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A B S T R A C T   

Coastal floodplain swamps (CFS) are an important part of the coastal wetland mosaic, however they are 
threatened due to accelerated rates of sea level rise and saltwater intrusion (SWI). While remote sensing-based 
detection of wholesale coastal ecosystem shifts (i.e., from forest to marsh) are relatively straightforward, as
sessments of chronic, low-level SWI into CFS using remote sensing have yet to be developed and can provide a 
critical early-warning signal of ecosystem deterioration. In this study, we developed nine ecologically-based 
hypotheses to test whether remote sensing data could be used to reliably detect the presence of CFS experi
encing SWI. Hypotheses were motivated by field- and literature-based understanding of the phenological and 
vegetative dynamics of CFS experiencing SWI relative to unimpacted, control systems. Hypotheses were orga
nized into two primary groups: those that analyzed differences in summary measures (e.g., median and distri
bution) between SWI-impacted and unimpacted control sites and those that examined timeseries trends (e.g., 
sign and magnitude of slope). The enhanced vegetation index (EVI) was used as a proxy for production/biomass 
and was generated using MODIS surface reflectance data spanning 2000 to 2018. Experimental sites (n = 8) were 
selected from an existing network of long-term monitoring sites and included 4 pairs of impacted/non-impacted 
CFS across the northern Gulf of Mexico from Texas to Florida. The four best-supported hypotheses (81% across 
all sties) all used summary statistics, indicating that there were significant differences in the EVI of CFS expe
riencing chronic, low-level SWI compared to controls. These hypotheses were tested using data across a large and 
diverse region, supporting their implementation by researchers and managers seeking to identify CFS undergoing 
the first phases of SWI. In contrast, hypotheses that assessed CFS change over time were poorly supported, likely 
due to the slow and variable pace of ecological change, relatively short remote sensing data record, and/or 
specific site histories. Overall, these results show that remote sensing data can be used to identify differences in 
CFS vegetation associated with long-term, low-level SWI, but further methodological advancements are needed 
to reliably detect the temporal transition process.   

1. Introduction 

The coastal wetland mosaic is a complex of wetland types (swamps, 
marshes, and mangroves) that inhabit the coastal margin and are 
patterned along abiotic gradients (e.g., hydroperiod, salinity, and 
nutrient concentration). Directional changes to abiotic gradients and 
disturbance frequency can alter coastal wetland structure and function 
and drive wholesale ecosystem transitions (Hong et al., 2019; Kirwan 
and Gedan, 2019; Klein et al., 2005; Odland and del Moral, 2002; Reaver 
et al., 2019). Flood frequency and salinity gradients are two important 
drivers of coastal wetland distribution (Craft et al., 2009; Kirwan et al., 

2016; McKee and Mendelssohn, 1989; Middleton and Souter, 2017) that 
are closely linked to global climate change and sea-level rise (SLR), 
making them important drivers of coastal wetland change. These 
stressors have been widely demonstrated to cause shifts in the commu
nity structure and composition of both saline (Angelini and Silliman, 
2012; Brinson et al., 1995; Brinson et al., 1985; Langston et al., 2017; Liu 
et al., 2017) and freshwater (Chen et al., 2016; Knighton et al., 1991; 
Neubauer, 2011; Rasmussen et al., 2013; Rice et al., 2012; White and 
Kaplan, 2017) coastal wetlands. 

Among coastal wetland types, coastal floodplain swamps (CFS) are 
freshwater wetlands characterized by woody, flood-tolerant tree species 
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(Cowardin et al., 1979; Mitsch and Gosselink, 2015). CFS provide US 
$1.5 T yr− 1 in ecosystem services globally (Costanza et al., 2014), 
including nutrient removal, storm surge attenuation, and carbon 
sequestration (Blair et al., 2015; Engle, 2011). The ecological integrity 
of CFS and their ability to provide these services is threatened by 
accelerating SLR and saltwater intrusion (SWI). While many saline 
coastal wetlands (i.e., marshes and mangroves) have demonstrated the 
ability to “keep up” with SLR via accretion and soil elevation change 
(Cahoon et al., 2019; Kirwan et al., 2016; Morris et al., 2002), rates of 
elevation change in CFS (1.3–2.2 mm yr − 1; Craft, 2012; Doyle et al., 
2007) are below the current global mean SLR rate of 3.2 mm yr− 1 

(Church and White, 2011; Horton et al., 2014). Saltwater intrusion can 
also lead directly to absolute losses in elevation (Charles et al., 2019; 
Krauss et al., 2020; Krauss et al., 2016). Finally, fluctuations in riverine 
hydrology play a major structuring role in CFS (Robertson and Aug
spurger, 1999; Yin, 1998; Zeiringer et al., 2018) making them vulner
able to SWI driven by natural and anthropogenic drivers in the 
watershed (White and Kaplan, 2017). Taken together, changes in 
riverine and coastal hydrology have led to the deterioration or conver
sion of CFS on a global scale (Kirwan and Gedan, 2019). 

One of the most visible indicators of SWI impacts on CFS is the 
presence of “ghost forests” along coastal margins (Kaplan et al., 2010; 
Kirwan and Gedan, 2019; Langston et al., 2017; Schieder et al., 2018). 
The presence of ghost forests is visually apparent in the field (standing 
dead trees and abundant herbaceous groundcover) where chronic SWI is 
present. However, while the effects of acute SWI at specific sites can be 
observed through resource-intensive field campaigns (Conner, 1995; 
Magnuson, 1990; Steyer et al., 2007), identifying chronic SWI stress 
associated with SLR and/or long-term flow alteration requires adequate 
time, funding, equipment, and long-term interest to sustain monitoring 
and data collection efforts (Franklin, 1989; Lovett et al., 2007; Strayer 
et al., 1986). Until recently there have been few studies quantifying the 
range and extent of CFS loss (but see Raabe and Stumpf, 2016; Ross 
et al., 1994; Schieder et al., 2018; Ury et al., 2020), and no studies of 
which we are aware that attempt to identify early-warning signals of CFS 
deterioration preceding wholesale conversion to marsh. In this chal
lenging context, remote sensing (RS) offers the opportunity to better 
understand the long-term effects of chronic SWI on CFS over large 

spatiotemporal scales by capitalizing on the wealth of global, satellite- 
based, multispectral imagery datasets that have been compiled in the 
past several decades (Alonso et al., 2016; Ji et al., 2001; Li and Weng, 
2007; Moran et al., 1997). Unlike previous land cover/land use change 
studies on coastal forested systems, which primarily rely on forest-type 
classification (Goldberg et al., 2020; Magolan and Halls, 2020; Taillie 
et al., 2020), here we focus on the unique physiological and phenolog
ical characteristics of CFS vegetation that arise due to chronic SWI. 

An understanding of the physiological and phenological character
istics of CFS vegetation is useful for identifying potential RS approaches 
to detecting the effects of chronic, low-level SWI. Coastal floodplain 
swamps are most often populated by freshwater, needle- and broad- 
leafed, deciduous canopy trees (i.e. Taxodium distichum, Nyssa spp., 
Fraxinus spp.), which characteristically have a leaf-out period in early 
spring, during which there is active growth, and a leafless period in 
winter, during which they are dormant (Brinson et al., 1980; Krauss 
et al., 2015). Additionally, under characteristic freshwater conditions, 
CFS have relatively sparse understory vegetation (Huenneke and Shar
itz, 1986; Krauss et al., 2009), while CFS undergoing SWI are often 
colonized by an herbaceous understory of salt-tolerant species, which 
persist through the dormant season (Fig. 1). Notably, the dynamics of 
non-wetland deciduous forests have been routinely and accurately 
observed using remote sensing (Duchemin et al., 1999; Nakaji et al., 
2011; Wang et al., 2005). Using remote sensing data we thus expect that 
CFS impacted by SWI will show muted seasonal variation in greenness 
due to reduced canopy productivity during the growing season and 
increased greenness during the dormant season due to additional un
derstory vegetation. 

Given our conceptual understanding and expectations about the 
phenology and growth dynamics of SWI-impacted vs. unimpacted CFS, 
we developed a set of nine hypotheses (Table 1 and described in detail in 
Section 2.2) to test the ability of remote sensing to identify SWI impacts 
in CFS. Our overall goal was to determine which of these nine hypoth
eses, if any, would be useful for identifying chronic SWI impacts on CFS 
using only remote sensing data. To do so, we tested each hypothesis 
across a network of previously established CFS sites along the northern 
Gulf of Mexico. Available data included records of vegetation and 
shallow groundwater salinity, allowing us to assign sites a priori as SWI- 

Fig. 1. Photographs of coastal floodplain swamps along the Suwannee River (FL) illustrating differences in seasonal phenology and growth dynamics between 
upstream (control) and downstream (saltwater intrusion-impacted) sites. 
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impacted (or not) for the purpose of hypothesis testing in this work. 

2. Methods 

2.1. Study sites, vegetation, and hydrology 

The sites used in this study were distributed across the northern Gulf 
of Mexico in Texas (n = 2), Louisiana (n = 2), and Florida (n = 4; 
Fig. S1). Sites were generally paired along the same river reach (i.e., one 
downstream, SWI-impacted site; one upstream, un-impacted site), 
except for the Louisiana region, which were located in different hy
drologic basins due to data limitations. Downstream sites were identi
fied as SWI-impacted based on groundwater salinity measurements from 
sensors deployed in each location (Table 2; described further in the 
Supplemental Material), however all downstream sites were dominated 
by woody canopy (not herbaceous marsh) species. Distances between 
upstream and downstream sites were selected to reduce the effects of 
differential regional drivers of stress (i.e., rainfall, freshwater flow, or 
extreme temperatures) and differences in primary production associated 
with changes in latitude (Middleton and McKee 2004), while still 
maintaining a distinct freshwater to brackish salinity gradient. Of the 
eight sites, six came from a network of sites established by the authors 
and collaborators for the purposes of monitoring the long-term effects of 
chronic SWI on CFS vegetation. The remaining two sites consisted of: 1) 
an upstream site in Louisiana site selected based on its proximity to a 
Louisiana Coastwide Reference Monitoring System (CRMS) station, 
which records vegetation, hydrology, and water quality data; and 2) an 
upstream site in Texas selected based on its proximity to a United States 
Geological Survey (USGS) river gage and the description of the flood
plain vegetation by Hall and Harcombe (1998). All sites are located on 
state or federally protected lands, minimizing the effects of direct 
anthropogenic impacts. 

In general, both upstream and downstream sites were dominated by 
woody canopy vegetation that are characteristic of CFS (i.e., Taxodium 

distichum, Nyssa spp., Fraxinus spp.), however downstream sites had a 
greater density of salt-tolerant understory vegetation. There is little to 
no seasonal variation in understory vegetation. Distance from the coast 
was estimated for each site by taking the shortest route through water to 
the coastline. Detailed site descriptions, including site histories, vege
tation, and a summary of relevant hydrology and water quality are 
provided in the Supplemental Material. Hydrologic and water quality 
data were retrieved from multiple sources. On-site groundwater data 
were acquired from a network of groundwater wells established at 24 
sites across the Northern Gulf of Mexico (including six of the sites used in 
this study). Shallow groundwater wells were slotted below the soil 
surface, installed to an average depth of one meter, backfilled with sand, 
and sealed with bentonite clay at the surface. Wells were outfitted with a 
conductivity-temperature-depth probe (Aqua Troll 200, In-Situ, Fort 
Collins, CO or CTD Diver, Van Essen Instruments, Mukilteo, WA), which 
recorded data at 15-min intervals. Sensors were downloaded during 
quarterly visits and continuously recorded data for three to four years, 
depending on location. Pressure data from each sensor were corrected 
for atmospheric pressure to derive water level, and conductivity data 
were converted to salinity following Schemel (2001). The SE Louisiana 
upstream site water level and salinity data are from CRMS and span from 
2008 to 2018. The Neches upstream site does not have any site level 
hydrology or salinity data. 

River discharge and salinity (where available) data for each region 
were retrieved from the USGS National Water Information System 
(NWIS) via the waterData package developed for R (Ryberg and Vec
chia, 2012). Gages were selected based upon proximity to sites, and their 
locations; gage names and unique NWIS IDs are summarized in Fig. S2 
and Table S1. Data are presented as retrieved from the waterData 
package, with one exception: Suwannee River salinity at Gopher River is 
available for both top and bottom of the water column; we present the 
average of those values. Neches River salinity data at the Saltwater 
Barrier were provided by the Lower Neches Valley Authority (LNVA) as 
specific conductance in microSiemens/cm, which were converted to 
salinity based on Schemel (2001). 

2.2. Hypothesis formation 

Hypotheses were motivated by expected differences in statistical 
measures and temporal patterns of greenness (as measured by the 
enhanced vegetation index; EVI) between downstream, SWI-impacted 
sites (transitioning to marsh), and upstream, unimpacted sites (fully 
forested). Hypotheses were based on existing literature and organized 

Table 1 
Hypotheses developed to identify the effects of saltwater intrusion (SWI) on 
coastal floodplain swamps (CFS) using remote sensing. In the table below, EVI is 
the Enhanced Vegetation Index; UP/DOWN refer to non-impacted upstream sites 
and SWI-impacted downstream sites; TREND refers to de-seasonalized change 
over time, and GS/DS refer to growing and dormant seasons.  

Hypothesis Ecological Rationale Test 

H1A: X̃ EVIDOWN < X̃
EVIUP 

Lower EVI at downstream sites indicates the 
presence of a stressor 

MWU 

H1B: X ~ EVIDOWN ∕= X 
~ EVIUP 

Differences in distribution imply changes to 
phenological patterns 

KS 

H2A: Slope EVIDOWN <

0 
Long-term negative slope at downstream sites 
imply SWI-induced stress 

MK, 
SS 

H2C: Slope EVITrend, 

DOWN < 0 
A declining de-seasonalized trend indicates a 
long-term change in EVI 

MK, 
SS 

H2B: Slope EVIDOWN:UP 

< 0 
The ratio between upstream and downstream 
sites accounts for any shared regional stressors; 
a declining slope indicates a local stressor is 
affecting the downstream site 

MK, 
SS 

H3A: X̃ EVIGS,DOWN < X̃
EVIGS,UP 

Lower growing-season EVI can indicate the 
effect of SWI stress on peak biomass/ 
productivity 

MWU 

H3B: X̃ EVIDS,DOWN > X̃
EVIDS,UP 

Higher dormant-season EVI may indicate the 
presence of salt-tolerant herbaceous understory 
species (succession) 

MWU 

H3C: X̃ EVIGS:DS,DOWN 

< X̃ EVIGS:DS,UP 

Lower GS:DS ratios imply a decrease in seasonal 
variation (phenological change) 

MWU 

H3D: Slope EVIGS:DS, 

DOWN < 0 
A negative slope indicates a significant impact 
on growing season EVI values compared to those 
of the dormant period 

MK, 
SS 

The symbols X̃ and X ~ represent median and distribution, respectively. Sta
tistical techniques and test used in this study are abbreviated as follows: Mann- 
Whitney U (MWU), Kolmogorov-Smirnov (KS), Mann-Kendall (MK), and Sen’s 
Slope (SS). 

Table 2 
Summary of distance from coast, elevation, water level and salinity for each site 
in the study. Upstream/downstream sites were paired across four regions.  

Regions Distance 
Upstream 
(km) 

Mean (± SD) 
Elevation (m) 

Mean (±SD) 
Water Level 
(cm) 

Mean (±SD) 
Salinity 
(ppt) 

Suwannee     
Upstream 42 22.19 ± 4.01 − 2.66 ±

30.34 
0.34 ± 0.18 

Downstream 5 13.83 ± 2.19 − 3.33 ±
10.81 

0.78 ± 0.41 

Big Bend     
Upstream 10 15.23 ± 1.27 − 3.57 ±

15.64 
0.13 ± 0.07 

Downstream 6 12.48 ± 1.61 − 12.4 ±
27.62 

1.79 ± 0.75 

SE Louisiana     
Upstream 72 6.36 ± 1.72 6.1 ± 17.91 0.15 ± 0.05 
Downstream 77 13.71 ± 2.01 3.94 ±

10.83 
1.11 ± 0.23 

Neches     
Upstream 124 25.03 ± 1.83 NA NA 
Downstream 74 8.4 ± 1.8 30.61 ±

52.87 
4.09 ± 0.73  
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around three general statistical characteristics: 1) overall EVI median 
and distribution (H1A-B); 2) long-term EVI trends (H2A-C); and 3) dif
ferential impacts of SWI on growing season versus dormant season EVI 
(H3A–D). Specifically, we expected long-term median greenness to be 
lower at downstream, SWI-impacted sites (H1A) due to declines in 
biomass and general health of CFS canopy species (Fig. 2A; Cormier 
et al., 2012; Krauss et al., 2009; Pierfelice et al., 2015). We also expected 
differences in EVI distributions between upstream and downstream sites 
(H1B) due to reduced peak growing season EVI and elevated dormant- 
season EVI driven by the transgression of perennial, salt-tolerant her
baceous species into the understory (Fig. 2A-B; Huenneke and Sharitz, 
1986; Krauss et al., 2009). Regarding temporal trends, we expected EVI 
to decline over time at downstream sites, whether assessed using 
seasonally varying or de-seasonalized data (H2A,B; Fig. 2C). Since these 
tests do not account for regional stressors that could cause EVI to decline 
in both upstream and downstream sites independent of SWI, we also 
tested for temporal trends in the ratio of EVI in downstream vs. upstream 
sites (EVIDOWN:UP), hypothesizing that there would be a decline in this 
ratio (H2C) if SWI was specifically affecting the downstream vegetative 
community. 

Regarding seasonal dynamics, CFS exhibit distinct seasonality that 
can be generally partitioned into four phases: 1) the “dormant season” 
where all deciduous trees have lost their leaves due to senescence, 
resulting in yearly minimum EVI values (December through February); 
2) the “green-up/leaf out” period, which is evidenced by a rapid increase 
in EVI (March); 3) “peak growing season” with maximum EVI values 
(April to June); and 4) “stable decline” where EVI values steadily decline 
as trees begin enter maintenance mode and/or senesce (July to 
November). These seasonal phases are based on recent research of de
ciduous forest annual phenology (Xie and Wilson, 2020) and a pre
liminary review of our data. As with H1, we expected that the average 
growing season EVI (EVIGS) would be lower at downstream sites relative 
to upstream sites (H3A) due to SWI effects on peak primary production 
and overall canopy health (Allen et al., 1997; Conner et al., 1997). 

Conversely, the average dormant season EVI (EVIDS) should be higher at 
downstream sites compared to upstream sites (H3B) due to the presence 
of perennial, salt-tolerant herbaceous species in the understory. 
Following from these expectations, we also hypothesized that the ratio 
of average growing to dormant season EVI (EVIGS:DS) would be lower at 
downstream sites (H3C) and that this ratio would decline over time in 
downstream systems experiencing the persistent effects of chronic SWI 
(H3D). 

2.3. Remote sensing data 

The cloud computing platform Google Earth Engine (GEE) was used 
for all remote sensing data acquisition and calculations (Gorelick et al., 
2017). This study used data from the Moderate Resolution Imaging 
Spectroradiometer (MODIS), which are collected, processed, and stored 
by the US National Aeronautics and Space Administration (NASA). 
Specifically, we used the MODIS Terra surface reflectance product 
(MOD09GA.006), which has a spatial resolution of 500 m2 for relevant 
bands, temporal resolution of 1–2 days, and a period of record from 
2000 to the present. We selected the Terra product (as opposed to Aqua) 
since its morning passage would minimize the likelihood of significant 
cloud formation during image capture; MOD09GA.006 was chosen to 
remove atmospheric scattering and adsorption that are present in the 
top of atmosphere product (Vermote and Wolfe, 2015). 

Site boundaries were delineated in GEE using field-based knowledge 
of the spatial configuration of vegetation communities; at the upstream 
Texas and Louisiana sites visual differences in forest species phenology 
and physiology between target (CFS species) and non-target areas were 
used to determine site boundaries. Every MODIS scene during the period 
from 02/24/2000 to 12/31/2018 was acquired from each site. Clouds 
were filtered using QA band “state_1km” Bitmask “Bit 10: no cloud” to 
return pixels that were cloud free for each image. Empty pixels were 
filtered from each image with band “num_observations_1km”, which 
was set to only return pixels with a value greater than zero. EVI was 
calculated following Huete et al. (2002): 

EVI =
ρNIR − ρred

ρNIR + C1 × ρred − C2 × ρblue + L
(1)  

where ρ are atmospherically corrected surface reflectance, L is a canopy 
adjustment factor, and C1 and C2 are coefficients of the aerosol resis
tance term. Coefficient values used were L = 1, C1 = 6, C2 = 7.5, and G =
2.5 (Huete 1997; Huete et al. 1994). An additional factor of 0.0001 was 
multiplied against each surface reflectance term to scale results to 1. 
This process yielded 852 to 1452 images per site. An average EVI was 
generated for each region of interest per image. (Fig. 3). Finally, any 
values outside of 2.5 standard deviations (~1.2% of the data) were 
removed to eliminate anomalous outliers (Miller, 1991). Site elevation 
data were derived from the Shuttle Radar Topography Mission V3 
product (30 m resolution) provided by the NASA Jet Propulsion 
Laboratory. 

2.4. Statistics 

All data processing (e.g., temporal subsampling, calculating down
stream vs. upstream and growing vs. dormant season EVI ratios) and 
hypothesis testing was conducted in R (version 3.5.1) using RStudio 
(version 1.2.1335). Timeseries were generated and subsampled using 
the eXtensible Times Series package (xts, function; xts, package; Ulrich 
et al., 2019), slopes were determined using the Sen’s slope estimator 
(sens.slope, trend; Pohlert, 2020), and a Seasonal Decomposition Of 
Time Series By Loess (stl, stats; Team, 2019) was used for extracting 
trends. Timeseries slope significance was tested using the Mann-Kendall 
trend test (MannKendall, Kendall; McLeod, 2011). Data distributions 
were built using a kernel density estimation (density, stats; Team, 2019) 
and tested for significance using the Kolmogorov-Smirnov test (ks.test, 

Fig. 2. Conceptual expectations for Enhanced Vegetation Index (EVI) upon 
which hypotheses were based, including: (A) a decline in long-term EVI at 
downstream, salt-impacted sites; (B) lower growing season EVI and higher 
dormant season EVI downstream; and (C) lower median EVI and a shift toward 
a unimodal distribution at downstream sites. 
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stats; Team, 2019). Significant differences in median values were 
assessed using the Mann-Whitney U test (wilcox.test, stats; Team, 2019). 
Downstream, SWI-impacted sites and upstream controls were compared 
within in each region as well as across the pooled set of upstream and 
downstream sites. Data were subsampled by different time intervals as 
needed for each test: weekly for H1A,B and H2A,B; monthly for H2C and 
H3A,B; and annual for H3C,D (i.e., annual seasonal ratios derived from 
monthly data). We used α = 0.05 to determine significance for all sta
tistical tests. 

3. Results 

Median EVI values were significantly lower downstream compared 
to upstream (p < 0.001) for all regions except SE Louisiana (where 
downstream EVI was significantly higher), partially supporting H1A 
(Fig. 4). Among regions, median downstream EVI varied more widely 
(from a low of 0.29 at Suwannee to a maximum of 0.43 in SE Louisiana) 
than upstream EVI (which ranged from 0.37 to 0.43), indicating greater 
variation in vegetation conditions across SWI-impacted sites relative to 
selected controls. There were statistical differences between upstream 

Fig. 3. Workflow for data acquisition: A) Acquire MODIS scene for area of interest, B). Filter image for clouds and empty pixels, C) Calculate EVI on a per-pixel basis 
and average across the region of interest, D) Iterate steps A-C across the period of interest to create an image collection that can be converted to a timeseries (E) or be 
analyzed for bulk properties (F). 

Fig. 4. Distribution of EVI data used for testing Hypotheses H1A and H1B. There was a significant difference between upstream and downstream median (± median 
absolute deviation) EVI and distribution at all sites (A-D). However, median EVI was greater downstream in SE Louisiana (C), contrary to expectations. 
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and downstream EVI distributions (p < 0.001) in all regions, supporting 
H1B. Downstream sites tended to have narrower distributions as 
conceptualized in Fig. 2C, however specific distributions varied 
considerably by region (Fig. 4). For example, low EVI values were less 
prevalent downstream than upstream at Big Bend and SE Louisiana, in 
line with expected increases in dormant-season EVI due to encroach
ment of salt-tolerant understory vegetation, however the opposite was 
true at Suwannee and Neches. At Suwannee in particular, the down
stream EVI distribution was dominated by a very low mode (discussed 
further below). High EVI values were more prevalent at upstream sites in 
all regions as expected (Fig. 2C), with the exception of SE Louisiana. 

Weekly EVI time series are shown in Fig. 5, with strong seasonal 
variation apparent across all regions. Expected differences in growing 
season EVI (i.e., higher upstream) are visually apparent at Suwannee 
and Big Bend, while expected differences in dormant season EVI (i.e., 
higher downstream) are most apparent in SE Louisiana and, to a lesser 
extent, in the Big Bend. In Neches, growing season EVI at the down
stream site fell consistently below the upstream site beginning in 2009. 
Expected negative EVI trends at downstream sites (H2A) were only sig
nificant for Suwannee (Fig. 5A). The only other significant trend was a 
decrease in upstream EVI in SE Louisiana (Fig. 5C). 

Pooled EVI data (Fig. 6) demonstrate that differences between up
stream and downstream EVI across regions match our general assump
tions regarding CFS structure and dynamics (i.e., downstream sites have 
lower medians, narrower distributions, and higher dormant season and 
lower growing season values). The timeseries of pooled data demon
strate that differences in seasonality and growth dynamics are consistent 
on a long timescale (Fig. 6A). For the average year, both datasets re
flected our expectations of differences in deciduous phenology, with the 
pooled downstream data having a lower amplitude due to differences in 
seasonal growth patterns, including higher growing season EVI and 
lower dormant-season EVI downstream (Fig. 6B). Median EVI (± median 
absolute deviation) was significantly lower (0.36 ± 0.11) for pooled 
downstream sites compared to upstream (0.40 ± 0.14), in addition to 

having a statistically different distribution (Fig. 6C). Finally, when 
considering all sites together, EVI distributions of downstream sites had 
considerably greater-region-to-region variation than upstream sites 
(Fig. 7). 

Only a subset of the nine hypotheses tested here were supported by 
the remote sensing data, with considerable variation in outcomes across 
regions (Table 3). Hypotheses were most likely to be supported in the 
Suwannee River floodplain, which had seven of nine expected outcomes, 
followed by the Big Bend, Neches, and SE Louisiana sites (with five, four, 
and three of nine expected outcomes, respectively). Overall, just over 
half of the full set of hypotheses were supported across regions. The most 
supported hypotheses (≥ 75% across regions) were H1A, H1B, H3A, and 
H3C. This subset of best-supported tests identified 81.3% of SWI-stressed 
sites across regions, with the best performance for the Suwannee River 
and Big Bend regions (100%), followed by the Neches River (75%), and 
SE Louisiana (50%; Table 3). 

Hypothesis H1A, which tested for expected differences in median EVI 
between upstream and downstream sites was supported at three of four 
of regions; the exception was SE Louisiana, where median downstream 
EVI was significantly greater than upstream (Fig. 4C). Hypothesis H1B 
was supported at all regions, with differences in EVI distributions across 
sites described above. Hypothesis H2A was unsupported across all re
gions, with no significant downstream slopes (Fig. 3), however there was 
a significantly negative deseasonalized trend (H2C) at the Suwannee 
downstream site. H2B, which tested for significant declines in the ratio of 
downstream to upstream EVI, was supported in two regions (Suwannee 
and Neches). Hypotheses H3A and H3c, which examined differences in 
median growing season EVI and the ratio of growing to dormant season 
EVI, respectively, were both supported at three of four regions, while 
expected differences in median dormant season EVI (H3B) were only 
significant for two regions. Finally, H3D was unsupported at all regions; 
while the slope of the growing to dormant season EVI ratio was negative 
at three of four downstream sites, these trends were all insignificant. 

Fig. 5. Weekly EVI timeseries and Mann-Kendall statistics for each site (significant trend lines for Suwannee downstream and SE Louisiana upstream not plotted for 
visual clarity). 
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4. Discussion 

Overall, this study demonstrates that remote sensing data can be 
used to identify CFS impacted by chronic SWI. However, only a subset of 
the hypotheses we expected to be useful in differentiating impacted sites 
based on CFS ecology and phenology were supported. The four hy
potheses that were most consistently supported by the data (H1A, H1B, 
H3A, and H3C; supported at 75 to 100% of regions) were all based on EVI 
summary statistics (i.e., median and distribution). Though derived from 
timeseries, these statistics do not maintain time-ordered information. In 
contrast, the least-supported hypotheses (H2A, H2B, H2C, H3B, and H3D; 
supported at 0 to 50% of regions) relied directly upon the statistics of 
EVI timeseries (e.g., slope sign and significance of long-term trends). 
Notably, we found a significantly negative EVI trend for only one of four 
sites known to be experiencing chronic SWI. While unexpected, there are 
several potential reasons why temporal hypotheses were less supported, 

including the slow pace of ecological change driven by chronic SWI 
(Langston et al., 2017; Williams et al., 2003); seasonal and year-to-year 
variation in CFS productivity that may mask directional change (Wondie 
et al., 2007); difference in hydrologic setting and conditions; and un
known specifics of site history not related to SWI (e.g., recovery from 
historic logging or hurricane disturbance). Below, we apply what we 
know about the ecological context of SWI-impacted CFS to interpret 
these results and revisit our hypotheses to synthesize the potential for, 
and limitations of, EVI-based remote sensing approaches to assessing 
SWI-impacted systems. 

4.1. Best-supported hypotheses 

Examining EVI data through the lens of the four most-supported 
hypotheses (H1A, H1B, H3A, and H3C) reinforces our understanding of 
several known ecological effects of chronic SWI on CFS. Fundamentally, 

Fig. 6. Pooled upstream and downstream data generally highlight our expected differences in long-term trends, average annual EVI, and EVI distribution.  
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H1A and H1B identify differences in median long-term CFS productivity 
and phenology, respectively. The reduction of CFS primary productivity 
by SWI has been demonstrated in the literature (Conner et al., 1997; 
Cormier et al., 2012; Krauss et al., 2009) and can be quantified relatively 
simply by comparing long-term median EVI between SWI-impacted and 
unimpacted sites (H1A; Fig. 3). H1A was supported at all regions except 
SE Louisiana, and the unique nature of this downstream site is discussed 
below. 

Regarding phenology, H1B provides a long-term summary of the 
variance, range, and frequency of EVI. Sites unimpacted by SWI should 
have an EVI distribution with a relatively large range and flat to roughly 
bi-modal shape driven by the strong seasonality of CFS primary pro
ductivity (high in the growing season and very low in the dormant 
season). EVI distributions in SWI-impacted sites should diverge from 

unimpacted sites (H1B) due to lower growing season primary produc
tivity and elevated dormant season EVI from the presence of salt- 
tolerant species into the understory, leading to overall narrower and 
taller distributions (Figs. 4A-D and 6C). Another potential driver of 
changes in EVI distributions at SWI-impacted sites is the alteration of 
leaf emergence and senescence. Specifically, the timing of leaf emer
gence and senescence has been shown to be affected by direct sodium 
ion (Na+) toxicity (Munns, 2002; Yeo and Flowers, 1982). Unlike 
mangroves or other salt-adapted species, CFS canopy species lack 
mechanisms to exclude or exude excess salt ions. As such, increasing 
groundwater salinity could lead to a shift in the timing of leaf emergence 
and senescence (Brinson et al., 1985; Pezeshki et al., 1988). Hypothesis 
H1B does not directly identify changes in the timing of leaf emergence 
and senescence, however future work to quantify CFS phenology using 
remote sensing could help partition the distributions differences iden
tified here between physiological and phenological effects of SWI. 

While H1B was supported at all regions, the specific distribution and 
direction of “shift” between upstream and downstream varied across 
regions, challenging the relatively simple conceptualization presented in 
Fig. 2C. For example, at Suwannee, the downstream distribution was 
contracted as expected, however it was also shifted to the left rather than 
toward the middle (Fig. 4A) due to much lower growing-season EVI 
values (also apparent in Fig. 3A). This phenomenon was likely driven by 
an abundance of a salt-tolerant herbaceous understory vegetation being 
detectable through canopy gaps (see site descriptions in SM) and in
dicates that this site may already be past the successional phase where 
H1B, as conceived, would serve as an early-warning indicator of 
ecosystem change. At SE Louisiana, significant differences between 
upstream and downstream sites also manifested in a way that was un
expected; both dormant and growing season EVI distributions were 
greater at the downstream site (Figs. 3C and 4C). Here, the presence of 
Triadica sebifera, an aggressive non-native species that is tolerant to 
salinity (Conner, 1994; USDA, 2018), and Cephalanthus occidentalis, a 
native salinity- and shade-tolerant species (USDA, 2018) may be causing 
growing season EVI to remain as high, or even higher than, the upstream 
site. Importantly, EVI values at the upstream site are similar to those at 
other upstream sites (Fig. 7A), and several metrics of forest quality 

Fig. 7. The distribution of upstream and downstream EVI at all sites, along with their mean (pooled). A) Upstream sites from across the geographic range show 
similar range and shape compared to the overall mean (black line). B) Downstream sites display a wider variance in range and distribution around the mean 
downstream distribution. 

Table 3 
Results of hypothesis testing in each region.  

Hypothesis Suwannee Big 
Bend 

SE 
LA 

Neches Support 
(%) 

H1A: X̃ EVIDOWN < X̃
EVIUP 

True True False True 75* 

H1B: X ~ EVIDOWN ∕= X 
~ EVIUP 

True True True True 100* 

H2A: Slope EVIDOWN < 0 False False False False 0 
H2C: Slope EVITrend,Down 

< 0 
True False False False 25 

H2B: Slope EVIDOWN:UP 

< 0 
True False False True 50 

H3A: X̃ EVIGS,DOWN < X̃
EVIGS,UP 

True True False True 75* 

H3B: X̃ EVIDS,DOWN > X̃
EVIDS,UP 

False True True False 50 

H3C: X̃ EVIGS:DS,DOWN <

X̃ EVIGS:DS,UP 

True True True False 75* 

H3D: Slope EVIGS:DS, 

DOWN < 0 
False False False False 0 

All Correct (%) 67 56 33 44 50 
Best Supported(%)a 100 100 50 75 81  

a “Best-supported” hypotheses were those supported at ≥75% across regions. 
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measured by CRMS (Wood et al., 2017) indicate that the site is healthy, 
suggesting that it is the dynamics of the downstream that are an outlier 
in terms of expected ecosystem responses to SWI. This finding reinforces 
the need for site-specific knowledge to validate remote sensing ap
proaches applied across wide and diverse spatial domains (Mueller- 
Warrant et al., 2015; Satyanarayana et al., 2011; Srivastava et al., 2012). 

The other two best-supported hypotheses (H3A and H3C) both also 
used long-term median EVI values but focused on specific seasons. Hy
pothesis H3A tested for differences in peak growing season (April 
through June) EVI between upstream and downstream sites and was 
supported at all regions except SE Louisiana (for the same reasons noted 
above). Hypothesis H3C combined expectations about growing- and 
dormant-season EVI to test for differences in their ratio at upstream vs. 
downstream sites. Conceptually, the ratio in H3C should serve to 
“amplify” H3A and H3B. For example, if a downstream site had both 
lower growing season EVI and higher dormant season EVI than an up
stream site, then the difference between the sites’ G:D ratio should be 
proportionally greater than differences between either season compared 
on its own. Hypothesis H3C was supported at all regions except Neches 
(Table 2). Notably, EVI at the upstream and downstream Neches sites 
(and thus their G:D ratios) were relatively similar prior to 2009 but 
diverged from 2010 onward (Fig. 5D), concomitant with the worst 
regional drought in 500 years (Nielsen-Gammon, 2012). Post-drought, 
EVI was considerably lower at the downstream site and only began to 
recover in 2018, however H3C, applied over the period of record, was 
unable to statistically detect this change. In this case, the mechanism for 
SWI-induced EVI change (drought) was relatively abrupt, and would 
likely be better identified using change-point analysis (Al-Quraishi and 
Kaplan 2020). 

4.2. Least-supported hypotheses 

Critical evaluation of the five poorly supported hypotheses (H2A, 
H2B, H2C, H3B, and H3D) highlights the challenges of interpreting CFS 
phenological and growth dynamics using remote sensing data. Though 
used to test different aspects of the EVI data, a common feature of H2A, 
H2B, H2C, and H3D was that they tested the expectation of negative long- 
term slope as an indicator of ecological change. Hypotheses H2A, H2B, 
H2C and H3D were likely unsupported across all regions due to the slow 
pace of change driven by chronic SWI. Field-based studies that seek to 
track long-term changes in coastal ecosystem primary productivity 
(above- and belowground biomass production) and community 
composition and structure (i.e. species richness, abundance, basal area, 
leaf area index) have relied upon years of site-specific field surveys to 
quantify relevant changes (Desantis et al., 2007; Langston et al., 2017; 
Williams et al., 2003). In addition to the site-specific vegetation data, 
focused field studies are also able to document changes related to nat
ural and anthropogenic disturbances (i.e. hurricanes or road construc
tion), which may aid in the critical interpretation of results. Remote 
sensing data analysis and interpretation can be inherently limited by the 
lack of “on-the-ground” data that may provide crucial context (Buckland 
and Elston, 1994). Further, remote sensing approaches that rely on the 
detection of long-term change resulting from a chronic stressor may thus 
be hard to find or interpret in the absence of site-specific knowledge. 
Finally, H3B, which sought to differentiate sites based upon dormant 
season EVI, was supported at only half the regions. It is likely that the 
transition from CFS to saltmarsh (Brinson et al., 1985) has progressed far 
enough in these locations that our conceptual model based on deterio
ration (rather than transition) is no longer applicable. This observation 
is supported by data that show saltmarshes have low EVI values (around 
0.2; Jialin et al., 2011), which is close to the observed values from the 
Suwannee and Neches downstream sites (see Supplementary Material). 

The hypotheses developed for this study were based upon our 
knowledge of CFS and the effects of chronic SWI, with specific expec
tations for differences in EVI distribution, growing season dynamics, and 
long-term trends (Fig. 2). While five of the nine hypotheses were not 

sufficiently supported across all regions, the data do validate our con
ceptual understanding when pooled (Fig. 6). In particular, Fig. 5A shows 
a narrowing of the range for the downstream sites and a lower median 
value, which indicates a decline in the seasonality driven by vegetation 
shifts and reduction in biomass driven by SWI-induced stress. Fig. 6B 
shows more specifically the expected differences in seasonality driven 
by chronic SWI, and Fig. 6C illustrates the consistency of these patterns 
over long timescales. 

5. Methodological considerations and future applications 

There are a wide variety of remote sensing products that can be used 
for earth observation, however Landsat and MODIS are the two primary, 
publicly available, moderate-resolution datasets. Landsat has a 30 m 
spatial resolution with a 16 day period of return from 1984 to the pre
sent (with red, blue, and near-infrared bands needed for EVI), while 
MODIS offers greater temporal resolution (1–2 return) with lower 
spatial resolution (250 m, 500 m, and 1 km) from 2000 to the present. 
Though Landsat’s longer period of record might uncover slower changes 
associated with chronic SWI, we choose to use MODIS in this analysis 
because the temporal resolution offered more flexibility to examine CFS 
effects from the weekly to yearly timescale. In addition to Landsat and 
MODIS, the European Space Agency’s Sentinel 2 mission has a 10-m 
pixel size (red, green, blue, and near-infrared), and 5-day return 
period, however its period of record only begins in 2015. Advances in 
remote sensing and computing power have made it easier to fuse data
sets to optimize spatial and temporal resolution (Ghamisi et al., 2019; 
Luo et al., 2018; Zhang, 2010). NASA has produced several harmonized 
Landsat 8 and Sentinel 2 products that may give superior inferences to 
either standalone dataset (Claverie et al., 2018). Recent technological 
advances in satellite and optical sensors are also reducing the optimi
zation challenge of spatial resolution and periodicity. For example, 
Planet Labs offers several datasets with 5-m or less spatial resolution and 
daily coverage, however the data are behind a paywall. 

A challenge for wider application of our approach comes from the 
use of paired sites to underpin local expectations for unimpacted-CFS 
and those experiencing chronic SWI. Researchers and land managers 
interested in studying SWI may only have the resources to monitor a site 
they suspect of being impacted but lack a local, unimpacted site with 
long-term monitoring to assess results. This challenge could be over
come by using a classification scheme that directly identifies CFS 
experiencing SWI using a specific spectral signature. However, Fig. 6 
highlights potential challenges inherent in this approach. Specifically, 
while upstream site EVI distributions are variable, each resembles the 
overall upstream average (Fig. 6A). EVI distributions from downstream 
sites (Fig. 6B) on the other hand, vary widely, suggesting that a classifier 
built using training data from a large geographic region may struggle to 
properly define the boundaries of each class given inherent variance 
within the data. Additional inputs would be needed to aid in the 
development of a robust, global classifier; if successfully developed, 
such a scheme would remove the need for a paired upstream- 
downstream approach and associated interpretation of statistical 
comparisons. 

Finally, the finding that our best-supported hypotheses relied on 
summary statistics rather than measures of change over time reinforces 
that consistent differences exist between upstream and downstream 
sites; however, these differences—on their own—do not confirm the 
presence of saltwater intrusion as an active process. In the absence of 
other information, the differences in EVI observed here could also be 
attributable to differences in setting (i.e., locations closer to the coast 
experience more chronically stressful, but stationary, conditions relative 
to upstream sites) rather than as an outcome of active SWI. However, 
current rates of SLR and many field-based studies support the idea that 
chronic SWI is a process that is actively driving the degradation of CFS 
along the northern Gulf of Mexico (Desantis et al., 2007; Langston et al., 
2017; Middleton et al., 2015; Raabe and Stumpf, 2016; Williams et al., 
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1999). In either case, the downstream sites selected for this study all had 
consistent records of groundwater salinity elevated above ideal condi
tions for CFS and thus represent a likely future state for fresher systems 
upstream; here we showed that remote sensing data could be used to 
identify these systems across a range of salinity, management, vegeta
tion, and site history settings. The reliability of the best-supported hy
potheses supports their wider application across the northern Gulf of 
Mexico. For example, recent analysis completed using remote sensing 
data quantified 172,147 km2 of CFS in 1996, with 19,480 km2 (11%) lost 
between 1996 and 2016 (White et al., submitted for publication). At this 
rate of loss (974 km2/yr) CFS may not exist far into next century, further 
demonstrating the need to actively track the health of these systems for 
immediate intervention. 
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