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A B S T R A C T   

The propagation of tides and riverine floodwater in coastal wetlands is controlled by subtle topographic differences and a thick vegetation canopy. High-resolution 
numerical models have been used in recent years to simulate fluxes across wetlands. However, these models are based on sparse field data that can lead to unreliable 
results. Here, we utilize high spatial-resolution, rapid repeat interferometric data from the Uninhabited Aerial Vehicle Synthetic Aperture Radar (UAVSAR) to provide 
a synoptic measurement of sub-canopy water-level change resulting from tide propagation into wetlands. These data are used to constrain crucial model parameters 
and improve the performance and realism of simulations of the Wax Lake wetlands in coastal Louisiana (USA). A sensitivity analysis shows that the boundary 
condition of river discharge should be calibrated first, followed by iterative correction of terrain elevation specified originally by a Digital Terrain Model derived from 
LiDAR measurements. The calibration of bed friction becomes important only with the boundary and topography calibrated. With the model parameters calibrated, 
the overall Nash-Sutcliffe model efficiency for water-level change increases from 0.15 to 0.53 with the RMSE reduced by 26%. In areas with dense wetland grasses, 
the LiDAR signal is unable to reach the soil surface, but the L-band UAVSAR instrument detects changes in water levels that can be used to infer the true ground 
elevation. The high spatial resolution and repeat-acquisition frequency (minutes to hours) observations provided by UAVSAR represent a groundbreaking oppor-
tunity for a deeper understanding of the complex hydrodynamics of coastal wetlands.   

1. Introduction 

Distributary channels in deltaic systems nourish wetlands with flow, 
sediment and nutrients, contributing to marsh elevation gain and resil-
ience to sea-level rise (Redfield. 1972; Morris et al., 2002; Fagherazzi 
et al., 2012; FitzGerald and Hughes. 2019; Schuerch et al., 2018). Field 
observations and modeling have been devoted to understand in-
teractions of flows and sediment transport between channels, tidal flats, 
and wetlands (Donatelli et al., 2020). Field data have shown that when 
tidal and riverine waters propagate from channel to vegetation, vege-
tation increases flow resistance, attenuates waves and increases sedi-
ment settling (Reed et al., 1999; Nepf and Vivoni, 2000). The presence of 
vegetation enhances flows within the channels, which become the main 
conveyers of water and sediments to the marsh platform (Temmerman 
et al., 2005). In the Wax Lake Delta in Louisiana (USA), the 
channel-wetland hydrological connectivity is significant, with 23–54% 
of discharge flowing from adjacent channels into wetlands, demanding 
detailed analyses of wetland hydrodynamics (Hiatt and Passalacqua, 
2015). These findings imply complex and nonhomogeneous flow path-
ways within the vegetation. Despite the importance of collecting hy-
drodynamic data on the wetland platform, expensive in situ 
measurements with reduced spatial sampling and resolution hamper 

progress in modeling flow in complex coastal wetlands. 
Physics-based numerical models explicitly solve hydrodynamics and 

sediment transport equations to determine sediment budgets and 
morphological evolution. Most importantly, numerical models can 
isolate different driving processes and provide reliable predictions under 
different scenarios of climate change and sea level rise. For the Wax Lake 
Delta, numerical model results show that intermediate vegetation height 
and density are optimal for sediment deposition (Nardin and Edmonds, 
2014). Similarly, Oliver et al. (2020) found that the presence of vege-
tation could increase vertical accretion within vegetation patches but 
reduce sediment retention within the entire delta. Models can also 
mimic vegetation establishment, growth, expansion, and mortality and 
update vegetation parameters in each simulated time-step interactively 
(Best et al., 2018). 

The reliability of model results depends on careful calibration of 
model input parameters, particularly topography and bed roughness, 
and accurate information of boundary conditions that require synchro-
nous spatial field observations. Often, numerical models of wetlands use 
Light Detection and Ranging (LiDAR) data to extract the topography of 
the vegetated area (Zhang et al., 2020), which could lead to a positive 
bias in elevations due to the incapability of laser of penetrating into the 
vegetation canopy. This would produce misleading results in marsh 
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models because of the high sensitivity of marsh species and biomass to 
subtle topographic differences and inundation depths. LiDAR errors vary 
spatially as a function of vegetation cover, and a constant correction in 
elevation cannot capture this spatial complexity. The errors are tradi-
tionally categorized by vegetation species and adjusted using 
point-measurements of RTK and total stations. LiDAR topography can be 
further refined by relating elevation to aboveground biomass density or 
using machine-learning methods (Medeiros et al., 2015; Rogers et al., 
2018; Cooper et al., 2019). Alizad et al. (2016) calibrated a LiDAR 
Digital Terrain Model (DTM) of the salt marshes in Apalachicola Bay, 
Florida, USA, by comparing the biomass distribution obtained from a 
model to remote sensing data. The modeled biomass was calculated 
based on the empirical function between biomass and inundation depth 
put forward by Morris et al. (2002). 

Model calibration is traditionally based on a few of tidal gauges in 
large channels, which cannot capture complex flow dynamics within 
wetlands. The flows on the wetland platform are seldom calibrated due 
to the challenge of collecting in-situ measurements beneath the vege-
tation canopy (Alsdorf et al., 2007). Recent advances in the remote 
sensing of hydraulic variables (e.g. inundation extent and water level), 
provide an opportunity to fuse high-resolution spatial data into nu-
merical models through calibration (e.g. McCabe et al., 2017; Wiberg 
et al., 2020). The integration of remote sensing data and numerical 
models was indicated as one of the grand challenges in salt marsh 
morphodynamics (Fagherazzi et al., 2020). 

Spaceborne Interferometry Synthetic Aperture Rader (InSAR) has 
been successfully applied to estimate water-level changes in wetlands, 

especially in fluvial systems, because the interferometric phase change 
of repeat-pass SAR backscattering from emergent flooded vegetation is 
dominated by the water-level change with a high interferometric 
coherence (e.g. Alsdorf et al., 2000; Yuan et al., 2015; Oliver-Cabrera 
and Wdowinski, 2016; Lee et al., 2020; Liao et al., 2020). Based on 
InSAR-derived water-level change, Jung et al. (2012) calibrated Man-
ning’s bed roughness in a 2-D floodplain model of the Atchafalaya River 
floodplains, reducing the mean absolute error to 5.7 cm in a 64-day 
simulation. Water levels derived from radar altimetry can be utilized 
for calibrations of depth and bed roughness in poorly gauged areas (Sun 
et al., 2012; Domeneghetti et al., 2014). The application of radar 
altimetry measurements, due to their low accuracy, is limited to large 
channel systems such as the Amazon River (De Paiva et al., 2013). 
However, the long temporal repeat of spaceborne InSAR (days to 
months) inhibits observation of tidal flows into wetlands, and thus 
cannot be used to calibrate coastal numerical models. 

Airborne systems such as the Uninhabited Aerial Vehicle Synthetic 
Aperture Radar (UAVSAR) can fill this gap, providing repeat-pass dif-
ferential interferometry for water-level changes within 1-hour time 
window and with high accuracy (e.g. Rosen et al., 2006; Fore et al., 
2015). The goal of this paper is to use UAVSAR-derived short timescale 
water-level change to calibrate hydrodynamic models in tidal wetlands 
and to assess model sensitivity to boundary conditions, LiDAR-derived 
topography and bed roughness. To this end, we develop a 2-D Delft3D 
hydro-model with high-spatial resolution (~10 m), covering the Wax 
Lake Delta and adjacent wetlands. We focus our calibration effort in the 
western wetland area dissected by meandering channels (Fig. 1). The 

Fig. 1. (A) A 10-m resolution vegetation classification map based on Sentinel-2 satellite imagery (Thomas et al., 2019) within the Wax Lake Delta model boundary 
(white line). The area within black line is the domain used for comparison with model results and visualization purpose. (B) Cumulative water-level change observed 
by UAVSAR from 11:34 to 13:53 (GMT) on 08 May 2015. The system is divided by the dashed line in the upper subdomain of Wax Lake channel (WL) and the lower 
subdomain of Hog Bayou channel (HB). The black circle indicates the inlet area of HB channel. (C) Field observations of water levels (NOAA Amerada Pass 8,764, 
227) and river discharge (USGS Calumet 07,381,590) on 08 May 2020. The pink band indicates the period of the airborne campaign. 
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work presented here introduces a novel approach to integrate airborne 
InSAR observations into quantitative models of tidal flow propagation in 
coastal vegetated surfaces. 

2. Study site 

The Wax Lake Delta is a river-dominated delta located in the Atch-
afalaya Bay within the greater Mississippi River Delta. The Atchafalaya 
River distributes water and sediment into Atchafalaya Bay through the 
Wax Lake Outlet, artificially dredged in 1942. The sediment has in time 
formed the Wax Lake Delta (Robert et al., 2015; Shaw et al., 2013). The 
delta is about 20 km from the Calumet Gauge (USGS 07,381,590), and 
the width of main channel is ~300 m (Fig. 1A). 

The low-lying Atchafalaya Bay is affected by a mixed semidiurnal 
micro-tide, with the mean tidal range of 0.34 m. The river discharge 
varies seasonally from 2500 m3/s to more than 5000 m3/s during river 
floods. A portion of discharge is diverted along the engineered Gulf 
Intercostal Waterway (GIWW) that crosses the Wax Lake Outlet (Swar-
zenski and Perrien 2015). Extensive heterogeneous plant communities 
have developed along the two sides of the main channel. A dendritic 
network of meandering channels departing form the main stem brings 
water and sediment to these vegetated areas. Here we focus on Wax Lake 
(WL) channel and Hog Bayou (HB) channel in the western side of the 
main channel (Fig. 1B). Most research in the Wax Lake Delta focuses on 
mechanisms controlling the naturally prograding delta itself, without 
considering the role of these large-scale wetlands in modulating water 
and sediment inputs (Carle et al., 2015; Oliver et al., 2020). 

3. Methods 

3.1. UAVSAR interferometry 

UAVSAR is a fully polarimetric (quad-polarization) L-band (wave-
length λ=0.2379 m, frequency ν=1.257 GHz) synthetic aperture radar 
operated by the U.S. National Aeronautics and Space Administration 
(NASA) and deployed on a Gulfstream-3 aircraft. The system is designed 
for both polarimetry (PolSAR) and repeat-pass interferometry (InSAR) 
(Hensley et al., 2003). InSAR processing of repeated observations of a 
surface from a same viewing geometry enables measurement of surface 
displacement in the line-of-sight direction (Rosen et al., 2006). Because 
the instrument is side looking, the line-of-sight displacement is in gen-
eral a combination of vertical and horizontal displacements. Relating 
the measured displacement to a change in surface elevation requires 
knowledge of the horizontal displacement, through either measurement 
or ancillary information. In flooded wetlands, the backscattered signal is 
primarily due to double bounce scattering from the water and vegeta-
tion, so the measured surface displacement is due to change in water 
level (Lu and Kwoun, 2008; Wdowinski et al., 2013; Liao et al., 2019). 
This study uses repeat-pass UAVSAR data (6 m spatial resolution) ac-
quired in HH polarization mode (Horizontal transmit and receive) to 
measure the net change in water level between 11:34 and 13:53 (GMT) 
on 08 May 2015. The measured interferometric phase change, Δφ, is 
converted to elevation change, Δz, by first phase unwrapping to remove 
the 2π ambiguities (Chen and Zebker, 2002), converting the unwrapped 
phase, ΔΦ, to line-of-sight displacement, Δl= ΔΦλ/4π, then projecting 
the value into the vertical direction, Δz= Δl/cos(θ), using the incidence 
angle, θ. The errors of surface deformation can be controlled within 1 cm 
for repeat pass SAR observations within hours, making it well suited for 
imaging water-level changes in coastal wetlands (Rosen et al., 2006). 
More details about UAVSAR-derived water level change maps can refer 
to Jones et al. (2020) (10.3334/ORNLDAAC/1823). 

3.2. Hydrodynamic modeling setup 

A 2-D hydrodynamic model based on Delft3D was developed to solve 
flow dynamics. The model domain is a curvilinear grid of 2600 by 1700 

cells, with the size ranging from 100 m2 to 150 m2 in the area of wet-
lands (Fig. 2B, C). The model topography is a 10-m seamless DTM 
composed of LiDAR datasets (http://ned.usgs.gov/), sonar transects in 
channels, and bathymetry elevations derived from diverse source data 
referred to the NAVD88 vertical datum (Denbina et al., 2020). We 
specify river discharge at the Calumet Gauge station (USGS 07,381,590) 
(U.S. Geological Survey. 2016) as the upstream boundary, and tidal 
water levels at the NOAA Amerada Pass station (NOAA 8,764,227) 
(CO–OPS 2018) as the ocean boundary (Fig. 2A). The hourly wind 
speed (~3 m/s) and direction measured at this NOAA station are uni-
formly prescribed across the model domain to account for the influence 
of winds on hydrodynamics. 

Bed roughness is defined based on a 10-m Sentinel-2 classification 
map (Thomas et al., 2019) and a look-up table for the Chezy’s coeffi-
cient: ocean (60 m1/2/s), channel water (55 m1/2/s), shoals (45 m1/2/s), 
marsh (35 m1/2/s) and forest (8 m1/2/s) (Chow, 1959; Straatsma and 
Baptist, 2008). The threshold depth for wetting and drying is set as 
0.001 m to keep model stability for very shallow waters. The simulation 
period is from 05 May 2015 at 00:00 to 09 May 2015 at 00:00, and a 
time step of 0.2 min is adopted to satisfy all stability criteria for the 
parallel computation. 

The analysis is focused within the western wetland (Fig. 1B) in a 2.5- 
hour window on May 08 from 11:34 to 13:53 when the UAVSAR data 
were collected. This time window corresponds to spring high tides and 
river floods, thus is optimal for water level observations over the wet-
lands. The Nash-Sutcliffe model efficiency (ME), root mean square error 
(RMSE), and frequency curve of difference between model (M) and 
remote sensing data (D) are used to evaluate model performance: 

ME = 1 −

∑
(D − M)

2

∑
(D − D)

2 ,RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑ (D − M)

2

n

√

(1)  

where n is the number of observations, and D is the mean of n values. The 
value of ME represents the model performance: ME > 0.65 excellent; 0.5 
< ME < 0.65 very good; 0.2 < ME < 0.5 good; and ME < 0.2 poor (Allen 
et al., 2007). 

3.3. Calibration and validation of river discharge and wetland elevation 

The riverine flow from the Wax Lake Outlet debouches seaward 
crossing the Intercostal Waterway (Fig. 1A). The GIWW likely modifies 
the discharge entering the Wax Lake Delta and the lower wetlands. As 
river flows can attenuate tidal propagation, reducing temporal varia-
tions in water level (Sassi and Hoitink, 2013), the river discharge at the 
model boundary should be adjusted to account for the discharge 
diverted in the GIWW. No synchronous discharge data from USGS is 
available along the GIWW at the period of the UAVSAR measurements. 
We therefore validate the discharge adjustment based on an empirical 
calculation using water surface slope data derived from remote sensing. 

The calibration of the model is performed in two steps (Fig. 3). First, 
we calibrate the river discharge to match UAVSAR data at the wetland 
margins bordering the Wax Lake Outlet (Section 3.2); we then spatially 
modify the wetland topography in each cell.. If the UAVSAR change is 
larger than the model result, we decrease the elevation of that cell. The 
model is iteratively re-run with the new bathymetry until the elevation 
correction is negligible and ME and RMSE are near-constant. 

The elevation correction is necessary for two reasons: 1) marsh 
topography derived from LiDAR data is prone to errors, because the laser 
signal cannot penetrate the thick vegetation resulting in an error (see 
Rosso et al. 2006). This offset is very high for a wetland that is typically 
submerged by only few tens of centimeters at high tide, precluding water 
flow in several areas. 2) a simple adjustment of local friction would not 
be able to correct for the error, and would lead to unrealistic friction 
values. 

The correction in elevation proposed here is empirical, and based on 
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the assumption that lowering the bed elevation would likely allows for 
more tidal propagation and for spreading out the water level changes. In 
facts water level changes are affected by flow conveyance. One possible 
way of enhancing the flow conveyance is to increase water depth, tar-
geting a larger change in water depth. However, a change in elevation at 
one point would reverberate across the system, changing the flow 
conveyance along the entire flow path. To address this shortcoming, we 
decided to iteratively change the elevation of a small amount, so that the 
entire system can slowly adjust to the modification in conveyance. This 
method is effective only if the iterative procedure converges, and only if 
the final result is realistic (i.e. the system does not present multiple 

equilibrium points). Here, for simplicity, we chose to modify the 
elevation by the change in elevation measured by UAVSAR in 2.5 hr. 
(ΔH_2.5hr) This choice was arbitrary, and a smaller change in elevation 
(e.g. change in elevation measured by UAVSAR in 1 hr) would lead to 
similar results after several iterations. 

Finally, the sensitivity of the results to the friction coefficient for the 
marsh and forest surfaces is evaluated. We designed 49 scenarios with 7 
different friction values (Chézy coefficient) ranging from 8 m1/2/s to 40 
m1/2/s for the marsh and forest respectively, and launch models with 
different combinations of frictions before and after the calibration of 
river discharge and topography. 

Fig. 2. (A) Model boundaries setup and elevation data as base map. (B) Zoomed map at Wax Lake channel inlet for mesh visualization. (C) Map of mesh size.  

Fig. 3. Flow diagram of model calibration process using UAVSAR data. dh/dt indicates water level change in 2.5 hours, ΔH_2.5hr.  
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The computed river discharge is validated using the empirical 
Manning’s equation that estimates flow rate in open channels as a 
function of water level slope, channel cross section, and bed friction 
(Chow, 1959): 

Q = ACRh
1/2S1/2 (2) 

Where Q is flow discharge (m3/s), A is channel cross section (m2), C 
is Chézy bed roughness (m1/2/s), Rh is hydraulic radius (m), S is the 
water channel slope. The Manning equation is applied to two cross 
sections of the Wax Lake outlet: one before the intersection with the 
GIWW (cross section a-a’ in Fig. 4) and one after (cross section b-b’ in 
Fig 4): 

Q2

Q1
=

A2

A1

C2

C1

(
Rh2

Rh1

)1/2(S2

S1

)1/2

(3) 

Where subscript 1 refers to cross section a-a’, subscript 2 refers to b- 
b’. We thus obtain the value, Q2, of the discharge after the GIWW that 
can be compared to the calibrated discharge. 

The channel slope in Eq. (3) is derived from AirSWOT data (Den-
bina., 2019). AirSWOT is an airborne Ka-band synthetic aperture radar 
that measures water surface elevation in open waters with uncertainty 
below 0.3 cm/km. The AirSWOT campaign was conducted at 17:14 
(GMT) on 09 May 2015, and more details about the AirSWOT mea-
surements can be found in Denbina et al. (2021). The comparison allows 
quantifying the effect of the GIWW on river discharge. 

The new wetland elevations obtained with our method are validated 
with high-resolution elevation data at 10 long-term sites of the Coast-
wide Reference Monitoring System (CRMS, https://lacoast.gov/crms/, 
see locations in Fig. 4). Only four of these sites fall within the UAVSAR 
footprint, and can therefore be used for the validation. 

4. Results 

4.1. Tidal propagation beneath vegetation canopies observed by UAVSAR 

UAVSAR observed water level changes below vegetation canopies 
across the model domain in a 2.5-hour time window (Fig. 4). Changes in 
water levels are lower in the wetland interior, due to tidal propagation, 
dissipation and reduced hydraulic connectivity. The zone with more 
pronounced flooding (large change in water level) extends about 8–10 
km from the Wax Lake Outlet mainly to wetlands along the channels, 
with a width of 200–300 m at both sides of each channel. UAVSAR 
cannot measure water level change in unvegetated areas, such as ponds 
and channels (Fig. 4). Interestingly, the HB channel has a width similar 
to the upper WL channel, but features higher water level variations. 
There is no clear spatial pattern of water level variations in different 
vegetation covers (see Figs. 1A and 4). 

4.2. River discharge dominates the amplitude of water-level change 

Our model results show that imposing the river discharge measured 
at Calumet in the WL channel underestimates tide-induced water-level 
changes along the HB channel. The use of the discharge measured at the 
Calumet station as the northern boundary condition gives rise to a 
uniform flow within the wetlands fed by the WL channel (Fig. 5A), in 
disagreement with the UAVSAR observations (Fig. 1B), resulting in poor 
model performance (Fig. 5C). By lowering river discharge, the tidal 
signal becomes more important and yields a distribution of water level 
variations comparable to UAVSAR observations, especially in the HB 
channel (Fig. 5B, D). Generally, we find that a lower river discharge 
gives better results in the subdomain of the WL channel, increases ME 

Fig. 4. Water level changes observed by UAVSAR between 11:34 and 13:53 (GMT) on 08 May 2015. The location of AirSWOT water surface elevation measurements 
is also indicated, as well as the Coastwide Reference Monitoring System (CRMS) sites and the cross sections a-a’ and b-b’. 
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from 0.33 to 0.51, and reduces the RMSE from 1.82 cm to 1.57 cm 
(Fig. 5E, F). A reduced river discharge in the WL channel is likely caused 
by the intracoastal waterway, that captures part of the river flow. 

Since the RMSE is meaningless with negative values of ME (Eqs.1), 
we used the averaged value of water-level changes at the inlet of the HB 
channel for calibration (Fig. 1B). The difference between water level 
change estimates by the model and the UAVSAR observations decreases 
with reduced river discharges (Fig. 5F). Overall, the optimum river 
discharge (initial discharge – 1100 m3/s, about 20% reduction in river 
discharge) was determined by evaluation of ME, RMSE and regional 
water-level changes. A flow diversion of 1100 m3/s in the GIWW is in 
accordance with the average discharge of 800 m3/s measured during 
peak flows by USGS (Swarzenski and Perrien 2015). 

4.3. Iterative modification of LiDAR-derived topography 

Despite the improvement in the magnitude of water-level changes at 
the wetland margin after calibrating the river discharge (Fig. 5), the 
model does not accurately capture tidal propagation on the wetland 
platform (Fig. 6A). This is probably caused by errors in the LiDAR- 
derived topography due to the inability of the laser to penetrate a 
dense canopy (Hladik and Alber. 2012). According to the Delta-X project 
datasets (https://deltax.jpl.nasa.gov/), the LiDAR DTM may have biases 

of 20 cm and RMSE of 24 cm in the Wax Lake Delta, which can signif-
icantly impact reliability of hydrodynamic models of coastal wetlands, 
particularly in microtidal systems (Alizad et al., 2020). Instead of cor-
recting the topography using limited RTK-GPS points, we introduce an 
approach based on the coupling of UAVSAR observations with model 
simulations to iteratively correct the model DTM. The correction is 
different at every point in the domain. 

Specifically, we iteratively change the initial DTM by subtracting the 
difference between the modeled and UAVSAR-observed water-level 
change. After each modification (iteration) of the DTM, the model is re- 
run with the updated DTM until the topography converges to the opti-
mum scenario with tidal propagation and dissipation occurring in the 
wetland interior. The final model results are more realistic, and compare 
well to UAVSAR observations (Fig. 6A, B). The improvement is espe-
cially evident in the HB subdomain (Fig. 6C and Fig. 5D). The model 
performance increases after each iteration, and the DTM at iteration 7 is 
chosen as the optimum scenario given insignificant improvements in 
overall domain ME and RMSE in later iterations (Fig. 6D). Overall, the 
water-level change ME increased from 0.15 to 0.53 after 7 iterations, 
while the RMSE decreased from 2.16 cm to 1.60 cm; for the WL channel 
subdomain, the ME improved from 0.51 to 0.63 with RMSE decreasing 
from 1.57 cm to 1.35 cm; for the HB channel subdomain, the ME 
improved from − 0.52 to 0.22, while the RMSE decreased from 3.14 cm 

Fig. 5. Comparison of model results before 
and after the correction of river discharge. 
Spatial distribution of modeled water-level 
changes with (A) initial river discharge 
measured at USGS Calumet Gauge (Fig. 1C) 
and (B) a river discharge reduced by 1100 
m3/s. (C,D) Comparison of water-level 
changes between model results and UAV-
SAR data for the entire domain (area shown 
in A). (E) Model efficiency (negative value 
indicates very poor performance that is less 
meaningful) and (F) RMSE with different 
river discharges for the entire domain, and 
for the subdomains of Wax Lake channel 
(WL) and Hog Bayou channel (HB), sepa-
rated by the dashed line in (A). Dash line in 
(F) is the error (model-UAVSAR) of the 
averaged water-level change (dh/dt) at the 
inlet of the HB channel (black circle in 
Fig. 1B). The pink band indicates the opti-
mum river discharge adopted after 
calibration.   
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to 2.25 cm. The lower ME value in the HB channel is mainly caused by 
the spatial resolution of the model which is too low to capture tidal 
propagation within the small-scale creeks at the end of the domain (dash 
red circle in Fig. 6B). Ignoring the area near the small-scale creeks im-
proves ME from 0.22 to 0.38 and RMSE from 2.25 cm to 2.03 cm. 

The DTM correction varies in space and is generally larger along the 
channel margins (Fig. 7B). The change is about 0.1 m in the WL channel 
but can reach 0.4 m along the HB channel (positive value indicates a 
lowering of the elevation). The modified DTM gives a lower elevation in 
general, as expected when the LiDAR pulses do not reach the ground in 
the presence of dense vegetation. High-density marshes in the HB 
channel may cause the higher bias compared to the forested banks of the 
WL channel (Fig. 1A). After the river discharge calibration and subse-
quent DTM correction based on UAVSAR measurements, the distribu-
tion of the error between model and UAVSAR is more symmetrical and 
with the centroid shifting toward zero (Fig. 7C). 

4.4. Sensitivity to bed roughness 

With initial river discharge and topography, the calibration of bed 
friction for the marsh and forest little improved the model performance 
in terms of ME and RMSE (Tables 1, 2). The forest friction dominates the 
ME, with less friction (larger Chézy coefficient) in the forest decreasing 
the overall model performance (Table 1). The ME is weakly related to 
variations in friction coefficients. For instance, model results with the 
friction combination (marsh: 35 m1/2/s, forest: 8 m1/2/s) display same 
ME and RMSE values as the case (marsh: 35 m1/2/s, forest: 25 m1/2/s). 
Overall, a ME < 0.2 in all simulations indicate a poor model perfor-
mance (Allen et al., 2007). Therefore, the calibration in bed frictions is 
less meaningful without a careful calibration of boundary conditions 
(river discharge) and initial conditions (topography). 

After modifications of river discharge and topography, the model 

performance improves (Tables 3, 4). It is interesting to note that the 
model with friction scenario (marsh: 35 m1/2/s, forest: 8 m1/2/s) per-
forms best, achieving the highest ME. This is probably because we 
calibrated river discharge and topography with these friction values. 
The modified topography therefore retains information about the fric-
tion distribution, optimizing the model results. The sensitivity analysis 
(Table 3) shows the ME ranges from 0.38 to 0.53, and RMSE from 1.6 cm 
to 1.85 cm. Therefore, the influence of the friction coefficients on model 
results increases, and becomes important only after calibration of river 
discharge and DTM elevation. 

To shed more light on the effect of friction, we compare two sce-
narios against the final model calibration by increasing marsh roughness 
(marsh: 8 m1/2/s, forest: 8 m1/2/s) and decreasing forest roughness 
(marsh: 35 m1/2/s, forest: 35 m1/2/s) (Fig. 8). The watershed of the HB 
channel is characterized by salt marshes, and more friction in the marsh 
constrains flows in the channel, increasing variations in water levels 
along the channel banks (Fig. 8a). With a lower friction in the forest, 
variations in water levels decrease near the WL channel but increase 
farther away (Fig. 8c). Both scenarios lower the model performance 
compared to the initial bed friction scenario (Fig. 8b). 

4.5. Validation of calibrated river discharge and wetland elevations 

The slope of the water surface calculated by AirSWOT is presented in 
Fig. 9A (see also Denbina et al., 2019), while the two cross sections 
extracted from bathymetric data before and after the GIWW are reported 
in Fig. 9B. The geometric values of the two cross sections are: A1 = 3945 
m2, Rh1= 15.40 m, A2= 4041m2,Rh2 = 15.49 m. The bed roughness is 
assumed to be constant along the WLO (C1 = C2). To reduce possible 
noise in the AirSWOT data, we calculate the 300-m averaged slope 
values (S1=4.75 cm/km and S2=2.25 cm/km), and the 500-m averaged 
slope values (S1=4 cm/km and S2=2.33 cm/km, Fig. 9A, see also 

Fig. 6. Modeled water-level changes 
on the wetland surface using Calumet 
discharge minus 1100 m3/s with (A) 
original DTM and (B) modified DTM 
after 7 iterations. DTM in (i + 1) iter-
ation = DTM in (i) iteration + differ-
ence of water-level changes between 
model run in iteration (i) and UAVSAR 
data. (C) Modeled results as a function 
of UAVSAR data for the entire domain. 
(D) Model efficiency and RMSE as a 
function of iteration number for the 
entire domain (same domain as A), 
subdomains of Wax Lake channel (WL) 
and Hog Bayou channel (HB). The 
pink band indicates the optimum sce-
nario adopted after 7 iterations.   
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Denbina et al., 2019). The corresponding value of Q2/Q1 is 0.71 for the 
300-m slope and 0.78 for the 500-m slope, which means that the GIWW 
receives 29% and 22% of the total river discharge respectively. The 
calibrated river discharge obtained by reducing of 20% the total 
discharge at the Calumet station is therefore reasonable, and well ac-
counts for the flow diversion in the intracoastal waterway. 

We collected ground-truth elevation data of all the CRMS sites (n =
10) within the model domain and compared them to the topographic 
data used in the model (Figs.4, 10). The averaged positive error is 12.65 
± 9.18 cm for 10 CRMS sites, with a maximum error of 28.43 cm at 
CRMS-4016. Therefore, ground elevation data indicate a systematic 
positive error in LiDAR derived elevations. A positive error in the LIDAR 
elevation of wetlands is very common, and is due to the difficult pene-
tration of the signal in the dense grass canopy (see Rosen et al., 2006). 

For the 4 sites (0489, 4779, 4016, 0479) within the UAVSAR area, 
the DTM correction using our method reduces the error from 20.27 cm 

to 6.82 cm. The correction little improves the elevation at CRMS-4779 
(Fig. 10); this is probably due to the very small value of water level 
change measured by UAVSAR (Fig. 4) and the complex network of 
narrow channels not well represented in the modeling mesh. Despite 
this, our method seems capable of reducing the elevation error at 
different locations. 

5. Discussion 

UAVSAR repeat-pass interferometry can detect water-level changes 
beneath vegetation canopies at a time scale of minutes to hours, making 
it possible to capture tidal propagation in coastal wetlands. The high- 
spatial-resolution observations of water-level change provided by this 
sensor can be used to calibrate hydrodynamic models. We developed a 
high-resolution hydrodynamic model and compared its output with the 
water-level changes measured by UAVSAR over a 2.5-hour period dur-
ing which tidal flow caused water level change in channels and adjacent 
wetlands. We found that the accuracy of the LiDAR-derived topography 
and of the river discharge used as a boundary condition are important 
for the overall model performance, whereas the calibration of bed fric-
tion becomes regionally important only with boundary conditions and 
DTM calibrated. 

5.1. Model calibration and measurements uncertainty 

A calibrated model should reproduce tidal and riverine fluxes at the 
boundaries, because very small errors in water levels amplitude and 
phase can change flow patterns within the model domain (Abbott and 
Skovgaard, 1978; Cunge, 2003). Pellettier (1987) showed that uncer-
tainty of discharge measurements at river stations could be as high as 
20% of the observed value. Calibration of numerical models of natural 
river streams (e.g. Po River in Italy, Domeneghetti et al., 2012) can 
produce unrealistic Manning’s coefficients, to compensate for the un-
certainty of discharge measurements (Horritt and Bates, 2002). In our 
study area, potential sources of uncertainty include errors in the river 
discharge at the northern boundary due to interaction of the Wax Lake 
Outlet with the GIWW, the disconnection with adjacent wetlands east 
and west of the model domain, and poor spatial information on hydro-
logical connectivity from small-scale creeks (Hiatt and Passalacqua, 
2015). 

High river floods can attenuate tidal flows, leading to small temporal 
variations in water level (Sassi and Hoitink, 2013; Van de Kreeke and 
Brouwer, 2017). As a first step, the incoming river flow is calibrated to 
yield a comparable instantaneous water-level change at the wetland 
margin. We found that lowering the river discharge at the boundary does 
increase variations in water level, particularly in lower marshes, how-
ever the overall model performance as measured by the parameters ME 
and RMSE show little improvement (Fig. 5).The hydrodynamic model 
performance can be significantly improved with a 2-D spatial compari-
son with measured water-level changes during a tidal cycle. Correcting 
the DTM using the measured water-level change had a much larger 
impact on model performance. It is important to note that the calibration 
of the wetland DTM and friction coefficient are meaningful only if the 
correct tidal signal is present at the wetlands margin and at the inlet of 
the tidal channels. 

A summary of previous studies at different sites show that the 
averaged LiDAR elevation error in salt marshes is 18 cm with a standard 
deviation of 14 cm. This error is likely to result in misleading hydro-
dynamic modeling outcomes (Alizad et al., 2020; Buffington et al., 
2012). In Wax Lake Delta, we directly refine the wetland DTM by 
coupling a hydrodynamic model and UAVSAR data. The model perfor-
mance in terms of water-level changes substantially improves the DTM 
adjustment. The high positive LiDAR bias (~0.4 m) in the marsh and the 
low bias in the forest (Fig. 11) indicates the necessity of DTM adjustment 
especially for marshes, in low-lying micro-tidal coastal deltas. 

In the forest area (Site 1, in Fig. 11) the average DTM elevation is 

Fig. 7. (A) Initial DTM (elevations referred to NAVD 88). (B) Difference in DTM 
elevation after UAVSAR correction: positive values indicate a lower elevation. 
(C) Distribution of the error between model and UAVSAR data for: initial model 
(Fig. 5A), after calibration of river discharge (Fig. 5B), and spatial modification 
of DTM (Fig. 6B). 
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between 0.4 and 0.6 m (NAVD88 datum, positive values indicate a 
higher elevation) and the changes in water levels measured by UAVSAR 
are small (~0.1 m in 2.5hr). Our topographic calibration increases the 
elevations of the platform, but only slightly (less than 0.1 m). Interest-
ingly, the correction yields a more uniform topography reducing the size 
of patches in the original DTM that are probably caused by tree crowns 
(Fig. 11E). In the marsh area (Site 2, Fig. 11) the elevation of the marsh 
at the channel banks is unrealistically high (above 0.8 m), likely due to 
the thick grass canopy that prevents the LiDAR signal from reaching the 
ground. In the model simulations, these areas are unrealistically dry. 
Note that the elevations are higher in the marsh than in the forest in the 
original DTM, in disagreement with studies on vegetation patterns in the 

delta (Fig. 11J) (Morris et al., 2005). The topographic error is confirmed 
by the large change in water level (Fig. 11I) that would be impossible in 
a place with such low water levels. The correction proposed by our 
methodology reduces the elevations by up to 0.4 m (Fig. 11L), creating a 
more uniform and realistic topography (Fig. 11K). The correction is 
more pronounced in the marsh area, which is more prone to LiDAR er-
rors (compare Fig. 11F and L). After calibration, the marsh site becomes 
slightly lower than the forest one (compare Figs.11E and 11 K), in 
agreement with the vegetation zonation of the delta. 

Table 2 
Root-Mean-Square Error for 49 scenarios of bed friction for marsh and forest surfaces 
before calibration of discharge and DTM. Pink color indicates Chézy marsh values ≥
forest values.  

Table 3 
Table 1. Model efficiency for 49 scenarios of bed friction for marsh and forest sur-
faces after calibration of discharge and DTM. Pink color indicates Chézy marsh 
values ≥ forest values.  

Table 1 
Model efficiency for 49 scenarios of bed friction for marsh and forest surfaces before 
calibration of discharge and DTM. Pink color indicates Chézy marsh values ≥ forest 
values.  
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Fig. 8. Influence of the bed friction (Chezy’s coefficient) of the marsh and forest on water level changes after calibration of river discharge and DTM. (A, D) marsh (8 
m1/2/s) and forest (8 m1/2/s), (B, E) marsh (35 m1/2/s) and forest (8 m1/2/s), and (C, F) marsh (35 m1/2/s) and forest (35 m1/2/s). (A, B, C) Spatial distribution of 
modeled water-level changes, and (D, E,F) the model results as a function of UAVSAR data. 

Fig. 9. (A) Water surface elevation (NAVD88) measured by AirSWOT along the Wax Lake Outlet (WLO) (Denbina et al., 2019). (B) Bathymetric data of cross sections 
a-a’ and b-b’ in Fig. 4 used for the calculation of the hydraulic radius. 

Table 4 
Root-Mean-Square Error for 49 scenarios of bed friction for marsh and forest surfaces 
after calibration of discharge and DTM. Pink color indicates Chézy marsh values ≥
forest values.  
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5.2. Limitations of the proposed method 

SAR derived hydraulic variables have already been utilized to cali-
brate the bed friction of different landscapes, on the assumption that 
errors in boundary conditions and initial topography have little influ-
ence on model results. For instance, the Manning’s coefficients of the 
main channel and floodplains of the Po River in Italy were calibrated 
with radar altimetry (ERS-2 and ENVISAT water level data) in a 2-D 
hydraulic model (Domeneghetti et al., 2014). InSAR water-level 
change data were also used to calibrate the Manning’s coefficients in a 
model of the central Atchafalaya floodplain (Jung et al., 2012). 

In our system, wetland friction affects the regional water flow, but its 
calibration did not improve the model performance after the correction 
of river discharge and topography (Tables 3, 4). This might be because 
the calibration of discharge and topography contains information of bed 
friction, and the initial friction setup can mildly influence the accuracy 
of the calibration of other parameters. Note that the friction coefficients 
used in the sensitivity analysis cover a very large range (from 8 to 40 m1/ 

2/s) and yet they hardly affect ME and RMSE (Tables 1, 4). Another 
option would be to keep the wetland elevation constant, and change the 
friction coefficient locally in an iterative way, as we did for elevation. 
However, this would lead to very large spatial variations in friction, 
which are unrealistic for these homogeneous vegetation covers, and 
friction values very likely outside of the range reported in the literature. 
Our results are consistent with previous findings suggesting that friction 
is an inherent physical parameter; therefore, a calibration exclusively 
based on the adjustment of the friction coefficient could produce unre-
alistic model results (Cunge.2003). 

Another possible approach would be to lower or elevate the entire 
topography of a fixed amount, to correct for possible vegetation biases in 
the LiDAR data, and then calibrate the friction coefficient. A uniform 
decrease of 20 cm in elevation would increase the flow on the wetland 
surface, increasing the temporal change in water depth (Fig. S1C), but it 
would concentrate less flow near the channels, reducing the change in 
water depth near the HB channel, where UAVSAR data show high values 
of water level change. On the other hand, a uniform increase in elevation 
would concentrate the flow in the channels (Fig. S1D), but it would reduce 
the flow on the wetland surface, with large area completely dry even at 

high tide. We therefore conclude that the wetland elevation needs to be 
selectively adjusted as a function of local hydrodynamic data. This is also 
evident in Fig. 11, which shows higher LiDAR elevations in the marsh with 
respect to the forest, while in reality it should be the opposite (the forest is 
typically located at higher elevations). 

In practice, we suggest to set an initial bed friction coefficient for 
each geomorphic class based on roughness tables, then carefully cali-
brate boundary conditions and topography based on UAVSAR data, and 
lastly calibrate bed roughness within a meaningful range. The 
complexity and nonlinear interactions between different parameters, 
such as bed friction, elevation and discharge, demand a comprehensive 
method to optimize the model performance with multiple parameters 
calibrated simultaneously in a physical way. The topography correction 
method adjusting elevation at each model cell by the difference in water 
level changes between model and UAVSAR may have limitations when 
applied to other systems. 1) The method empirically relates elevation 
error to water level change, without solving the physical functions 

Fig. 10. The initial elevations derived from LiDAR data (n = 10, indicated as 
black dots) and corrected elevations based on UAVSAR data (n = 4, indicated as 
red triangle) as a function of ground truth elevations measured at Coastwide 
Reference Monitoring System (CRMS) sites. See locations of CRMS sites 
in Fig. 4. 

Fig. 11. Comparison between Site 1 (forest dominated area near the Wax Lake 
channel) and Site 2 (marsh dominated area near the Hog Bayou channel). (A, G) 
Aerial photograph of forest and marsh derived from Google Earth. (B, H) Land 
classification from Sentinel-2 imagery. (C, H) Water level changes in 2.5hr 
obtained with UAVSAR. (D, J) Initial DTM (NAVD88, positive values indicate a 
higher elevation). (E, K) DTM after modification. (F, L) Change in DTM ele-
vations after calibration, positive values indicate a lower elevation. 
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between water level change, elevation and friction. 2) Changes in bed 
elevation at one cell would affect tide propagation and water level 
changes at cells downstream; therefore the empirical method may pro-
duce unrealistic results for a patchy and irregular topography. All the 
calibrations are based on a sole parameter of water level change derived 
from UAVSAR, however it is unknown whether this calibration would 
influence the model performance with respect to other parameters, such 
as water level and flow velocity. Future research may involve multiple 
hydraulic parameters for model calibration, e.g. a combination of water 
level change (UAVSAR) and water surface slope (AirSWOT). 

As the water level changes little (~10 cm) during this 2.5-hour time 
window, here we set constant values of bed friction for the marsh and 
forest, by assuming that it includes the friction caused by vegetation 
canopy (Zhang et al., 2020). However, hydraulic models in rivers show 
that the effective friction is proportional to the bed elevation variance and 
inversely proportional to depth (Rodríguez et al., 2020). Models that 
require high accuracy can integrate remote sensed vegetation parameters, 
defining a wetland friction variable in space and time (Fagherazzi et al., 
2020). The 2.5-hour UAVSAR campaign was conducted during river flood 
and high-water levels. When the vegetation is submerged, large-scale 
sheet flow becomes important, and the relative difference in friction be-
tween the channels and platform decreases (Temmerman et al., 2005; 
Fagherazzi et al., 2012). Similarly, the relative difference in friction be-
tween the marsh and forest would also decrease with increasing water 
depths. Future research can use consecutive UAVSAR observations 
covering a full tidal cycle to explore the sensitivity of bed friction to 
different vegetation species and submergence depths. 

Our model fails to capture water level variations in the lower HB 
channel (Fig. 4B) most likely due to the coarse mesh grid resolution that do 
not fully resolve the small-scale creeks (see area in the red dotted circle in 
Fig. 6B). A discontinuous channel with a width of one cell does not allow 
the correct propagation of the tidal and riverine signal, decreasing water 
fluxes and affecting water levels. As a result, the model performs better in 
the upper subdomain (WL channel). Future research should evaluate the 
influence of bathymetric resolution on tidal propagation from the main 
Wax Lake Outlet to the small creeks. The acquisition time of the UAVSAR 
data is also important. During low river discharge and neap tides, the 
calibration can be very challenging due to the small magnitude of water 
level changes and the limited accuracy of wetting and drying schemes 
utilized by numerical models. Even during high riverine flow and with the 
wetlands inundated, the water-level change is only in the range of ~5 cm/ 
hr. For systems with larger tidal ranges (e.g. the Fly River delta, Canes-
trelli et al., 2010, or the Yangtze delta, Zhang et al., 2018), the large 
temporal variations in water levels can be more easily detected by UAV-
SAR, expanding the application of this technology. 

6. Conclusions 

UAVSAR can detect water level changes beneath vegetation canopies 
with high spatial and temporal resolution. We presented here the first 
comparison between UAVSAR observations of tide-induced water level 
change and numerical simulations with a hydrodynamic model. The 
following results were obtained from our analysis:  

• A comparison between model results and UAVSAR data indicates 
that small errors in bathymetry (up to 20 cm) have a strong effect on 
the hydrodynamics of the wetland platform. This result is of general 
validity for microtidal areas, and was never highlighted before for 
lack of distributed hydrodynamic data on the marsh platform.  

• State-of-the-art topographic data of wetlands obtained for example 
from LiDAR are therefore inadequate for modeling purposes, because 
they are often affected by vertical errors in the order of centimeters 
caused by the dense vegetation cover.  

• A correction of the topography is possible by combining UAVSAR 
data and a high-resolution numerical model that solves the platform 
hydrodynamics. This coupling is necessary because only a numerical 

model can convert the hydrodynamic information collected by 
UAVSAR in elevation.  

• The topographic correction is spatially distributed (resolution of 10 
m) and physically based: at every point of the mesh the elevation is 
improved by iteratively solving the hydrodynamics and comparing it 
to UAVSAR data. This correction is therefore superior to previous 
corrections that were either uniform in space (e.g. lowering the 
marsh of a fixed amount) or based on ancillary data not directly 
linked to platform hydrodynamics (e.g. vegetation biomass). 

In conclusion, our results demonstrate significant improvement in 
parametrizing a hydrodynamic model. In particular, we were able to 
correct wetland topography, which traditionally requires labor- 
intensive campaigns to collect sparse in-situ measurements. We pro-
vided a general framework for model calibration that adjusts river 
discharge and LiDAR-derived wetland topography based on the UAV-
SAR data. The calibration enables realistic tidal propagation in the 
wetlands, with the model efficiency improving from 0.15 to 0.53 and the 
RMSE decreasing by 26%. Our novel approach using airborne remote 
sensing to calibrate hydraulic variables will substantially improve the 
reliability and accuracy of model simulations, and thus advance our 
understanding of hydrodynamics in coastal wetlands. 
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