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The U.S. Geological Survey (USGS) analyzed landscape be interpreted as being related to the degree of the polynomial fit yr) (Britsch and Dunbar, 1993; Barras and others, 1994, 2003). locations have already been lost. What remains are wetlands in less Table 1. Observed and modeled land area, including Standard Error (SE) in hydrologic basins and coastal Louisiana, 1932-2016. Units are in square kilometers. 20,000 — Table 2. Water]evels ata selected gage (S'Fation ID: 8761724, !ocated near Grand Isle, Louisiana) on the date of acquisition for imagery used in of three maps: U.S. Geological Survey Open-File Report 2006-1274.
changes in coastal Louisiana by determining land and water LIVINGSTON of the spline (edf = 1 is linear, edf = 2 is quadratic, and so on). We  This analysis indicates wetland change rates averaged -83 km?/yr ~ “at-risk” positions in the landscape which are consequently less Atchafalaya Delta Basin Barataria Basin Breton Sound Basin Calcasieu-Sabine Basin Mermentau Basin - Coastal Louisiana the land area estimates. Elevations provided in meters (m) relative to station datum. il i W i L sl i Wt
classifications for 21 datasets. Coastal Louisiana has been losing ' fit the models with and without weighting the data. As suspected, during the 1973-78 time period, followed by a steady reduction vulnerable and contribute to this reduction in loss rate; however, J:Iilan (I-a:)nd are:) (Lan: alreda) SE (La:)nd are:) (I.an: alreda) SE (La:)nd are:) (I.an: alreda) SE (La:,nd are:) (I.an: alreda) SE (Le:,nd are:) (I.an: alreda) SE A Path 21* Path 22* Path 23* Path 24* L
.- . . . . . . . . . . ate observe modele observe modele observe modele observe modele observe modele Year Date Gauge height (m Date Gauge height (m Date Gauge height (m Date Gauge height (m ’ '
wetlands because of multiple compounding and interacting ST JOHN oo 'ST failing to weight the data resulted in overfitting. Specifically, non-  in the rate since that time (fig. 4). Britsch and Dunbar (1993) and  even stable wetlands may be impacted by a single event or o5 50,58 . e rTETY O DreEreETTs Atchafalaya Delta . o ~ Barataria s Breton Sound 95 Ve N:tA a:abl(e J Ve N gtA : bl( J Ve N;A ai?abl(e J Voot S gtA 3 bl( ) s T, Fosay TR Ty o, 1555 R Toss e
< ] 1 ] g S o o o o . . . s . s . . s . 5 . . ) . 5 . . ) . ) . . S = V. aria Ol Avallapble V. ariapie Ol Availlaple T T . P > . iy
stressors including sea-level rise (SLR), subsidence, storms, THE BAPTIST ~ we ighted models were more complex (larger edf) and had higher  Barras and others (2008) observed a similar trend of decreasing cumulative episodic events over time (Morton and Barras, 2011). 1956 511.70 51408 2101 358092 3,629.09 7641 97402 102531 2636 209923 192975 5467 2379.63 232190 5597 19.000 |— 5 sl . ° - 1056 P . NotAvahc TETTETUNNEERRNNN . . o Aol O Fil Repons oagi - onal Biological Survey, Narional Wedaads Research Center
. L . . . ) R? values but generated slightly larger out-of-sample prediction loss after 1978. The lack of major storms since 2008 is likely the most ’ ’ ’ ’ ’ ’ ’ ' g e ° gh sl 4 y o
sediment deprivation, oil and gas extraction and infrastructure, T T . - ) ) 19739  510.33 516.82 1406  3,468.16 332322 4076  1,023.26  937.85 17.50  1,790.73  1,758.19 3579  2,302.35 221543 36.72 = = g 1973.9  12/5/1973  Not Available 2/3/1973 Not Available  12/7/1973  Not Available ~ 12/9/1973  Not Available Bernier, J.C., Morton, R.A., and Barras, J.A., 2006, Constraining rates and trends of historical
o . . . . g €1Tor On average. ThlS SuggeStS that Welghtlng data SU-CCGSSfuuy The rate Of Wetland Chal’lge 1In most baSIHS has Changed influential factor CaUSing the decrease in net loss rates. This periOd = s i i i ) wetland loss, Mississippi River delta plain, south-central Louisiana, in Xu, Y.J., and Singh,
navigation infrastructure, saltwater intrusion, altered hydrology, reduced bias and improved the robustness of the models drastically over the period of record. Only two basins. Mermentau - / ) : 19757~ 545.24 517.82 13.54  3,172.13 328224  38.65 900.69  927.70  16.83  1,807.18  1,743.12 3435  2338.63 220473 3498 B Sr al 19757 10/11/1975  NotAvailable ~ 4/15/1975 ~ Not Available ~ 9/25/1975  Not Available ~ 9/26/1975  Not Available e e
and others (Penland and others, 2001). The purpose of this stud ~ ~ : L J ty Y i of relative calm has led to fewer disturbances in the form of wave 19774~ 493.43 51892 1308 336150 3241.84 3705 ~ 92331 91781 1623 153322  1,729.53 3306 207171 2,19462 3338 = Bf s s 19774 7/2/1977  NotAvailable  6/3/1977  NotAvailable  1/23/1977  NotAvailable ~ 4/6/1977  Not Available Highlands Ranch, Colo,, Water Resources Publications, LLC, p. 371375, '
) : purp y ST BERNARD Figures 2 and 3 display the change in land area over time, and Pontchartrain, were best fit by a linear model (edf = 1) - S : 2 Sr
. id dated esti £ . land ch I .. - &~ —— i . . : ’ b energy, thereby reducing erosion-induced losses. The storm hiatus 1985.1  483.82 525.67 11.16  2,977.82  3,047.84  31.52 864.71 869.40 13.83  1,593.98  1,676.63 28.02 202158 2,148.82  27.05 " g 5 o 1985.1  10/11/1985 2.07 1/19/1985 1.77 1/26/1985 1.81 12/3/1985 1.92 Britsch, L., and Dunbar, J.B., 1993, Land-loss rates—Louisiana coastal plain; Journal of
1s to provide updated estimates ot persistent land change an whereas figures 4 and 5 and table 3 display approximations of suggesting that the rate of change has not changed significantly c c £ 18000 |— < sl er Coastal Rescarch, v. 9, p. 324-338.
historical land ch trends f tal Louisi df h ) . i i - also allowed vegetation to colonize new areas of shallow water 1988.1 = 533.26 529.06 10.51  3,031.61  2,973.17 2946 88024  849.00 13.05  1,648.17  1,660.18 2646 203511 213098 25.14 e “ = S 1988.1  12/4/1987 1.97 1/28/1988 1.53 12/2/1987 1.93 1/26/1988 1.82
7] = - . .
omiedl Jand Suange TENTS 107 coasie’ “OoUIsiana ane 1T #4e CAMERON ; the rates of land area change over time. Rates of change were o e pemod ol roenr in fness baaiss (g, 5)k s g bodies or to reestablish once vegetated areas. Some of these areas 1990.8 51521 532.43 998 285962 2909.55 2790 81068 82996 1243 170741  1,64740 2529  2,16447 211492 2378 = ERad - g =i 1990.8  2/14/1991 1.82 11/1/1990 2.00 11/24/1990 1.95 10/30/1990 2.04 e e e T s
g 3 ; ; ; g : : : : o ——— - R odfo = - , Do gxman, ., <" - char
hydrologic basin from 1932 to 2016. The use of 21 datasets : \ calculated from the fitted models by using finite-difference basins were best fit by non-linear functions. Barataria, Terrebonne, | have begun life as FAV but may have since attached to the 19957 58321 53923 919  2650.18 280859 2688 75671 79404 1154 165064 162864 23.67 220089 208577 2242 = = | = o adf =171 S| edf=3.378 edf =2.008 N 19957 10/7/1995 2.10 9/28/1995 2.09 10/5/1995 211 9/10/1995 .08 20105 U Geologial Sy Scentic Iesigion Map 3164, scale 1:265,00. 12
plus the application of consistent change criteria in this study . 3 l approximation. The uncertainty of the finite differences was and Teche-Vermilion Basins follow a similar pattern to that of the b 1L 1942 19982 468.64 542,97 8.88 282030 2,766.69 2694 81151 77519 1115  1,544.00 1,62092 2296  1911.53  2,070.90 2233 o e T BRSO T 8T S S SR S 19952 BRI 184 2/24/1998 172 3/3/1998 187 3/10/1998 .88
. ... .. i i lletikied b : i Baah fiedl mradal ) : : p substrate (Russell, 1942). © 1930 1940 1950 1960 1970 1980 1990 2000 2010 2020 1930 1940 1950 1960 1970 1980 1990 2000 2010 2020 1930 1940 1950 1960 1970 1980 1990 2000 2010 2020 Costanza, R.; P’erez-Maqueo, O.; Martinez, M.L.; Sutton, P.; Anderson, S.J., and Mulder, K.,
provide opportunities to better understand the timing and causal SR D * . VERMILION oo calculated by posterior simulations. Each fitted model was coastwide trend of loss rates increasing to a peak in the late 1970s, Oil and gas extraction in the Louisiana coastal zone began in 1999.9  598.89 545.60 870  2,73430 274254 2681 777.68 76223 1089  1,669.00 1,61624 2243  2,160.14  2,060.79 2252 > 17000 — . 1999.9  11/27/1999 1.94 11/18/1999 1.97 11/16/1999 1.98 10/24/1999 2.05 2008. The value of coastal wetlands for hurricane protection. Ambio, 37, 241-248.
mechanisms of wetland loss that are critical for forecasting i T ' /IBERI A‘\ P simulated 10,000 times, and the finite-difference estimates of followed by a reduction in loss rates since that time. In Breton 1926 and peaked in 1969 (Ko and Day, 2004). Infrastructure, such 2002.2 548.25 549.23 8.52  2,802.67 2,715.65  26.10 788.86 744.55  10.58  1,631.37  1,610.50 21.69  2,023.27  2,047.11  23.07 ; gL °© N Calcasieu-Sabine S o O\ Mermentau ° \\ Mississippi River Delta 2002.2 1/3/2002 1.83 2/27/2002 1.66 2/2/2002 1.82 1/8/2002 1.83 T3 e, R, IS, Wi o s it s abes o Groml | e e (B v B4
R / ~ . : . . : . . . o R L~ =) . 281~ ://dx.doi. b ollo
landscape changes in the future. EXPLANATION Iy \ST MARY;‘ the rates were calculated by using the function derivSimulCI() Sound Basin, wetland loss rates have continued to increase and o5 canals pi olines. and ofher featureZ’ contributes fo wetlan,d loss 20049  566.94 553.59 849 271575  2,69230 2435 76629  723.65 1037 169397  1,60442 2098  2,11467 2,031.05 24.14 o g3 gl s 20049 | 10/15/2004 206 111772004 197 1011312004 o TS o 4, p. 281-284, hutp//dx.doi.org/10.1130/G22264.1
N Te— , - ' (Simpson, 2016). The 15.9 and 84.1 percentiles (representing the have only recently begun to suggest a decrease in that rate (fig. 5). t onl ;}f) P h d', . Lof E 21 but also by alter 2006.8  554.23 556.70 8.65  2,683.07 2,680.72  22.88 684.02 70889 1044  1,619.11 160042 20.88  1,894.03 2,019.75 25.14 ‘;’ §< s 2005.8  10/18/2005 2.05 10/25/2005 1.86 10/16/2005 2.03 10/23/2005 2.04 B e e e a0
. N\ - 3 o = 8 ™ . . .
Study A Modified Coastal Zone Boundary: 37,780 km R 2 ; expected value +/- 1 standard deviation) of each rate estimate were  Calcasieu-Sabine Basin experienced the highest rates of wetland Eodonl Y ri(:l)ug Tgec lrem((;vlil ; rlna cra 1u ; 50 za crng 2008.8 R 559.99 9.04 263237 267225 2190 = 62262 69333 1083 150279 159637 2147 = 188473  2,007.86  26.37 = o & o st 20068 1/25/2007 1.82 10/28/2006 1.99 11/4/2006 2.03 12/13/2006 1.90 Survey Professional Paper 1815, 76 p., hitp:/dx.doi.org/10.3133/pp1815.
udy Area . . ey vgn N S S . . . . . rologic flow. This altere rology can lead to indirect = - S o SL Dunbar, J.B., Britsch, L.D., and Kemp, E., IIT, 1990, Land loss rates. Report 2. Louisi
Missing from 1932 data: 2,888 km? within modified Coastal Zone Boundary calculated and displayed on the graphs. loss prior to the 1970s, with rates slowly decreasing since that egfects si ch as the bropa ationyof Wa\{:’g’ e 2009.8  568.12 561.65 933  2,61809 2,66921 2197 62807 68555 11.17 147335 159438 2211 1589336  2,001.91 27.05 16,000 ST =8t N 20088  10/26/2008 2.08 10/1/2008 2.10 10/8/2008 2.10 9/29/2008 2.10 wober, 1B, Briseh, 1.D. end Kemp, B, I 1990, Land Joss rafe. Report 2. Louisiana
. . . . . . o= o St Gi hnical Lab 2, 38 p., http:// .dtic.mil/cgi-bin/GetTRDoc?L ion=U2&doc=G
The Louisi tal . telv 37.780 L. ) g e . time. with the exceptlon of hurricane-induced losses in 2005 and . : propag : . gy y nt 2010.8 593.91 563.30 9.69 2,652.65  2,666.83 22.58 656.31 677.77 11.63 1,583.57 1,592.40 23.02  2,080.01 1,995.96  27.77 =gl s| g 2009.8 11/14/2009 2.03 11/5/2009 2.04 11/12/2009 2.03 11/3/2009 2.05 Tli?;zcc.n(licf;cAg:ADA§296tzt1% www.dtic.mil/cgi-bin/GetTRDoc?Location oc=Get
¢ Louisiana coastal zone encompasses approximately 5/, Missing from 1956 data: 2,383 km? within modified Coastal Zone Boundary N ) L, ) . : interior wetland areas. Following this peak, oil and gas activities 20139  619.64 56845 1123 2,65636  2,662.38 2831 64723  653.65 13.68 160580  1,586.31 2743 203372 1977.52 3021 Penalized R ion Soli e = G5 20108 10/16/2010 1.99 10/7/2010 1.92 10/14/2010 1.94 10/5/2010 2.09 ’
square kilometers (km?) of lowland plains, deltaic lobes, and open 2008. The Mississippi River Delta Basin experienced a reduction T enalized Regression Spline, 1932-2016 S g g o ' ' ' ' ' T T B, L ol e, B, 59, Tl s, Mo (S
o ) B . Missing from 1932 and 1956 data: 1'494 kmz within modiﬁed coastal Zone Boundary Results in wetland IOSS rate since the 19605 reaching . point Of Wetland Started to move from the shallow Wetland areas 1n one of two 2014.8 551.35 569.94 11.77 2,656.79 2,661.55 30.89 652.70 646.65 14.44 1,622.24 1,584.55 29.10 2,077.78 1,972.17 30.97 —_——— 95 percent confidence band S ar odf=2.206 N =P edfe 1 = ST R 0% >x 2013.9 10/24/2013 1.96 12/18/2013 1.76 2/27/2014 1.83 12/16/2013 1.80 Plain: Vicksburg, Miss., Army Engineer Waterways ];prerimen_t Station S}eotechnical
water (fig. 1). Coastal Louisiana wetlands are generally considered . . ’, Brestenee Tl o e o e, Ad a el e e dhiE . Mieden 20158 55302 57160 1242 2679.08 2,66072 3408 64626 63887 1534  1,62126 158259 3111 1,99629 196622 31.84 = 5L roum : ° e ] ~ R1= 0,605 o 20148 12/14/2014 1.90 11/19/2014 1.99 11/26/2014 1.81 11/1/2014 2.06 B e o e O e o
- - - - Landsat Worldwide Reference System-2 (WRS-2) gain, only to be followed by a negative trend due to the effects of : : ’ 15,000 [— Note: = ' o o o g| =0 5
one of the most 1mportant environments 1n the United States ) .. ) and others (2005) concluded that the decrease in the rate of land 2016.1 566.90 572.10 12.62 2,712.53  2,660.48 35.09 682.01 636.54  15.63 1,619.01 1,582.01 31.73  1,993.69 196444 32.11 L L L L L L L L 1 L ! ! L ! ! ! ! ! ! T S ! L L L L L L L L 2015.8 10/14/2015 2.05 11/22/2015 2.02 12/15/2015 1.78 11/20/2015 1.99 Feagin, RA; Mukherjce, N.: Shanker, K.. Baird, A.H. Cinner, J.; Kerr, AM.: Koedam
b h han 30 fth ol Hurricane Katrina in 2005 (Barras, 2006). Finally, the Atchafalaya : ) : ‘ _ R " T TR Torrebonne Basin Coastwide Totals edf=2.903 . 1930 1940 1950 1960 1970 1980 1990 2000 2010 2020 1930 1940 1950 1960 1970 1980 1990 2000 2010 2020 1930 1940 1950 1960 1970 1980 1990 2000 2010 2020 e, TR 58 o016 5o 1016 s 8016 L7s RS e e R U G
ccause they support more than 30 percent of the commercia Figure 1. Study area in coastal Louisiana. The coastal zone boundary, the zone for which statistics were calculated, isolates coastal regions while excluding fastlands (defined as developed, agricultural, and other protected areas) from statistical analysis Land Area Changes Delta Basin experienced an increasing land area trend (positive loss in Barataria Basin was attributable to a decrease in the rate of . o R2=0.923 ® N . - - - ' - : : : Stamsudoha, M., and Dabdouh- Guebas, . 2010. Shlir romthe siom? Use and misuse
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structures including dams and levees were built, not only in
Louisiana but throughout the Mississippi River catchment,
particularly after the flood of 1927. The construction of these
features has led to an overall decrease in the amount of sediment

to 1973 in portions of the dataset that occur outside the boundaries
of the 1932 and 1956 data coverage. (Refer to fig. 1 for more
information regarding the areas within the coastal basins to which
this assumption was applied.) The areas missing from the 1932 and
1956 datasets mostly consist of forested wetlands. These areas are

range, 1.55—1.75 micrometers, are particularly informative and
discriminatory with regard to categorizing land and water. The
green wavelength range is used as it maximizes reflectance of
water and vegetation reflects MIR light more than green light (Xu,

These unconfirmed changes are instead referred to as “new land
investigation areas” and “new water investigation areas.”

The resulting land area data were summarized by time period
and by basin (fig. 3, table 1). Figures 2 and 3 display the long-term
trend in land area over the period of observation. The function of

Calcasieu-Sabine Basin (-517 km? observed; -578 +/- 100 km?
modeled), Mermentau Basin (-488 km? observed; -500 +/- 90 km?
modeled), Pontchartrain Basin (-472 km? observed; -529 +/- 30 km?
modeled), Breton Sound Basin (-426 km? observed; -489 +/- 49 km?
modeled), Mississippi River Delta Basin (-375 km? observed;

newly added data points.

It is important to note that there is a difference between net
land area change (figs. 2 and 3, table 1) and persistent losses and
gains (mapped dataset) and long term trends (figs. 4 and 5, table
3). Classification of an area as “loss” or “gain” is dependent on

Conclusions

This assessment provides a comprehensive analysis of
historical trends and rates of land area change in coastal Louisiana
from 1932 to 2016. The primary improvements over past efforts

Morton, R.A. and J. A. Barras (2011) Hurricane Impacts on Coastal Wetlands: A Half-
Century Record of Storm-Generated Features from Southern Louisiana. Journal of Coastal
Research: Volume 27, Issue 6A: pp. 27 —43.

National Oceanic and Atmospheric Administration (NOAA), 2010. Annual Commercial
Landing Statistics. http://www.st.nmfs.noaa.gov/stl/commercial/landings/annual_landings.
html.
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water-level variations on the date of acquisition (DOA) (table 2) of change, and therefore these change rates are not appropriate (-29 percent observed; -31 percent modeled), Terrebonne Basin (-29 land area change data well, with a couple of notable exceptions. AR , urep

elevation in response to SLR and subsidence.

between datasets must be highly accurate. Misalignment of

Calcasieu-Sabine Basin

Base from USGS Center for Earth Resources Observation and Science (EROS)
landsat imagery. Analyses presented utilized imagery from Landsat Multispectral
Scanner System (MSS), Thematic Mapper (TM), and Operational Land Imager

(OLI) satellites.

Background imagery consists of average band 6 (mid-infrared) values from early
2016 Landsat Operational Land Imager (OLI) satellite imagery.

at finer spatial and temporal scales. The complexity smoothing
spline, as determined by the dimensionality of its basis function,
was set to a maximum of five, but its final value was determined
by cross-validation to prevent overfitting.

One of the assumptions of these modeling methods is that
each data point provides equally precise information about the
response variable. When this assumption is violated, there is non-
zero covariance between the model error and the independent
variables, which leads to biased estimates. These data clearly
violate this assumption because of differences in data-collection
methods. To account for differences in methods across years,
points were weighted differently on the basis of expert opinion of
the uncertainty inherent in each method. The weights affect how
strongly each point contributes to estimates of total deviation. Data
before 1973 were given half the weight of data after 1984. Data
between 1973 and 1984 were given three-quarters weight of data

percent observed; -30 percent modeled), Calcasieu-Sabine Basin
(-24 percent observed; -27 percent modeled), Mermentau Basin (-20
percent observed and modeled), Pontchartrain Basin (-17 percent
observed; -18 percent modeled), and Teche-Vermilion Basin (-10
percent observed; -12 percent modeled). Atchafalaya Delta Basin
was the only basin to experience an increase (+3 percent observed;
+9 percent modeled) in land area, as a percentage of starting area,
across the entire period of record (table 1).

Change in Land Change Rates through Time

Trend analyses from model fits indicate that coastwide rates of
wetland change have varied from -83.5 +/- 11.8 square kilometers
per year to -28.01 +/- 16.37 square kilometers per year. Excluding
the high rates of wetland loss due to the 2005 and 2008 hurricanes
(Katrina, Rita, Gustav, and Ike), recent wetland loss rates have

White Lake

In the Atchafalaya Delta Basin, a basin in which water levels are
known to greatly influence assessments, the R* of the model is
0.245 (fig. 3). Mississippi River Delta Basin, another basin in
which water levels affect our ability to assess land area, also had
one of the lower R? values (R? = 0.609) (fig. 3). The two Chenier
Plain basins, Calcasieu-Sabine (R?= 0.659) and Mermentau (R*=
0.522), contain several water-control structures and are therefore
also subject to variability. Barataria, Breton Sound, Pontchartrain,
and Terrebonne Basins all have an R? value at or exceeding 0.9.
This analysis has shown decreasing rates of wetland loss after
the 1970s. The possible causes of this decline in land change rate
are as numerous as the causes of wetland change itself. One of
the first possible causes relates to the loss of wetlands. Trends
have shown that as wetlands are lost, there are fewer wetlands
remaining to be lost, and as such, the rate of wetland loss will
decrease. Although there is still a substantial area of wetlands

GULF OF MEXICO

dynamic landscape changing as a result of the complex and often
interactive effects of natural and human-induced processes.

The temporal frequency of land change provided by this study
allows for further investigation of the causal mechanisms of the
loss that has occurred. These investigations will provide improved
information to develop tools to monitor ecosystems, forecast
possible impacts, and plan protection and restoration activities.
These data will support the development of strategies to adapt to
our changing environment.

While recent trends have shown a reduction in the rate of
wetland loss, it is important to note that past trends are not
necessarily indicative of future change. Future disturbance events
such as a major hurricane impact could change the trajectory of the
rates. Sea-level rise is projected to increase at an exponential rate,
and that would also expedite the rate of wetland loss. (IPCC, 2013;
Doyle and others, 2015).
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EXPLANATION

1932-56 Persistent land loss?

1956-73 Persistent land loss?*
197375 Persistent land loss**
1975-77 Persistent land loss?*
1977-85 Persistent land loss**

1985-88 Persistent land loss?

1988-90 Persistent land loss?

1990-95 Persistent land loss?

1995-98 Persistent land loss?

1998-99 Persistent land loss?

1999-2002 Persistent land loss?
2002-04 Persistent land loss?
2004-06 Persistent land loss?
200608 Persistent land loss?
200809 Persistent land loss?
2009-10 Persistent land loss?
2010-13 Persistent land loss?
2013-14 Persistent land loss?
2014-15 New water area®
1932-56 Persistent land gain'
1956-73 Persistent land gain'*
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1975-77 Persistent land gain'*

“r Atchafalaya Delta “r Barataria - L —
5 .l = I 1977-85 Persistent land gain'*
0— Coastal Louisiana g3 ol <t
55 - ol i 1985-88 Persistent land gain’
sE o g
C Eg sl il Wax Lake Delta , 1988-90 Persistent land gain'
= S8 ; ol "y, Quarantine
a>J~ 220 |— ; o = ol At h f l B '_. B Ba);
5 B N SR =y 1990-95 Persistent land gain'
g 1930 1940 1950 1960 1970 1980 1990 2000 2010 2020 1930 1940 1950 1960 1970 1980 1990 2000 2010 2020 1930 1940 1950 1960 1970 1980 1990 2000 2010 2020 : . .
B o S & Mins 1995-98 Persistent land gain'
S w| Calcasieu/Sabine Mermentau Mississippi River De/ltg_\\ Atchafalaya L« T ahe De Catls ;_,‘J ol Bay |
i - s 4 R o e * - -
= e = ol Delta Basin it e 199899 Persistent land gain’
‘CE f‘j s or o
> ©
o o 2 =L g 0
2 s T o i 1999-2002 Persistent land gain'
= 88 | ' SR
& = T A : i
5 = | T~ __. il e 2002-04 Persistent land gain
[<}] = 2 9 ol i 1
= -60 % ' Mechant
< ol ol ol 200406 Persistent land gain'
© T 1 1 1 1 1 1 1 1 1 1 ] 1 1 1 1 1 1 1 1 1 1 - 1 1 1 1 1 1 1 1 1 1 . .
S 1930 1940 1950 1960 1970 1980 1990 2000 2010 2020 1930 1940 1950 1960 1970 1980 1990 2000 2010 2020 1930 1940 1950 1960 1970 1980 1990 2000 2010 2020 Baratarla Basm ] .
= of _ - 3 o 200608 Persistent land gain
'g Pontchartrain Teche/Vermilion Terrebonne
3 g 5 oL
] 2 T 200809 Persistent land gain'
/ g 2 =l GULF OF MEXICO
\\ ) EXPLANATION 28 - Sl =i i i
~o 7 5 e j 2009-10 Persistent land gain'
S _ - Finite Difference Slope Approximation, 1932-2016 ST Qf Tom e ———— — — - NE T
- — — — 95 percent confidence band EE | T e S . .
-100 — P - 4 ' - 201013 Persistent land gain'
| | | | | | | | | Ic A Figure 5. Finite-difference approximation of land area change rates
1930 1940 1950 1960 1970 1980 1990 2000 2010 2020 ol . . . . . . . . L et . , , , , , , , . 8k, . through_t!me in coastal Louisiana by hydrologlc bgsm (as defined l_)y Terrebonne Bay - 2013-14 Persistent land gain‘
Y 1930 1940 1950 1960 1970 1980 1990 2000 2010 2020 1930 1940 1950 1960 1970 1980 1990 2000 2010 2020 1930 1940 1950 1960 1970 1980 1990 2000 2010 2020 the Louisiana Coastal Wetlands Planning, Protection and Restoration v
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Table 3. Finite-difference approximation estimates of long-term wetland change rates including standard error (SE) estimates for each hydrologic basin and coastal Louisiana from 1932 to 2016. Units are in square kilometers per year. ’ et to water and remained water throughout the period of observation.
Atchafalaya Delta Basin Barataria Breton Sound Calcasieu Mermentau Basin Mississippi River Delta Basin Pontchartrain Basin Teche/Vermilion Basin Terrebonne Basin Coastal Louisiana ...-d""‘f Terrebonne Basm 3Because this date range has only one ending dataset, some of these effects
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per year peryear per year per year per year per year per year per year per year per year cale 1. ’ created from Landsat Multispectral Scanner System (MSS).
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