
1.  Introduction
Coastal wetlands are natural buffer zones between land and ocean that provide protection from rising seas and 
storm surges (Fagherazzi et al., 2012, 2020; FitzGerald & Hughes, 2019; Schuersch et al., 2018). Sediment is 
essential for wetlands, because it promotes accretion that counteracts sea level rise (Donatelli et al., 2018; Ganju 
et al., 2017; Kirwan et al., 2016; Morris et al., 2002; Zhang et al., 2020). Unfortunately, as results of sediment 
starvation, loss of these valuable ecosystems is increasing worldwide. This is particularly true in large rivers, 
where damming has reduced the flux of material to the coast (Grill et al., 2015; Syvitski et al., 2009). In coastal 
wetlands, tidal and riverine channels control the transport of water and sediment (Fagherazzi, 2008; Friedrichs 
& Aubrey, 1988; Mariotti & Fagherazzi, 2012). The geometry of these networks of channels, such as branching 
and meandering characteristics, can directly determine the paths of sediment transport, the trapping efficiency of 
sediments within the system, and the nutrients delivery necessary for vegetation growth (Redfield, 1972; Rinaldo 
et al., 1999). Vegetation development can feed back to the morphological evolution of channels, leading to effi-
cient channel networks (Kearney & Fagherazzi, 2016).

Abstract  Coastal wetlands are nourished by rivers and periodical tidal flows through complex, 
interconnected channels. However, in hydrodynamic models, channel dimensions with respect to model grid 
size and uncertainties in topography preclude the correct propagation of tidal and riverine signals. It is therefore 
crucial to enhance channel geomorphic connectivity and simplify sub-channel features based on remotely 
sensed networks for practical computational applications. Here, we utilize channel networks derived from 
diverse remote sensing imagery as a baseline to build a ∼10 m resolution hydrodynamic model that covers the 
Wax Lake Delta and adjacent wetlands (∼360 km 2) in coastal Louisiana, USA. In this richly gauged system, 
intensive calibrations are conducted with 18 synchronous field-observations of water levels taken in 2016, and 
discharge data taken in 2021. We modify channel geometry, targeting realism in channel connectivity. The 
results show that a minimum channel depth of 2 m and a width of four grid elements (approximatively 40 m) 
are required to enable a realistic tidal propagation in wetland channels. The optimal depth for tidal propagation 
can be determined by a simplified cost function method that evaluates the competition between flow travel 
time and alteration of the volume of the channels. The integration of high spatial-resolution models and remote 
sensing imagery provides a general framework to improve models performance in salt marshes, mangroves, 
deltaic wetlands, and tidal flats.

Plain Language Summary  In hydrodynamic models, it is common to smooth topographic data to 
build the numerical grid. However, in coastal wetlands dissected by complex channel networks, this process 
would prevent an appropriate representation of channels for tidal propagation. This might lead to unreliable 
calculations of water fluxes between channels and wetlands. To address this issue, we modify channel 
geometry using remotely sensed data to enhance connectivity in simulations. Channel depth and width are 
determined by comparing model results to high-resolution field measurements. We develop a simplified cost 
function that can determine the optimal channel depth for tidal propagation without running computationally 
expensive simulations. Our results provide a framework to improve model performance of tidal flows along 
wetland channels by integrating numerical simulations, a simplified cost function, and remotely sensed channel 
networks.
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Despite the key functions of tidal channel networks, inappropriate representation of channel features in hydro-
dynamic models is common, and stems from two problems: (a) the coarse resolution of numerical models (Li & 
Hodges, 2019) and (b) inherent bathymetric errors in the channels (Cea & French, 2012; Torres & Styles, 2007; 
Wang et al., 2009). Coarse grids are often necessary due to computational constraints, as typical spatial domains 
of large connected wetlands are on the order of 100 km 2 and computational run times of 14 days to resolve spring-
neap tidal cycles. However, coarse-resolution grids cannot resolve narrow creeks that are important for transport 
of flow and nutrients. Moreover, coarse models usually smooth channel depths, leading to channel discontinuity 
with unreliable calculations of water level and velocity along channels.

Bathymetric errors are often a result of stitching various data sets together, including digital terrain models (DTM) 
for land surface and sonar data for bathymetry. This often results in gaps in the data that must be interpolated over. 
Bathymetric surveys are very expensive and time-consuming, and are usually limited to the main channels where 
water depths are large enough to allow boating (Olliver et al., 2020; Shaw et al., 2016; Zhang et al., 2018). As 
a result, little information is available on the bathymetry of small channels that dissect the wetlands. Moreover, 
inevitable bathymetric errors occur in field measurements, data processing and data fusion to a uniform reference 
datum (Chust et al., 2010; List et al., 1997). All these problems affect the accurate representation of channels in 
quantitative wetland models.

The representation of channels in wetland models has been previously addressed in four different ways: (a) 
manual modification of bathymetry to regionally increase channel geomorphic connectivity, (b) addition of 
channel features detected by comparing high-resolution LiDAR data (e.g., 1  m) with the smoothed topogra-
phy of coarse-grid models (e.g., ∼30 m) (Hodges, 2015; Li & Hodges, 2019), (c) the development of subgrid 
models that solve shallow water equations on a coarse grid but incorporate high-resolution effects (e.g., friction) 
(Defina, 2000; Volp et al., 2013; Wu el al., 2016), and (d) optimization of mesh structures to capture subgrid 
topographic features (Bates et al., 2003).

Several studies have modeled wetlands with complex channel networks. Christensen et al. (2020) simulated water 
fluxes in the Wax Lake Delta, USA, with a refined grid size of 20 × 16 m. Despite the small grid size, they needed 
to manually modify the elevation in order to add a small creek between the main channel and one of the distrib-
utary channels. To represent narrow but hydrodynamically important blocking features in coastal models (e.g., 
levees), Hodges (2015) developed a method that automatically identifies levees in the fine-scale LIDAR topogra-
phy of the Nueces River delta, Texas USA, and assigns the appropriate elevation values to a coarse-grid model. 
While the levee is a “positive feature” (elevation in fine-scale topography is higher than the smoothed topogra-
phy in the coarse grid), similar methods have been tested for channels (e.g., “negative features”) to preserve the 
geometric connectivity of networks in shallow marsh systems (Li & Hodges, 2019). Although these methods can 
successfully enhance channel connectivity, the flow flux may be overestimated as the real subchannel width is 
narrower than a model grid cell.

Several coastal models utilize unstructured grids that are locally refined to follow channels and wetland bound-
aries (e.g., Christensen et  al.,  2020). To accurately model tides along the west coast of Britain, Jones and 
Davies (2005) tested a series of irregular unstructured grids (TELEMAC), and stressed the critical importance of 
local refinements in narrow channels such as the North Channel and Bristol Channel. These models better capture 
tidal propagation and hydrodynamics, but the process of mesh refinement is labor intensive and time consuming. 
More importantly, unstructured grids have elements of different dimensions that are not well suited for coupling 
with remote sensing data, which are typically available on squared grids. This problem is magnified when the 
study domain is very large; for example, it would be difficult to refine the mesh of a model spanning the entire 
Mississippi delta or the East Coast of the USA. A Cartesian grid also allows the coupling with ecological models 
built on a lattice, and is the preferred choice for climate models (e.g., Nijssen et al., 2001).

Therefore, there is a need to find a systematic way to modify a Cartesian mesh in order to capture tidal propaga-
tion in wetland channels. The goal of this paper is to address the inappropriate representation of channel networks 
and the inherent bathymetric errors at the same time, thus improving the hydrodynamic modeling of a wetland 
dissected by channels. We will determine what network of channels best reproduces water levels and tidal fluxes. 
Our main idea is to separately derive the channel network from remote sensing images, and then overlap it to 
the current model topography by assigning or modifying the depth of the channels. We will also explore what 
modifications of the channel network, specifically depth and width of channels, increase model performance. 
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This research provides a novel and systematic method to improve channel hydrological connectivity using freely 
available remote sensing imagery (e.g., Sentinel-2). Our approach will facilitate quantitative modeling of hydro-
dynamics in coastal systems with complex channel networks.

2.  Study Area
The Wax Lake Delta (WLD) is a river-dominated delta located at the mouth of the Wax Lake Outlet (WLO), a 
channel artificially dredged in 1940s for the purpose of flood control (Figure 1a). As a diversion of the Atchafa-
laya River, the WLO conveys river flow and sediment into Atchafalaya Bay, facilitating the continuous growth of 
the WLD (Roberts et al., 2015; Shaw et al., 2013). Extensive shallow wetlands dissected by complex meandering 
channels are present at the two sides of the 300 m wide WLO (Carle et al., 2015). The wetlands are bounded by 
levees westward, and connect to the Atchafalaya Delta eastward. The Intracoastal Waterway, an artificial canal 
used for navigation, intersects with the WLO in the northern wetlands. Numerous small-scale branches and bifur-
cations develop along the primary channels (Figures 1b–1d).

The river discharge generally ranges from 2,500 m 3/s to 5,000 m 3/s with seasonal variations. The discharge is 
recorded at the Calumet Gauge (USGS 07381590) which is located about 20 km upstream of the delta. The 
system is fed by a mixed semidiurnal tide with a mean tidal range of 0.34 m. Despite the small tidal amplitude, 
tides dominate net flux exchanges and hydrological connectivity between channels and floodplain (Christensen 
et al., 2020; Hiatt & Passalacqua, 2015; Meselhe et al., 2021).

3.  Data
3.1.  Water Level and Discharge Data

Water level observations from 18 field sites are collected for model calibration, including eight stations (WL2-
WL9) along the WLO temporarily deployed by the National Aeronautics and Space Administration (NASA), and 
10 long-term sites of the Coastwide Reference Monitoring System (CRMS, https://lacoast.gov/crms/) in small 
creeks within the wetlands (Figure 1). Water surface elevation change was recorded every five minutes with 
millimeter accuracy at the WL2–WL9 stations using in situ pressure transducers during the NASA Pre-Delta-X 
Campaign on October 13–20, 2016 (Simard et al., 2020). At the CRMS sites, water levels are recorded hourly 
by a submersible data logger since 2010. These 18 sites cover the entire delta, quantifying water level gradients 
along the WLO (Figure 2a), and flow attenuation effects within the wetland channels (Figure 2b).

On 01 April 2021, acoustic doppler current profiler (Teledyne RiverPro ADCP) measurements of discharge were 
collected at five channel cross sections within the model domain (Figures 1g and 1h). Two or more replicate 
transects were taken and compared at each site, keeping the discharge measurements to differ by no more than 
5% (Christensen et al., 2021).

3.2.  Channel Networks Derived From Remote Sensing Data

We derived different maps of channel networks in the studied area from the National Wetland Inventory (NWI; 
https://www.fws.gov/wetlands/), Sentinel-2 classification maps (Thomas et al., 2019), and the Google Earth base 
map. The maps were processed into 10 m resolution binary imagery (Figure 3). The NWI classification data set 
from the US Fish and Wildlife Service is based on 1 m National Agriculture Imagery Program (NAIP) 4-band 
near infrared imagery, the National Elevation Model, and field measurements, in which they manually modified 
channels to increase connectivity. Considering the similarity between Sentinel-2 and NWI networks (Figure 3), 
we combine these two data set (S2&NWI) in the following analyses. The channel network extracted from the 
Google Earth base maps has numerous small-scale tributaries (Figure 3c). The channel width and centerline 
(skeleton) are calculated from the Google Earth map using RivGraph (Schwenk et  al.,  2020), a package for 
analyzing the morphologies and topologies of channel networks (Figure 4).

In this study, we are willing to modify ad hoc the bathymetry in order to achieve a more precise hydrodynamics. 
Note that because the bathymetry of the channels is often unknown or poorly constrained, to modify it with 
artificial values does not dramatically deteriorate the realism of the topography, but it increases the quality of 
the hydrodynamic results. The optimal channel network we want to derive is the one that better capture tidal 

https://lacoast.gov/crms/
https://www.fws.gov/wetlands/
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Figure 1.  (a) Locations of Wax Lake Delta, model domain, and field measurement sites. Red squares are 10 sites of the Coastwide Reference Monitoring System 
(CRMS), and yellow dots are 10 water level gauges employed by NASA in 2016 (Simard et al., 2020). (b)–(d) Zoomed maps of channels adjacent to CRMS-6042, 
6008, and 0479 sites respectively. (e), (f) Locations of subdomains for analysis in Figures 6 and 7 (g), (h) Locations of field measurements of discharge at five cross 
sections.
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propagation in the creeks, and therefore it is the network that better represents water levels and discharge in the 
tidal channels.

4.  Model Setup
Hydrodynamics were simulated using a high-resolution (∼10  ×  10  m) 2-D Delft3D FLOW model (Lesser 
et al., 2004). The model domain is discretized by a Cartesian grid of 2,600 by 1,700 cells, covering the entire 
delta and the upstream wetlands until the Calumet Gauge station (USGS 07381590, Figure 5), with higher reso-
lution over the portion of the wetlands. The model topography is a 10 m seamless DTM composed of LiDAR 
datasets, sonar transects in channels, and bathymetric elevations derived from diverse source data and referred 

Figure 2.  (a) Water-level measurements on October 13–20, 2016 at gauges WL2–WL9 along the Wax Lake Outlet, and (b) at 
10 sites of the Coastwide Reference Monitoring System in wetland channels (see locations in Figure 1).

Figure 3.  A subset of wetland channel networks (Figure 1e) at 10 m spatial resolution derived from (a) National Wetland 
Inventory, (b) Sentinel-2 imagery, and (c) Google Earth map. The black color indicates channels with water.
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to the NAVD88 vertical datum (Denbina et al., 2020). The wetland surface was derived from publicly available 
LiDAR data collected in 2015 (USGS 3-D Elevation Program). For the channels where we had no bathymetry 
(particularly the small channels), the channel width is estimated as the local maximum distance to LiDAR land 
points. The channel depth was set as 1/30 of channel width, based on the few surveys of tidal channels in the area 
(Denbina et al., 2020). For channels with width greater than 150 m, we relied on available bathymetric data. The 

Figure 4.  (a) Channel centerlines and (b) channel widths in a subset of the Wax Lake Delta wetlands derived from Google 
Earth.

Figure 5.  (a) Model setup and elevation data. (b) Zoomed map at site Coastwide Reference Monitoring System (CRMS)-
6038 with model mesh. (c) Size of the mesh in the domain. Note the mesh is Cartesian and curvilinear with spatially varying 
size.
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bank elevation was derived by linearly interpolating between the channel depth and the closest land elevation 
(which was derived from the USGS LiDAR DEM). The banks are 10 m wide at each side of the channel.

For boundary conditions, river discharge recorded at the Calumet Gauge station (U.S. Geological Survey, 2016) 
was specified as the upstream boundary, and hourly water levels recorded at the NOAA Amerada Pass station 
(NOAA 8764227; CO-OPS, 2018) as the ocean boundary (Figure 1a). The hourly wind conditions measured at 
the same NOAA station are uniformly prescribed across the model domain. The levees at the western boundary 
of the wetlands are represented by thin dam features in the model, thus accounting for the blocking effect.

The bed roughness is defined based on a 10 m Sentinel-2 classification map (Thomas et al., 2019) and a look-up 
table for the Chezy's coefficient: ocean (60 m 1/2/s), channel water (55 m 1/2/s), shoals (45 m 1/2/s), marsh (35 m 1/2/s), 
and forest (8 m 1/2/s) (Chow, 1959; Straatsma & Baptist, 2008). The simulation period is from 10 October 2016 at 
00:00 to 20 October 2016 at 00:00, and a time step of 10s is adopted to satisfy all stability criteria for the parallel 
computation. To test the sensitivity of flow discharge to modifications of channel geometry, we set up another 
model for the simulation period from 25 March 2021 at 00:00 to 01 April 2021 at 00:00.

The Nash-Sutcliffe model efficiency (ME), root mean square error (RMSE) between the model (M) and field data 
(D) are used to evaluate model performance:

ME = 1 −
∑

(� −�)2

∑

(� −�)
2
,RMSE =

√

∑ (� −�)2

�
,� (1)

where n is the number of observations. The value of ME represents the model performance: excellent when 
ME > 0.65; very good for 0.5 < ME < 0.65; good for 0.2 < ME < 0.5; poor for ME < 0.2 (Allen et al., 2007).

5.  Experimental Design
In the initial topography (Figure 6a), a large number of channels are not well represented, including the Wax Lake 
entrance. In several channels, an unrealistic bathymetry shallower than 1 m is present. Instead of modifying the 
channel depths and widths locally by hand, we modify the channel depth and width using channel network maps 
with different accuracy derived from a combination of Sentinel-2 and NWI (S2&NWI) data, Google Earth maps, 
and channel centerline skeleton (Figures 3 and 4). We design a series of scenarios and test the sensitivity of tidal 
propagation to variations of channel depths (Table 1) and widths (Table 2).

To avoid an overestimation of the tidal prism (cumulative discharge within one tidal cycle) after modifying the 
channel geometry, an automatic simplification method is adopted to remove the small-scale channel branches of 
the initial network. The optimal scenario is determined by comparing the modeled water levels and discharge to 
measurements at the 23 observation sites.

5.1.  Modification of Channels Depth

Channels in the network maps of Figure 6 with elevation <1 m (NAVD88) are deepened. The threshold of 1 m is 
determined by the fact that most small-scale creeks are deeper than 1 m. The sensitivity of different thresholds is 
also tested. Based on the S2&NWI channels, 12 scenarios are designed by lowering the channel depths from 0.5 
to 10 m (M01–M13). For the Google Earth derived channels (name as “GE channels”) and the channel center-
line skeleton, five scenarios are designed with a depth increase of 0.5 m, 1 m, 1.5 m, 2 m, and 3 m respectively 
(Table 1). The range of depth modifications are based on cross-sectional bathymetric surveys of wide channels 
(>100 m wide) and selected narrow channels (approximately 10 m wide) in 2021 (Christensen et al., 2021).

The process of channel depth modification using the S2&NWI network is illustrated in Figure 6. A modified 
DTM is obtained by incrementally deepening the channels derived from the S2&NWI network to recreate the 
scenarios in Table 1. Compared to the initial DTM, the modified DTM has an improved channel connectivity with 
a more realistic bathymetry >2 m (Figures 6a and 6c). Narrow artificial canals (straights lines in Figure 3b) are 
not well represented in the 10 m resolution of the Sentinel-2 imagery (Figure 6b). In order to avoid an over-carv-
ing of channel depths, we design a comparative scenario by only deepening channel centerline (three model grids) 
rather than the entire channel area (Figure 7).
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5.2.  Modification of Channels Width

For channels with widths narrower or comparable to the model grid size, increasing channel depths may not 
improve channel connectivity. The blocking effect and the poor representation of the wetting and drying process 
will lead to unrealistic flow computation. In addition, it is impossible to have a correct tidal signal in secondary 
channels if primary channels are blocked. Therefore, we designed six scenarios by increasing channels width 
by 1, 2, and 3 cells (20 m, 40, and 60 m) before the channel depths are modified (C1, C2, and C3) and after the 
depths are modified (C4, C5, and C6) (Table 2, Figure 8). To be specific, in the grid the channels are expanded by 
one pixel at each side to represent the 20 m widening, and the bathymetry of the new channel pixel is updated by 
averaging the bathymetry of the nearby channel pixels. The values of bed roughness in the new channel pixels are 

Figure 6.  (a) Initial digital terrain model (DTM) of the subdomain E in Figure 1. (b) A Sentinel-2 Imagery & National 
Wetland Inventory (NWI) 10 m channel network derived by a combination of Sentinel-2 classification map (Thomas 
et al., 2019) and NWI channels (c) Modified DTM obtained by lowering by 2 m the depths of the channels derived from (b).

ID Depth (S2&NWI channels) ID Depth ID Depth (GE channels) ID
Depth (channel 

centerline skeleton)

M01 Initial depth (D) M08 D + 5m G1 D + 0.5m S1 D + 0.5m

M02 D + 0.5m M09 D + 6m G2 D + 1m S2 D + 1m

M03 D + 1m M10 D + 7m G3 D + 1.5m S3 D + 1.5m

M04 D + 1.5m M11 D + 8m G4 D + 2m S4 D + 2m

M05 D + 2m M12 D + 9m G5 D + 3m S5 D + 3m

M06 D + 3m M13 D + 10m

M07 D + 4m

Table 1 
Model Scenarios Obtained by Modifying the Depths of the Channels Derived From Sentinel-2 Imagery & National Wetland 
Inventory (S2&NWI; M01–M13), Google Earth Map (G01–G05), and Channel Centerline Skeletons (S1–S5)
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also updated accordingly. These scenarios are designed to test the sensitivity 
of tidal propagation to channels width, and to evaluate the effect of a coupled 
modification in channel width and depth.

5.3.  Channel Network Simplification With a Width Threshold

To minimize the increase of tidal prism after modifying channel geometry 
while keeping the hydro-dynamically important channels unmodified, only 
channels with a width less than four grid cells (40 m) are dilated to four grid 
cells (e.g., red color in Figure 9a). The value of four grid cells is determined 
as optimal in the result section below. Two new model scenarios (U1 and U2) 
are designed by dilating S2&NWI and the GE network (Figure 9). In these 
scenarios, the new channel pixels are deepened by 2 m and the bed roughness 
is updated.

6.  Cost Function and Hydrological Connectivity
The bathymetric corrections proposed above provide a method for addressing 
channel discontinuities. However, they require expensive model trial-and-er-

ror, and it is unclear which modifications will lead to improved model performance, or why. It would therefore be 
ideal to have a fast and simplified method that can achieve similar results without several expensive simulations.

Toward this aim, we have developed a general method for approximating tidal propagation by incorporating both 
the bathymetry and remotely sensed channel network characteristics into a cost-function surrogate model. This 
surrogate model approximates the propagation of tides from the coast as a wave front (Sethian, 1996; Sethian & 
Popovici, 1999) traveling at some “speed” along the channel network, where the speed of propagation is a local 
function of bed elevation and channel presence. By utilizing this simplified, physically based approach, we are 
able to simulate the effect that many potential bathymetric modifications will have on improving tidal propaga-
tion in the model.

The cost function is designed as follows. First, tidal flow is modeled as a simple linear wave traveling along 
a least-cost-path from the coastline to everywhere within our domain. To a first order, the speed at which this 

ID Depth (S2&NWI channels) Channel width

M01 Initial depth (D) Initial width (W)

C1 D W + 20m

C2 D W + 40m

C3 D W + 60m

M05 D + 2m W

C4 D + 2m W + 20m

C5 D + 2m W + 40m

C6 D + 2m W + 60m

Table 2 
Model Scenarios With a Modification of Channels Width for the Network 
Derived From Sentinel-2 Imagery & National Wetland Inventory (S2&NWI) 
Before the Modification in Channel Depth (C1, C2, and C3) and After the 
Modification in Channel Depth (C4, C5, and C6)

Figure 7.  (a) Modified digital terrain model (DTM) based on Sentinel-2 Imagery & National Wetland Inventory network. 
The channels depth is lowered by 2 m (Figure 3) (b) Modified DTM by lowering depths of channel centerline skeleton. 
The skeleton is derived from the Google Earth map and has a width of three model grids (Figure 4). This subset is for the 
visualization purpose (subdomain F in Figure 1).
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Figure 8.  Channel networks with different widths (a) Initial channel networks derived from Sentinel-2 Imagery & National 
Wetland Inventory. Channels with a width expansion of 1 (b), 2 (c), and 3 cells (d) (20 m, 40 m, and 60 m respectively).

Figure 9.  Dilated channel networks with a width threshold of 40 m (the expanded channels with an original width <40 m are 
shown in red color) (a) Scenario U1 based on Sentinel-2 Imagery & National Wetland Inventaory channel network, and (b) 
scenario U2 based on Google Earth (GE) channel network.
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wave should travel in shallow water (if we neglect changes in geometry, friction, etc.) is given by the local celer-
ity in each cell, 𝐴𝐴 𝐴𝐴 =

√

𝑔𝑔𝑔𝑔 , where d is the local flow depth and g is gravity (Lagrange, 1811). To convert from 
bathymetric elevation to an approximate depth, we assume a water surface elevation equal to mean-high-water 
(MHW = 0.3 m, NAVD88) in the Wax Lake Delta (Bevington, 2016). Because the bathymetry is known to have 
errors, in regions where the bed elevation exceeds the water surface elevation, we assign a small (but nonzero) 
minimum celerity value of 1 m/s. Note that even in shoaling channels bottom elevations above MHW are very 
unrealistic. This allows for tidal propagation to reach regions which may be hydrologically disconnected, but 
incentivizes the wave front to first travel through accessible regions. Finally, we model the propagation of the 
wave front by utilizing the fast-marching algorithm (Sethian, 1996; Sethian & Popovici, 1999) implemented in 
the open-source Python package scikit-fmm (Furtney, 2019), which assigns each cell in the domain a “first arrival 
time” for tidal propagation, 𝐴𝐴 𝑡𝑡𝑥𝑥𝑥𝑥𝑥 .

It is worth noting that 𝐴𝐴 𝑡𝑡𝑥𝑥𝑥𝑥𝑥 values are not meant to be physically accurate–without accounting for other variables 
relevant to tidal propagation, such as changes in channel geometry or friction, these travel times are likely to 
underestimate the true arrival times for tides in the system. Rather, these values are meant to provide a quanti-
fiable benchmark against which to measure how bathymetric changes can improve tidal propagation. When the 
channels are poorly represented in the bathymetry, regions of abnormally high bed elevation will obstruct tidal 
propagation, leading to regionally high values of 𝐴𝐴 𝑡𝑡𝑥𝑥𝑥𝑥𝑥 . Likewise, when the channels are carved deeper according 
to some remotely sensed channel network, 𝐴𝐴 𝑡𝑡𝑥𝑥𝑥𝑥𝑥 values will decrease due to cumulative increases in celerity along 
the least-cost path. This cost-function approach has the advantage of collapsing changes to the channel network 
mask and changes to the bathymetry into a single measure of performance.

Once this operation has been applied globally to the full unmodified model domain, we take the sum of the 𝐴𝐴 𝑡𝑡𝑥𝑥𝑥𝑥𝑥 
values at each of the in-situ gauge sites to obtain St, which is a global estimate of the tidal conductivity of the 
unmodified domain. We then repeat these steps for every proposed bathymetric modification: utilizing some 
network N and carving depth Δz, the bathymetry is modified, 𝐴𝐴 𝑡𝑡𝑥𝑥𝑥𝑥𝑥 values are re-computed in the modified domain, 
and we sum along the gauges to obtain 𝐴𝐴 𝐴𝐴

𝑁𝑁𝑁Δ𝑧𝑧

𝑡𝑡
 , which we normalize by the value St for the unmodified domain. 

After normalizing, any values 𝐴𝐴 𝐴𝐴
𝑁𝑁𝑁Δ𝑧𝑧

𝑡𝑡
 which fall below unity represent a modeling scenario in which tidal propa-

gation has been improved. Lastly, for each carving scenario, the volume removed from the system V N,Δz is also 
computed.

This surrogate modeling method allows us to reduce the dimensionality of the problem into a simple optimization 
problem with two objectives: (a) improve the propagation of tides to each of the in-situ gauges (i.e., minimize 

𝐴𝐴 𝐴𝐴
𝑁𝑁𝑁Δ𝑧𝑧

𝑡𝑡
 ), and (b) minimize the amount of modifications made to the bathymetry (i.e., minimize V N,Δz).

For each channel network, a range of channel depth modifications are tested using the cost-function approach. We 
test a number of carving depths in the range of Δz ∈ [0, −10] for all channels which fall within a mask delineating 
the upstream wetlands. We also investigate the importance of different elevation thresholds by testing three cutoff 
values (−1, −2, and −5), for which a channel is excluded from carving if the thalweg elevation falls below the 
threshold.

7.  Results
7.1.  Influence of Channel Deepening on Network Connectivity

At the WL gauges along the WLO, the model performs very well with ME > 0.95 and RMSE <3 cm. High values 
of ME are not surprising, because the relatively large water depths (>15 m) and widths (∼300 m) of the WLO 
allow the correct propagation of the tide. The WLO water elevations thus provide reliable boundary conditions 
for the flow in secondary channels departing from the WLO and dissecting the wetlands. Modification of channel 
depths within the wetlands has little influence on water levels along the WLO (Figure 10).

As expected, an increase in distributary channel depth greatly improves model performance (Figures 11a and 11b), 
especially at the CRMS sites located in shallow channels (e.g., 0482, 4016, 0465, and 6042). The ME of CRMS 
site 6008 (see the location in Figure 1c) is an exception, since it shows little variations with channel depth. The 
possible reasons for this discrepancy are: (a) channel connectivity at the site 6008 is controlled by channel width 
rather than depth, and (b) hydrodynamic blocking may occur along the channels between the WLO and the site.
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Channel deepening inevitably enlarges the tidal prism over the wetlands 
(Figure 11c). Interestingly, the tidal prism increases fast with limited deep-
ening (scenarios M01, M02), and tends to be stable for large increments in 
water depths (scenarios M05–M13). This is because a moderate deepening 
would connect shallow channels likely blocked by bathymetric errors, so 
that more tidal flows can discharge into the wetlands. Once these channels 
are fully connected, the influence of variations in channel depth on the tidal 
prism is reduced.

7.2.  Influence of Channel Width Expansion on Network Connectivity

The channel width expansion of the original DTM does not increase model 
efficiency. On the contrary, channel width expansion of the modified DTM 
of scenario M05 significantly improves model performance, especially at the 
sites 6008, 0482, and 4016 (Figure 12). This suggests that channel expansion 
should follow channel deepening, and both adjustments should be imple-
mented to improve channel connectivity in the model. For instance, at site 
6008, the channel connectivity is controlled by channel width, while at sites 
0482 and 4016 is controlled by both width and depth. The channel deepening 
based on a channel centerline skeleton with a 3-grid width also shows the 
importance of channel widths in flow connectivity (Table 3). The skeleton 
can only guarantee the geometric connectivity of the channel thalwegs, but 
the unrealistic shallow bathymetry around the thalwegs may prevent tidal 
propagation (Figure 7b). Therefore, the scenarios based on channel skeletons 
show little improvement in model performance (Table 3).

7.3.  Optimal Channel Depth and Width for Tidal Propagation

Since the real bathymetry within the channels and the tidal prism over the 
system is unknown, in practice the optimal modification scenario should 
provide the best model performance (calibrated by tidal gauges) with least 
modification of tidal prism. An alternative way to preserve the tidal prism 

is to remove the hydrodynamically unimportant small-scale channels and expand channels with a width below 
a threshold (Figure 9). Results show that the dilated S2&NWI channel network with a 2 m depth threshold and 
a 40 m width threshold (4 mesh elements) performs best, with the average model efficiency of 0.71, RMSE of 
7.72 cm, and an increase in tidal prism of 55% (Tables 4 and 5).

7.4.  Validation With Discharge Data Collected in 2021

All scenarios of bathymetric modifications are then implemented with 2021 flow boundary conditions, and the 
modeled discharges are compared to field measurements at five cross sections (Figures 1g and 1h). Generally, 
the M01 scenario using the initial bathymetry underestimates the cross-sectional discharge. While both channel 
deepening and width expansion lead to an increase of discharge, the width expansion works only after channel 
deepening (Figure 13). For instance, the discharge at CS-1 increases from 14.8 m 3/s (scenario C1) to 22.0 m 3/s 
(scenario C3), while after channel deepening, the discharge increases from 68.3 m 3/s (scenario C4) to 108.8 m 3/s 
(scenario C6), corroborating the importance of channel depths on channel hydrological connectivity.

Since the discharges at CS-3 and CS-4 are very small, only the discharges CS-1, CS-2, and CS-5 are used for 
error evaluation (Table 6). The error reduces from 30.9% (M01) to 12.9% (M05) and 19.9% (U1), respectively. 
A general trend in discharge is noticeable when the channels are deepened or enlarged (Figure 13). Discharge is 
underestimated with the original topography because the poor channel connectivity hinders tidal propagation. 
When channels are deepened and enlarged, the discharge increases to values close to the measured ones, indicat-
ing more realistic tidal propagation. However, the tidal prism is overestimated when widths and depths are too 
large, leading to discharges much higher than the measured ones (Figure 13).

Figure 10.  (a) Model efficiency and (b) root mean square error at gauges 
WL2–WL9 along the Wax Lake Outlet for the 13 model scenarios M01–M13 
(Table 1), with increasing modified depths of channels derived from Sentinel-2 
Imagery & National Wetland Inventory (Figure 6b).
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7.5.  Comparison With Surrogate Model

We find that the surrogate model based on the cost function successfully 
captures, at least qualitatively, much of the behavior observed in the full-scale 
hydrodynamic model. Compared to the base case (Figure 14a), we observe 
considerable improvement in values of 𝐴𝐴 𝑡𝑡𝑥𝑥𝑥𝑥𝑥 in many regions of the wetlands 
upstream of the WLD after modifying the bathymetry (e.g., Figures  14b 
and  14c). The locations of change are strongly dependent on underlying 
differences in the network used, as can be seen from comparing the maps 
obtained with the S2&NWI network (Figure  14b) and the Google Earth 
network (Figure  14c) for the same carving depth and elevation threshold. 
Similarly, the method seems very sensitive to the locations and scale of the 
errors in the bathymetry, as the most apparent differences in 𝐴𝐴 𝑡𝑡𝑥𝑥𝑥𝑥𝑥 occur once 
the extent of modification is large enough to “re-activate” (i.e., hydrologi-
cally reconnect) channels to the main distributary network. We see compar-
atively little change in 𝐴𝐴 𝑡𝑡𝑥𝑥𝑥𝑥𝑥 values along the Wax Lake Outlet, meaning that 
channel modifications in the wetlands minimally influence water levels in 
the main channel.

When comparing the improvement in tidal travel times 𝐴𝐴 𝐴𝐴
𝑁𝑁𝑁Δ𝑧𝑧

𝑡𝑡
 to the volume 

removed from the system V N,Δz, we observe a classic pareto-front behavior 
(Figure 15), wherein improving the performance toward one objective func-
tion tends to decrease the performance toward the other. Starting from the 
base case with no modifications to the bathymetry (St, the intercept for each 
curve in Figure 15), as we increase the carving depth Δz (values shown inside 
each marker), the more improvement we see in the reduction of 𝐴𝐴 𝐴𝐴

𝑁𝑁𝑁Δ𝑧𝑧

𝑡𝑡
 . Each 

curve represents a different network used (Google Earth or S2&NWI) and 
elevation threshold for carving (−1, −2, and −5). At first, the improvement 
in 𝐴𝐴 𝐴𝐴

𝑁𝑁𝑁Δ𝑧𝑧

𝑡𝑡
 is rapid for very small changes in V N,Δz, indicating the re-activation 

of many channels which had previously been disconnected from the main 
distributary network. This finding is similar to the results of numerical mode-
ling. However, as Δz continues to increase, after some threshold we begin 
to see diminishing returns, at which point V N,Δz is increasing at a rate much 
greater than 𝐴𝐴 𝐴𝐴

𝑁𝑁𝑁Δ𝑧𝑧

𝑡𝑡
 is decreasing. After very unrealistic amounts of carving 

(e.g., 5 m), each of these curves stabilizes to approximately the same constant 
slope, indicating that no additional blockages are being removed by addi-
tional carving.

In this analysis, we choose the inflection point of each curve as represent-
ing the optimal carving depth for that choice of network/elevation threshold 
(inflection points for each curve are highlighted in the inset of Figure 15). 
We compute the inflection point as the smallest carving depth at which the 

slope of the curve stabilizes to near the mean value we observe at unrealistically large carving depths, for which 
we select a (conservative) slope threshold of −1.2 km −3 for this application. We consider this point to be the 
optimal balance between each competing objective because it indicates that all the blockages contained within 
the channel network have been removed, which is exactly what we observe in our full-scale modeling simulations. 
Of the networks tested, we find that the S2&NWI network consistently performs better than the Google Earth 
network for the same volume carved. We also find that the choice of elevation threshold can have a small but 
visible impact on the shape of each curve, with the least restrictive threshold (−5 m) performing the best for each 
network. Higher additional threshold elevations were tested, but are not shown as they are found to minimally 
differ beyond −5 m. Interestingly, the choice of network and threshold seems to minimally impact the location of 
the inflection point, which sits around Δz ≈ 2–3 m for all scenarios (inset of Figure 15).

The surrogate modeling results align with our hydrodynamic model results, in which the S2&NWI network 
carved to a minimum depth of 2 m performed optimally for improving the tidal signal at the reference gauges 
without dramatically increasing the volume removed from the system (Table  5). This suggests that the scale 

Figure 11.  (a) Model efficiency and (b) root mean square error at 10 
Coastwide Reference Monitoring System sites for 13 model scenarios M01–
M13 obtained by increasing the depth of channels derived from Sentinel-2 
Imagery & National Wetland Inventory (Figure 6B). (c) Changes in tidal prism 
and channel volume within the western wetlands for the 13 model scenarios 
M01–M13 (Table 1).
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of bathymetric errors important to tidal propagation in the model is around 
2–3 m.

Unfortunately, the surrogate model is insensitive to changes in channels 
width. Despite this, determining the optimum channel depth as a first step 
based on the surrogate model will substantially reduce the need for expensive 
Delft3D simulations. The relevant code is provided in the link https://deltax.
jpl.nasa.gov/data/MRD/preliminary/2021-12-delft3D-model/.

8.  Discussion
Modeling hydrodynamics within coastal wetlands dissected by complex 
channel networks is challenging due to inevitable bathymetric errors. These 
errors preclude the appropriate representation of channels in the model and 
prevent realistic tidal propagation. Without a correct flow propagation along 
the channels, the calculation of water fluxes is unreliable. Model accuracy 
is therefore related to the design of the numerical grid and data fusion into 
the grid.

8.1.  Bathymetric Errors and Channel Network Extraction

Upscaling fine-resolution topography data (e.g., 1 m LIDAR) to coarse-grid 
models by smoothing (arithmetic mean of the data) often leads to inappro-
priate representations of hydrodynamic blocking features. Examples are the 
loss of levee heights and narrow channels in coastal hydrodynamic models 
(Hodges,  2015; Li & Hodges,  2019) and wall height in flood inundation 
models (Yu & Lane, 2011). The 10 m DTM used herein was also smoothed 
(Figure 6a). The smoothing may have caused unrealistic shallow bathymetry 
in channels, leading to errors in tidal propagation. Because of these bathy-
metric problems, most modeling work in the WLD has focused on the delta 
itself (Edmonds & Slingerland, 2010; Liu et al., 2018; Olliver et al., 2020), 
without considering the influence of the large-scale adjacent wetlands on 
hydrodynamics and sediment transport.

Large efforts have been made to automatically extract channel networks from 
either the DTM or imagery. The early study of Fagherazzi et al. (1999) used a 

Figure 12.  Model results with channel width expansion before (left) and 
after a modification in channel depth (right) (a) Model efficiency and (b) root 
mean square error at 10 Coastwide Reference Monitoring System (CRMS) 
sites for channel expansion scenarios C1–C3 based on the initial digital terrain 
model (DTM) (M01) and C4–C6 based on the modified DTM M05 (Tables 1 
and 2). The values of CRMS-6042 are out of the axis limits in left panels. 
The elevation in the expanded channels is calculated by averaging values of 
adjacent channel pixels.

Model efficiency (ME) RMSE (cm)

CRMS ID S1 S2 S3 S4 S5 S1 S2 S3 S4 S5

S0489 0.94 0.94 0.94 0.94 0.94 4.94 4.95 4.96 4.96 4.96

S6008 −0.06 −0.07 −0.06 −0.04 −0.02 11.97 12.05 11.96 11.85 11.74

S4782 0.86 0.88 0.91 0.83 0.89 5.06 4.76 4.15 5.73 4.50

S6042 0.62 0.80 0.84 0.87 0.85 8.23 5.97 5.29 4.81 5.18

S6038 0.84 0.81 0.79 0.79 0.75 5.96 6.43 6.72 6.71 7.42

S0482 −0.44 −0.45 −0.40 −0.35 −0.29 19.01 19.09 18.79 18.41 17.99

S4016 −0.22 −0.22 −0.18 −0.13 −0.08 17.19 17.20 16.89 16.56 16.15

S0465 0.14 0.26 0.37 0.45 0.53 15.23 14.16 13.07 12.22 11.31

S0464 0.93 0.93 0.92 0.92 0.91 4.90 4.93 4.99 5.10 5.39

S0479 0.79 0.78 0.78 0.78 0.77 7.95 8.10 8.13 8.07 8.31

Table 3 
Model Efficiency and Root Mean Square Error (RMSE) for Model Scenarios S1–S5 (Tables 1) in 10 Coastwide Reference 
Monitoring System (CRMS) Field Sites

https://deltax.jpl.nasa.gov/data/MRD/preliminary/2021-12-delft3D-model/
https://deltax.jpl.nasa.gov/data/MRD/preliminary/2021-12-delft3D-model/
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combination of threshold elevation and threshold curvature from DTM to obtain an accurate channel network in 
the Venice Lagoon, Italy. 80% of the extracted network well matched high-resolution satellite imagery. Recently, 
the development of sophisticated algorithms like the geodesic approach (Passalacqua et al., 2010), the lowest 
path identification with a characteristic sediment volume (Hiatt et al., 2020; Kleinhans et al., 2019), and a model 
based on flow path tracking method (Limaye, 2017) have significantly increased the accuracy of channel network 
extraction. However, these topography-based methods ignore the accuracy of the topographic data, potentially 
leading to errors in channel network extraction. For example, the WLD analyzed in this study is a low-lying delta 
with a micro tide, so that the elevation threshold between water and land, as well as the inundation extent are 
very sensitive to topographic errors (Alizad et al., 2020). Instead, network identification from aerial images using 
spectral thresholds or classification algorithms is more accurate, but may require manual intervention to maintain 
channel connectivity because of uncertainty in the classification of mixed features (Isikdogan et al., 2015; Jin 
et al., 2021; Passalacqua et al., 2013).

8.2.  Model Grid Obtained With Fusion of Remote Sensing Data

Both structured and unstructured grids are commonly used in coastal hydrodynamic models (Donatelli 
et al., 2020). Compared to structured grids, unstructured grids (e.g., triangular) are more flexible and can be 
locally refined and reshaped to match edges of small-scale channels. These grids can maximize the resolution 
of topographic features (Bates et al., 2003), but are prone to errors in data projection and fusion with remote 

sensing data. This is because remote sensing imagery is typically organized 
on Cartesian grids that do not match the spatial varying size and shape of an 
unstructured grid. For example, the use in this study of a ∼10 m quasi-Car-
tesian curvilinear grid has largely reduced errors in the assignment of bed 
roughness values from a 10 m Sentinel-2 classification map.

Numerical models using same resolution of remote sensing grids would 
reduce upscaling uncertainties, but it might become too computationally 
demanding. Therefore, modelers must evaluate the trade-offs between spatial 
resolution, uncertainties in data projection and data fusion, and computa-
tion resources. In our case, we chose to increase the model spatial resolution 
(∼10 m) to reduce the uncertainty in data projection, and considered accept-
able a computational time of 10 hr to simulate 30 days of hydrodynamics on 
a supercomputer cluster (2 nodes × 28 cores).

Model efficiency (ME) RMSE (cm)

CRMS ID M01 M05 C5 G4 U1 U2 M01 M05 C5 G4 U1 U2

S0489 0.94 0.94 0.94 0.94 0.94 0.94 4.94 4.98 5.03 4.98 5.00 5.00

S6008 −0.13 −0.07 0.47 0.12 0.41 0.13 12.39 12.05 8.48 10.91 8.91 10.84

S4782 0.89 0.88 0.65 0.87 0.87 0.83 4.61 4.82 8.11 4.86 5.01 5.66

S6042 −13.12 0.83 0.90 0.88 0.90 0.80 50.24 5.47 4.24 4.72 4.18 6.01

S6038 0.85 0.55 0.52 0.80 0.81 0.69 5.79 9.96 10.21 6.55 6.49 8.23

S0482 −0.49 −0.24 0.42 −0.03 0.28 0.02 19.38 17.66 12.11 16.10 13.46 15.73

S4016 −0.25 0.11 0.63 0.46 0.51 0.55 17.38 14.72 9.49 11.43 10.87 10.48

S0465 0.17 0.50 0.71 0.64 0.73 0.68 14.98 11.61 8.89 9.86 8.57 9.32

S0464 0.92 0.87 0.81 0.86 0.87 0.82 5.01 6.50 7.92 6.67 6.47 7.72

S0479 0.79 0.75 0.70 0.75 0.77 0.73 7.87 8.74 9.52 8.66 8.25 9.03

Average −0.94 0.51 0.67 0.63 0.71 0.62 14.26 9.65 8.40 8.47 7.72 8.80

Table 4 
Model Efficiency and Root Mean Square Error (RMSE) for Model Scenarios M01, M05, C5, G4, U1, and U2 (Tables 1 
and 2) at 10 Coastwide Reference Monitoring System (CRMS) Field Sites

Case ID Base network Width (m) Depth (m)
Tidal prism 

(normalized)

M01 / / / 1

M05 S2&NWI / +2 m 1.48

C5 S2&NWI +40m +2 m 2.93

G4 Google Earth / +2 m 1.67

U1 S2&NWI 40 m +2 m 1.55

U2 Google Earth 40 m +2 m 1.95

Table 5 
Comparison of Different Model Scenarios
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8.3.  Model Calibration and Validation

Coastal models are generally calibrated with few tidal or velocity gauges because of the high cost of field obser-
vations (Zhang et al., 2020). In our study domain, 18 water level stations cover not only the main channel (WLO), 
but also the complex creeks network, well capturing the delay in tidal propagation and the flow attenuation over 
the entire system. The discharge at five cross sections was also evaluated, demonstrating the necessity of chan-
nel deepening to promote channel hydrological connections. Based on errors between modeled and measured 
discharges, the optimal channel geometry is scenario M05, followed by scenario U1 which is the one producing 
the smallest discharge error. The small discrepancy between discharge and water level calibrations may be caused 
by the limited number of discharge observations, therefore we stress the importance of comprehensive discharge 
data for model calibration (Hanegan, 2011). Future modeling work should also use field data to calibrate veloci-
ties in shallow tidal channels. In fact, it was found that subtle topography variations dominate flow velocities and 
flow reversals in tidal flats and salt marshes (Torres & Styles, 2007). Flow velocities are also very sensitive to the 
accuracy of bottom bathymetry in hydrodynamic models (Wang et al., 2009).

Our results highlight the importance of spatially dense observations for model calibration. One could always 
obtain a satisfying model performance (ME > 0.95) using only the eight gauges along the main channel (WLO), 
but gauges within the marsh are needed to determine whether wetland channels are blocked (see the M01 
scenario). Similarly, Jiang et al. (2019) calibrated a 1-D river hydraulic model of the Songhua River, China, using 
satellite altimetry, and stressed that a high spatial resolution is more important than high temporal resolution 
and altimetry accuracy. Remote sensed hydrodynamic observations are expected to significantly improve the 
performance of coastal models: the upcoming Surface Water and Ocean Topography (SWOT) satellite mission 
will provide relatively high spatial and temporal observations of water surface elevations (Pitcher et al., 2019); 

Figure 13.  Modeled discharges at cross sections CS-1 and CS-2 for the 13 model scenarios M01–M13 (Table 1) and C1–C5 
(Table 2). Dash lines indicate field measurements of discharge at cross sections CS-1 (black) and CS-2 (red).

Field sites

CS-1 CS-2 CS-3 CS-4 CS-5 ME RMSE Error

Model scenarios Field discharge 74.65 40.01 1.03 1.06 10.11

M01 10.62 30.59 0.71 0.10 6.39 −0.04 28.99 30.9%

M05 37.32 38.72 0.58 0.66 6.38 0.65 16.79 12.9%

C5 94.89 56.87 0.29 0.82 3.99 0.82 12.10 20.6%

G4 41.94 45.50 0.43 0.22 3.48 0.72 15.13 21.4%

U1 47.16 48.86 0.13 0.13 3.61 0.78 13.25 19.9%

U2 34.82 52.44 0.96 2.24 3.21 0.56 18.92 28.2%

Note. Error between the model (M) and field data (D) is calculated as 𝐴𝐴
1

𝑛𝑛

∑𝑛𝑛

1

𝑀𝑀𝑖𝑖−𝐷𝐷𝑖𝑖

𝐷𝐷𝑖𝑖

 , where n is number of sites (n = 3, for sites CS-1,CS-2, and CS-5).

Table 6 
Modeled Discharges at Cross Sections CS-1 to CS-5 for Model Scenarios M01, M05, C5, G4, U1, and U2 (Tables 1 and 2)
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Synthetic Aperture Radar (SAR)-derived data will measure 2-D flow inundation (e.g., Ayoub et al., 2018) and 
water-level change using repeat-pass interferometry (e.g., Liao et al., 2020).

In coastal models, errors can arise because of the poor representation of the 
geometry (i.e., bathymetry), lack of data at the boundaries (i.e., boundary 
conditions), or because of poor calibration of model coefficients (e.g., fric-
tion coefficients of Cunge,  2003). In our modeling framework the bathym-
etry is the main source of error, and in particular the representation of tidal 
channels and small creeks. The model efficiency is in fact very high along 
the Wax Lake Outlet (gauges WL2–WL9, see Figure 10) with a RMSE less 
than 4  cm. This indicates that channel friction, riverine and tidal boundary 
conditions are more than adequate to capture tidal propagation along the main 
river. On the contrary, the model efficiency is very uneven for the creeks in 
the marsh interior. At some of the creek gauges the modeled water oscillations 
are strongly damped (RMSE of 20 cm with a tidal range of 36 cm) so that any 
possible change of friction coefficient would not address the problem. More-
over, a selective adjustment of the friction coefficient in some creeks but not 
in others would not be realistic. Our simulations clearly indicate that water is 
unable to flow in some channels because of bathymetric errors in the modeling 
mesh. We therefore conclude that in coastal wetlands the poor representation of 
tidal channels is among the main sources of error. This is because the channel 
network is bathymetrically very complex, with very sharp bottom gradients 
within few meters (some of the channel banks are almost vertical).

8.4.  Utilization of the Simplified Cost Function to Assess Network 
Connectivity

In coastal wetlands, the bathymetry of tidal channels is very often unknown 
or subject to large errors. Remote sensors cannot detect channels bottomsets 
and bathymetric surveys are often limited to the main navigable waterways. 
There is therefore a need to refine channel bathymetry with physically based, 
automated algorithms.

Figure 14.  Cost-function maps of 𝐴𝐴 𝑡𝑡𝑥𝑥𝑥𝑥𝑥 (tidal propagation time) for three examples of bathymetry input: (a) the bathymetry or 
base case, against which all other runs are compared, (b) the Sentinel-2 Imagery & National Wetland Inventory network after 
applying a carving depth Δz = −2 m, and (c) the Google network after applying a carving depth Δz = −2 m (Table 1). The 
reference in situ gauges are shown in red, along which we sum 𝐴𝐴 𝑡𝑡𝑥𝑥𝑥𝑥𝑥 values to obtain St. Times shown in (b) and (c) represent an 
elevation threshold of −5 m.

Figure 15.  Comparison between the reduction in tidal travel times 𝐴𝐴 𝐴𝐴
𝑁𝑁𝑁Δ𝑧𝑧

𝑡𝑡
 

and the volume removed from the system V N,Δz. The carving depth Δz is 
indicated in white inside each marker. All curves are equal at the intercept 
which represents the unmodified bathymetry. Lower values of 𝐴𝐴 𝐴𝐴

𝑁𝑁𝑁Δ𝑧𝑧

𝑡𝑡
 represent 

improved tidal propagation. The inflection points, which represent the 
optimum for each curve, are shown in the zoomed-in inset and outlined in 
black. The optimal bathymetry correction is indicated and corresponds to the 
Sentinel-2 Imagery & National Wetland Inventory map shown in Figure 13b.
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Despite its simplicity, our cost function method appears capable of estimating the optimal bathymetric correc-
tions for improving tidal propagation in a full-scale hydrodynamic model. This method is computationally effi-
cient and only relies on knowledge of bathymetry and network. It can be used to quickly compare hundreds of 
potential bathymetric corrections without running the full Delft3D model. Further, because this method is not 
domain or grid-size dependent, it can be potentially used to improve any coastal model attempting to accurately 
reflect tidal processes with unreliable bathymetric data.

While the surrogate model is able to accurately predict optimal changes in depth to capture tidal propagation, it 
is unable to detect how changes in width will affect model performance. The geodesic approach utilized by the 
fast-marching algorithm is not sensitive to the thickness of the least-cost-path from the coast, and as such does 
not reflect the importance of channel geometry to tidal propagation in the model. It is possible that a similar cost 
function could be devised to account for the role of width in tidal propagation, but we hypothesize that doing 
so will be nontrivial for a few reasons. Both shallow depths and narrow widths can obstruct tidal propagation–
however, the former is related to simple errors in input data, whereas the latter is a complex function of channel 
form drag in the model due to factors like grid size, channel direction, and sinuosity. Because the cost-function 
approach does not rely on any information about the model itself, it is hard to know a priori what effect channel 
width will have on tidal propagation.

From our modeling results, it is clear that artificially dilating channel widths to a minimum of four cells (40 m) 
can improve model performance, on top of the aforementioned depth modification. We hypothesize that the scale 
at which wetland channels are able to accurately represent tidal processes is on the order of ≈4Δx, above which 
performance tends to plateau (e.g., as is the case with the wide Wax Lake Outlet, which performs well across 
all scenarios tested here). We recommend utilizing our simple surrogate model to determine the optimal depth 
correction to improve tidal propagation, after which model trial-and-error can be minimized to investigating the 
importance of channel width. In this way, the simple method proposed here can help narrow the required number 
of full-scale model simulations considerably.

8.5.  Is the Small Structure of the Channel Network Important?

The results of our simulations indicate that the representation of the small structure of the network (channels with 
width smaller than 10 m) does not improve model results. Simulations with the Google Earth channel network, 
which represents all channels visible from a high resolution aerial image (see Figure 9b), yield an average ME 
of 0.63 and a RMSE of 8.47 cm in terms of water levels (scenario G4 Table 4), which are slightly better than the 
simulation with the network obtained from the Sentinel-2 image S2&NWI (scenario M05, ME = 0.51, RMSE 
9.65 cm). This is because with more channels tidal propagation is faster, therefore counteracting the blocking 
effect of the bathymetric errors. However, the average discharge error with the Google Earth network is 21.4% 
(Table 6), much higher than the error with the S2&NWI network (12.9%). In fact the representation of small 
channels requires the incision of many mesh elements, increasing the tidal prism (Table 5). If the width of the 
channel network is expanded by two elements, the model with the S2&NWI network is actually superior in terms 
of water levels (scenario U1 ME = 0.71 RMSE = 7.72 cm vs. scenario U2 ME = 0.62 RMSE = 8.80 cm), and 
the average discharge error of the Google Earth network is much higher (28.2% for U2 vs. 19.9% for U1). We 
therefore conclude that overall the inclusion of small channels detected at a resolution below the model mesh 
might be not worthy, since improves little water levels but leads to errors in discharge. The utilization of a network 
extracted from a remote sensing image with the same resolution of the model mesh (10 m) seems optimal for tidal 
propagation within the channels.

8.6.  Application to Other Coastal Systems

Our results can be generalized to all shallow coastal environments dissected by channels, including salt marshes, 
mangroves, deltaic wetlands, and tidal flats. Tidal propagation in the channel network must be correctly simu-
lated to capture fluxes of water, sediments, and nutrients (e.g., Fagherazzi et al., 2013). When using a Cartesian 
mesh, modification to the channel bathymetry is required to eliminate possible obstacles to flow propagation. 
The following steps should be taken to correctly represent channel hydrodynamics: (a) a high-quality channel 
network should be derived from satellite images at a resolution identical to the computational grid; all the chan-
nels should be connected (see Jin et  al., 2021 for an example of channel extraction); (b) bottom friction and 
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boundary conditions should be calibrated in the largest channels, where the tidal and river flow can propagate 
unobstructed; (c) a minimum water depth derived from our cost function should be prescribed in the channels; 
(d) the width of the small channels should be increased to a minimum of four grid elements. Our approach can be 
easily automated, enabling the representation of channel networks in large coastal domains.

9.  Conclusions
It is challenging to model tidal propagation along complex channel networks that flood and drain coastal wetlands, 
because bathymetric errors lead to an underestimation of channel geometric connectivity (e.g., blocking effects). 
Based on a unique richly gauged coastal wetland (18 water-level gauges covering the entire system), we build a 
∼10 m hydrodynamic model from a 10 m topography data set, and evaluate the influence of channel geometry 
(width and depth) on channel connectivity and model performance. A series of channel networks derived from 
remote sensing imagery are tested to constrain channel width and depth and achieve the optimal channel network 
for tidal propagation. We provide a general framework to improve model performance by integrating high-resolu-
tion imagery and bathymetry, without a significant increase in tidal prism. The main conclusions of the study are:

1.	 �Subtle bathymetric variations dominate the accuracy of hydrodynamic modeling in shallow wetland channels, 
but have little effect on deep channels (for example, along the Wax Lake Outlet). This result stresses the need 
of spatially dense observations for model calibration.

2.	 �Several factors contribute to blocking tidal propagation in wetland channels. Among them, we focus here on 
errors in channel depth due to topographic smoothing and low grid resolution in narrow channels. A minimum 
2 m channel depth and four grid elements channel width (40 m) are required to capture flow propagations in 
our ∼10 m resolution model.

3.	 �Increasing channel depth can enhance channel connectivity, but can also lead to an overestimation of tidal 
prism and therefore discharge in the wetlands. The tidal prism substantially increases even with a small 
increase in channel depth.

4.	 �An increase of 2 m for the water depth of the channels produce optimal results for our hydrodynamic model 
of WLD. This conclusion is verified by a simplified cost function method for estimating corrections to the 
structural connectivity of the channel network, which can be applied to other coastal wetlands.

5.	 �The inclusion of small channels with a width smaller than the mesh resolution does not increase the perfor-
mance of the model with respect to water levels and discharge.

6.	 �The combination of numerical simulations and a simplified cost function, as well as channel networks derived 
from remote sensing, can efficiently determine the optimal water depth and width of channels for modeling 
the propagation of tidal and riverine signals.
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