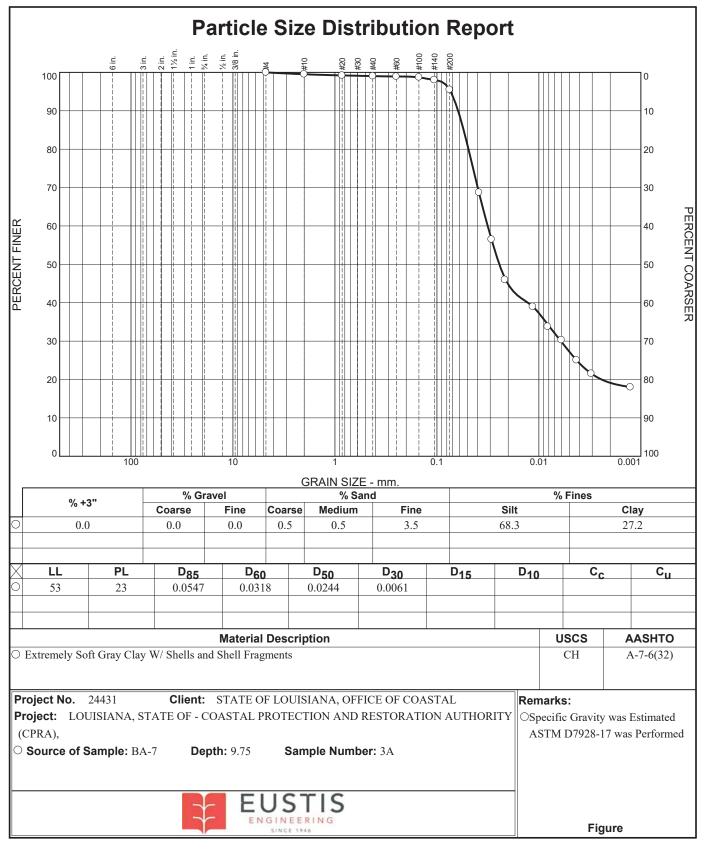


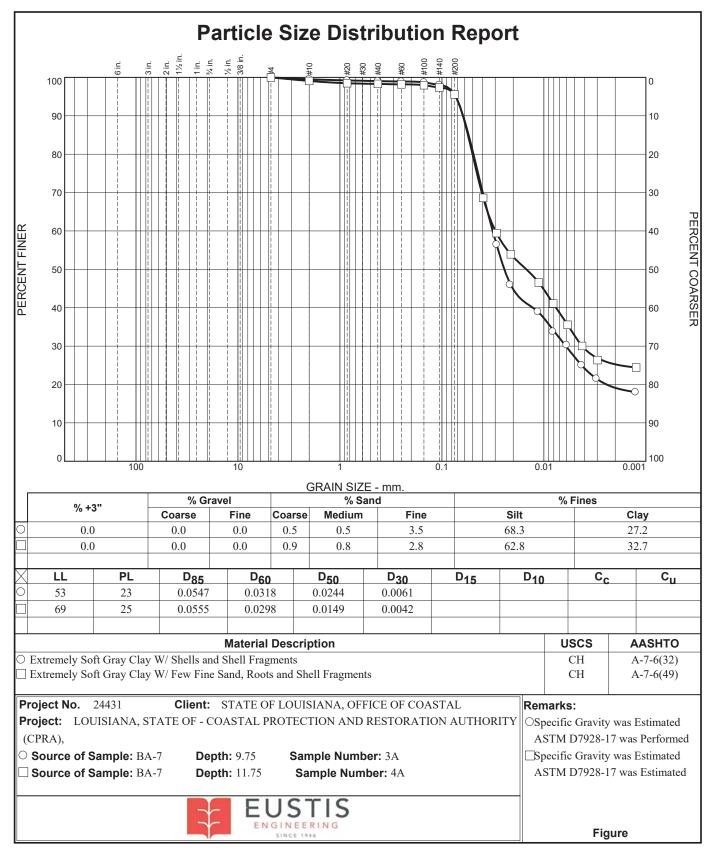



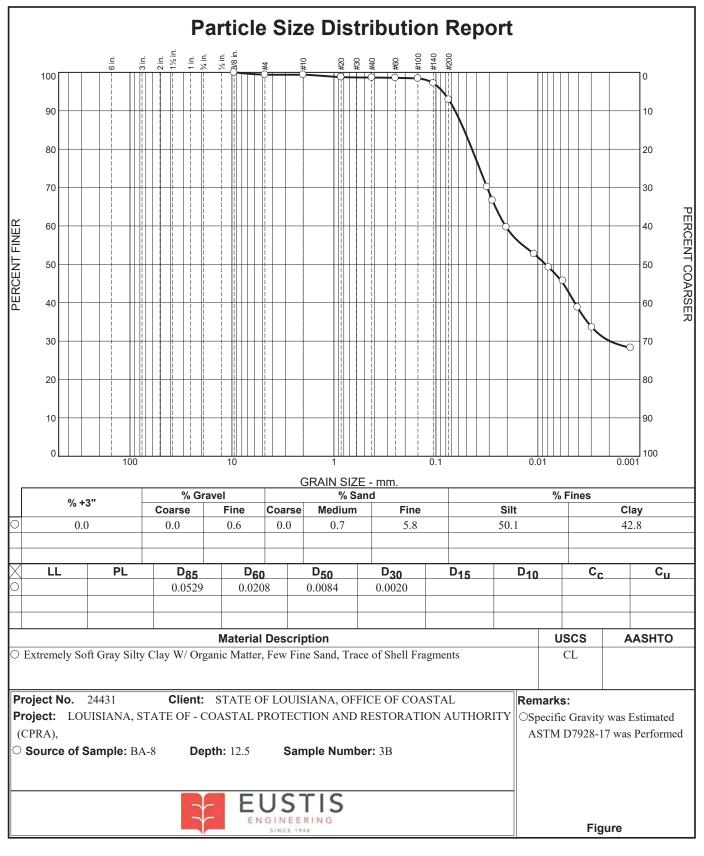



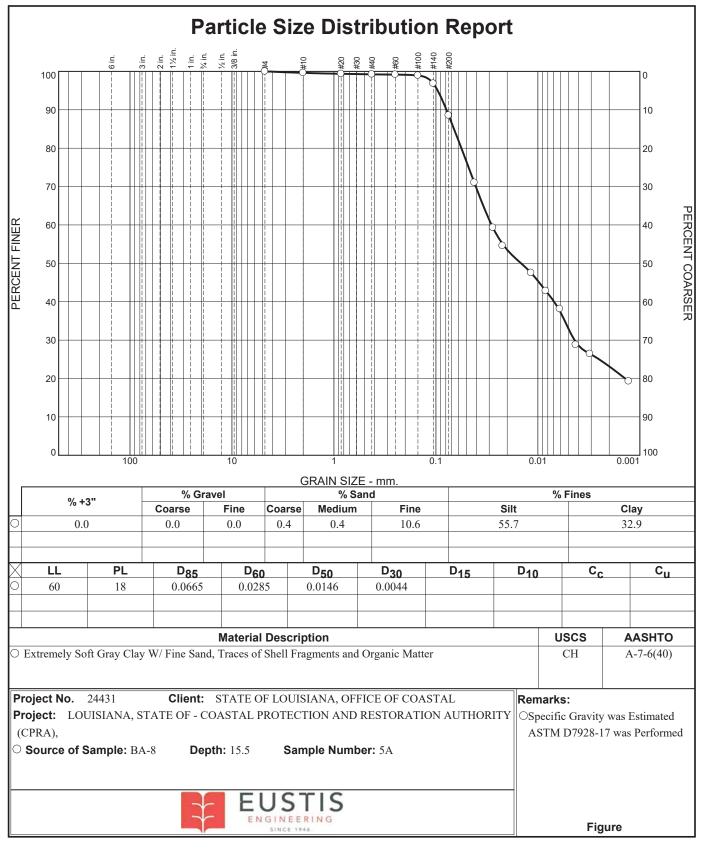



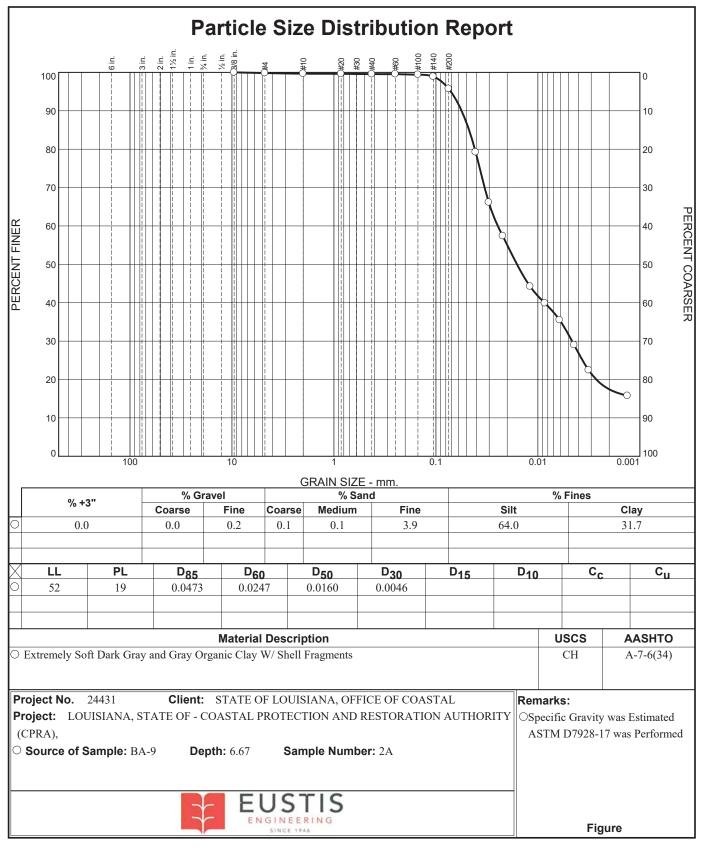



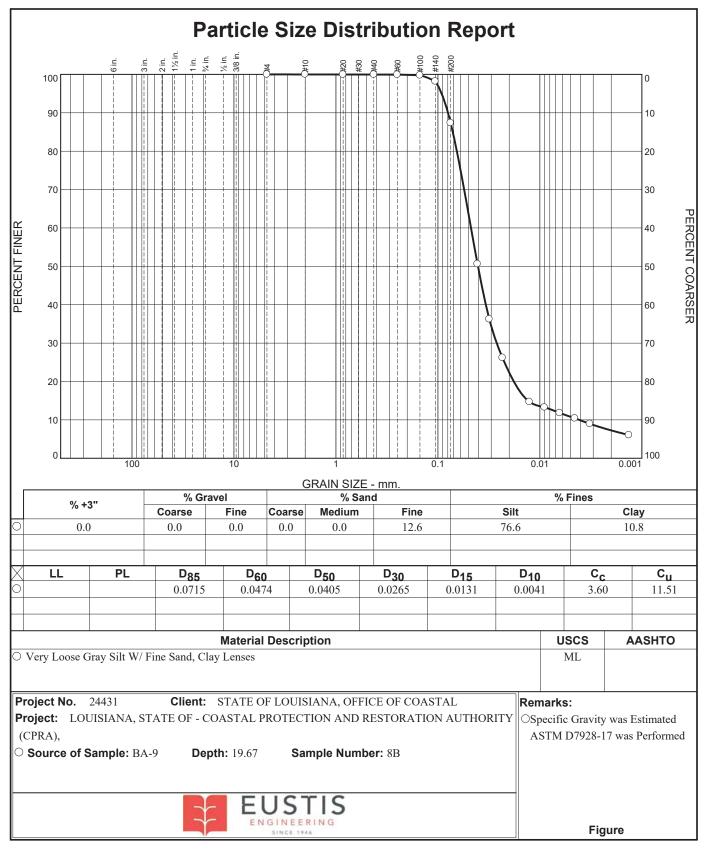



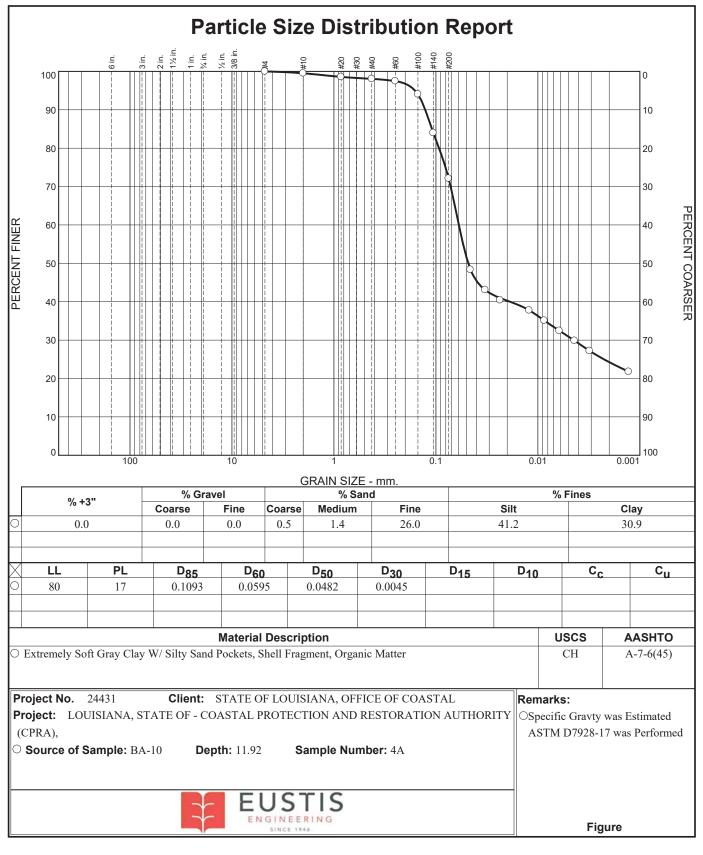



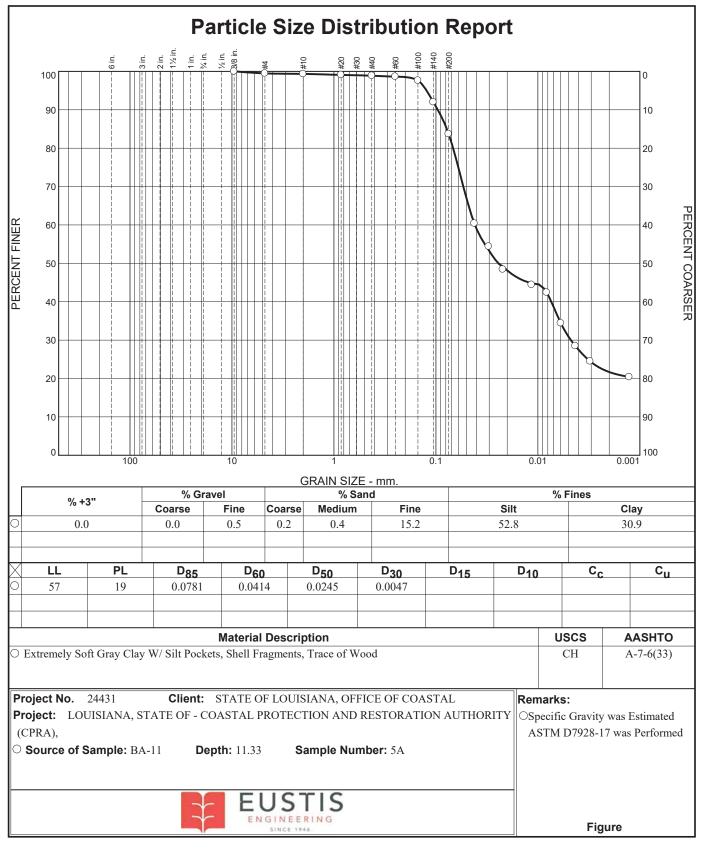



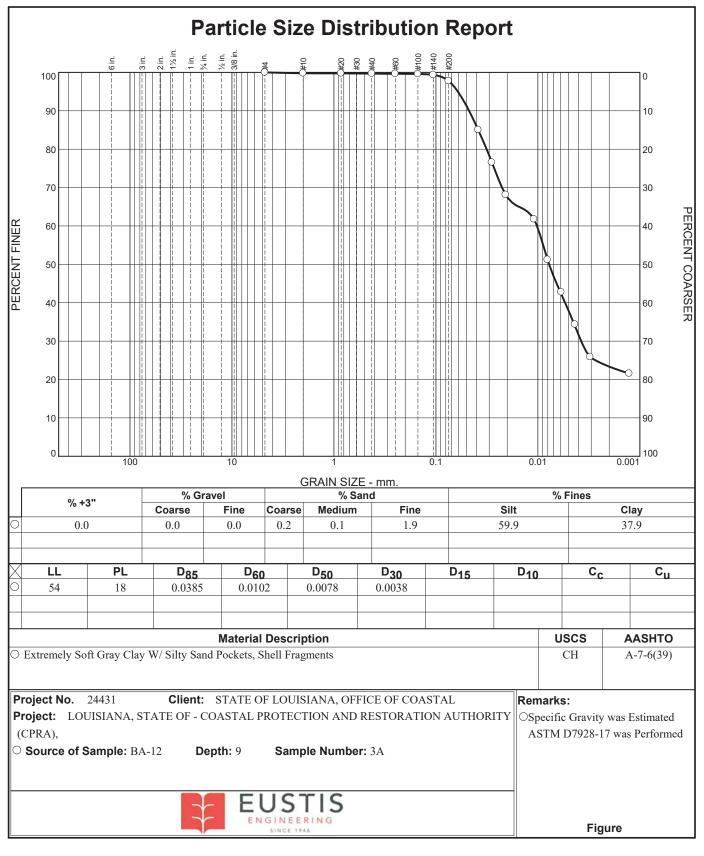














APPENDIX VII SETTLING COLUMN TEST RESULTS



#### ANALYTICAL RESULTS

Project: East Delacroix Pace Project No.: 20178218

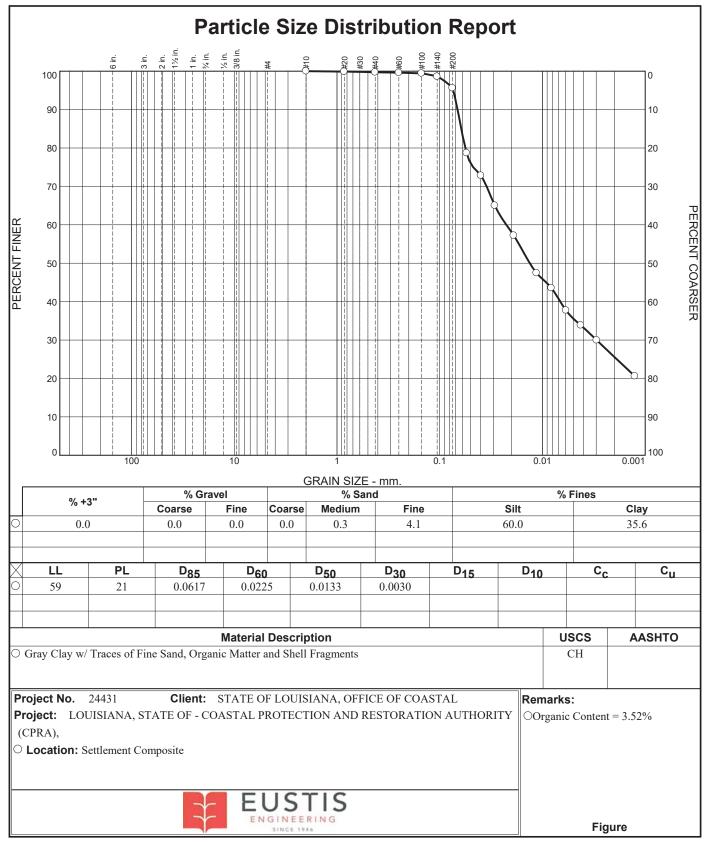
Sample: Water sample/ 24431	Lab ID: 201	78218001	Collected: 11/03/2	0 00:00	Received: 11	/03/20 15:38	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
Salinity by Conductivity	Analytical Method: SM 2520B Modified Pace Analytical Services - New Orleans							
Salinity	6100	mg/L	1.0	1		11/04/20 11:44	1	

**REPORT OF LABORATORY ANALYSIS** 



### **QUALITY CONTROL DATA**

Project:	East Delacroix						
Pace Project No.:	20178218						
QC Batch:	205941		Analysis M	ethod:	SM 2520B Mod	dified	
QC Batch Method:	SM 2520B Modif	ied	Analysis De	escription:	2520B Salinity	by Conductivity	/
			Laboratory	:	Pace Analytica	I Services - Ne	w Orleans
Associated Lab Sam	ples: 20178218	001					
METHOD BLANK:	963235		Matrix	k: Water			
Associated Lab Sam	ples: 20178218	001					
			Blank	Reporting			
Param	eter	Units	Result	Limit	Analyze	d Quali	fiers
Salinity		mg/L	NE	)	1.0 11/04/20 1	1:41	
LABORATORY CON	TRUL SAMPLE:	963236	Spike	LCS	LCS	% Rec	
Param	eter	Units	Conc.	Result	% Rec	Limits	Qualifiers
Salinity		mg/L	25000	24500	98	90-110	
SAMPLE DUPLICAT	E: 963237						
_			20178218001	Dup		Max	
Param	eter	Units	Result	Result	RPD	RPD	Qualifiers
Salinity		mg/L	6100	) 61	00	0	20


Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

#### **REPORT OF LABORATORY ANALYSIS**

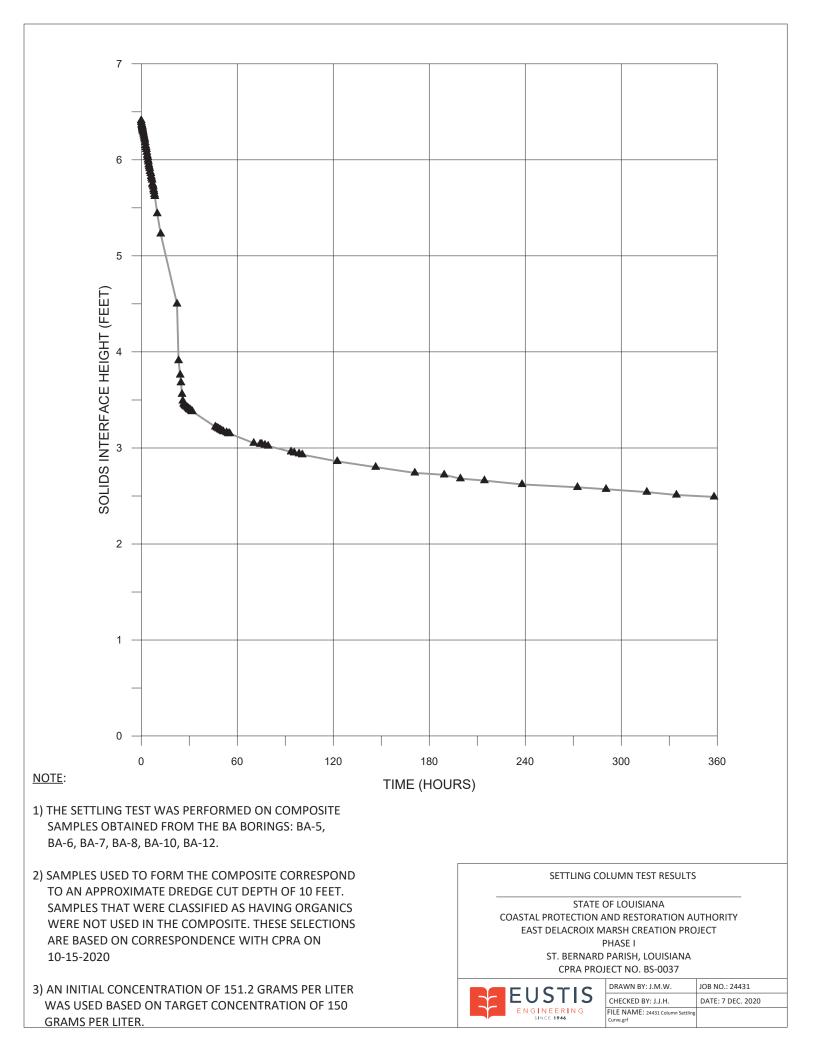
		G	RAIN SIZE	DISTRIBU	TION TE	ST DAT	Α		12/7/20
lient: STA	TE OF LOU	JISIANA, OFF	FICE OF COA	ASTAL PRO	TECTIO	N AND R	ESTORA	TION AUT	THORITY,
		E, LOUISIAN							,
		STATE OF - C							
		ROIX MARSH					ARISH, I	LOUISIAN	IA
		NO. 440001538	35. PROJECT	NO. BS-00.	37. TASK	. NO. 4			
-	nber: 24431								
	ettlement Co	Bray Clay w/ Ti	races of Fine	Sand Organ	ic Matter	and Shel	Fragment	°C	
iquid Limi					stic Limit		i i iaginein	.5	
•	sification: C	Ή							
esting Rer	narks: Orga	nic Content =	3.52%						
ested by:	BH			Che	cked by:	RR			
laterial sp	ecification:	24438							
				Sieve Test	Data				
ost #200 W	ash Test Wei	ights (grams): [	Dry Sample an Fare Wt. = 0.00						
			Minus #200 fro		9%				
Dry		Cumulative		Cumulative					
Sample and Tare	Tare	Pan Tare Weight	Sieve Opening	Weight Retained	Percent	t Perce	Low nt Spe		
(grams)	(grams)	(grams)	Size	(grams)	Finer	Retain		•	
50.75	0.00	0.00	#10	0.00	100.0	0.	0		
			#20	0.06	99.9	0.	1		
			#40	0.15	99.7	0.			
			#60	0.20	99.6	0.			
			#100 #140	0.30 0.71	99.4 98.6	0. 1.			
			#140 #200	2.23	98.0 95.6	4.			
				drometer Te					
lydrometer t	test uses ma	terial passing #	10		ot Dutu				
ercent pass	sing #10 base drometer sa	ed upon comple mple =50.75	te sample = 10	0.00					
	mperature c		d monicous h	aight) at 20 d	<b>c</b> = 6	06			
Automatic te			a meniscus n	eight) at 20 de	eg. c = -0.	00			
Automatic te Composite	rrection only	r = 0.9							
Automatic te Composite Meniscus co Specific grav	rrection only vity of solids								
Automatic te Composite Ieniscus co Specific grav Iydrometer	rrection only vity of solids type = 152H		L = 16.294964	- 0.164 <b>x Rm</b>					
Automatic te Composite Meniscus co Specific grav Hydrometer Hydrometer Elapsed	rrection only vity of solids type = 152H er effective d Temp.	= 2.69 epth equation:   Actual	Corrected				Diameter	Percent	Percent
Automatic te Composite Meniscus co Specific grav Hydrometer Hydromete Elapsed Time (min.	rrection only vity of solids type = 152H er effective d Temp. ) (deg. C.	= 2.69 epth equation:   Actual ) Reading	Corrected Reading	к	Rm D	Depth	(mm.)	Finer	Retained
Automatic te Composite Ieniscus co Specific grav lydrometer Hydrometer Elapsed Time (min. 0.50	rrection only vity of solids type = 152H er effective d Temp. ) (deg. C. 21.8	= 2.69 epth equation: I Actual ) Reading 46.0	Corrected Reading 40.3	<b>к</b> 0.0132	<b>Rm D</b> 46.9	<b>Depth</b> 8.6	<b>(mm.)</b> 0.0547	<b>Finer</b> 78.7	Retained 21.3
Composite Composite Meniscus co Specific grav lydrometer Hydrometer Elapsed Time (min. 0.50 1.00	rrection only vity of solids type = 152H er effective d Temp. (deg. C. 21.8 21.8	= 2.69 epth equation: I Actual ) Reading 46.0 43.0	Corrected Reading 40.3 37.3	<b>к</b> 0.0132 0.0132	Rm         E           46.9         43.9	<b>Depth</b> 8.6 9.1	(mm.) 0.0547 0.0398	<b>Finer</b> 78.7 72.8	<b>Retained</b> 21.3 27.2
Automatic te Composite Meniscus co Specific grav Hydrometer Elapsed Time (min. 0.50 1.00 2.00	rrection only vity of solids type = 152H er effective d Temp. ) (deg. C. 21.8 21.8 21.8 21.8	= 2.69 epth equation: I Actual ) Reading 46.0 43.0 39.0	<b>Corrected</b> <b>Reading</b> 40.3 37.3 33.3	<b>K</b> 0.0132 0.0132 0.0132	Rm         E           46.9         43.9           39.9         39.9	<b>Depth</b> 8.6 9.1 9.8	(mm.) 0.0547 0.0398 0.0291	<b>Finer</b> 78.7 72.8 65.0	<b>Retained</b> 21.3 27.2 35.0
Automatic te Composite Meniscus co Specific grav Hydrometer Elapsed Time (min. 0.50 1.00 2.00 5.00	rrection only rity of solids type = 152H er effective d (deg. C. 21.8 21.8 21.8 21.8 21.8 21.8	= 2.69 epth equation: I Actual ) Reading 46.0 43.0 39.0 35.0	<b>Corrected</b> <b>Reading</b> 40.3 37.3 33.3 29.3	<b>K</b> 0.0132 0.0132 0.0132 0.0132	Rm         E           46.9         43.9           39.9         35.9	Depth 8.6 9.1 9.8 10.4	(mm.) 0.0547 0.0398 0.0291 0.0190	<b>Finer</b> 78.7 72.8 65.0 57.2	<b>Retained</b> 21.3 27.2 35.0 42.8
Automatic te Composite Meniscus co Specific grav Hydrometer Elapsed Time (min. 0.50 1.00 2.00 5.00 15.00	rrection only vity of solids type = 152H er effective d Temp. (deg. C. 21.8 21.8 21.8 21.8 21.8 21.8 21.8 21.	= 2.69 epth equation: I Actual ) Reading 46.0 43.0 39.0 35.0 30.0	Corrected Reading 40.3 37.3 33.3 29.3 24.3	<b>K</b> 0.0132 0.0132 0.0132 0.0132 0.0132	Rm         E           46.9         43.9           39.9         35.9           30.9         30.9	Depth           8.6           9.1           9.8           10.4           11.2	(mm.) 0.0547 0.0398 0.0291 0.0190 0.0114	<b>Finer</b> 78.7 72.8 65.0 57.2 47.5	<b>Retained</b> 21.3 27.2 35.0 42.8 52.5
Automatic te Composite Meniscus co Specific grav Hydrometer Elapsed Time (min. 0.50 1.00 2.00 5.00 15.00 30.00	rrection only vity of solids type = 152H er effective d Temp. (deg. C. 21.8 21.8 21.8 21.8 21.8 21.8 21.8 21.	= 2.69 epth equation: 1 Actual Reading 46.0 43.0 39.0 35.0 30.0 28.0	<b>Corrected</b> <b>Reading</b> 40.3 37.3 33.3 29.3 24.3 22.3	<b>K</b> 0.0132 0.0132 0.0132 0.0132 0.0132 0.0132	Rm         E           46.9         43.9           39.9         35.9           30.9         28.9	Depth           8.6           9.1           9.8           10.4           11.2           11.6	(mm.) 0.0547 0.0398 0.0291 0.0190 0.0114 0.0082	<b>Finer</b> 78.7 72.8 65.0 57.2 47.5 43.5	<b>Retained</b> 21.3 27.2 35.0 42.8 52.5 56.5
Automatic te Composite Meniscus co Specific grav Hydrometer Elapsed Time (min. 0.50 1.00 2.00 5.00 15.00 30.00 60.00	rrection only vity of solids type = 152H er effective d 21.8 21.8 21.8 21.8 21.8 21.8 21.8 21.8	= 2.69 epth equation: 1 Actual Reading 46.0 43.0 39.0 35.0 30.0 28.0 25.0	Corrected Reading 40.3 37.3 33.3 29.3 24.3 22.3 19.3	<b>K</b> 0.0132 0.0132 0.0132 0.0132 0.0132 0.0132 0.0132	Rm         E           46.9         43.9           39.9         35.9           30.9         28.9           25.9         25.9	Depth           8.6           9.1           9.8           10.4           11.2           11.6           12.0	(mm.) 0.0547 0.0398 0.0291 0.0190 0.0114 0.0082 0.0059	<b>Finer</b> 78.7 72.8 65.0 57.2 47.5 43.5 37.7	<b>Retained</b> 21.3 27.2 35.0 42.8 52.5 56.5 62.3
Lapsed Time (min. 0.50 1.00 2.00 5.00 15.00 30.00	rrection only vity of solids type = 152H er effective d Temp. (deg. C. 21.8 21.8 21.8 21.8 21.8 21.8 21.8 21.	= 2.69 epth equation: 1 Actual Reading 46.0 43.0 39.0 35.0 30.0 28.0	<b>Corrected</b> <b>Reading</b> 40.3 37.3 33.3 29.3 24.3 22.3	<b>K</b> 0.0132 0.0132 0.0132 0.0132 0.0132 0.0132 0.0132 0.0132	Rm         E           46.9         43.9           39.9         35.9           30.9         28.9           25.9         23.9	Depth           8.6           9.1           9.8           10.4           11.2           11.6	(mm.) 0.0547 0.0398 0.0291 0.0190 0.0114 0.0082	<b>Finer</b> 78.7 72.8 65.0 57.2 47.5 43.5	<b>Retained</b> 21.3 27.2 35.0 42.8 52.5 56.5

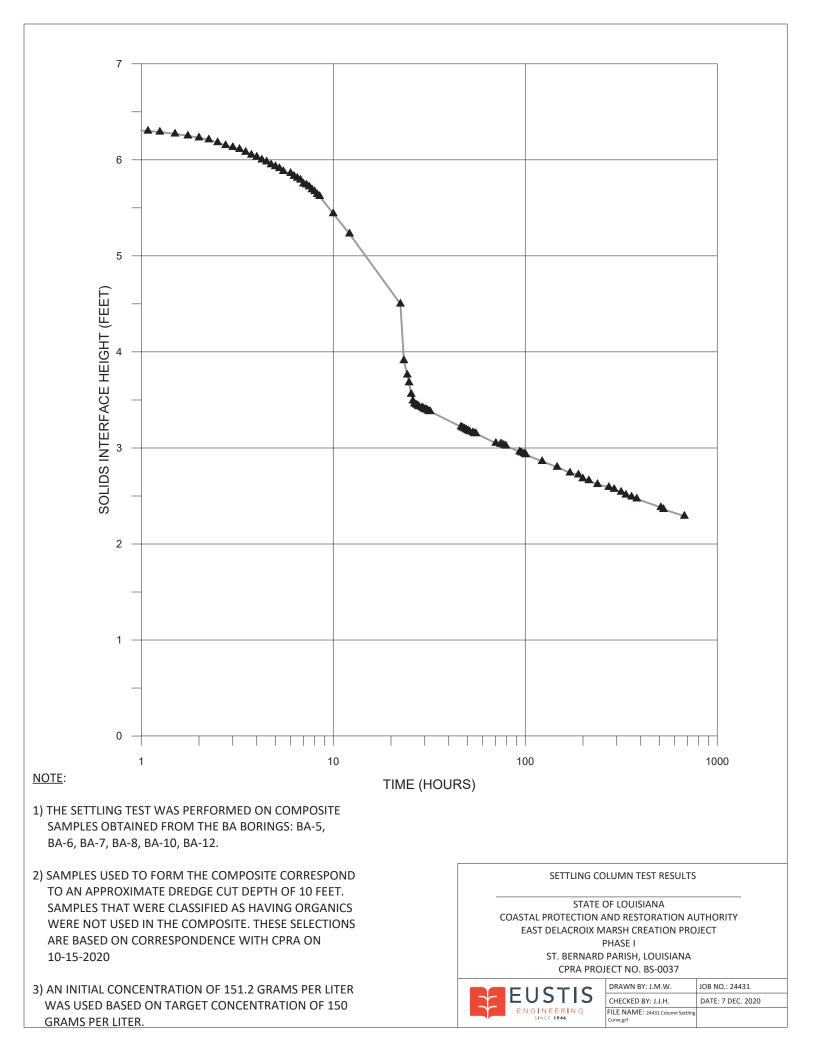
				Hydrom	eter Test	Data (co	ntinued)					
Elapsed Fime (min.)	Tem (deg.		ctual eading	Corrected Reading	к	Rm	Eff. Depth	Diamete (mm.)			rcent tained	
1440.00	22.8	8	16.0	10.6	0.0130	16.9	13.5	0.0013	20.	6 7	79.4	
				Fra	actional C	Compone	nts					
0.111		Gravel			Sand					Fines		
Cobbles	Coarse	Fine	Tot	al Coar	se Mec	lium F	ine	Total	Silt	Clay	Total	
0.0	0.0	0.0	0.0	0.0	) 0	.3	4.1	4.4	60.0	35.6	95.6	
	D ₁₀	D ₁₅	D ₂₀	D ₃₀	D ₄₀	D ₅₀	D ₆₀	D ₈₀	D ₈₅	D ₉₀	D ₉₅	
D ₅	-											

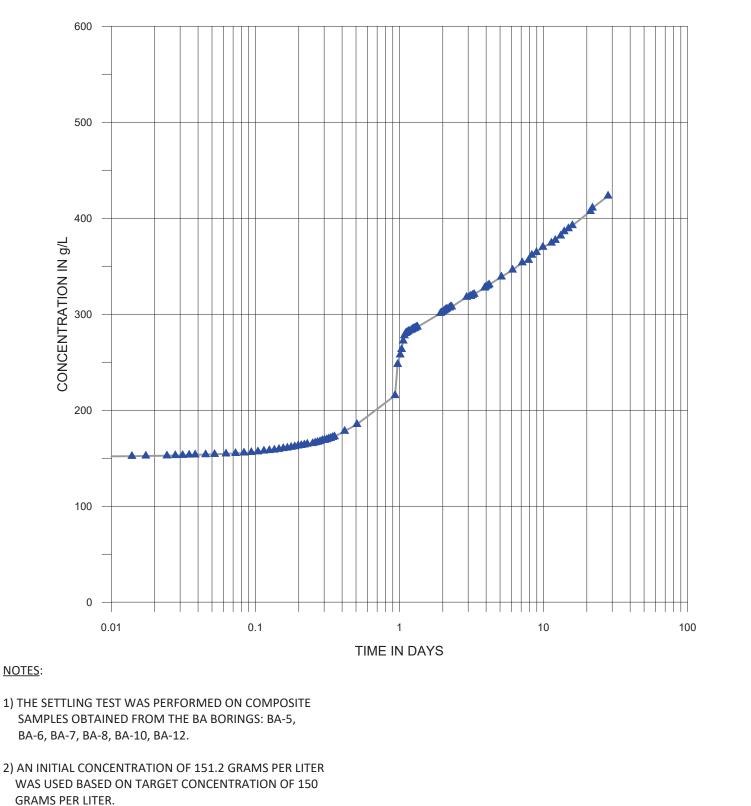
0.01



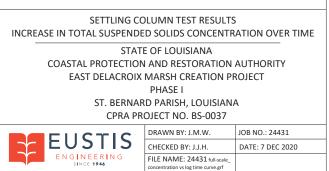
# SETTLING COLUMN DATA SHEET


-			Jefferson Parish, Louisia	Πü		28/20 to 5/13/20
E	ustis Engineeri	ng Project No. 24097				
Analyst: D	Ryan Rodrigue				Initial Conc:	151.2
Salinity:	6100	mg/l		 Target Conc:	151.2	
Sannty.	6.1	ppt		Specifc Gravity:	2.59	
-	0.1	-				2.33
			Surface	Solids	Coarse	
Date	Time	Elapsed Time (min)	Water	Interface	Material	Ports Sampled
		()	Height in feet	Height in feet	Height in inches	
11/9/2020	8:00	0	6.41	6.41	NA	1, 2, 3, 4, 5, 6 for concentration check
11/9/2020	8:05	5	6.39	6.39		
11/9/2020	8:20	20	6.39	6.37		
11/9/2020	8:25	25	6.39	6.36		
11/9/2020	8:35	35	6.39	6.35		
11/9/2020	8:40	40	6.39	6.34		
11/9/2020	8:45	45	6.39	6.33		
11/9/2020	8:50	50	6.39	6.32		
11/9/2020	8:55	55	6.39	6.31		
11/9/2020	9:05	65	6.39	6.3		
11/9/2020	9:15	75	6.39	6.29		
11/9/2020	9:30	90	6.39	6.27		
11/9/2020	9:45	105	6.39	6.25		
11/9/2020	10:00	120	6.39	6.23		
11/9/2020	10:15	135	6.39	6.21		
11/9/2020	10:30	150	6.39	6.18		
11/9/2020	10:45	165	6.39	6.15		
11/9/2020	11:00	180	6.39	6.13		
11/9/2020	11:15	195	6.39	6.11		
11/9/2020	11:30	210	6.39	6.08		
11/9/2020	11:45	225	6.39	6.05		
11/9/2020	12:00	240	6.39	6.03		
11/9/2020	12:15	255	6.39	6		
11/9/2020	12:30	270	6.39	5.98		
11/9/2020	12:45	285	6.39	5.95		
11/9/2020	13:00	300	6.39	5.93		
11/9/2020	13:15	315	6.39	5.91		
11/9/2020	13:30	330	6.39	5.88		
11/9/2020	14:00	360	6.39	5.86		
11/9/2020	14:15	375	6.39	5.83		
11/9/2020	14:30	390	6.39	5.81		
11/9/2020	14:45	405	6.39	5.79		
11/9/2020	15:00	420	6.39	5.75		
11/9/2020	15:15	435	6.39	5.74		
11/9/2020	15:30	450	6.39	5.72		
11/9/2020	15:45	465	6.39	5.69		
11/9/2020	16:00	480	6.39	5.67		
11/9/2020	16:15	495	6.39	5.64		

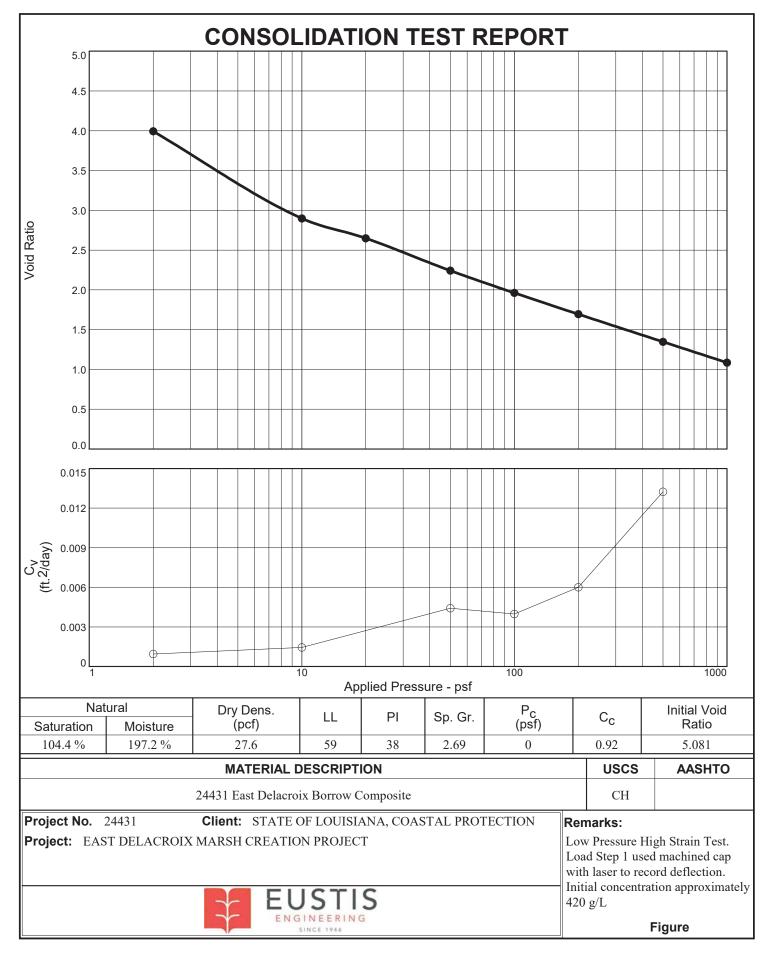

# SETTLING COLUMN DATA SHEET


Project ID:	LCA Budmat, Bai	rataria Bay Waterway,	Date: 4/2	28/20 to 5/13/20		
E	Eustis Engineerir	ng Project No. 24097			-	
Analyste	Ryan Rodrigue				Initial Conc:	151.2
Salinity:	6100	, апа вн mg/l		 Target Conc:	151.2	
Summey.	6.1	ppt			Specifc Gravity:	2.59
-	-				· · · · · · · · · · · · · · · · · · ·	
		Flowerd Time	Surface	Solids	Coarse	
Date	Time	Elapsed Time (min)	Water	Interface	Material	Ports Sampled
			Height in feet	Height in feet	Height in inches	
11/9/2020	16:30	510	6.39	5.62		
11/9/2020	18:00	600	6.39	5.44		
11/9/2020	20:10	730	6.39	5.23		
11/10/2020	6:23	1343	6.39	4.5		
11/10/2020	7:20	1400	6.39	3.91		
11/10/2020	8:20	1460	6.39	3.76		
11/10/2020	8:50	1490	6.39	3.68		
11/10/2020	9:30	1530	6.39	3.56		
11/10/2020	10:00	1560	6.39	3.49		
11/10/2020	10:30	1590	6.39	3.46		
11/10/2020	11:00	1620	6.39	3.45		
11/10/2020	11:30	1650	6.39	3.44		
11/10/2020	12:00	1680	6.39	3.43		
11/10/2020	13:00	1740	6.39	3.42		
11/10/2020	13:30	1770	6.39	3.41		
11/10/2020	14:00	1800	6.39	3.4		
11/10/2020	14:30	1830	6.39	3.4		
11/10/2020	15:00	1860	6.39	3.39		
11/10/2020	15:30	1890	6.39	3.38		
11/10/2020	16:00	1920	6.39	3.38		
11/11/2020	6:20	2780	6.39	3.22		
11/11/2020	7:20	2840	6.39	3.21		
11/11/2020	8:20	2900	6.39	3.2		
11/11/2020	9:20	2960	6.39	3.19		
11/11/2020	10:20	3020	6.39	3.18		
11/11/2020	11:20	3080	6.39	3.17		
11/11/2020	13:20	3200	6.39	3.16		
11/11/2020	14:20	3260	6.39	3.15		
11/11/2020	15:20	3320	6.39	3.15		
11/12/2020	6:20	4220	6.39	3.05		
11/12/2020	10:20	4460	6.39	3.04		
11/12/2020 11/12/2020	11:20 13:20	4520 4640	6.39 6.39	3.04 3.03		
11/12/2020	13:20	4640	6.39	3.03		
11/13/2020	5:40	5620	6.39	2.96		
11/13/2020 11/13/2020	7:40	5740 5920	6.39 6.39	2.95 2.94		
11/13/2020	12:40	6040	6.39	2.94		
11/14/2020	10:30	7350	6.39	2.86		
11/15/2020 11/16/2020	10:30 11:00	8790 10260	6.39 6.39	2.8 2.74		

# SETTLING COLUMN DATA SHEET


Project ID:	LCA Budmat, Ba	ırataria Bay Waterway,	Jefferson Parish, Louisia	Date: 4/2	28/20 to 5/13/20		
	Eustis Engineeri	ng Project No. 24097			_		
-	Ryan Rodrigue			Initial Conc:	151.2 g/L		
Salinity:	6100 6.1	mg/l _ppt			Target Conc: Specifc Gravity:	150.0 g/l 2.59	
Date	Time	Elapsed Time (min)	Surface Water Height in feet	Solids Interface Height in feet	Coarse Material Height in inches	Ports Sampled	
11/17/2020	5:20	11360	6.39	2.72	1		
11/17/2020	15:30	11970	6.39	2.68			
11/18/2020	6:30	12870	6.39	2.66			
11/19/2020	6:00	14280	6.39	2.62			
11/20/2020	16:40	16360	6.39	2.59			
11/21/2020	10:30	17430	6.38	2.57			
11/22/2020	12:00	18960	6.38	2.54			
11/23/2020	6:30	20070	6.38	2.51			
11/24/2020	6:00	21480	6.38	2.49			
11/25/2020	5:00	22860	6.38	2.47			
11/30/2020	12:55	30535	6.38	2.38			
12/1/2020	5:00	31500	6.38	2.36			
12/7/2020	10:50	40490	6.38	2.29			








3) IN ACCORDANCE WITH CHAPTER 3 OF THE USACE ENGINEERING MANUAL EM 1110-2-5207, THE CONCENTRATIONS FOR VARIOUS INTERFACE HEIGHTS WERE CALCULATED USING EQUATION 3-11,  $C_t = (C_0H_i)/H_t$ , WHERE  $C_t$  IS THE SLURRY CONCENTRATION AT TIME t,  $C_0$ IS THE INITIAL SLURRY CONCENTRATION,  $H_i$  IS THE INITIAL SLURRY HEIGHT, AND  $H_t$  IS THE HEIGHT OF THE INTERFACE AT TIME t.



APPENDIX VIII LOW PRESSURE CONSOLIDATION TEST RESULTS

