CONVEYANCE CHANNEL STABILITY AND SETTLEMENT ANALYSES, DESIGN CROSS-SECTIONS
Independent Technical Review

Project Name: Lake Maurepas Diversion
Client: CPRA
Project Location: St. John the Baptist, LA
PM: Naveen Chilliara
PIC: Mike Paterno

(This section is to be completed by the Project Manager or the PM's Designee.)

- **Assigned Reviewer:** Dwayne Smith
- **Comments Required by:** September 18, 2013
- **Work Product Originator:** Mahendra Shewalla and Andrew Hoppes
- **Work Product to be Reviewed:** Slope Stability Conveyance Channel and Sedimentation Basin
- **Review Scope:** Review for technical accuracy and applicability
- **Specific Instructions:** Enter specific instructions for the work product.

Submitted by:

Project Manager Signature

Date: 9/30/13

(This Section is to be completed by the Reviewer.)

- **Select:**
 - A. [] Reviewer has no comments.
 - B. [] Comments have been provided on:
 - [] Marked directly on work product
 - [] Comment and Disposition Form 3-5
 - [] Other; Specify: Click to enter text.

Reviewer Signature

Date: 9/18/13

(This section is to be completed by the Reviewer after verification of comment incorporation, if box B is checked off above.)

- **Select:**
 - C. [] Verification of comment incorporation has been performed by Reviewer. There are no outstanding issues.
 - D. [] Verification of comment incorporation has been performed by Reviewer. Unresolved issues have been submitted to the Project Manager or Designee for resolution.
 - E. [] Reviewer asserts that the work product ITR is complete.

Reviewer Signature

Date:

APPROVAL and DISTRIBUTION

- ITR is complete.

Project Manager or Designee Signature

Date: 9/30/13

Click here to enter a date.

Distribution:

- Project Central File – Quality File Folder
- Other – Specify: Enter names here.
IE QMS - Americas

<table>
<thead>
<tr>
<th>Project Name</th>
<th>Lake Maurepas Diversion</th>
<th>Client</th>
<th>CPRA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Project Location</td>
<td>St. John the Baptist, LA</td>
<td>PM</td>
<td>Naveen Chillara</td>
</tr>
<tr>
<td>Project Number</td>
<td>10001863</td>
<td>PIC</td>
<td>Mike Paterno</td>
</tr>
</tbody>
</table>

Detail Check

(This section is to be completed by the Project Manager or the PM's Designee.)

Assigned Checker: Ananth Bukkapatnam
Comments Required by: September 13, 2013

Work Product Originator: Mahendra Shewalka

Work Product to be Checked: Check for technical accuracy of Conveyance Channel Slope Stability

☑ This Detail Check is a check for correctness, completeness and technical accuracy.
☐ This Detail Check is only a technical edit for format, spelling, grammar, pagination and readability.

Specific Instructions:

Submitted by: [Signature]
Project Manager Signature
9/13/13

Comments

(This Section is to be completed by the Checker.)

Select:

A. ☑ Checker has no comments.

or

B. ☐ Comments have been provided on:
 - [] Marked directly on work product
 - [] Comment and Disposition Form 3-5
 - [] Other; Specify: Provided on separate list by email

[Signature]
Checker Signature
9-12-2013

Verification

(This section is to be completed by the Checker after verification of comment incorporation, if box B is checked off above.)

Select:

C. ☑ Verification of comment incorporation has been performed by Checker. There are no outstanding issues.

or

D. ☐ Verification of comment incorporation has been performed by Checker. Unresolved issues have been submitted to the Project Manager or Designee for final resolution.

and

E. ☐ Checker asserts that the work product review is complete.

[Signature]
Checker Signature
Date

APPROVAL and DISTRIBUTION

☑ Detail Check is complete.

[Signature]
Project Manager or Designee Signature
9/13/13

Click here to enter a date.

Distribution:

- Project Central File – Quality File Folder
- Other – Specify: Enter names here.
Project Name: Lake Maurepas Diversion
Client: CPRA
PM: Naveen Chilliara
PIC: Mike Paterno
Project Location: St. John the Baptist, LA
Project Number: 10001863

(This section is to be completed by the Project Manager or the PM's Designee.)
Assigned Reviewer: Dwayne Smith
Comments Required by: August 23, 2013

Identifying Information

Work Product Originator: Mahendra Shewalla
Work Product to be Reviewed: Settlement Analyses
Review Scope: Review for technical accuracy and applicability
Specific Instructions: Enter specific instructions for the work product.
Submitted by: [Signature]

Project Manager Signature
Date

Comments

Select:
A. [] Reviewer has no comments.

or

B. [] Comments have been provided on:
 - [] Marked directly on work product
 - [] Comment and Disposition Form 3-5
 - [] Other; Specify: Click to enter text.

Reviewer Signature
Date: 8/22/13

Verification

(This section is to be completed by the Reviewer after verification of comment incorporation, if box B is checked off above.)
Select:
C. [] Verification of comment incorporation has been performed by Reviewer. There are no outstanding issues.

or

D. [] Verification of comment incorporation has been performed by Reviewer. Unresolved issues have been submitted to the Project Manager or Designee for resolution.

and

E. [] Reviewer asserts that the work product ITR is complete.

Reviewer Signature
Date

APPROVAL and DISTRIBUTION

[] ITR is complete.

Project Manager or Designee Signature
Date: 9/30/15
Click here to enter a date.

Distribution:
- Project Central File – Quality File Folder
- Other – Specify: Enter names here.
<table>
<thead>
<tr>
<th>Project Name</th>
<th>Lake Maurepas Diversion</th>
<th>Client</th>
<th>CPRA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Project Location</td>
<td>St. John the Baptist, LA</td>
<td>PM</td>
<td>Naveen Chellara</td>
</tr>
<tr>
<td>Project Number</td>
<td>10001863</td>
<td>PIC</td>
<td>Mike Patorno</td>
</tr>
</tbody>
</table>

(This section is to be completed by the Project Manager or the PM's Designee.)

Assigned Checker: Chris LaFoschia
Comments Required by: August 21, 2013

Work Product Originator: Mahendra Shewalla
Work Product to be Checked: Settlement Analyses
This Detail Check is a check for correctness, completeness and technical accuracy.
This Detail Check is only a technical edit for format, spelling, grammar, pagination and readability.
Specific Instructions: Enter specific instructions for the work product.

Submitted by: [Signature]
Date: 9/30/13

(project manager signature)

(This Section is to be completed by the Checker.)

Select:
A. [] Checker has no comments.
B. [] Comments have been provided on:
 - [] Marked directly on work product
 - [] Comment and Disposition Form 3-5
 - [] Other Specify: Click here to enter text.

[Checker's Signature]
Date: 8-30-13

(This section is to be completed by the Checker after verification of comment incorporation, if box B is checked off above.)

Select:
C. [] Verification of comment incorporation has been performed by Checker. There are no outstanding issues.
D. [] Verification of comment incorporation has been performed by Checker. Unresolved issues have been submitted to the Project Manager or Designee for final resolution.
E. [] Checker asserts that the work product review is complete.

[Checker's Signature]
Date

APPROVAL and DISTRIBUTION

[] Detail Check is complete.

[Signature]
Date: 9/30/13

Click here to enter a date.

Project Manager or Designee Signature

Distribution:
Project Central File – Quality File Folder
Other – Specify: Enter names here.
TYPICAL CONVEYANCE CHANNEL
KCS RAILROAD CROSSING
TO US HWY 61

TYPICAL CONVEYANCE CHANNEL
NORTH OF US 61
Name: LEVEE Unit Weight: 115 pcf Cohesion: 600 psf Phi: 0 ° Piezometric Line: 1
Name: CH El. 3 to El. -11.5 Unit Weight: 98 pcf Cohesion: 450 psf Phi: 0 ° Piezometric Line: 1
Name: CH El. -11.5 to El. -26.5 Unit Weight: 115 pcf Cohesion: 325 psf Phi: 0 ° Piezometric Line: 1
Name: CL/CH El. -26.5 to El. -39.5 Unit Weight: 117 pcf Cohesion: 1150 psf Phi: 0 ° Piezometric Line: 1
Name: ML El. -39.5 to El. -49.5 Unit Weight: 120 pcf Cohesion: 0 psf Phi: 28 ° Piezometric Line: 1
Name: CL El. -49.5 to El. -76.5 Unit Weight: 119 pcf Cohesion: 1100 psf Phi: 0 ° Piezometric Line: 1

LAKE MAUPREPAS DIVERSION PROJECT
CONVEYANCE CHANNEL 40 FEET
SOUTH OF US - 61
LIGHT WEIGHT PICK UP TRUCK: 5000 LBS/AXLE
GLOBAL ANALYSIS (BLOCK METHOD)
Block - L to R

File Information
- Created By: Bukkapatnam, Ananth
- Revision Number: 44
- Last Edited By: Shewalla, Mahendra
- Date: 7/18/2013
- Time: 5:17:35 PM
- File Name: Conveyance Channel 40 feet - South of US61.gsz

Project Settings
- Length(L) Units: feet
- Time(t) Units: Seconds
- Force(F) Units: lbf
- Pressure(p) Units: psf
- Strength Units: psf
- Unit Weight of Water: 62.4 pcf
- View: 2D

Analysis Settings
- Block - L to R
- Kind: SLOPE/W
- Method: Spencer
- Apply Phreatic Correction: Yes
- PWP Conditions Source: Piezometric Line
- Use Staged Rapid Drawdown: No
- Slip Surface Direction of movement: Left to Right
- Use Passive Mode: No
- Slip Surface Option: Block
- Critical slip surfaces saved: 1
- Optimize Critical Slip Surface Location: No
- Tension Crack Option: (none)

FOS Distribution
- FOS Calculation Option: Constant
- Restrict Block Crossing: Yes
- Advanced
 - Number of Slices: 30
 - Optimization Tolerance: 0.01
 - Minimum Slip Surface Depth: 0.1 ft
 - Optimization Maximum Iterations: 2000
 - Optimization Convergence Tolerance: 1e-007
 - Starting Optimization Points: 8
 - Ending Optimization Points: 16
 - Complete Passes per insertion: 3
 - Driving Side Maximum Convex Angle: 5°
 - Resisting Side Maximum Convex Angle: 1°

Materials

LEVEE
- Model: Mohr-Coulomb
- Unit Weight: 115 pcf
- Cohesion: 600 psf
- Phi: 0°
- Phi-B: 0°
- Pore Water Pressure Piezometric Line: 1

CH El. 3 to El. -11.5
- Model: Mohr-Coulomb
- Unit Weight: 98 pcf
- Cohesion: 450 psf
- Phi: 0°
- Phi-B: 0°
- Pore Water Pressure Piezometric Line: 1

CH El. -11.5 to El. -26.5
- Model: Mohr-Coulomb
- Unit Weight: 115 pcf
- Cohesion: 325 psf
- Phi: 0°
- Phi-B: 0°
- Pore Water Pressure Piezometric Line: 1

CH El. -26.5 to El. -39.5
- Model: Mohr-Coulomb
- Unit Weight: 117 pcf
- Cohesion: 1100 psf
- Phi: 0°
- Phi-B: 0°
- Pore Water Pressure Piezometric Line: 1

CL/CH El. -39.5 to El. -76.5
- Model: Mohr-Coulomb
- Unit Weight: 119 pcf
- Cohesion: 1150 psf
- Phi: 0°
- Phi-B: 0°
- Pore Water Pressure Piezometric Line: 1

Piezometric Lines

Piezometric Line 1

<table>
<thead>
<tr>
<th>Coordinates</th>
<th>X (ft)</th>
<th>Y (ft)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>330</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

Point Loads

<table>
<thead>
<tr>
<th>Coordinate (ft)</th>
<th>Magnitude (lbs)</th>
<th>Direction (°)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Point Load 1</td>
<td>(89.75, 9)</td>
<td>2500</td>
</tr>
<tr>
<td>Point Load 2</td>
<td>(98.25, 9)</td>
<td>2500</td>
</tr>
</tbody>
</table>

Regions

<table>
<thead>
<tr>
<th>Material</th>
<th>Points</th>
<th>Area [ft²]</th>
</tr>
</thead>
<tbody>
<tr>
<td>LEVEE</td>
<td>244.53868</td>
<td>256.20478</td>
</tr>
<tr>
<td></td>
<td></td>
<td>8910</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3300</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4290</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4950</td>
</tr>
<tr>
<td></td>
<td></td>
<td>251.20478</td>
</tr>
</tbody>
</table>

Slip Surface Limits
- Left Coordinate: (-0.015, 2.81) ft
- Right Coordinate: (330, 3.695) ft

Slip Surface Block
- Left Grid
 - Upper Left: (65, -9) ft
 - Lower Left: (65, -59) ft
 - Lower Right: (115, -59) ft
 - X Increments: 10
 - Y Increments: 10
 - Starting Angle: 115°
 - Ending Angle: 115°
 - Angle Increments: 5

- Right Grid
 - Upper Left: (120, -9) ft
 - Lower Left: (120, -59) ft
 - Lower Right: (170, -59) ft
 - X Increments: 10
 - Y Increments: 10
 - Starting Angle: 15°
Points

| Region | 2 | CH El. 3 to El. 11.5 | 1.40,11,12,27,13,30,31,32,33,34,35,14,15,39,16,17,18,19,20,21,22,23,24,25,26,2 | 3901.3555 |

Critical Slip Surfaces: 21317

Slip Surface | FOS | Center (ft) | Radius (ft) | Entry (ft) | Exit (ft) |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1 21317</td>
<td>1.55</td>
<td>(120.984, 9.162)</td>
<td>38.171</td>
<td>(158.747, 5.93684)</td>
<td></td>
</tr>
</tbody>
</table>

Slices of Slip Surface: 21317

<table>
<thead>
<tr>
<th>Slip Surface</th>
<th>X (ft)</th>
<th>Y (ft)</th>
<th>PWP (psf)</th>
<th>Base Normal Stress (psf)</th>
<th>Frictional Strength (psf)</th>
<th>Cohesive Strength (psf)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 21317</td>
<td>-24</td>
<td>1497.5982</td>
<td>3143.9502</td>
<td>0</td>
<td>325</td>
<td>154.3692</td>
</tr>
<tr>
<td>2 21317</td>
<td>-24</td>
<td>1497.5982</td>
<td>3077.5078</td>
<td>0</td>
<td>325</td>
<td>154.3692</td>
</tr>
<tr>
<td>3 21317</td>
<td>-24</td>
<td>1497.5982</td>
<td>3011.6772</td>
<td>0</td>
<td>325</td>
<td>154.3692</td>
</tr>
<tr>
<td>4 21317</td>
<td>-24</td>
<td>1497.5982</td>
<td>2944.6258</td>
<td>0</td>
<td>325</td>
<td>154.3692</td>
</tr>
<tr>
<td>5 21317</td>
<td>-24</td>
<td>1497.5982</td>
<td>2878.2248</td>
<td>0</td>
<td>325</td>
<td>154.3692</td>
</tr>
<tr>
<td>6 21317</td>
<td>-24</td>
<td>1497.5982</td>
<td>2811.7034</td>
<td>0</td>
<td>325</td>
<td>154.3692</td>
</tr>
<tr>
<td>7 21317</td>
<td>-24</td>
<td>1497.5982</td>
<td>2745.3491</td>
<td>0</td>
<td>325</td>
<td>154.3692</td>
</tr>
<tr>
<td>8 21317</td>
<td>-24</td>
<td>1497.5982</td>
<td>2680.3225</td>
<td>0</td>
<td>325</td>
<td>154.3692</td>
</tr>
<tr>
<td>9 21317</td>
<td>-24</td>
<td>1497.5982</td>
<td>2613.1384</td>
<td>0</td>
<td>325</td>
<td>154.3692</td>
</tr>
<tr>
<td>10 21317</td>
<td>-24</td>
<td>1497.5982</td>
<td>2544.7505</td>
<td>0</td>
<td>325</td>
<td>154.3692</td>
</tr>
<tr>
<td>11 21317</td>
<td>-24</td>
<td>1497.5982</td>
<td>2474.3627</td>
<td>0</td>
<td>325</td>
<td>154.3692</td>
</tr>
<tr>
<td>12 21317</td>
<td>-24</td>
<td>1497.5982</td>
<td>2403.1407</td>
<td>0</td>
<td>325</td>
<td>154.3692</td>
</tr>
<tr>
<td>13 21317</td>
<td>-24</td>
<td>1497.5982</td>
<td>2330.5371</td>
<td>0</td>
<td>325</td>
<td>154.3692</td>
</tr>
<tr>
<td>14 21317</td>
<td>-24</td>
<td>1497.5982</td>
<td>2254.7505</td>
<td>0</td>
<td>325</td>
<td>154.3692</td>
</tr>
</tbody>
</table>

Notes
- **Points**: Coordinates for the points of interest are listed.
- **Critical Slip Surfaces**: Analysis of slip surfaces with FOS values and dimensions.
- **Slices of Slip Surface**: Detailed data for various slices, including X, Y, PWP, and stress values.
Name: LEVEE Unit Weight: 115 pcf Cohesion: 600 psf Phi: 0 ° Piezometric Line: 1
Name: CH El. 3 to El. -11.5 Unit Weight: 98 pcf Cohesion: 450 psf Phi: 0 ° Piezometric Line: 1
Name: CH El. -11.5 to El. -26.5 Unit Weight: 115 pcf Cohesion: 325 psf Phi: 0 ° Piezometric Line: 1
Name: CL/CH El. -26.5 to El. -39.5 Unit Weight: 117 pcf Cohesion: 1150 psf Phi: 0 ° Piezometric Line: 1
Name: ML El. -39.5 to El. -49.5 Unit Weight: 120 pcf Cohesion: 0 psf Phi: 28 ° Piezometric Line: 1
Name: CL El. -49.5 to El. -76.5 Unit Weight: 119 pcf Cohesion: 1100 psf Phi: 0 ° Piezometric Line: 1

LAKE MAUPREpas DIVERSION PROJECT
CONVEYANCE CHANNEL 40 FEET
SOUTH OF US - 61
LIGHT WEIGHT PICK UP TRUCK: 5000 LBS/AXLE
GLOBAL ANALYSIS (BLOCK METHOD)
File Information

- Created By: Bukkapatnam, Ananth
- Revision Number: 44
- Last Edited By: Shewalla, Mahendra
- Date: 7/18/2013
- Time: 5:19:28 PM
- File Name: Conveyance Channel 40 feet - South of US61.gsz
- Directory: I:\Projects\OCPR Maurepas Geotech\10001863-Maurepas Final Design II\FINAL REPORT 7-13\FINAL Stability Analyses\Conveyance Channel to 61\South of US61 Final 2013
- Last Solved Date: 7/18/2013
- Last Solved Time: 5:19:28 PM

Project Settings

- Length(L) Units: feet
- Time(t) Units: Seconds
- Force(F) Units: lbf
- Pressure(p) Units: psf
- Strength Units: psf
- Unit Weight of Water: 62.4 pcf
- View: 2D

Analysis Settings

Block - R to L

- Kind: SLOPE/W
- Method: Spencer
- Settings
 - Apply Prismatic Correction: Yes
 - PWP Conditions Source: Piezometric Line
 - Use Staged Rapid Drawdown: No
 - Slip Surface
 - Direction of movement: Right to Left
 - Use Passive Mode: No
 - Slip Surface Option: Block
 - Critical slip surfaces saved: 1
 - Optimize Critical Slip Surface Location: No
 - Tension Crack
 - Tension Crack Option: (none)
- FOS Distribution
 - FOS Calculation Option: Constant
 - Restrict Block Crossing: Yes
 - Advanced
 - Number of Slices: 30
 - Optimization Tolerance: 0.01
 - Optimization Maximum Iterations: 2000
 - Optimization Convergence Tolerance: 1e-007
 - Starting Optimization Points: 8
 - Ending Optimization Points: 16
 - Complete Passes per insertion: 3
 - Driving Side Maximum Convex Angle: 5°
 - Resisting Side Maximum Convex Angle: 1°
- Materials
 - LEVEE
 - Model: Mohr-Coulomb
 - Unit Weight: 115 pcf
 - Cohesion: 600 psf
 - Phi: 0°
 - Phi-B: 0°
 - Pore Water Pressure
 - Piezometric Line: 1
 - CH El. 3 to El. -11.5
 - Model: Mohr-Coulomb
 - Unit Weight: 98 pcf
 - Cohesion: 450 psf
 - Phi: 0°
 - Phi-B: 0°
 - Pore Water Pressure
 - Piezometric Line: 1
 - CH El. -11.5 to El. -26.5
 - Model: Mohr-Coulomb
 - Unit Weight: 115 pcf
 - Cohesion: 325 psf
 - Phi: 0°
 - Phi-B: 0°
 - Pore Water Pressure
 - Piezometric Line: 1
 - CH El. -26.5 to El. -39.5
 - Model: Mohr-Coulomb
 - Unit Weight: 117 pcf
 - Cohesion: 1150 psf
 - Phi: 0°
 - Phi-B: 0°
 - Pore Water Pressure
 - Piezometric Line: 1
 - CL/CH El. -39.5 to El. -49.5
 - Model: Mohr-Coulomb
 - Unit Weight: 120 pcf
 - Cohesion: 0 psf
 - Phi: 28°
 - Phi-B: 0°
 - Pore Water Pressure
 - Piezometric Line: 1
 - CL El. -49.5 to El. -76.5
 - Model: Mohr-Coulomb
 - Unit Weight: 119 pcf
 - Cohesion: 1100 psf
 - Phi: 0°
 - Phi-B: 0°
 - Pore Water Pressure
 - Piezometric Line: 1

Slip Surface Limits

- Left Coordinate: (-0.015, 2.81) ft
- Right Coordinate: (330, 3.695) ft

Slip Surface Block

Left Grid

- Upper Left: (187, -9) ft
- Lower Left: (187, -59) ft
- Lower Right: (237, -59) ft
- X Increments: 10
- Y Increments: 10
- Starting Angle: 135°
- Ending Angle: 155°
- Angle Increments: 5

Right Grid

- Upper Left: (240, -9) ft
- Lower Left: (240, -59) ft
- Lower Right: (290, -59) ft
- X Increments: 10
- Y Increments: 10
- Starting Angle: 45°

Piezometric Lines

Piezometric Line 1

- Coordinates
 - \(X(\text{ft}) \) \(Y(\text{ft}) \)
 - 0 0
 - 330 0

Point Loads

<table>
<thead>
<tr>
<th>Coordinate (ft)</th>
<th>Magnitude (lbs)</th>
<th>Direction (°)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Point Load 1</td>
<td>(262, 9)</td>
<td>2500</td>
</tr>
<tr>
<td>Point Load 2</td>
<td>(270, 9)</td>
<td>2500</td>
</tr>
</tbody>
</table>

Regions

<table>
<thead>
<tr>
<th>Region</th>
<th>Material Points</th>
<th>Area (ft²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>CH El. - 11.5 to -26.5</td>
<td>4950</td>
</tr>
<tr>
<td>2</td>
<td>CH/CH El. -26.5 to -39.5</td>
<td>4290</td>
</tr>
<tr>
<td>3</td>
<td>CH El. -39.5 to -49.5</td>
<td>3300</td>
</tr>
<tr>
<td>4</td>
<td>CH El. -49.5 to -76.5</td>
<td>8910</td>
</tr>
<tr>
<td>5</td>
<td>LEVEE</td>
<td>2445368</td>
</tr>
<tr>
<td>6</td>
<td>LEVEE</td>
<td>25620478</td>
</tr>
</tbody>
</table>
Points

<table>
<thead>
<tr>
<th>X (ft)</th>
<th>Y (ft)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>-11.5</td>
</tr>
<tr>
<td>130</td>
<td>-11.5</td>
</tr>
<tr>
<td>0</td>
<td>-26.5</td>
</tr>
<tr>
<td>130</td>
<td>-26.5</td>
</tr>
<tr>
<td>0</td>
<td>-39.5</td>
</tr>
<tr>
<td>130</td>
<td>-39.5</td>
</tr>
<tr>
<td>0</td>
<td>-49.5</td>
</tr>
<tr>
<td>130</td>
<td>-49.5</td>
</tr>
<tr>
<td>0</td>
<td>-76.5</td>
</tr>
<tr>
<td>130</td>
<td>-76.5</td>
</tr>
<tr>
<td>30</td>
<td>2.405</td>
</tr>
<tr>
<td>49.904</td>
<td>2.8212</td>
</tr>
<tr>
<td>107.798</td>
<td>2.4224</td>
</tr>
<tr>
<td>284.846</td>
<td>3.0657</td>
</tr>
<tr>
<td>285.170</td>
<td>3.0279</td>
</tr>
<tr>
<td>290.132</td>
<td>3.0491</td>
</tr>
<tr>
<td>292.821</td>
<td>4.6431</td>
</tr>
<tr>
<td>299.023</td>
<td>3.824</td>
</tr>
<tr>
<td>300.057</td>
<td>3.7505</td>
</tr>
<tr>
<td>301.257</td>
<td>3.6091</td>
</tr>
<tr>
<td>303.097</td>
<td>2.4954</td>
</tr>
<tr>
<td>317.726</td>
<td>0.3062</td>
</tr>
<tr>
<td>322.362</td>
<td>3.7937</td>
</tr>
<tr>
<td>327.189</td>
<td>3.7419</td>
</tr>
<tr>
<td>328.620</td>
<td>3.7131</td>
</tr>
<tr>
<td>330</td>
<td>3.605</td>
</tr>
<tr>
<td>69.408</td>
<td>2.4684</td>
</tr>
<tr>
<td>89</td>
<td>9</td>
</tr>
<tr>
<td>99</td>
<td>9</td>
</tr>
</tbody>
</table>

Critical Slip Surfaces:

<table>
<thead>
<tr>
<th>Slip Surface</th>
<th>FDS</th>
<th>Center (ft)</th>
<th>Radius (ft)</th>
<th>Entry (ft)</th>
<th>Exit (ft)</th>
</tr>
</thead>
<tbody>
<tr>
<td>16453</td>
<td>1.59</td>
<td>(240.737, 7.549)</td>
<td>39.253</td>
<td>(283.75, 4.75002)</td>
<td>(199.968, -6.4461)</td>
</tr>
</tbody>
</table>

Slices of Slip Surface: 16453

<table>
<thead>
<tr>
<th>Slip Surface</th>
<th>X (ft)</th>
<th>Y (ft)</th>
<th>PWP (psf)</th>
<th>Base Normal Stress (psf)</th>
<th>Frictional Strength (psf)</th>
<th>Cohesive Strength (psf)</th>
</tr>
</thead>
<tbody>
<tr>
<td>16453</td>
<td>1.59</td>
<td>(240.737, 7.549)</td>
<td>39.253</td>
<td>(283.75, 4.75002)</td>
<td>(199.968, -6.4461)</td>
<td>275.193</td>
</tr>
</tbody>
</table>

16453	23.4	-24	1497.6071	2823.2143	0	325
16453	236.8	-24	1497.6071	2901.2143	0	325
16453	239.6	-24	1497.6071	2979.25	0	325
16453	242.4	-24	1497.6071	3057.25	0	325
16453	245.2	-24	1497.6071	3135.25	0	325
16453	248	-24	1497.6071	3213.257	0	325
16453	250.8	-24	1497.6071	3291.257	0	325
16453	253.6	-24	1497.6071	3369.3214	0	325
16453	256.5	-22.5	1404.0076	2972.441	0	325
16453	259.5	-19.5	1216.7893	2719.5325	0	325
16453	262.625	-16.375	1021.8012	3155.0017	0	325
16453	265.875	-13.125	819.00372	2046.5194	0	325
16453	269.25	-9.75	608.39473	2334.2597	0	450
16453	272.3333	-6.6666665	415.99094	1278.838	0	450
16453	275	-4	249.9987	924.8268	0	450
16453	277.66665	-1.3333335	83.200839	570.84731	0	450
16453	280.45615	1.45616	-90.864902	200.75096	0	450
16453	283.2365	3.596685	-227.11818	-289.05042	0	450
16453	286.3585	4.55850	-284.4529	-325.3445	0	600
Name: LEVEE Unit Weight: 115 pcf Cohesion: 600 psf Phi: 0 ° Piezometric Line: 1
Name: CH El. 3.5 to El. -11.5 Unit Weight: 98 pcf Cohesion: 450 psf Phi: 0 ° Piezometric Line: 1
Name: CH El. -11.5 to El. -26.5 Unit Weight: 115 pcf Cohesion: 325 psf Phi: 0 ° Piezometric Line: 1
Name: CL/CH El. -26.5 to El. -39.5 Unit Weight: 117 pcf Cohesion: 1150 psf Phi: 0 ° Piezometric Line: 1
Name: ML El. -39.5 to El. -49.5 Unit Weight: 120 pcf Cohesion: 0 psf Phi: 28 ° Piezometric Line: 1
Name: CL El. -49.5 to El. -76.5 Unit Weight: 119 pcf Cohesion: 1100 psf Phi: 0 ° Piezometric Line: 1
Block - R to L

File Information
- Created By: Bukkapatnam, Ananth
- Revision Number: 51
- Last Edited By: Harrouch, Ignacio
- Date: 8/4/2013
- Time: 2:50:51 PM
- File Name: Conveyance Channel 60 feet - South of US61.gsz
- Directory: I:\Projects\OCPR Maurepas Geotech\10001863-Maurepas Final Design II\FINAL REPORT 7-13\FINAL Stability Analyses\Conveyance Channel to 61\South of US61 Final 2013
- Last Solved Date: 8/4/2013
- Last Solved Time: 2:51:10 PM

Project Settings
- Length(L) Units: feet
- Time(t) Units: Seconds
- Force(F) Units: lbf
- Pressure(p) Units: psf
- Strength Units: psf
- Unit Weight of Water: 62.4 pcf
- View: 2D

Analysis Settings
- Block - R to L
 - Kind: SLOPE/W
 - Method: Spencer
 - Apply Prismatic Correction: Yes
 - Use Staged Rapid Drawdown: No
 - Slip Surface
 - Direction of movement: Right to Left
 - Use Passive Mode: No
 - Slip Surface Option: Block
 - Critical slip surfaces saved: 1
 - Optimize Critical Slip Surface Location: No
 - Tension Crack
 - Tension Crack Option: (none)
 - FOS Distribution
 - FOS Calculation Option: Constant
 - Restrict Block Crossing: Yes
 - Advanced
 - Number of Slices: 30
 - Optimization Tolerance: 0.01
 - Minimum Slip Surface Depth: 0.1 ft
 - Optimization Maximum Iterations: 2000
 - Optimization Convergence Tolerance: 1e-007
 - Starting Optimization Points: 8
 - Ending Optimization Points: 16
 - Complete Passes per Insertion: 1
 - Driving Side Maximum Convex Angle: 5°
 - Resisting Side Maximum Convex Angle: 1°
 - FOS Distribution

Materials
- LEVEE
 - Model: Mohr-Coulomb
 - Unit Weight: 115 pcf
 - Cohesion: 600 psf
 - Phi: 0°
 - Phi-B: 0°
 - Pore Water Pressure
 - Piezometric Line: 1
- CH El. 3.5 to El. -11.5
 - Model: Mohr-Coulomb
 - Unit Weight: 98 pcf
 - Cohesion: 450 psf
 - Phi: 0°
 - Phi-B: 0°
 - Pore Water Pressure
 - Piezometric Line: 1
- CH El. -11.5 to El. -26.5
 - Model: Mohr-Coulomb
 - Unit Weight: 115 pcf
 - Cohesion: 325 psf
 - Phi: 0°
 - Phi-B: 0°
 - Pore Water Pressure
 - Piezometric Line: 1
- CL/CH El. -26.5 to El. -39.5
 - Model: Mohr-Coulomb
 - Unit Weight: 117 pcf
 - Cohesion: 1150 psf
 - Phi: 0°
 - Phi-B: 0°
 - Pore Water Pressure
 - Piezometric Line: 1
- ML El. -39.5 to El. -49.5
 - Model: Mohr-Coulomb
 - Unit Weight: 120 pcf
 - Cohesion: 0 psf
 - Phi: 28°
 - Phi-B: 0°
 - Pore Water Pressure
 - Piezometric Line: 1
- CL El. -49.5 to El. -76.5
 - Model: Mohr-Coulomb
 - Unit Weight: 119 pcf
 - Cohesion: 1100 psf
 - Phi: 0°
 - Phi-B: 0°
 - Pore Water Pressure
 - Piezometric Line: 1

Slip Surface Limits
- Left Coordinate: (0, 2.3208) ft
- Right Coordinate: (330, 2.2197) ft

Slip Surface Block
- Left Grid
 - Upper Left: (181, -8.492) ft
 - Lower Left: (181, -38.492) ft
 - Lower Right: (231, -38.492) ft
 - X Increments: 10
 - Y Increments: 10
 - Starting Angle: 135°
 - Angle Increments: 2
- Right Grid
 - Upper Left: (242, -8.492) ft
 - Lower Left: (242, -38.492) ft
 - Lower Right: (292, -38.492) ft
 - X Increments: 10
 - Y Increments: 10
 - Starting Angle: 25°

Piezometric Lines
- Piezometric Line 1
 - Coordinates
 - X (ft) Y (ft)
 - 0 0
 - 330 0

Point Loads
- Coordinate (ft) Magnitude (lbs) Direction (°)
- Point Load 1 (256, 8) 2500 90
- Point Load 2 (264, 8) 2500 90

Regions
<table>
<thead>
<tr>
<th>Material</th>
<th>Points</th>
<th>Area (ft²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Region 1</td>
<td>LEVEE</td>
<td>26,23,24,25,14,13</td>
</tr>
<tr>
<td>Region 2</td>
<td>LEVEE</td>
<td>17,18,19,27,12,11,10,9,8,7</td>
</tr>
<tr>
<td>Region 3</td>
<td>CH El. 3.5 to El. -11.5</td>
<td>28,12,3,4,5,6,17,7,8,9,10,11,12,27,20,21,22,26,13,14,25,15,16,29</td>
</tr>
<tr>
<td>Region 4</td>
<td>CH El. -11.5 to El. -26.5</td>
<td>28,30,31,29</td>
</tr>
<tr>
<td>Region 5</td>
<td>CL/CH El. -26.5 to El. -39.5</td>
<td>31,33,32,30</td>
</tr>
<tr>
<td>Region 6</td>
<td>ML El. -39.5 to El. -49.5</td>
<td>34,32,33,35</td>
</tr>
<tr>
<td>Region 7</td>
<td>CL El. -49.5 to El. -76.5</td>
<td>36,34,35,37</td>
</tr>
</tbody>
</table>
Points

<table>
<thead>
<tr>
<th>X (ft)</th>
<th>Y (ft)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Point 1</td>
<td>0</td>
</tr>
<tr>
<td>Point 2</td>
<td>30</td>
</tr>
<tr>
<td>Point 3</td>
<td>33.0231</td>
</tr>
<tr>
<td>Point 4</td>
<td>34.2631</td>
</tr>
<tr>
<td>Point 5</td>
<td>35.412</td>
</tr>
<tr>
<td>Point 6</td>
<td>57.8622</td>
</tr>
<tr>
<td>Point 7</td>
<td>80.448</td>
</tr>
<tr>
<td>Point 8</td>
<td>84.0119</td>
</tr>
<tr>
<td>Point 9</td>
<td>86.1993</td>
</tr>
<tr>
<td>Point 10</td>
<td>87.0456</td>
</tr>
<tr>
<td>Point 11</td>
<td>106.4475</td>
</tr>
<tr>
<td>Point 12</td>
<td>114.7549</td>
</tr>
<tr>
<td>Point 13</td>
<td>269.3003</td>
</tr>
<tr>
<td>Point 14</td>
<td>275.2049</td>
</tr>
<tr>
<td>Point 15</td>
<td>283.9811</td>
</tr>
<tr>
<td>Point 16</td>
<td>330</td>
</tr>
<tr>
<td>Point 17</td>
<td>75.475</td>
</tr>
<tr>
<td>Point 18</td>
<td>95</td>
</tr>
<tr>
<td>Point 19</td>
<td>105</td>
</tr>
<tr>
<td>Point 20</td>
<td>150</td>
</tr>
<tr>
<td>Point 21</td>
<td>180</td>
</tr>
<tr>
<td>Point 22</td>
<td>210</td>
</tr>
<tr>
<td>Point 23</td>
<td>250</td>
</tr>
<tr>
<td>Point 24</td>
<td>300</td>
</tr>
<tr>
<td>Point 25</td>
<td>325</td>
</tr>
<tr>
<td>Point 26</td>
<td>282.2967</td>
</tr>
<tr>
<td>Point 27</td>
<td>237.6375</td>
</tr>
<tr>
<td>Point 28</td>
<td>122.8825</td>
</tr>
<tr>
<td>Point 29</td>
<td>0</td>
</tr>
<tr>
<td>Point 30</td>
<td>330</td>
</tr>
<tr>
<td>Point 31</td>
<td>330</td>
</tr>
<tr>
<td>Point 32</td>
<td>0</td>
</tr>
<tr>
<td>Point 33</td>
<td>330</td>
</tr>
</tbody>
</table>

Critical Slip Surfaces

<table>
<thead>
<tr>
<th>Slip Surface</th>
<th>FOS Center (ft)</th>
<th>Radius (ft)</th>
<th>Entry (ft)</th>
<th>Exit (ft)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 7566</td>
<td>1.54</td>
<td>(241.249, 5.034)</td>
<td>37.204</td>
<td>(281.139, 2.62004)</td>
</tr>
</tbody>
</table>

Slices of Slip Surface: 7566

<table>
<thead>
<tr>
<th>Slip Surface</th>
<th>X (ft)</th>
<th>Y (ft)</th>
<th>P&P</th>
<th>Base Normal Stress (psf)</th>
<th>Frictional Strength (psf)</th>
<th>Cohesive Strength (psf)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 7566</td>
<td>204.7692</td>
<td>-8.125</td>
<td>506.99062</td>
<td>755.15805</td>
<td>0</td>
<td>450</td>
</tr>
<tr>
<td>2 7566</td>
<td>207.98255</td>
<td>-10.375</td>
<td>647.40214</td>
<td>976.27815</td>
<td>0</td>
<td>450</td>
</tr>
<tr>
<td>3 7566</td>
<td>209.7946</td>
<td>-11.64382</td>
<td>726.5777</td>
<td>1046.027</td>
<td>0</td>
<td>325</td>
</tr>
<tr>
<td>4 7566</td>
<td>211.3235</td>
<td>-12.70655</td>
<td>792.87774</td>
<td>1184.744</td>
<td>0</td>
<td>325</td>
</tr>
<tr>
<td>5 7566</td>
<td>213.9375</td>
<td>-14.54438</td>
<td>987.52721</td>
<td>1417.835</td>
<td>0</td>
<td>325</td>
</tr>
<tr>
<td>6 7566</td>
<td>216.56175</td>
<td>-16.382205</td>
<td>1022.2356</td>
<td>1670.975</td>
<td>0</td>
<td>325</td>
</tr>
<tr>
<td>7 7566</td>
<td>219.1864</td>
<td>-18.22003</td>
<td>1136.9314</td>
<td>1914.0484</td>
<td>0</td>
<td>325</td>
</tr>
<tr>
<td>8 7566</td>
<td>221.81105</td>
<td>-20.057865</td>
<td>1251.5952</td>
<td>2157.705</td>
<td>0</td>
<td>325</td>
</tr>
<tr>
<td>9 7566</td>
<td>224.43575</td>
<td>-21.89586</td>
<td>1366.2902</td>
<td>2400.2614</td>
<td>0</td>
<td>325</td>
</tr>
<tr>
<td>10 7566</td>
<td>227.06045</td>
<td>-23.735865</td>
<td>1480.9851</td>
<td>2643.323</td>
<td>0</td>
<td>325</td>
</tr>
<tr>
<td>11 7566</td>
<td>229.68515</td>
<td>-25.57125</td>
<td>1595.6449</td>
<td>2886.476</td>
<td>0</td>
<td>325</td>
</tr>
<tr>
<td>12 7566</td>
<td>232.105</td>
<td>-26.49112</td>
<td>1653.0414</td>
<td>2988.161</td>
<td>0</td>
<td>325</td>
</tr>
<tr>
<td>13 7566</td>
<td>234.31875</td>
<td>-26.492</td>
<td>1653.1073</td>
<td>2960.4068</td>
<td>0</td>
<td>325</td>
</tr>
<tr>
<td>14 7566</td>
<td>236.53125</td>
<td>-26.492</td>
<td>1653.1073</td>
<td>3032.7323</td>
<td>0</td>
<td>325</td>
</tr>
<tr>
<td>15 7566</td>
<td>238.8444</td>
<td>-26.492</td>
<td>1653.0966</td>
<td>3114.7363</td>
<td>0</td>
<td>325</td>
</tr>
<tr>
<td>16 7566</td>
<td>241.22815</td>
<td>-26.492</td>
<td>1653.0966</td>
<td>3206.517</td>
<td>0</td>
<td>325</td>
</tr>
<tr>
<td>17 7566</td>
<td>243.61851</td>
<td>-26.492</td>
<td>1653.0966</td>
<td>3298.2977</td>
<td>0</td>
<td>325</td>
</tr>
<tr>
<td>18 7566</td>
<td>246.0165</td>
<td>-26.492</td>
<td>1653.0966</td>
<td>3390.0783</td>
<td>0</td>
<td>325</td>
</tr>
<tr>
<td>19 7566</td>
<td>248.40935</td>
<td>-26.492</td>
<td>1653.0966</td>
<td>3481.859</td>
<td>0</td>
<td>325</td>
</tr>
<tr>
<td>20 7566</td>
<td>250.8031</td>
<td>-26.492</td>
<td>1653.0966</td>
<td>3573.6397</td>
<td>0</td>
<td>325</td>
</tr>
<tr>
<td>21 7566</td>
<td>253.5</td>
<td>-24.992</td>
<td>1559.5003</td>
<td>3280.2681</td>
<td>0</td>
<td>325</td>
</tr>
<tr>
<td>22 7566</td>
<td>256.25</td>
<td>-22.492</td>
<td>1387.9029</td>
<td>4018.6292</td>
<td>0</td>
<td>325</td>
</tr>
<tr>
<td>23 7566</td>
<td>258.75</td>
<td>-19.492</td>
<td>1211.8931</td>
<td>2736.3203</td>
<td>0</td>
<td>325</td>
</tr>
</tbody>
</table>
File Information

Created By: Bukkapatnam, Ananth
Revision Number: 46
Last Edited By: Shewalla, Mahendra
Date: 7/18/2013
Time: 5:22:39 PM
File Name: Conveyance Channel 60 feet - South of US61.gz
Directory: I:\Projects\OCPR Maurepas Geotech\10001863-Maurepas Final Design II\FINAL REPORT 7-13\FINAL Stability Analyses\Conveyance Channel to 61\South of US61 Final 2013
Last Solved Date: 7/18/2013
Last Solved Time: 5:24:00 PM

Project Settings

Length(L) Units: feet
Time(t) Units: Seconds
Force(F) Units: lbf
Pressure(p) Units: psf
Strength Units: psf
Unit Weight of Water: 62.4 pcf
View: 2D

Analysis Settings

Block - L to R
Kind: SLOPE/W
Method: Spencer
Settings
Apply Phreatic Correction: Yes
PWP Conditions Source: Piezometric Line
Use Staged Rapid Drawdown: No
Slip Surface
Direction of movement: Left to Right
Use Passive Mode: No
Slip Surface Option: Block
Critical slip surfaces saved: 1
Optimize Critical Slip Surface Location: No
Tension Crack
Tension Crack Option: (none)
FOS Distribution
FOS Calculation Option: Constant
Restrict Block Crossing: Yes
Advanced
Number of Slices: 30
Optimization Tolerance: 8.01
Minimum Slip Surface Depth: 0.1 ft
Optimization Maximum Iterations: 2000
Optimization Convergence Tolerance: 1e-007
Starting Optimization Points: 8
Ending Optimization Points: 16
Complete Passes per insertion: 1
Driving Side Maximum Convex Angle: 5 °
Resisting Side Maximum Convex Angle: 5 °

Materials

LEVEE
Model: Mohr-Coulomb
Unit Weight: 115 pcf
Cohesion: 600 psf
Phi: 0 °
Phi-B: 0 °
Pore Water Pressure
Piezometric Line: 1

CH El. 3.5 to El. -11.5
Model: Mohr-Coulomb
Unit Weight: 98 pcf
Cohesion: 450 psf
Phi: 0 °
Phi-B: 0 °
Pore Water Pressure
Piezometric Line: 1

CH El. -11.5 to El. -26.5
Model: Mohr-Coulomb
Unit Weight: 115 pcf
Cohesion: 115 pcf
Phi: 0 °
Phi-B: 0 °
Pore Water Pressure
Piezometric Line: 1

CL/CH El. -26.5 to El. -39.5
Model: Mohr-Coulomb
Unit Weight: 117 pcf

Piezometric Lines

Piezometric Line 1

Coordinates

<table>
<thead>
<tr>
<th>X (ft)</th>
<th>Y (ft)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>330</td>
<td>0</td>
</tr>
</tbody>
</table>

Point Loads

<table>
<thead>
<tr>
<th>Coordinate (ft)</th>
<th>Magnitude (lbs)</th>
<th>Direction (°)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Point Load 1</td>
<td>(95.75, 8)</td>
<td>2500</td>
</tr>
<tr>
<td>Point Load 2</td>
<td>(104.25, 8)</td>
<td>2500</td>
</tr>
</tbody>
</table>

Regions

<table>
<thead>
<tr>
<th>Material</th>
<th>Points</th>
<th>Area (ft²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Region 1 LEVEE</td>
<td>26,23,24,25,14,13</td>
<td>158.46153</td>
</tr>
<tr>
<td>Region 2 LEVEE</td>
<td>17,18,19,27,12,11,10,9,8,7</td>
<td>199.12682</td>
</tr>
<tr>
<td>Region 3 CL/CH El. -26.5 to El. -39.5</td>
<td>28,30,31,29</td>
<td>4950</td>
</tr>
<tr>
<td>Region 4 CH El. -11.5 to El. -11.5</td>
<td>31,33,32,30</td>
<td>4290</td>
</tr>
<tr>
<td>Region 5 ML El. -39.5 to El. -49.5</td>
<td>34,32,33,35</td>
<td>3300</td>
</tr>
<tr>
<td>Region 6 CL El. -49.5 to El. -76.5</td>
<td>36,34,35,37</td>
<td>8910</td>
</tr>
</tbody>
</table>

Slip Surface Limits

Left Coordinate: (0, 2.3208) ft
Right Coordinate: (330, 2.2197) ft

Slip Surface Block

Left Grid
Upper Left: (65, -9) ft
Lower Left: (65, -45) ft
Lower Right: (115, -45) ft
X Increments: 10
Y Increments: 10
Starting Angle: 115 °
Ending Angle: 115 °
Angle Increments: 5

Right Grid
Upper Left: (116, -9) ft
Lower Left: (116, -45) ft
Lower Right: (166, -45) ft
X Increments: 10
Y Increments: 10
Starting Angle: 15 °

Cohesion: 1150 psf
Phi: 0 °
Phi-B: 0 °
Pore Water Pressure
Piezometric Line: 1

ML El. -39.5 to El. -42.5
Model: Mohr-Coulomb
Unit Weight: 115 pcf
Cohesion: 325 psf
Phi: 0 °
Phi-B: 0 °
Pore Water Pressure
Piezometric Line: 1

CL El. -49.5 to El. -76.5
Model: Mohr-Coulomb
Unit Weight: 119 pcf
Cohesion: 1150 psf
Phi: 0 °
Phi-B: 0 °
Pore Water Pressure
Piezometric Line: 1

Piezometric Lines

Piezometric Line 1

Coordinates

<table>
<thead>
<tr>
<th>X (ft)</th>
<th>Y (ft)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>330</td>
<td>0</td>
</tr>
</tbody>
</table>

Point Loads

<table>
<thead>
<tr>
<th>Coordinate (ft)</th>
<th>Magnitude (lbs)</th>
<th>Direction (°)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Point Load 1</td>
<td>(95.75, 8)</td>
<td>2500</td>
</tr>
<tr>
<td>Point Load 2</td>
<td>(104.25, 8)</td>
<td>2500</td>
</tr>
</tbody>
</table>
Points

<table>
<thead>
<tr>
<th></th>
<th>X (ft)</th>
<th>Y (ft)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>2.3208</td>
</tr>
<tr>
<td>2</td>
<td>30</td>
<td>2.3208</td>
</tr>
<tr>
<td>3</td>
<td>33.0231</td>
<td>2.2996</td>
</tr>
<tr>
<td>4</td>
<td>34.2631</td>
<td>2.2996</td>
</tr>
<tr>
<td>5</td>
<td>35.412</td>
<td>2.3009</td>
</tr>
<tr>
<td>6</td>
<td>57.8622</td>
<td>2.4664</td>
</tr>
<tr>
<td>7</td>
<td>80.448</td>
<td>0.1008</td>
</tr>
<tr>
<td>8</td>
<td>84.0119</td>
<td>0.1795</td>
</tr>
<tr>
<td>9</td>
<td>86.1993</td>
<td>0.3708</td>
</tr>
<tr>
<td>10</td>
<td>87.0456</td>
<td>0.3708</td>
</tr>
<tr>
<td>11</td>
<td>106.4475</td>
<td>2.3447</td>
</tr>
<tr>
<td>12</td>
<td>114.7549</td>
<td>2.0203</td>
</tr>
<tr>
<td>13</td>
<td>269.3003</td>
<td>2.1848</td>
</tr>
<tr>
<td>14</td>
<td>275.2049</td>
<td>2.2637</td>
</tr>
<tr>
<td>15</td>
<td>283.9831</td>
<td>2.2275</td>
</tr>
<tr>
<td>16</td>
<td>330</td>
<td>2.2197</td>
</tr>
<tr>
<td>17</td>
<td>73.475</td>
<td>0.825</td>
</tr>
<tr>
<td>18</td>
<td>95</td>
<td>8</td>
</tr>
<tr>
<td>19</td>
<td>105</td>
<td>8</td>
</tr>
<tr>
<td>20</td>
<td>150</td>
<td>-7</td>
</tr>
<tr>
<td>21</td>
<td>180</td>
<td>-7</td>
</tr>
<tr>
<td>22</td>
<td>210</td>
<td>-7</td>
</tr>
<tr>
<td>23</td>
<td>255</td>
<td>8</td>
</tr>
<tr>
<td>24</td>
<td>265</td>
<td>8</td>
</tr>
<tr>
<td>25</td>
<td>282.2967</td>
<td>2.2344</td>
</tr>
<tr>
<td>26</td>
<td>237.6375</td>
<td>2.2136</td>
</tr>
<tr>
<td>27</td>
<td>122.8825</td>
<td>2.0389</td>
</tr>
<tr>
<td>28</td>
<td>0</td>
<td>-11.5</td>
</tr>
<tr>
<td>29</td>
<td>130</td>
<td>-11.5</td>
</tr>
<tr>
<td>30</td>
<td>0</td>
<td>-26.5</td>
</tr>
<tr>
<td>31</td>
<td>130</td>
<td>-26.5</td>
</tr>
<tr>
<td>32</td>
<td>0</td>
<td>-39.5</td>
</tr>
<tr>
<td>33</td>
<td>130</td>
<td>-39.5</td>
</tr>
</tbody>
</table>

Critical Slip Surfaces

<table>
<thead>
<tr>
<th></th>
<th>Slip Surface</th>
<th>FOS</th>
<th>Center (ft)</th>
<th>Radius (ft)</th>
<th>Entry (ft)</th>
<th>Exit (ft)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>27742</td>
<td>1.47</td>
<td>(117.818, 7.098)</td>
<td>32.783</td>
<td>(84.0811, 4.36035)</td>
<td>(148.775, 6.59156)</td>
</tr>
</tbody>
</table>

Slices of Slip Surface: 27742

<table>
<thead>
<tr>
<th></th>
<th>Slip Surface</th>
<th>X (ft)</th>
<th>Y (ft)</th>
<th>PWP (psf)</th>
<th>Base Normal Stress (psf)</th>
<th>Frictional Strength (psf)</th>
<th>Cohesive Strength (psf)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>27742</td>
<td>85.58275</td>
<td>-2.3675</td>
<td>147.73614</td>
<td>-253.72111</td>
<td>0</td>
<td>600</td>
</tr>
<tr>
<td>2</td>
<td>27742</td>
<td>87.22064</td>
<td>0.1873</td>
<td>123.75751</td>
<td>199.499</td>
<td>0</td>
<td>450</td>
</tr>
<tr>
<td>3</td>
<td>27742</td>
<td>88.32085</td>
<td>-1.26619</td>
<td>79.00929</td>
<td>372.48182</td>
<td>0</td>
<td>450</td>
</tr>
<tr>
<td>4</td>
<td>27742</td>
<td>90.22973</td>
<td>-3.79582</td>
<td>237.03162</td>
<td>688.52185</td>
<td>0</td>
<td>450</td>
</tr>
<tr>
<td>5</td>
<td>27742</td>
<td>92.13765</td>
<td>-6.33097</td>
<td>395.06221</td>
<td>1006.5619</td>
<td>0</td>
<td>450</td>
</tr>
<tr>
<td>6</td>
<td>27742</td>
<td>94.04565</td>
<td>-8.863357</td>
<td>553.06187</td>
<td>1332.6334</td>
<td>0</td>
<td>450</td>
</tr>
<tr>
<td>7</td>
<td>27742</td>
<td>95.95365</td>
<td>-10.314775</td>
<td>674.83929</td>
<td>1666.6260</td>
<td>0</td>
<td>450</td>
</tr>
<tr>
<td>8</td>
<td>27742</td>
<td>97.8606</td>
<td>-12.8875</td>
<td>810.42033</td>
<td>1895.2759</td>
<td>0</td>
<td>325</td>
</tr>
<tr>
<td>9</td>
<td>27742</td>
<td>99.76465</td>
<td>-15.9625</td>
<td>996.05273</td>
<td>2232.5014</td>
<td>0</td>
<td>325</td>
</tr>
<tr>
<td>10</td>
<td>27742</td>
<td>101.6637</td>
<td>-18.9375</td>
<td>1181.712</td>
<td>2569.7001</td>
<td>0</td>
<td>325</td>
</tr>
<tr>
<td>11</td>
<td>27742</td>
<td>103.5791</td>
<td>-21.9125</td>
<td>1367.344</td>
<td>4018.6797</td>
<td>0</td>
<td>325</td>
</tr>
<tr>
<td>12</td>
<td>27742</td>
<td>105.4957</td>
<td>-24.9125</td>
<td>1460.737</td>
<td>3343.6373</td>
<td>0</td>
<td>325</td>
</tr>
<tr>
<td>13</td>
<td>27742</td>
<td>107.4123</td>
<td>-24.9125</td>
<td>1460.737</td>
<td>3343.6373</td>
<td>0</td>
<td>325</td>
</tr>
<tr>
<td>14</td>
<td>27742</td>
<td>110.2128</td>
<td>-24.9125</td>
<td>1460.737</td>
<td>3343.6373</td>
<td>0</td>
<td>325</td>
</tr>
<tr>
<td>15</td>
<td>27742</td>
<td>111.63965</td>
<td>-24.9125</td>
<td>1460.737</td>
<td>3343.6373</td>
<td>0</td>
<td>325</td>
</tr>
<tr>
<td>16</td>
<td>27742</td>
<td>113.7165</td>
<td>-24.9125</td>
<td>1460.737</td>
<td>3343.6373</td>
<td>0</td>
<td>325</td>
</tr>
<tr>
<td>17</td>
<td>27742</td>
<td>115.70815</td>
<td>-24.9125</td>
<td>1460.737</td>
<td>3343.6373</td>
<td>0</td>
<td>325</td>
</tr>
<tr>
<td>18</td>
<td>27742</td>
<td>117.80275</td>
<td>-24.9125</td>
<td>1460.737</td>
<td>3343.6373</td>
<td>0</td>
<td>325</td>
</tr>
<tr>
<td>19</td>
<td>27742</td>
<td>119.89685</td>
<td>-24.9125</td>
<td>1460.737</td>
<td>3343.6373</td>
<td>0</td>
<td>325</td>
</tr>
<tr>
<td>20</td>
<td>27742</td>
<td>121.88655</td>
<td>-24.9125</td>
<td>1460.737</td>
<td>3343.6373</td>
<td>0</td>
<td>325</td>
</tr>
<tr>
<td>21</td>
<td>27742</td>
<td>124.44125</td>
<td>-24.9125</td>
<td>1460.737</td>
<td>3343.6373</td>
<td>0</td>
<td>325</td>
</tr>
</tbody>
</table>
LAKE MAUPREPAS DIVERSION PROJECT
CONVEYANCE CHANNEL - NORTH OF US - 61
STATION: 140+50
LIGHT WEIGHT PICK UP TRUCK: 5000 LBS/AXLE
GLOBAL ANALYSIS (BLOCK METHOD)
Block LtoR-P Load-Water -0'

Project Settings
- Length(L) Units: feet
- Time(t) Units: Seconds
- Force(F) Units: lbf
- Pressure(p) Units: psf
- Strength Units: psf
- Unit Weight of Water: 62.4 pcf
- View: 2D

Analysis Settings
- Block LtoR-P Load-Water -0'
 - Kind: SLOPE/W
 - Method: Spencer
 - Settings:
 - Apply Phreatic Correction: Yes
 - PWP Conditions Source: Piezometric Line
 - Use Staged Rapid Drawdown: No
 - Slip Surface:
 - Direction of movement: Left to Right
 - Use Passive Mode: No
 - Slip Surface Option: Block
 - Critical slip surfaces saved: 1
 - Optimize Critical Slip Surface Location: No
 - Tension Crack Option: (none)
 - FOS Distribution:
 - FOS Calculation Option: Constant
 - Restrict Block Crossing: Yes
 - Advanced:
 - Number of Slices: 30
 - Optimization Tolerance: 0.01
 - Optimization Maximum Iterations: 2000
 - Optimization Convergence Tolerance: 1e-007
 - Starting Optimization Points: 8
 - Ending Optimization Points: 16
 - Complete Passes per Insertion: 3
 - Driving Side Maximum Convex Angle: 5°
 - Resisting Side Maximum Convex Angle: 1°
 - Tension Crack:
 - Tension Crack Option: (none)
 - Slip Surface Limits:
 - Left Coordinate: (0, 1.5) ft
 - Right Coordinate: (330, 0.3) ft

Materials
- LEVEE
 - Model: Mohr-Coulomb
 - Unit Weight: 115 pcf
 - Cohesion: 600 psf
 - Phi: 0°
 - Phi-B: 0°
 - Pore Water Pressure
 - Piezometric Line: 1

- CH El. 1.5 to EL. -5
 - Model: Mohr-Coulomb
 - Unit Weight: 88 pcf
 - Cohesion: 400 psf
 - Phi: 0°
 - Phi-B: 0°
 - Pore Water Pressure
 - Piezometric Line: 1

- CH El. -5 to EL. -16
 - Model: Mohr-Coulomb
 - Unit Weight: 88 pcf
 - Cohesion: 200 psf
 - Phi: 0°
 - Phi-B: 0°
 - Pore Water Pressure
 - Piezometric Line: 1

- CH El. -16 to EL. -20
 - Model: Mohr-Coulomb
 - Unit Weight: 120 pcf
 - Cohesion: 400 psf
 - Phi: 0°
 - Phi-B: 0°
 - Pore Water Pressure
 - Piezometric Line: 1

Piezometric Lines
- Piezometric Line 1
 - Coordinates:
 - X (ft) Y (ft)
 - 0 0
 - 330 0

Point Loads
- Coordinate (ft) Magnitude (lbs) Direction (°)
 - 73.5 6.4 2500 90
 - 81.5 6.4 2500 90

Regions
- Material Points Area (ft²)
 - Region 1 CH El. -5 to EL. -16 31.32 2.3.13,12,11,29,1 3482.1280
 - Region 2 CH El. -24 to EL. -30 34.6 5.33 1980
 - Region 3 CH El. -30 to EL. -40 7.6 8.8 3360
Region 4 LEVIE 9.10,17.19 137.5
Region 5 LEVIE 14.15,16.25,24,23,22,21,20 517.01
Region 6 CH El. 1.5 to El. -5 1.27,18,9.19,20 459.82
Region 7 CH El. 1.5 to El. -5 30,20,21,22,23,24,25,16,26,28,2 260.1545
Region 8 CH El. -16 to El. -20 3.3,3.4,3.4 1330
Region 9 CH El. -20 to El. -24 33,3.4,3.4 1330
Region 10 CH El. -40 to El. -50 35,7.8,36 1300

Points

<table>
<thead>
<tr>
<th>X (ft)</th>
<th>Y (ft)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>130</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>330</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>130</td>
</tr>
<tr>
<td>7</td>
<td>0</td>
</tr>
<tr>
<td>8</td>
<td>130</td>
</tr>
<tr>
<td>9</td>
<td>58.1</td>
</tr>
<tr>
<td>10</td>
<td>72.5</td>
</tr>
<tr>
<td>11</td>
<td>150</td>
</tr>
<tr>
<td>12</td>
<td>180</td>
</tr>
<tr>
<td>13</td>
<td>210</td>
</tr>
<tr>
<td>14</td>
<td>282.5</td>
</tr>
<tr>
<td>15</td>
<td>292.5</td>
</tr>
<tr>
<td>16</td>
<td>316</td>
</tr>
<tr>
<td>17</td>
<td>82.5</td>
</tr>
<tr>
<td>18</td>
<td>30</td>
</tr>
<tr>
<td>19</td>
<td>105.9</td>
</tr>
<tr>
<td>20</td>
<td>239.3</td>
</tr>
<tr>
<td>21</td>
<td>260</td>
</tr>
<tr>
<td>22</td>
<td>262.5</td>
</tr>
<tr>
<td>23</td>
<td>280</td>
</tr>
<tr>
<td>24</td>
<td>287.6</td>
</tr>
<tr>
<td>25</td>
<td>294.8</td>
</tr>
</tbody>
</table>

Critical Slip Surfaces

<table>
<thead>
<tr>
<th>Slip Surface</th>
<th>FOS</th>
<th>Center (ft)</th>
<th>Radius (ft)</th>
<th>Entry (ft)</th>
<th>Exit (ft)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 2797</td>
<td>1.49</td>
<td>(95.423, 5.86)</td>
<td>26.22</td>
<td>(86.275, 4.325)</td>
<td>(123.584, -1.81584)</td>
</tr>
</tbody>
</table>

Slices of Slip Surface: 2797

<table>
<thead>
<tr>
<th>Slip Surface</th>
<th>X (ft)</th>
<th>Y (ft)</th>
<th>PWP (psf)</th>
<th>Base Normal Stress (psf)</th>
<th>Frictional Strength (psf)</th>
<th>Cohesive Strength (psf)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 2797</td>
<td>67.62612</td>
<td>2.973878</td>
<td>-185.5713</td>
<td>-905.59282</td>
<td>0</td>
<td>600</td>
</tr>
<tr>
<td>2 2797</td>
<td>69.78862</td>
<td>0.811371</td>
<td>-50.52915</td>
<td>247.88155</td>
<td>0</td>
<td>600</td>
</tr>
<tr>
<td>3 2797</td>
<td>71.55</td>
<td>-0.95</td>
<td>59.283594</td>
<td>467.7907</td>
<td>0</td>
<td>400</td>
</tr>
<tr>
<td>4 2797</td>
<td>73.275</td>
<td>-2.675</td>
<td>166.91826</td>
<td>2250.0594</td>
<td>0</td>
<td>400</td>
</tr>
<tr>
<td>5 2797</td>
<td>74.825</td>
<td>-4.225</td>
<td>263.64134</td>
<td>788.85746</td>
<td>0</td>
<td>400</td>
</tr>
<tr>
<td>6 2797</td>
<td>76.4625</td>
<td>-5.8625</td>
<td>365.81817</td>
<td>1063.2018</td>
<td>0</td>
<td>200</td>
</tr>
<tr>
<td>7 2797</td>
<td>78.1875</td>
<td>-7.5875</td>
<td>473.45418</td>
<td>1213.3544</td>
<td>0</td>
<td>200</td>
</tr>
<tr>
<td>8 2797</td>
<td>79.925</td>
<td>-9.325</td>
<td>581.0984</td>
<td>1363.4861</td>
<td>0</td>
<td>200</td>
</tr>
<tr>
<td>9 2797</td>
<td>81.6375</td>
<td>-11.0375</td>
<td>688.74261</td>
<td>2947.7544</td>
<td>0</td>
<td>200</td>
</tr>
<tr>
<td>10 2797</td>
<td>83.75</td>
<td>-13.15</td>
<td>820.56497</td>
<td>1068.8168</td>
<td>0</td>
<td>200</td>
</tr>
<tr>
<td>11 2797</td>
<td>85.95</td>
<td>-14.4</td>
<td>898.57895</td>
<td>1880.1579</td>
<td>0</td>
<td>200</td>
</tr>
<tr>
<td>12 2797</td>
<td>87.85</td>
<td>-14.4</td>
<td>898.57895</td>
<td>1836.1579</td>
<td>0</td>
<td>200</td>
</tr>
<tr>
<td>13 2797</td>
<td>89.75</td>
<td>-14.4</td>
<td>898.57895</td>
<td>1792.1579</td>
<td>0</td>
<td>200</td>
</tr>
<tr>
<td>14 2797</td>
<td>91.65</td>
<td>-14.4</td>
<td>898.57895</td>
<td>1748.1579</td>
<td>0</td>
<td>200</td>
</tr>
<tr>
<td>15 2797</td>
<td>93.55</td>
<td>-14.4</td>
<td>898.57895</td>
<td>1704.1579</td>
<td>0</td>
<td>200</td>
</tr>
</tbody>
</table>
Block RtoL-P Load-Water -0'

File Information
Created By: Bukkapatnam, Ananth
Revision Number: 62
Last Edited By: Shewalla, Mahendra
Date: 7/18/2013
Time: 8:56:10 AM
File Name: Conveyance Channel 60 feet - North of US61-St 140+50.gsz
Directory: I:\Projects\OCPR Maurepas Geotech\10001863-Maurepas Final Design II\FINAL REPORT 7-13\FINAL Stability Analyses\Conveyance Channel to 61\North of US 61 Final 2013
Last Solved Date: 7/18/2013
Last Solved Time: 8:56:30 AM

Project Settings
Length(L) Units: feet
Time(t) Units: Seconds
Force(F) Units: lbf
Pressure(p) Units: psf
Strength Units: psf
Unit Weight of Water: 62.4 pcf
View: 2D

Analysis Settings
Block RtoL-P Load-Water -0'
Kind: SLOPE/W
Method: Spencer
Settings
Apply Phreatic Correction: Yes
PWP Conditions Source: Piezometric Line
Use Staged Rapid Drawdown: No
Slip Surface
Direction of movement: Right to Left
Use Passive Mode: No
Slip Surface Option: Block
Critical slip surfaces saved: 1
Optimize Critical Slip Surface Location: No
Tension Crack
Tension Crack Option: [none]
FOS Distribution

Materials
LEVEE
Model: Mohr-Coulomb
Unit Weight: 115 pcf
Cohesion: 600 psf
Phi: 0°
Phi-B: 0°
Pore Water Pressure
Piezometric Line: 1

CH EL. 1.5 to EL. -5
Model: Mohr-Coulomb
Unit Weight: 88 pcf
Cohesion: 400 psf
Phi: 0°
Phi-B: 0°
Pore Water Pressure
Piezometric Line: 1

CH EL. -5 to EL. -16
Model: Mohr-Coulomb
Unit Weight: 88 pcf
Cohesion: 200 psf
Phi: 0°
Phi-B: 0°
Pore Water Pressure
Piezometric Line: 1

CH EL. -16 to EL. -20
Model: Mohr-Coulomb
Unit Weight: 120 pcf
Cohesion: 400 psf
Phi: 0°
Phi-B: 0°
Pore Water Pressure
Piezometric Line: 1

Piezometric Lines
Piezometric Line 1
Coordinates
X (ft) Y (ft)
0 0
330 0

Point Loads
Coordinate (ft) Magnitude (lbs) Direction (°)
Point Load 1 (283.5, 7.4) 2500 90
Point Load 2 (391.5, 7.4) 2500 90

Regions
<table>
<thead>
<tr>
<th>Material</th>
<th>Points</th>
<th>Area (ft²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Region 1</td>
<td>CH EL. -5 to EL. -16</td>
<td>3482.1280</td>
</tr>
<tr>
<td>Region 2</td>
<td>CH EL. -24 to EL. -30</td>
<td>1980</td>
</tr>
<tr>
<td>Region 3</td>
<td>CH EL. -90 to EL. -40</td>
<td>3360</td>
</tr>
</tbody>
</table>

Slip Surface Block
Left Grid
Upper Left: (200, -4.4) ft
Lower Left: (200, -24.4) ft
Lower Right: (250, -24.4) ft
X Increments: 10
Y Increments: 10
Starting Angle: 135°
Ending Angle: 135°
Angle Increments: 1

Right Grid
Upper Left: (261, -4.4) ft
Lower Left: (261, -24.4) ft
Lower Right: (311, -24.4) ft
X Increments: 10
Y Increments: 10
Starting Angle: 45°
Ending Angle: 45°
Angle Increments: 1

Cohesion: 400 psf
Phi: 0°
Phi-B: 0°
Pore Water Pressure
Piezometric Line: 1

CH EL. -20 to EL. -24
Model: Mohr-Coulomb
Unit Weight: 110 pcf
Cohesion: 800 psf
Phi: 0°
Phi-B: 0°
Pore Water Pressure
Piezometric Line: 1

CH EL. -24 to EL. -30
Model: Mohr-Coulomb
Unit Weight: 125 pcf
Cohesion: 800 psf
Phi: 0°
Phi-B: 0°
Pore Water Pressure
Piezometric Line: 1

CH EL. -30 to EL. -40
Model: Mohr-Coulomb
Unit Weight: 110 pcf
Cohesion: 800 psf
Phi: 0°
Phi-B: 0°
Pore Water Pressure
Piezometric Line: 1

CH EL. -40 to EL. -50
Model: Mohr-Coulomb
Unit Weight: 120 pcf
Cohesion: 1100 psf
Phi: 0°
Phi-B: 0°
Pore Water Pressure
Piezometric Line: 1

Slip Surface Limits
Left Coordinate: (0, 1.5) ft
Right Coordinate: (330, 0.3) ft
Points

<table>
<thead>
<tr>
<th>Points</th>
<th>X (ft)</th>
<th>Y (ft)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Point 1</td>
<td>0</td>
<td>-5</td>
</tr>
<tr>
<td>Point 2</td>
<td>130</td>
<td>-5</td>
</tr>
<tr>
<td>Point 3</td>
<td>0</td>
<td>20</td>
</tr>
<tr>
<td>Point 4</td>
<td>330</td>
<td>-20</td>
</tr>
<tr>
<td>Point 5</td>
<td>0</td>
<td>30</td>
</tr>
<tr>
<td>Point 6</td>
<td>130</td>
<td>-30</td>
</tr>
<tr>
<td>Point 7</td>
<td>0</td>
<td>40</td>
</tr>
<tr>
<td>Point 8</td>
<td>130</td>
<td>-40</td>
</tr>
<tr>
<td>Point 9</td>
<td>58.1</td>
<td>1.6</td>
</tr>
<tr>
<td>Point 10</td>
<td>72.5</td>
<td>6.4</td>
</tr>
<tr>
<td>Point 11</td>
<td>150</td>
<td>-7.4</td>
</tr>
<tr>
<td>Point 12</td>
<td>180</td>
<td>-7.1</td>
</tr>
<tr>
<td>Point 13</td>
<td>210</td>
<td>-7.1</td>
</tr>
<tr>
<td>Point 14</td>
<td>282.5</td>
<td>7.4</td>
</tr>
<tr>
<td>Point 15</td>
<td>292.5</td>
<td>7.4</td>
</tr>
<tr>
<td>Point 16</td>
<td>316</td>
<td>-0.5</td>
</tr>
<tr>
<td>Point 17</td>
<td>82.5</td>
<td>6.4</td>
</tr>
<tr>
<td>Point 18</td>
<td>30</td>
<td>-1.5</td>
</tr>
<tr>
<td>Point 19</td>
<td>105.9</td>
<td>1.7</td>
</tr>
<tr>
<td>Point 20</td>
<td>239.3</td>
<td>-1.3</td>
</tr>
<tr>
<td>Point 21</td>
<td>260</td>
<td>-4</td>
</tr>
<tr>
<td>Point 22</td>
<td>262.5</td>
<td>-4.2</td>
</tr>
<tr>
<td>Point 23</td>
<td>280</td>
<td>-4</td>
</tr>
<tr>
<td>Point 24</td>
<td>287.6</td>
<td>-3.7</td>
</tr>
<tr>
<td>Point 25</td>
<td>294.8</td>
<td>-3.2</td>
</tr>
</tbody>
</table>

Critical Slip Surfaces

<table>
<thead>
<tr>
<th>Slip Surface</th>
<th>FOS</th>
<th>Center (ft)</th>
<th>Radius (ft)</th>
<th>Entry (ft)</th>
<th>Exit (ft)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2825</td>
<td>(266.062, 6.639)</td>
<td>29.881</td>
<td>(300.209, 4.8086)</td>
<td>(233.113, -2.51312)</td>
</tr>
</tbody>
</table>

Slices of Slip Surface: 2825

<table>
<thead>
<tr>
<th>Slic</th>
<th>Slip Surface</th>
<th>X (ft)</th>
<th>Y (ft)</th>
<th>PWP (pdf)</th>
<th>Base Normal Stress (pdf)</th>
<th>Frictional Strength (pdf)</th>
<th>Cohesive Strength (pdf)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2825</td>
<td>234.35655</td>
<td>-3.7565075</td>
<td>234.40803</td>
<td>566.84484</td>
<td>0</td>
<td>400</td>
</tr>
<tr>
<td>2</td>
<td>2825</td>
<td>236.52585</td>
<td>-5.925</td>
<td>369.7213</td>
<td>621.1437</td>
<td>0</td>
<td>200</td>
</tr>
<tr>
<td>3</td>
<td>2825</td>
<td>238.375</td>
<td>-7.775</td>
<td>465.1317</td>
<td>793.1373</td>
<td>0</td>
<td>100</td>
</tr>
<tr>
<td>4</td>
<td>2825</td>
<td>240.25</td>
<td>-9.65</td>
<td>602.1572</td>
<td>976.1422</td>
<td>0</td>
<td>200</td>
</tr>
<tr>
<td>5</td>
<td>2825</td>
<td>242.15</td>
<td>-11.55</td>
<td>720.7278</td>
<td>1370.0755</td>
<td>0</td>
<td>200</td>
</tr>
<tr>
<td>6</td>
<td>2825</td>
<td>244.05</td>
<td>-13.45</td>
<td>839.2846</td>
<td>1364.0089</td>
<td>0</td>
<td>200</td>
</tr>
<tr>
<td>7</td>
<td>2825</td>
<td>245.376</td>
<td>-14.4</td>
<td>885.5693</td>
<td>1319.5192</td>
<td>0</td>
<td>200</td>
</tr>
<tr>
<td>8</td>
<td>2825</td>
<td>246.92325</td>
<td>-14.4</td>
<td>885.5771</td>
<td>1356.1187</td>
<td>0</td>
<td>200</td>
</tr>
<tr>
<td>9</td>
<td>2825</td>
<td>249.31625</td>
<td>-14.4</td>
<td>885.5771</td>
<td>1419.968</td>
<td>0</td>
<td>200</td>
</tr>
<tr>
<td>10</td>
<td>2825</td>
<td>251.6905</td>
<td>-14.4</td>
<td>885.5771</td>
<td>1483.3173</td>
<td>0</td>
<td>200</td>
</tr>
<tr>
<td>11</td>
<td>2825</td>
<td>254.06465</td>
<td>-14.4</td>
<td>885.5771</td>
<td>1546.6666</td>
<td>0</td>
<td>200</td>
</tr>
<tr>
<td>12</td>
<td>2825</td>
<td>256.4388</td>
<td>-14.4</td>
<td>885.5771</td>
<td>1610.0159</td>
<td>0</td>
<td>200</td>
</tr>
<tr>
<td>13</td>
<td>2825</td>
<td>258.8195</td>
<td>-14.4</td>
<td>885.5771</td>
<td>1673.3652</td>
<td>0</td>
<td>200</td>
</tr>
<tr>
<td>14</td>
<td>2825</td>
<td>261.25</td>
<td>-14.4</td>
<td>898.56</td>
<td>1736.68</td>
<td>0</td>
<td>200</td>
</tr>
<tr>
<td>15</td>
<td>2825</td>
<td>263.59375</td>
<td>-14.4</td>
<td>898.56</td>
<td>1793.327</td>
<td>0</td>
<td>200</td>
</tr>
</tbody>
</table>
Name: LEVREE Unit Weight: 115 pcf Cohesion: 600 psf Phi: 0 ° Piezometric Line: 1
Name: CH El. 0 to El. -5 Unit Weight: 88 pcf Cohesion: 400 psf Phi: 0 ° Piezometric Line: 1
Name: CH El. -5 to El. -16 Unit Weight: 88 pcf Cohesion: 200 psf Phi: 0 ° Piezometric Line: 1
Name: CH El. -16 to El. -20 Unit Weight: 120 pcf Cohesion: 400 psf Phi: 0 ° Piezometric Line: 1
Name: CH El. -20 to El. -24 Unit Weight: 120 pcf Cohesion: 800 psf Phi: 0 ° Piezometric Line: 1
Name: CH El. -24 to El. -30 Unit Weight: 125 pcf Cohesion: 800 psf Phi: 0 ° Piezometric Line: 1
Name: CH El. -30 to EL. -40 Unit Weight: 120 pcf Cohesion: 800 psf Phi: 0 ° Piezometric Line: 1
Name: CH El. -40 to EL. -50 Unit Weight: 120 pcf Cohesion: 1300 psf Phi: 0 ° Piezometric Line: 1

LAKE MAUPREPS DIVERSION PROJECT
CONVEYANCE CHANNEL - NORTH OF US - 61
STATION: 210+00
LIGHT WEIGHT PICK UP TRUCK: 5000 LBS/AXLE
GLOBAL ANALYSIS (BLOCK METHOD)
Block LtoR-P Load-Water -0'

File Information
Created By: Bukkapatnam, Ananth
Revision Number: 62
Last Edited By: Shewalla, Mahendra
Date: 7/18/2013
Time: 9:00:15 AM
File Name: Conveyance Channel 60 feet - North of US61-St 210+00.gsz
Directory: I:\Projects\OCPR Maurepas Geotech\10001863-Maurepas Final Design II\FINAL REPORT 7-13\FINAL Stability Analyses\Conveyance Channel to 61\North of US 61 Final 2013
Last Solved Date: 7/18/2013
Last Solved Time: 9:00:26 AM

Project Settings
Length(L) Units: feet
Time(t) Units: Seconds
Force(F) Units: lbf
Pressure(p) Units: psf
Strength Units: psf
Unit Weight of Water: 62.4 pcf
View: 2D

Analysis Settings
Block LtoR-P Load-Water -0'
Kind: SLOPE/W
Method: Spencer

Settings
Apply Phreatic Correction: Yes
PWP Conditions Source: Piezometric Line
Use Staged Rapid Drawdown: No

Slip Surface
Direction of movement: Left to Right
Use Passive Mode: No
Slip Surface Option: Block
Critical slip surfaces saved: 1
Optimize Critical Slip Surface Location: No
Tension Crack Option: (none)

FOS Distribution Option: Constant
Restrict Block Crossing: Yes
Advanced
Number of Slices: 30
Optimization Tolerance: 0.01
Minimum Slip Surface Depth: 0.1 ft
Optimization Maximum Iterations: 2000
Optimization Convergence Tolerance: 1e-007
Starting Optimization Points: 8
Ending Optimization Points: 16
Complete Pauses per insertion: 3
Driving Side Maximum Convex Angle: 5 °
Resisting Side Maximum Convex Angle: 1 °

Number of Slices: 30
Optimization Tolerance: 0.01
Minimum Slip Surface Depth: 0.1 ft
Optimization Maximum Iterations: 2000
Optimization Convergence Tolerance: 1e-007
Starting Optimization Points: 8
Ending Optimization Points: 16
Complete Pauses per insertion: 3
Driving Side Maximum Convex Angle: 5 °
Resisting Side Maximum Convex Angle: 1 °

Materials
LEVEE
Model: Mohr-Coulomb
Unit Weight: 115 pcf
Cohesion: 600 psf
Phi: 0 °
Phi-B: 0 °
Pore Water Pressure
Piezometric Line: 1

CH El. 0 to El. -5
Model: Mohr-Coulomb
Unit Weight: 88 pcf
Cohesion: 400 psf
Phi: 0 °
Phi-B: 0 °
Pore Water Pressure
Piezometric Line: 1

CH El. -5 to El. -16
Model: Mohr-Coulomb
Unit Weight: 88 pcf
Cohesion: 200 psf
Phi: 0 °
Phi-B: 0 °
Pore Water Pressure
Piezometric Line: 1

CH El. -16 to El. -20
Model: Mohr-Coulomb
Unit Weight: 120 pcf

Slip Surface Block
Left Grid
Upper Left: (45, -4.5) ft
Lower Left: (45, -24.5) ft
Lower Right: (95, -24.5) ft
X Increments: 10
Y Increments: 10
Starting Angle: 135 °
Ending Angle: 135 °
Angle Increments: 1

Right Grid
Upper Left: (101, -4.5) ft
Lower Left: (101, -24.5) ft
Lower Right: (151, -24.5) ft
X Increments: 10
Y Increments: 10
Starting Angle: 45 °
Ending Angle: 45 °
Angle Increments: 1

Piezometric Lines
Piezometric Line 1

Coordinates
X (ft) Y (ft)
0 0
330 0

Point Loads
Coordinate (ft) Magnitude (lbs) Direction (°)
Point load 1 (73.5, 6) 2500 90
Point load 2 (81.5, 6) 2500 90

Regions
Material Points Area (ft²)
Region 1 CH El. -5 to El. -16 11,12,2,10,20,19,18,9,1 3448.575
Region 2 CH El. -24 to El. -30 14,6,5,13 1980
Region 3 CH El. -30 to El. -40 3,5,6,8 3300
Region 4 CH El. -16 to El. -20 5,11,12,4 1320
Region 5 CH El. -20 to El. -24 13,3,4,14 1320
Region 6 LEVEE 15,16,17,27,26,25 190.585
Region 7 LEVEE 26,21,22,23,31,30,29 231.64
Region 8 CH El. 0 to El. -5 1,32,24,25,26,27,29,31,33,32,2 623.378
Region 9 CH El. 0 to El. -10 2,3,4,5,6,7,8,9,10,11,12,13,14,15 513.600
Region 10 CH El. -40 to El. -50 14,7,8,35 3300

Points

<table>
<thead>
<tr>
<th>Points</th>
<th>X (ft)</th>
<th>Y (ft)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Point 1</td>
<td>0</td>
<td>-5</td>
</tr>
<tr>
<td>Point 2</td>
<td>130</td>
<td>-5</td>
</tr>
<tr>
<td>Point 3</td>
<td>0</td>
<td>-20</td>
</tr>
<tr>
<td>Point 4</td>
<td>330</td>
<td>-20</td>
</tr>
<tr>
<td>Point 5</td>
<td>0</td>
<td>-30</td>
</tr>
<tr>
<td>Point 6</td>
<td>130</td>
<td>-30</td>
</tr>
<tr>
<td>Point 7</td>
<td>0</td>
<td>-40</td>
</tr>
<tr>
<td>Point 8</td>
<td>130</td>
<td>-40</td>
</tr>
<tr>
<td>Point 9</td>
<td>137.44</td>
<td>-5</td>
</tr>
<tr>
<td>Point 10</td>
<td>222.58</td>
<td>-5</td>
</tr>
<tr>
<td>Point 11</td>
<td>0</td>
<td>-16</td>
</tr>
<tr>
<td>Point 12</td>
<td>130</td>
<td>-16</td>
</tr>
<tr>
<td>Point 13</td>
<td>0</td>
<td>-24</td>
</tr>
<tr>
<td>Point 14</td>
<td>130</td>
<td>-24</td>
</tr>
<tr>
<td>Point 15</td>
<td>51.3</td>
<td>-3.1</td>
</tr>
<tr>
<td>Point 16</td>
<td>72.5</td>
<td>6</td>
</tr>
<tr>
<td>Point 17</td>
<td>82.5</td>
<td>6</td>
</tr>
<tr>
<td>Point 18</td>
<td>156</td>
<td>-7.5</td>
</tr>
<tr>
<td>Point 19</td>
<td>180</td>
<td>-7.5</td>
</tr>
<tr>
<td>Point 20</td>
<td>210</td>
<td>-7.5</td>
</tr>
<tr>
<td>Point 21</td>
<td>282.5</td>
<td>7</td>
</tr>
<tr>
<td>Point 22</td>
<td>292.5</td>
<td>7</td>
</tr>
<tr>
<td>Point 23</td>
<td>312.6</td>
<td>-0.3</td>
</tr>
<tr>
<td>Point 24</td>
<td>30</td>
<td>0</td>
</tr>
<tr>
<td>Point 25</td>
<td>68.2</td>
<td>0</td>
</tr>
</tbody>
</table>

Critical Slip Surfaces

<table>
<thead>
<tr>
<th>Slip Surface</th>
<th>FOS</th>
<th>Center (ft)</th>
<th>Radius (ft)</th>
<th>Entry (ft)</th>
<th>Exit (ft)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 2777</td>
<td>2777</td>
<td>1.49</td>
<td>(95.414, 5.538)</td>
<td>25.982</td>
<td>(123.311, 2.18881)</td>
</tr>
</tbody>
</table>

Slices of Slip Surface: 2777

<table>
<thead>
<tr>
<th>Slip Surface</th>
<th>X (ft)</th>
<th>Y (ft)</th>
<th>PWP (psf)</th>
<th>Base Normal Stress (psf)</th>
<th>Frictional Strength (psf)</th>
<th>Cohesive Strength (psf)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 2777</td>
<td>2777</td>
<td>16.45</td>
<td>1737.713</td>
<td>0</td>
<td>200</td>
<td></td>
</tr>
<tr>
<td>17 2777</td>
<td>1737.713</td>
<td>0</td>
<td>200</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18 2777</td>
<td>1692.9801</td>
<td>0</td>
<td>200</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>19 2777</td>
<td>1648.1873</td>
<td>0</td>
<td>200</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20 2777</td>
<td>1603.418</td>
<td>0</td>
<td>200</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>21 2777</td>
<td>1558.6125</td>
<td>0</td>
<td>200</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22 2777</td>
<td>1513.8076</td>
<td>0</td>
<td>200</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>23 2777</td>
<td>1469.0513</td>
<td>0</td>
<td>200</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>24 2777</td>
<td>1424.2449</td>
<td>0</td>
<td>200</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>25 2777</td>
<td>1379.49</td>
<td>0</td>
<td>200</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>26 2777</td>
<td>1334.6837</td>
<td>0</td>
<td>200</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>27 2777</td>
<td>1299.357</td>
<td>0</td>
<td>200</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>28 2777</td>
<td>1210.9947</td>
<td>0</td>
<td>200</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>29 2777</td>
<td>1188.67</td>
<td>0</td>
<td>200</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>30 2777</td>
<td>1143.289</td>
<td>0</td>
<td>200</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>31 2777</td>
<td>1107.449</td>
<td>0</td>
<td>200</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>32 2777</td>
<td>1071.605</td>
<td>0</td>
<td>200</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Name: LEVEE Unit Weight: 115 pcf Cohesion: 600 psf Phi: 0 ° Piezometric Line: 1
Name: CH El. 0 to El. -5 Unit Weight: 88 pcf Cohesion: 400 psf Phi: 0 ° Piezometric Line: 1
Name: CH El. -5 to El. -16 Unit Weight: 88 pcf Cohesion: 200 psf Phi: 0 ° Piezometric Line: 1
Name: CH El. -16 to El. -20 Unit Weight: 120 pcf Cohesion: 400 psf Phi: 0 ° Piezometric Line: 1
Name: CH El. -20 to El. -24 Unit Weight: 120 pcf Cohesion: 800 psf Phi: 0 ° Piezometric Line: 1
Name: CH El. -24 to El. -30 Unit Weight: 125 pcf Cohesion: 800 psf Phi: 0 ° Piezometric Line: 1
Name: CH El. -30 to El. -40 Unit Weight: 120 pcf Cohesion: 800 psf Phi: 0 ° Piezometric Line: 1
Name: CH El. -40 to El. -50 Unit Weight: 120 pcf Cohesion: 1300 psf Phi: 0 ° Piezometric Line: 1
Block RtoL-P Load-Water -0'

--- File Information ---
Created By: Bukkapatnam, Ananth
Last Edited By: Shewalla, Mahendra
Date: 7/18/2013
Time: 9:00:15 AM
File Name: Conveyance Channel 60 feet - North of US61-St 210+00.gsz
Directory: I:\Projects\OCPR Maurepas Geotech\10001863-Maurepas Final Design II\FINAL REPORT 7-13\FINAL Stability Analyses\Conveyance Channel to 61\North of US 61 Final 2013
Last Solved Date: 7/18/2013
Last Solved Time: 9:00:36 AM

--- Project Settings ---
Length(L) Units: feet
Time(t) Units: Seconds
Force(F) Units: lbf
Pressure(p) Units: psf
Strength Units: psf
Unit Weight of Water: 62.4 pcf
View: 2D

--- Analysis Settings ---
Block RtoL-P Load-Water -0'
Kind: SLOPE/W
Method: Spencer
Settings
 Apply Phreatic Correction: Yes
PWP Conditions Source: Piezometric Line
Use Staged Rapid Drawdown: No
Slip Surface
 Direction of movement: Right to Left
 Use Passive Mode: No
 Slip Surface Option: Block
Critical slip surfaces saved: 1
 Optimize Critical Slip Surface Location: No
 Tension Crack Option: (none)
FOS Distribution
 FOS Calculation Option: Constant
 Restrict Block Crossing: Yes
Advanced
 Number of Slices: 30
 Optimization Tolerance: 0.01
 Optimization Maximum Iterations: 2000
 Optimization Convergence Tolerance: 1e-007
 Starting Optimization Points: 8
 Ending Optimization Points: 16
 Complete Passes per Insertion: 3
 Driving Side Maximum Convex Angle: 5 °
 Resisting Side Maximum Convex Angle: 1 °

--- Materials ---
LEVEE
Model: Mohr-Coulomb
Unit Weight: 115 pcf
Cohesion: 600 psf
Phi: 0 °
Phi-B: 0 °
Pore Water Pressure
Piezometric Line: 1
CH El. 0 to El. -5
Model: Mohr-Coulomb
Unit Weight: 88 pcf
Cohesion: 400 psf
Phi: 0 °
Phi-B: 0 °
Pore Water Pressure
Piezometric Line: 1
CH El. -5 to El. -16
Model: Mohr-Coulomb
Unit Weight: 88 pcf
Cohesion: 200 psf
Phi: 0 °
Phi-B: 0 °
Pore Water Pressure
Piezometric Line: 1
CH El. -16 to El. -20
Model: Mohr-Coulomb
Unit Weight: 120 pcf
Cohesion: 400 psf
Phi: 0 °
Phi-B: 0 °
Pore Water Pressure
Piezometric Line: 1

--- Slip Surface Block ---
Left Grid
 Upper Left: (205, -4.5) ft
 Lower Left: (205, -24.5) ft
 Lower Right: (255, -24.5) ft
 X Increments: 10
 Y Increments: 10
 Starting Angle: 135 °
 Ending Angle: 135 °
 Angle Increments: 1
Right Grid
 Upper Left: (266, -4.5) ft
 Lower Left: (266, -24.5) ft
 Lower Right: (316, -24.5) ft
 X Increments: 10
 Y Increments: 10
 Starting Angle: 45 °
 Ending Angle: 45 °
 Angle Increments: 1

--- Piezometric Lines ---
Piezometric Line 1
Coordinates
 X (ft) Y (ft)
 0 0
 330 0

--- Point Loads ---
Point Load 1
 Coordinate (ft) Magnitude (lbs) Direction(°)
 (283.5, 7) 2500 90
Point Load 2
 (291.5, 7) 2500 90

--- Regions ---
<table>
<thead>
<tr>
<th>Region</th>
<th>Material</th>
<th>Points</th>
<th>Area (ft²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>CH El. -5 to El. -16</td>
<td>11.1220.199.1</td>
<td>3448.575</td>
</tr>
<tr>
<td>2</td>
<td>CH El. -24 to El. -30</td>
<td>14.6,5.13</td>
<td>1980</td>
</tr>
<tr>
<td>3</td>
<td>CH El. -30 to El. -40</td>
<td>7.5,6.6</td>
<td>3300</td>
</tr>
</tbody>
</table>
Points

<table>
<thead>
<tr>
<th>X (ft)</th>
<th>Y (ft)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Point 1</td>
<td>0</td>
</tr>
<tr>
<td>Point 2</td>
<td>130</td>
</tr>
<tr>
<td>Point 3</td>
<td>0</td>
</tr>
<tr>
<td>Point 4</td>
<td>330</td>
</tr>
<tr>
<td>Point 5</td>
<td>0</td>
</tr>
<tr>
<td>Point 6</td>
<td>330</td>
</tr>
<tr>
<td>Point 7</td>
<td>0</td>
</tr>
<tr>
<td>Point 8</td>
<td>130</td>
</tr>
<tr>
<td>Point 9</td>
<td>137.44</td>
</tr>
<tr>
<td>Point 10</td>
<td>222.58</td>
</tr>
<tr>
<td>Point 11</td>
<td>0</td>
</tr>
<tr>
<td>Point 12</td>
<td>330</td>
</tr>
<tr>
<td>Point 13</td>
<td>0</td>
</tr>
<tr>
<td>Point 14</td>
<td>130</td>
</tr>
<tr>
<td>Point 15</td>
<td>51.3</td>
</tr>
<tr>
<td>Point 16</td>
<td>72.5</td>
</tr>
<tr>
<td>Point 17</td>
<td>82.5</td>
</tr>
<tr>
<td>Point 18</td>
<td>150</td>
</tr>
<tr>
<td>Point 19</td>
<td>180</td>
</tr>
<tr>
<td>Point 20</td>
<td>210</td>
</tr>
<tr>
<td>Point 21</td>
<td>282.5</td>
</tr>
<tr>
<td>Point 22</td>
<td>292.5</td>
</tr>
<tr>
<td>Point 23</td>
<td>312.6</td>
</tr>
<tr>
<td>Point 24</td>
<td>30</td>
</tr>
<tr>
<td>Point 25</td>
<td>68.2</td>
</tr>
</tbody>
</table>

Critical Slip Surfaces

<table>
<thead>
<tr>
<th>Slip Surface</th>
<th>FOS</th>
<th>Center (ft)</th>
<th>Radius (ft)</th>
<th>Entry (ft)</th>
<th>Exit (ft)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2823</td>
<td>1.40</td>
<td>(298,251, 6,131)</td>
<td>28.184</td>
<td>(180, 4.5)</td>
</tr>
</tbody>
</table>

Slices of Slip Surface: 2823

<table>
<thead>
<tr>
<th>Slip Surface</th>
<th>X (ft)</th>
<th>Y (ft)</th>
<th>PDIP (psf)</th>
<th>Base Normal Stress (psf)</th>
<th>Frictional Strength (psf)</th>
<th>Cohesive Strength (psf)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2823</td>
<td>239.017</td>
<td>-3.5173115</td>
<td>219.12976</td>
<td>549.06553</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>2823</td>
<td>241.69695</td>
<td>-6.196949</td>
<td>386.68042</td>
<td>656.71575</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>2823</td>
<td>244.09085</td>
<td>-8.5908475</td>
<td>536.08303</td>
<td>879.46092</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>2823</td>
<td>246.48475</td>
<td>-10.84744</td>
<td>685.45611</td>
<td>1,012.2081</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>2823</td>
<td>248.84085</td>
<td>-13.54845</td>
<td>832.44656</td>
<td>1,335.823</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>2823</td>
<td>251.1</td>
<td>-14.9</td>
<td>904.81818</td>
<td>1,335.8182</td>
<td>0</td>
</tr>
<tr>
<td>7</td>
<td>2823</td>
<td>253.175</td>
<td>-14.5</td>
<td>904.82051</td>
<td>1,378.0513</td>
<td>0</td>
</tr>
<tr>
<td>8</td>
<td>2823</td>
<td>255.125</td>
<td>-14.5</td>
<td>904.82051</td>
<td>1,423.8462</td>
<td>0</td>
</tr>
<tr>
<td>9</td>
<td>2823</td>
<td>257.075</td>
<td>-14.5</td>
<td>904.82051</td>
<td>1,469.6923</td>
<td>0</td>
</tr>
<tr>
<td>10</td>
<td>2823</td>
<td>259.025</td>
<td>-14.5</td>
<td>904.82051</td>
<td>1,515.4872</td>
<td>0</td>
</tr>
<tr>
<td>11</td>
<td>2823</td>
<td>261</td>
<td>-14.5</td>
<td>904.82051</td>
<td>1,561.95</td>
<td>0</td>
</tr>
<tr>
<td>12</td>
<td>2823</td>
<td>263</td>
<td>-14.5</td>
<td>904.82051</td>
<td>1,606.05</td>
<td>0</td>
</tr>
<tr>
<td>13</td>
<td>2823</td>
<td>265</td>
<td>-14.5</td>
<td>904.82051</td>
<td>1,656.2</td>
<td>0</td>
</tr>
<tr>
<td>14</td>
<td>2823</td>
<td>267</td>
<td>-14.5</td>
<td>904.82051</td>
<td>1,703.3</td>
<td>0</td>
</tr>
<tr>
<td>15</td>
<td>2823</td>
<td>269</td>
<td>-14.5</td>
<td>904.82051</td>
<td>1,750.4</td>
<td>0</td>
</tr>
<tr>
<td>16</td>
<td>2823</td>
<td>271</td>
<td>-14.5</td>
<td>904.82051</td>
<td>1,797.55</td>
<td>0</td>
</tr>
<tr>
<td>17</td>
<td>2823</td>
<td>273</td>
<td>-14.5</td>
<td>904.82051</td>
<td>1,844.65</td>
<td>0</td>
</tr>
</tbody>
</table>

Critical Point Data

<table>
<thead>
<tr>
<th>Point</th>
<th>X (ft)</th>
<th>Y (ft)</th>
<th>PDIP (psf)</th>
<th>Base Normal Stress (psf)</th>
<th>Frictional Strength (psf)</th>
<th>Cohesive Strength (psf)</th>
</tr>
</thead>
<tbody>
<tr>
<td>18</td>
<td>2823</td>
<td>-14.5</td>
<td>904.8</td>
<td>1,891.75</td>
<td>0</td>
<td>200</td>
</tr>
<tr>
<td>19</td>
<td>2823</td>
<td>-14.5</td>
<td>904.8</td>
<td>1,938.85</td>
<td>0</td>
<td>200</td>
</tr>
<tr>
<td>20</td>
<td>2823</td>
<td>-14.5</td>
<td>904.8</td>
<td>1,986</td>
<td>0</td>
<td>200</td>
</tr>
<tr>
<td>21</td>
<td>2823</td>
<td>-14.5</td>
<td>904.8</td>
<td>2,021.2</td>
<td>0</td>
<td>200</td>
</tr>
<tr>
<td>22</td>
<td>2823</td>
<td>-15.75</td>
<td>858.00051</td>
<td>2,045.2391</td>
<td>0</td>
<td>200</td>
</tr>
<tr>
<td>23</td>
<td>2823</td>
<td>-12</td>
<td>748.78976</td>
<td>2,957.7217</td>
<td>0</td>
<td>200</td>
</tr>
<tr>
<td>24</td>
<td>2823</td>
<td>-10</td>
<td>623.96841</td>
<td>1,531.416</td>
<td>0</td>
<td>200</td>
</tr>
<tr>
<td>25</td>
<td>2823</td>
<td>-8</td>
<td>499.21741</td>
<td>1,155.842</td>
<td>0</td>
<td>200</td>
</tr>
<tr>
<td>26</td>
<td>2823</td>
<td>-6</td>
<td>374.41306</td>
<td>1,180.3207</td>
<td>0</td>
<td>200</td>
</tr>
<tr>
<td>27</td>
<td>2823</td>
<td>-4</td>
<td>249.60163</td>
<td>2,112.9059</td>
<td>0</td>
<td>400</td>
</tr>
<tr>
<td>28</td>
<td>2823</td>
<td>-4.16</td>
<td>93.569718</td>
<td>585.30153</td>
<td>0</td>
<td>400</td>
</tr>
<tr>
<td>29</td>
<td>2823</td>
<td>-1.75</td>
<td>395.73612</td>
<td>174.47094</td>
<td>0</td>
<td>400</td>
</tr>
<tr>
<td>30</td>
<td>2823</td>
<td>0.1707921</td>
<td>10.627398</td>
<td>274.47094</td>
<td>0</td>
<td>400</td>
</tr>
<tr>
<td>31</td>
<td>2823</td>
<td>3.460396</td>
<td>-215.92998</td>
<td>268.13298</td>
<td>0</td>
<td>600</td>
</tr>
</tbody>
</table>
Name: LEVEE Unit Weight: 115 pcf Cohesion: 600 psf Phi: 0 ° Piezometric Line: 1
Name: CH El. 0 to El. -5 Unit Weight: 88 pcf Cohesion: 400 psf Phi: 0 ° Piezometric Line: 1
Name: CH El. -5 to El. -16 Unit Weight: 88 pcf Cohesion: 200 psf Phi: 0 ° Piezometric Line: 1
Name: CH El. -16 to El. -20 Unit Weight: 120 pcf Cohesion: 400 psf Phi: 0 ° Piezometric Line: 1
Name: CH El. -20 to El. -24 Unit Weight: 120 pcf Cohesion: 800 psf Phi: 0 ° Piezometric Line: 1
Name: CH El. -24 to El. -30 Unit Weight: 125 pcf Cohesion: 800 psf Phi: 0 ° Piezometric Line: 1
Name: CH El. -30 to El. -40 Unit Weight: 120 pcf Cohesion: 800 psf Phi: 0 ° Piezometric Line: 1
Name: CH El. -40 to El. -50 Unit Weight: 120 pcf Cohesion: 1300 psf Phi: 0 ° Piezometric Line: 1

LAKE MAUPREPAS DIVERSION PROJECT
CONVEYANCE CHANNEL - NORTH OF US - 61
STATION: 211+50
LIGHT WEIGHT PICK UP TRUCK: 5000 LBS/AXLE
GLOBAL ANALYSIS (BLOCK METHOD)
Block Lto R-P Load-Water -0

File Information
Created By: Bukkapatnam, Ananth
Revision Number: 75
Last Edited By: Shewalla, Mahendra
Date: 7/18/2013
Time: 9:29:41 AM
File Name: Conveyance Channel 60 feet - North of US61-St 211+50.gsz
Directory: I:\Projects\OCPR Maurepas Geotech\10001863-Maurepas Final Design II\FINAL REPORT 7-13\FINAL Stability Analyses\Conveyance Channel to 61\North of US 61 Final 2013
Last Solved Date: 7/18/2013
Last Solved Time: 9:31:10 AM

Project Settings
Length(L) Units: feet
Time(t) Units: Seconds
Force(F) Units: lbf
Pressure(p) Units: psf
Strength Units: psf
Unit Weight of Water: 62.4 pcf
View: 2D

Analysis Settings
Block Lto R-P Load-Water -0
Kind: SLOPE/W
Method: Spencer
Settings
Apply Phreatic Correction: Yes
PWP Conditions Source: Piezometric Line
Use Staged Rapid Drawdown: No
Slip Surface
Direction of movement: Left to Right
Use Passive Mode: No
Slip Surface Option: Block
Critical slip surfaces saved: 1
Optimize Critical Slip Surface Location: No
Tension Crack
Tension Crack Option: (none)
FOS Distribution
FOS Calculation Option: Constant
Restrict Block Crossing: Yes
Advanced
Number of Slices: 30
Optimization Tolerance: 8.01
Minimum Slip Surface Depth: 0.1 ft
Optimization Maximum Iterations: 2000
Optimization Convergence Tolerance: 1e-007
Starting Optimization Points: 8
Ending Optimization Points: 16
Complete Pauses per insertion: 3
Driving Side Maximum Convex Angle: 5 °
Resisting Side Maximum Convex Angle: 5 °

Materials
LEVEE
Model: Mohr-Coulomb
Unit Weight: 115 psf
Cohesion: 600 psf
Phi: 0 °
Phi-B: 0 °
Pore Water Pressure
Piezometric Line: 1

CH El. 0 to El. -5
Model: Mohr-Coulomb
Unit Weight: 88 psf
Cohesion: 400 psf
Phi: 0 °
Phi-B: 0 °
Pore Water Pressure
Piezometric Line: 1

CH El. -5 to El. -16
Model: Mohr-Coulomb
Unit Weight: 88 psf
Cohesion: 200 psf
Phi: 0 °
Phi-B: 0 °
Pore Water Pressure
Piezometric Line: 1

CH El. -16 to El. -20
Model: Mohr-Coulomb
Unit Weight: 120 psf
Cohesion: 400 psf
Phi: 0 °
Phi-B: 0 °
Pore Water Pressure
Piezometric Line: 1

Piezometric Lines
Piezometric Line 1
Coordinates
<table>
<thead>
<tr>
<th>X (ft)</th>
<th>Y (ft)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>330</td>
<td>0</td>
</tr>
</tbody>
</table>

Point Loads
Coordinate (ft) | Magnitude (lbs) | Direction(°)
Point Load 1 (73.5, 6) | 2500 | 90
Point Load 2 (81.5, 6) | 2500 | 90

Regions
<table>
<thead>
<tr>
<th>Material</th>
<th>Points</th>
<th>Area [ft²]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Region 1</td>
<td>CH El -5 to El -16</td>
<td>11,12,2,10,17,16,15,9,1</td>
</tr>
<tr>
<td>Region 2</td>
<td>CH El -24 to El -30</td>
<td>14,6,5,13</td>
</tr>
<tr>
<td>Region 3</td>
<td>CH El -30 to El -40</td>
<td>7,16,8</td>
</tr>
</tbody>
</table>
Points

<table>
<thead>
<tr>
<th>X(ft)</th>
<th>Y(ft)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>-5</td>
</tr>
<tr>
<td>1</td>
<td>-15</td>
</tr>
<tr>
<td>2</td>
<td>-20</td>
</tr>
<tr>
<td>3</td>
<td>-20</td>
</tr>
<tr>
<td>4</td>
<td>-20</td>
</tr>
<tr>
<td>5</td>
<td>-20</td>
</tr>
<tr>
<td>6</td>
<td>-20</td>
</tr>
<tr>
<td>7</td>
<td>-20</td>
</tr>
<tr>
<td>8</td>
<td>-20</td>
</tr>
<tr>
<td>9</td>
<td>137.5</td>
</tr>
<tr>
<td>10</td>
<td>222.4</td>
</tr>
<tr>
<td>11</td>
<td>462.7</td>
</tr>
<tr>
<td>12</td>
<td>330</td>
</tr>
<tr>
<td>13</td>
<td>330</td>
</tr>
<tr>
<td>14</td>
<td>330</td>
</tr>
<tr>
<td>15</td>
<td>330</td>
</tr>
<tr>
<td>16</td>
<td>180</td>
</tr>
<tr>
<td>17</td>
<td>210</td>
</tr>
<tr>
<td>18</td>
<td>571</td>
</tr>
<tr>
<td>19</td>
<td>725</td>
</tr>
<tr>
<td>20</td>
<td>825</td>
</tr>
<tr>
<td>21</td>
<td>282.5</td>
</tr>
<tr>
<td>22</td>
<td>292.5</td>
</tr>
<tr>
<td>23</td>
<td>312.8</td>
</tr>
<tr>
<td>24</td>
<td>30</td>
</tr>
<tr>
<td>25</td>
<td>33.4</td>
</tr>
</tbody>
</table>

Critical Slip Surfaces

Slices of Slip Surface: 16131

<table>
<thead>
<tr>
<th>Slip Surface</th>
<th>X(ft)</th>
<th>Y(ft)</th>
<th>PWP (psf)</th>
<th>Base Normal Stress (psf)</th>
<th>Frictional Strength (psf)</th>
<th>Cohesive Strength (psf)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>16131</td>
<td>1.49</td>
<td>104.35</td>
<td>5.03 1.38</td>
<td>37.063 0.33</td>
<td>0 500</td>
</tr>
<tr>
<td>2</td>
<td>16131</td>
<td>3.13</td>
<td>71.75</td>
<td>14.38 0.91</td>
<td>39.07 0.06</td>
<td>0 500</td>
</tr>
<tr>
<td>3</td>
<td>16131</td>
<td>4.89</td>
<td>0.39</td>
<td>21.84 0.04</td>
<td>27.86 0.04</td>
<td>0 400</td>
</tr>
<tr>
<td>4</td>
<td>16131</td>
<td>6.54</td>
<td>1.90</td>
<td>86.79 0.56</td>
<td>42.0 0.58</td>
<td>0 400</td>
</tr>
<tr>
<td>5</td>
<td>16131</td>
<td>8.19</td>
<td>-3.09</td>
<td>242.89 0.93</td>
<td>62.48 0.93</td>
<td>0 400</td>
</tr>
<tr>
<td>6</td>
<td>16131</td>
<td>9.84</td>
<td>85.86</td>
<td>385.04 0.08</td>
<td>97.94 0.08</td>
<td>0 200</td>
</tr>
<tr>
<td>7</td>
<td>16131</td>
<td>11.49</td>
<td>8.511</td>
<td>511.28 1.17</td>
<td>248.7 1.17</td>
<td>0 200</td>
</tr>
<tr>
<td>8</td>
<td>16131</td>
<td>13.14</td>
<td>12.46</td>
<td>707.66 1.83</td>
<td>177.9 1.83</td>
<td>0 200</td>
</tr>
<tr>
<td>9</td>
<td>16131</td>
<td>14.79</td>
<td>13.82</td>
<td>811.19 1.98</td>
<td>175.2 1.98</td>
<td>0 200</td>
</tr>
</tbody>
</table>
Name: LEVEE Unit Weight: 115 pcf Cohesion: 600 psf Phi: 0 ° Piezometric Line: 1
Name: CH El. 0 to El. -5 Unit Weight: 88 pcf Cohesion: 400 psf Phi: 0 ° Piezometric Line: 1
Name: CH El. -5 to El. -16 Unit Weight: 88 pcf Cohesion: 200 psf Phi: 0 ° Piezometric Line: 1
Name: CH El. -16 to El. -24 Unit Weight: 120 pcf Cohesion: 400 psf Phi: 0 ° Piezometric Line: 1
Name: CH El. -24 to El. -30 Unit Weight: 125 pcf Cohesion: 800 psf Phi: 0 ° Piezometric Line: 1
Name: CH El. -30 to El. -40 Unit Weight: 120 pcf Cohesion: 800 psf Phi: 0 ° Piezometric Line: 1
Name: CH El. -40 to El. -50 Unit Weight: 120 pcf Cohesion: 1300 psf Phi: 0 ° Piezometric Line: 1

LAKE MAUPREPAS DIVERSION PROJECT
CONVEYANCE CHANNEL - NORTH OF US - 61
STATION: 211+50
LIGHT WEIGHT PICK UP TRUCK: 5000 LBS/AXLE
GLOBAL ANALYSIS (BLOCK METHOD)
Block Rto L-P Load-Water -0'

File Information
Created By: Bukkapatnam, Ananth
Revision Number: 76
Last Edited By: Shewalla, Mahendra
Date: 7/18/2013
Time: 9:33:02 AM
File Name: Conveyance Channel 60 feet - North of US61-St 211+50.gsz
Directory: I:\Projects\OCPR Maurepas Geotech\10001863-Maurepas Final Design II\FINAL REPORT 7-13\FINAL Stability Analyses\Conveyance Channel to 61\North of US 61 Final 2013
Last Solved Date: 7/18/2013
Last Solved Time: 9:34:00 AM

Project Settings
Length(Units): feet
Time(Units): Seconds
Force(Units): lbf
Pressure(Units): psf
Strength Units: psf
Unit Weight of Water: 62.4 pcf
View: 2D

Analysis Settings
Block Rto L-P Load-Water -0'
Kind: SLOPE/W
Method: Spencer
Settings
Apply Phreatic Correction: Yes
PWP Conditions Source: Piezometric Line
Use Staged Rapid Drawdown: No
Slip Surface
Direction of movement: Right to Left
Use Passive Mode: No
Slip Surface Option: Block
Critical slip surfaces saved: 1
Optimize Critical Slip Surface Location: No
Tension Crack
Tension Crack Option: (none)
FOS Distribution
FOS Calculation Option: Constant
Restrict Block Crossing: Yes
Advanced
Number of Slices: 30
Optimization Tolerance: 0.01
Minimum Slip Surface Depth: 0.1 ft
Optimization Maximum Iterations: 2000
Optimization Convergence Tolerance: 1e-007
Starting Optimization Points: 8
Ending Optimization Points: 16
Complete Pauses per insertion: 3
Driving Side Maximum Convex Angle: 5 °
Resisting Side Maximum Convex Angle: 1 °

Materials
LEVEE
Model: Mohr-Coulomb
Unit Weight: 115 pcf
Cohesion: 600 psf
Phi: 0 °
Phi-B: 0 °
Pore Water Pressure
Piezometric Line: 1

CH El. 0 to El. -5
Model: Mohr-Coulomb
Unit Weight: 88 pcf
Cohesion: 400 psf
Phi: 0 °
Phi-B: 0 °
Pore Water Pressure
Piezometric Line: 1

CH El. -5 to El. -16
Model: Mohr-Coulomb
Unit Weight: 88 pcf
Cohesion: 300 psf
Phi: 0 °
Phi-B: 0 °
Pore Water Pressure
Piezometric Line: 1

CH El. -16 to El. -20
Model: Mohr-Coulomb
Unit Weight: 120 pcf
Cohesion: 800 psf
Phi: 0 °
Phi-B: 0 °
Pore Water Pressure
Piezometric Line: 1

Piezometric Lines
Piezometric Line 1
Coordinates
<table>
<thead>
<tr>
<th>X (ft)</th>
<th>Y (ft)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>330</td>
<td>0</td>
</tr>
</tbody>
</table>

Point Loads
Coordinate (ft) Magnitude (lbs) Direction (°)
Point load 1 (283.5, 7) 2500 90
Point load 2 (291.5, 7) 2500 90

Regions
<table>
<thead>
<tr>
<th>Material</th>
<th>Points</th>
<th>Area [ft²]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Region 1</td>
<td>CH El. -5 to El. -16</td>
<td>11,12,2,10,17,16,15,9,1</td>
</tr>
<tr>
<td>Region 2</td>
<td>CH El. -24 to El. -30</td>
<td>14,6,5,13</td>
</tr>
<tr>
<td>Region 3</td>
<td>CH El. -30 to El. -40</td>
<td>7,5,6,8</td>
</tr>
</tbody>
</table>
Points

<table>
<thead>
<tr>
<th>X (ft)</th>
<th>Y (ft)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Point 1</td>
<td>0</td>
</tr>
<tr>
<td>Point 2</td>
<td>330</td>
</tr>
<tr>
<td>Point 3</td>
<td>0</td>
</tr>
<tr>
<td>Point 4</td>
<td>330</td>
</tr>
<tr>
<td>Point 5</td>
<td>0</td>
</tr>
<tr>
<td>Point 6</td>
<td>330</td>
</tr>
<tr>
<td>Point 7</td>
<td>0</td>
</tr>
<tr>
<td>Point 8</td>
<td>330</td>
</tr>
<tr>
<td>Point 9</td>
<td>137</td>
</tr>
<tr>
<td>Point 10</td>
<td>222.4</td>
</tr>
<tr>
<td>Point 11</td>
<td>0</td>
</tr>
<tr>
<td>Point 12</td>
<td>330</td>
</tr>
<tr>
<td>Point 13</td>
<td>0</td>
</tr>
<tr>
<td>Point 14</td>
<td>330</td>
</tr>
<tr>
<td>Point 15</td>
<td>150</td>
</tr>
<tr>
<td>Point 16</td>
<td>180</td>
</tr>
<tr>
<td>Point 17</td>
<td>210</td>
</tr>
<tr>
<td>Point 18</td>
<td>37.1</td>
</tr>
<tr>
<td>Point 19</td>
<td>72.5</td>
</tr>
<tr>
<td>Point 20</td>
<td>82.5</td>
</tr>
<tr>
<td>Point 21</td>
<td>282.5</td>
</tr>
<tr>
<td>Point 22</td>
<td>292.5</td>
</tr>
<tr>
<td>Point 23</td>
<td>312.8</td>
</tr>
<tr>
<td>Point 24</td>
<td>30</td>
</tr>
<tr>
<td>Point 25</td>
<td>33.4</td>
</tr>
</tbody>
</table>

Critical Slip Surfaces: 12560

<table>
<thead>
<tr>
<th>Slip Surface</th>
<th>X (ft)</th>
<th>Y (ft)</th>
<th>PWP (psf)</th>
<th>Base Normal Stress (psf)</th>
<th>Frictional Strength (psf)</th>
<th>Cohesive Strength (psf)</th>
</tr>
</thead>
<tbody>
<tr>
<td>12560</td>
<td>237.50875</td>
<td>-2.9398505</td>
<td>183.48542</td>
<td>396.59366</td>
<td>0</td>
<td>400</td>
</tr>
<tr>
<td>2</td>
<td>237.50875</td>
<td>-5.3392085</td>
<td>209.14845</td>
<td>528.28791</td>
<td>0</td>
<td>400</td>
</tr>
<tr>
<td>3</td>
<td>241.59305</td>
<td>-5.592247</td>
<td>348.35697</td>
<td>556.00998</td>
<td>0</td>
<td>200</td>
</tr>
<tr>
<td>4</td>
<td>243.417</td>
<td>-6.776741</td>
<td>422.8664</td>
<td>669.66338</td>
<td>0</td>
<td>200</td>
</tr>
<tr>
<td>5</td>
<td>245.241</td>
<td>-7.96135</td>
<td>496.77583</td>
<td>783.28177</td>
<td>0</td>
<td>200</td>
</tr>
<tr>
<td>6</td>
<td>247.0459</td>
<td>-9.145729</td>
<td>570.71285</td>
<td>896.85418</td>
<td>0</td>
<td>200</td>
</tr>
<tr>
<td>7</td>
<td>248.8484</td>
<td>-10.707155</td>
<td>628.382</td>
<td>991.75771</td>
<td>0</td>
<td>200</td>
</tr>
<tr>
<td>8</td>
<td>250</td>
<td>-11.91375</td>
<td>689.63869</td>
<td>1110.4416</td>
<td>0</td>
<td>200</td>
</tr>
<tr>
<td>9</td>
<td>252</td>
<td>-12.9059</td>
<td>770.6918</td>
<td>1271.5921</td>
<td>0</td>
<td>200</td>
</tr>
</tbody>
</table>

5

6
Lake Maurepas - Conveyance Channel South of US 61 - Settlements Calculations for 3 feet Fill Height

<table>
<thead>
<tr>
<th>Fill Height (ft)</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>10</th>
<th>20</th>
<th>30</th>
</tr>
</thead>
<tbody>
<tr>
<td>3 feet Fill</td>
<td>0.354</td>
<td>0.476</td>
<td>0.547</td>
<td>0.592</td>
<td>0.626</td>
<td>0.690</td>
<td>0.714</td>
<td>0.717</td>
</tr>
</tbody>
</table>

Lake Maurepas - Conveyance Channel North of US 61 - Settlements Calculations for Various Fill Heights

<table>
<thead>
<tr>
<th>Fill Height (feet)</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>10</th>
<th>20</th>
<th>30</th>
</tr>
</thead>
<tbody>
<tr>
<td>4 feet Fill</td>
<td>0.953</td>
<td>1.329</td>
<td>1.573</td>
<td>1.734</td>
<td>1.841</td>
<td>2.045</td>
<td>2.081</td>
<td>2.084</td>
</tr>
<tr>
<td>5 feet Fill</td>
<td>0.901</td>
<td>1.270</td>
<td>1.536</td>
<td>1.746</td>
<td>1.887</td>
<td>2.254</td>
<td>2.393</td>
<td>2.410</td>
</tr>
<tr>
<td>6 feet Fill</td>
<td>0.883</td>
<td>1.249</td>
<td>1.524</td>
<td>1.762</td>
<td>1.926</td>
<td>2.442</td>
<td>2.702</td>
<td>2.747</td>
</tr>
<tr>
<td>7 feet Fill</td>
<td>0.965</td>
<td>1.364</td>
<td>1.666</td>
<td>1.909</td>
<td>2.109</td>
<td>2.691</td>
<td>2.999</td>
<td>3.058</td>
</tr>
<tr>
<td>8 feet Fill</td>
<td>1.046</td>
<td>1.479</td>
<td>1.808</td>
<td>2.073</td>
<td>2.293</td>
<td>2.943</td>
<td>3.309</td>
<td>3.383</td>
</tr>
<tr>
<td>9 feet Fill</td>
<td>1.115</td>
<td>1.577</td>
<td>1.930</td>
<td>2.213</td>
<td>2.453</td>
<td>3.166</td>
<td>3.590</td>
<td>3.682</td>
</tr>
</tbody>
</table>