# **Appendix B: Design Calculations**

- 1. Tidal Datum Evaluation
- 2. Percent Inundation Evaluation
- 3. Fill Area Volume Evaluation

#### I. TIDAL DATAUM EVALUATION

The Tidal Datum at the project site is needed to establish the construction marsh fill elevation. Coastwide Reference Monitoring System (CRMS) Station CRMS0398 was used. This station has a 10 year (August 2007 through August 2017) data set of water levels that will be used for the tidal datum evaluation.

## A. Given:

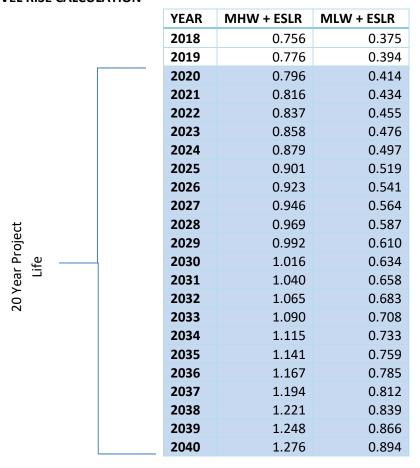
Station CRMS0164
Location N 29.389°
W 90.9168°

## B. Calculations:

Mean High Water (MHW) – Average of the daily maximum water elevation for period of analysis. Mean Low Water (MLW) – Average of the daily minimum water elevation for period of analysis. Mean Tide Level (MTL) – Average elevation of mean high and mean low water elevations. Mean Tide Range (MTR) – Difference between mean high and mean low water elevations.

REFERENCE: Tides and Datums, noaa.gov

| Tidal Datum – Period of Record |                              |  |  |
|--------------------------------|------------------------------|--|--|
| 8/2007 – 8/2017                |                              |  |  |
| Tidal Datum                    | Elevation (Ft. NAVD88 – 12A) |  |  |
| MHW                            | 0.76                         |  |  |
| MLW                            | 0.37                         |  |  |
| MTL                            | 0.57                         |  |  |
| MR                             | 0.38                         |  |  |


## **II. PERCENT INUNDATION DETERMINATION**

#### **Calculations:**

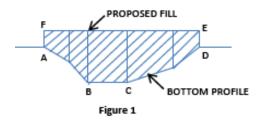
| Percent Inundated | Equation                 | Inundation Elevation (FT,<br>NAVD88 – 12A) |
|-------------------|--------------------------|--------------------------------------------|
| 1                 | 0.99*Raw Data Elevations | 1.61                                       |
| 10                | 0.9*Raw Data Elevations  | 1.08                                       |
| 20                | 0.8*Raw Data Elevations  | 0.90                                       |
| 30                | 0.7*Raw Data Elevations  | 0.80                                       |
| 40                | 0.6*Raw Data Elevations  | 0.70                                       |
| 50                | 0.5*Raw Data Elevations  | 0.61                                       |
| 60                | 0.4*Raw Data Elevations  | 0.51                                       |
| 65                | 0.35*Raw Data Elevations | 0.45                                       |
| 70                | 0.3*Raw Data Elevations  | 0.39                                       |
| 80                | 0.2*Raw Data Elevations  | 0.22                                       |
| 90                | 0.1*Raw Data Elevations  | 0.00                                       |

REFERENCE: Snedden and Swenson, 2012

#### III. RELATIVE SEA LEVEL RISE CALCULATION



#### **III. FILL AREA DESIGN**


section

## A. Given:

- 1. <u>Cross-Sectional Survey Data of Marsh Fill Sites</u>: XYZ data for each fill area cross-
  - 2. Volume Calculation Fill Elevations: +1.5 ft NAVD88
  - 3. Licensed Surveyor Point Files/AutoCad Drawing

## B. Methodology:

1. <u>Area Calculations</u>: The cross-sectional area of each marsh fill transect was calculated using the XYZ data mentioned above. Due to the large number of points involved with each cross-section, the following simplified example is used to show the method of calculating cross-sectional areas:



The area of this section can be obtained by incrementally computing the areas of each of the trapezoids ABCDEF shown in Figure 1. By treating the section as a traverse, fundamental survey methods can be utilized to calculate this area. These areas are calculated using the given data from the survey datasets with each point having a corresponding XYZ value. The incremental area calculations are carried out using the following formula:

 $A_i = \begin{tabular}{ll} $A_i = \begin{tabula$ 

The cumulative distance is computed by continuously summing the distance between each point, which is calculated with the distance formula:

$$\begin{split} L_i &= [(X_2 \text{-} X_1)^2 \text{+} (Y_2 \text{-} Y_1)^2 \text{+} (Z_2 \text{-} Z_1)^2]^{1/2} \\ &\quad \text{Where: } X \text{-} \text{easting} \\ &\quad Y \text{-} \text{northing} \\ &\quad Z \text{-} \text{elevation} \\ \text{And} \\ D_i &= \sum L_i \end{split}$$

The total area of the cross sections can be then obtained by summing each incremental area. Because these computations are so labor intensive, a spreadsheet was used for these area calculations.

- 2. <u>Distance Between Cross Sections</u>: Before the volume of the fill sites can be calculated, the distance between cross sections must be obtained. These distances represent the plan view area that each cross section will represent and were computed from the surveyor's CAD drawing.
- 3. <u>Volume Calculations</u>: The volume calculations for each cross section are computed by taking the product of the cross-sectional area and its corresponding distance. The incremental volumes are then added together to get the total volume of the fill site. This is accomplished using the simple formulas shown below:

$$V_{xs}=(A_{xs})(d)$$

Where:  $V_{xs}$ =Cross-sectional volume  $A_{xs}$ =Cross-sectional area D=Distance between cross-sections

 $V_{tot} = \sum V_{xs}$ 

These calculations were performed in Excel as well as in CAD. The table below details the results of both calculations.

| Bayou De Cade Ridge and Marsh Creation              |             |             |  |
|-----------------------------------------------------|-------------|-------------|--|
| Comparison of Civil3D Volume vs. Spreadsheet Volume |             |             |  |
| Marsh Fill Elevation: 1.5 feet NAVD8                | 8, Geoid12A | Cubic Yards |  |
| Civil 3D Volume                                     |             | 2,397,118   |  |
| Excel Spreadsheet Volume (Average End Area Method)  |             | 2,323,846   |  |
| Percent Error                                       |             | 3%          |  |

The volume of fill material found between each survey transect is summarized below.

| THE VOIGHN | Length        |                            |      |                   |  |
|------------|---------------|----------------------------|------|-------------------|--|
| Transect   | Area (sq ft.) | Average End Area (sq. ft.) | (ft) | Volume (cu. Yds.) |  |
| 2          | 627.5420344   |                            | 250  |                   |  |
| 3          | 648.1896673   | 637.8658508                | 250  | 5906.165286       |  |
| 4          | 1265.298277   | 956.7439722                | 250  | 8858.740483       |  |
| 5          | 1578.31427    | 1421.806274                | 250  | 13164.87291       |  |
| 6          | 1409.960156   | 1494.137213                | 250  | 13834.60383       |  |
| 7          | 1478.778208   | 1444.369182                | 250  | 13373.78872       |  |
| 8          | 1662.288909   | 1570.533559                | 250  | 14541.9774        |  |
| 9          | 665.3594848   | 1163.824197                | 250  | 10776.14997       |  |
| 10         | 2092.180034   | 1378.769759                | 250  | 12766.38666       |  |
| 11         | 2494.060491   | 2293.120262                | 250  | 21232.59502       |  |
| 12         | 2858.919929   | 2676.49021                 | 250  | 24782.31676       |  |
| 13         | 2305.332582   | 2582.126255                | 250  | 23908.57644       |  |
| 14         | 2443.845891   | 2374.589237                | 250  | 21986.93738       |  |
| 15         | 3124.735683   | 2784.290787                | 250  | 25780.47025       |  |
| 16         | 2074.534148   | 2599.634916                | 250  | 24070.69366       |  |
| 17         | 2730.348618   | 2402.441383                | 250  | 22244.82762       |  |
| 18         | 3455.943202   | 3093.14591                 | 250  | 28640.23991       |  |
| 19         | 5078.023758   | 4266.98348                 | 250  | 39509.1063        |  |
| 20         | 4939.903608   | 5008.963683                | 250  | 46379.29336       |  |
| 21         | 4329.800159   | 4634.851883                | 250  | 42915.29522       |  |
| 22         | 5277.479309   | 4803.639734                | 250  | 44478.14568       |  |
| 23         | 3987.929128   | 4632.704218                | 250  | 42895.40943       |  |
| 24         | 7762.046289   | 5874.987709                | 250  | 54398.03434       |  |
| 25         | 3924.321858   | 5843.184074                | 250  | 54103.55624       |  |
| 26         | 6416.707735   | 5170.514797                | 250  | 47875.13701       |  |
| 27         | 4988.24775    | 5702.477743                | 250  | 52800.71984       |  |

| 28 | 6587.88289  | 5788.06532  | 250 | 53593.19741 |
|----|-------------|-------------|-----|-------------|
| 29 | 4704.242042 | 5646.062466 | 250 | 52278.35617 |
| 30 | 8117.094739 | 6410.668391 | 250 | 59358.04065 |
| 31 | 11145.90838 | 9631.501558 | 250 | 89180.56998 |
| 32 | 10846.8749  | 10996.39164 | 250 | 101818.4411 |
| 33 | 9298.421186 | 10072.64805 | 250 | 93265.25968 |
| 34 | 7213.508623 | 8255.964905 | 250 | 76444.11949 |
| 35 | 15198.25562 | 11205.88212 | 250 | 103758.1678 |
| 36 | 12855.81482 | 14027.03522 | 250 | 129879.9557 |
| 37 | 7206.104292 | 10030.95956 | 250 | 92879.25515 |
| 38 | 8097.704923 | 7651.904607 | 250 | 70850.96859 |
| 39 | 5762.823626 | 6930.264275 | 250 | 64169.11365 |
| 40 | 7071.332612 | 6417.078119 | 250 | 59417.38999 |
| 41 | 11992.50335 | 9531.91798  | 250 | 88258.49982 |
| 42 | 6485.714191 | 9239.10877  | 250 | 85547.30342 |
| 43 | 14029.75497 | 10257.73458 | 250 | 94979.02388 |
| 44 | 11821.65009 | 12925.70253 | 250 | 119682.4308 |
| 45 | 6976.935938 | 9399.293013 | 250 | 87030.49086 |
| 46 | 5154.288925 | 6065.612431 | 250 | 56163.07807 |
| 47 | 1060.285391 | 3107.287158 | 250 | 28771.17739 |
| 48 | 83.88009032 | 572.0827407 | 250 | 5297.062414 |