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Abstract
1.	 Coastal wetlands store more carbon than most ecosystems globally. As sea level 
rises, changes in flooding and salinity will potentially impact ecological functions, 
such as organic matter decomposition, that influence carbon storage. However, 
little is known about the mechanisms that control organic matter loss in coastal 
wetlands at the landscape scale. As sea level rises, how will the shift from fresh to 
salt-tolerant plant communities impact organic matter decomposition? Do long-
term, plant-mediated, effects of sea-level rise differ from direct effects of elevated 
salinity and flooding?

2.	 We identified internal and external factors that regulated indirect and direct path-
ways of sea-level rise impacts, respectively, along a landscape-scale salinity gradi-
ent that incorporated changes in wetland type (fresh, oligohaline, mesohaline and 
polyhaline marshes). We found that indirect and direct impacts of sea-level rise had 
opposing effects on organic matter decomposition.

3.	 Salinity had an indirect effect on litter decomposition that was mediated through 
litter quality. Despite significant variation in environmental conditions along the 
landscape gradient, the best predictors of above- and below-ground litter decom-
position were internal drivers, initial litter nitrogen content and initial litter lignin 
content respectively. Litter decay constants were greatest in the oligohaline marsh 
and declined with increasing salinity, and the fraction of litter remaining (asymp-
tote) was greatest in the mesohaline marsh. In contrast, direct effects of salinity and 
flooding were positive. External drivers, salinity and flooding, stimulated cellulytic 
activity, which was highest in the polyhaline marsh.

4.	 Synthesis. Our results indicate that as sea level rises, initial direct effects of salinity 
will stimulate decay of labile carbon, but over time as plant communities shift from 
fresh to polyhaline marsh, litter decay will decline, yielding greater potential for 
long-term carbon storage. These findings highlight the importance of quantifying 
carbon loss at multiple temporal scales, not only in coastal wetlands but also in 
other ecosystems where plant-mediated responses to climate change will have  
significant impacts on carbon cycling.
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1  | INTRODUCTION

Climate change-induced shifts in vegetation community composition 
will have important implications for ecological function (Wolters et al., 
2000) and ultimately carbon cycling (Jobbagy & Jackson, 2000). In 
terrestrial ecosystems, shifts in vegetation community composition 
have been observed in response to elevated atmospheric carbon di-
oxide (Leadley, Niklaus, Stocker, & Korner, 1999; Owensby, Coyne, 
Ham, Auen, & Knapp, 1993), elevated air, soil and water temperatures 
(Alward, Detling, & Milchunas, 1999; Harte & Shaw, 1995), altered 
precipitation patterns (Sternberg, Brown, Masters, & Clarke, 1999) 
and their interactions (Kardol et al., 2010). Coastal marshes, situated 
between terrestrial and marine ecosystems, are exposed not only to 
these climatic drivers (Osland et al., 2016; Osland, Enwright, & Stagg, 
2014) but also to anthropogenic pressures along the landward bound-
ary and rising sea levels along the seaward boundary (Day et al., 2008; 
Small & Nicholls, 2003).

Sea-level rise can force shifts in wetland vegetation commu-
nity composition by altering flooding and salinity regimes (Burdick & 
Mendelssohn, 1987; DeLaune, Patrick, & Pezeshki, 1987; Hester, 
Mendelssohn, & McKee, 2001; Krauss et al., 2009; McKee & 
Mendelssohn, 1989). As salinity increases with sea-level rise, marsh hab-
itats will convert to communities dominated by more salt-tolerant plant 
species (Sharpe & Baldwin, 2012; Warren & Niering, 1993). Moreover, 
anthropogenic restrictions to upslope migration (Enwright, Griffith, & 
Osland, 2016), in conjunction with sea-level rise, may result in the ex-
pansion of saltmarshes at the expense of other wetland types, yield-
ing an overall shift to more saline conditions (Visser, Duke-Sylvester, 
Carter, & Broussard, 2013). Changes in wetland ecosystem structure 
may eventually reflect altered ecological function and ecosystem ser-
vices. In tidal freshwater forested wetlands impacted by sea-level rise, 
the transition to herbaceous oligohaline marsh resulted in greater nitro-
gen and phosphorus mineralization fluxes and turnover (Noe, Krauss, 
Lockaby, Conner, & Hupp, 2013). Similarly, the transition of herbaceous 
saltmarsh to mangrove forest significantly altered ecosystem function, 
with greater carbon sequestration rates and lignin storage rates in  
mangroves compared to saltmarshes (Bianchi et al., 2013).

Coastal wetlands provide numerous ecosystem services (Barbier 
et al., 2011), including significant carbon storage in living and non-living 
biomass and in flooded soils (McCleod et al., 2011). Furthermore, unlike 
terrestrial soils that may become carbon-saturated over time (Stewart, 
Paustian, Conant, Plante, & Six, 2007), coastal wetlands continually ac-
crete mineral sediments and organic matter to keep pace with sea-level 
rise (Reed, 1995); thus, the potential for carbon storage in wetland soils 
increases over time (Chmura, Anisfeld, Cahoon, & Lynch, 2003).

Carbon storage in wetlands is the net result of organic matter 
production and organic matter loss, for example, decomposition. 

Decomposition of organic matter is influenced by internal and external 
drivers (Godshalk & Wetzel, 1978). When considering the effect of an 
ultimate driver, such as sea-level rise, on organic matter decomposi-
tion, internal and external drivers will have indirect and direct impacts, 
respectively, on the fate of organic matter. Internal drivers are char-
acteristics of the organic matter itself and include qualities of plant 
morphology and chemical composition of the plant material (McKee 
& Seneca, 1982; Melillo, Naiman, Aber, & Linkins, 1984). In contrast, 
external drivers of decomposition are characteristics of the environ-
ment and include soil microbe and detritivore community composition 
(Morrisey, Berrier, Neubauer, & Franklin, 2014; Valiela et al., 1985) and 
abiotic conditions, such as soil temperature, flood duration and fre-
quency, and salinity (Reddy & Patrick, 1975; Weston, Dixon, & Joye, 
2006). Therefore, sea-level rise has the potential to impact organic 
matter decomposition indirectly, by forcing shifts in plant community 
composition and litter quality (internal controls), and directly, through 
altering salinity and flooding (external controls) (Stagg, Schoolmaster, 
Krauss, Cormier, & Conner, 2017). Furthermore, these indirect and 
direct impacts are resolved at different spatial and temporal scales 
(Herbert et al., 2015; Neubauer, Franklin, & Berrier, 2013); therefore, 
it is critical that we quantify both internal and external controls on or-
ganic matter decomposition, if we hope to accurately predict the fate 
of organic matter in a future with sea-level rise.

Although there has been much recent progress in elucidating 
fine-scale mechanisms of soil respiration in response to elevated 
salinity (Chambers, Osborne, & Reddy, 2013; Chambers, Reddy, & 
Osborne, 2011; Neubauer, 2013; Neubauer et al., 2013; Weston, 
Vile, Neubauer, & Velinsky, 2011; Weston et al., 2006), we still lack a 
comprehensive understanding of the mechanisms that control organic 
matter decomposition in coastal wetlands at the landscape scale (but 
see Janousek et al., 2017; Weston, Neubauer, Velinsky, & Vile, 2014). 
To address this, we measured decomposition of in situ litter and a 
standardized carbon source across a landscape-scale salinity gradient 
that incorporated changes in vegetation community to address the fol-
lowing research questions: (1) What drivers influence organic matter  
decomposition along a landscape salinity gradient in coastal marshes? 
(2) How do long-term, indirect, impacts of sea-level rise differ from 
short-term, direct, impacts of sea-level rise on organic matter decom-
position?, and (3) What are the implications for long-term carbon stor-
age in estuarine coastal wetlands impacted by sea-level rise?

2  | MATERIALS AND METHODS

2.1 | Study sites

Above-  and below-ground decomposition was measured in es-
tuaries along a landscape-scale (c. 65 km) salinity gradient that 
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incorporated fresh (0–0.5 ppt), oligohaline (0.5–5 ppt), mesohaline 
(5–18 ppt) and polyhaline (>18 ppt) coastal marshes as defined 
by Cowardin, Carter, Golet, and LaRoe (1979) (Figure 1). Due to 
high temporal variation in salinity, wetland community types were 
defined not only by measured salinity but also by dominant veg-
etation species known to be associated with specific salinity and 
hydrological regimes (Visser, Sasser, Chabreck, & Linscombe, 2002). 
Fresh sites were dominated by Panicum hemitomon and Typha lati-
folia, oligohaline sites were dominated by Sagittaria lancifolia and 
Schoenoplectus americanus, mesohaline sites were dominated by 
Spartina patens and S. americanus, and polyhaline sites were domi-
nated by Spartina alterniflora and Juncus roemerianus. Within each of 
the four wetland types, six replicate sites were established across 
two hydrologic basins, Terrebonne and Barataria Basins, for a total 
of 24 sites (Figure 1; Baustian et al., 2017; Stagg et al., 2017).

2.2 | Response variables

2.2.1 | Litter decomposition

Rates of above-  and below-ground organic matter decomposition 
were measured using the litter bag technique (Hackney & de la Cruz, 
1980), which integrates short-  and long-term decomposition pro-
cesses associated with labile and refractory organic matter (Valiela 
et al., 1985). Litterbags containing site-specific above-ground biomass 
and litterbags containing site-specific below-ground biomass, or lit-
ter, were installed in three replicate plots in each site. Live biomass 
of each site-specific dominant species was collected from a subset 
of sites within each wetland type and hydrologic basin (subset n = 8) 
in July 2014. Above-ground biomass of each dominant species was 
collected from a monospecific stand, clipped at the soil surface and 
sorted into live and dead pools upon returning to the laboratory. To 

collect below-ground biomass in large quantities, 20-cm wide × 30-
cm deep sods were harvested from monospecific stands representing 
each dominant species. The sods were transported back to the labora-
tory, where the below-ground biomass was rinsed over a 1-mm sieve 
to remove soil particles. The remaining macro-organic matter was 
separated into live and dead components. Live roots and rhizomes 
were distinguished from dead roots and rhizomes by colour, turgidity 
and structural integrity (Schubauer & Hopkinson, 1984). Above- and 
below-ground live biomass was allowed to air-dry to a constant mass 
for at least 1 week before placement in litterbags. Live, air-dried, litter 
was used in place of senesced litter to capture weight loss associ-
ated with initial decay processes, such as leaching, that would have al-
ready occurred in senesced material collected from the field (McKee & 
Seneca, 1982). Above-ground litterbags were prepared by filling mesh 
bags (20 cm long × 20 cm wide × 1.5 mm opening) with live air-dried 
leaf and stem material (20 g/bag). Below-ground litterbags were pre-
pared by filling mesh bags (8 cm long × 20 cm wide × 1.0 mm opening) 
with live air-dried roots and rhizomes (5 g/bag). Generally, above-
ground litter bags have a larger mesh opening than below-ground lit-
terbags (Halupa & Howes, 1995; Hemminga, Kok, & de Munck, 1988), 
to allow for the passage of small and young invertebrates (McKee & 
Seneca, 1982). A subsample of the initial air-dried material for each 
species was weighed, oven-dried at 60°C and reweighed to calculate 
a moisture correction factor, which was applied to the starting mass 
(w0) of air-dried litter used in subsequent calculations.

Above-  and below-ground litterbag transects were established 
perpendicular to the water body and included three replicate plots 
located 10, 25 and 40 m from the shoreline. Above-ground litterb-
ags were secured on the soil surface with landscape pins, and below-
ground litterbags were inserted into the soil to a depth of 10 cm. 
Four litterbags were installed in each replicate plot in October 2014 
(n = 288 above-ground litterbags, n = 288 below-ground litterbags), 

F IGURE  1 Decomposition study sites 
located along a landscape-scale salinity 
gradient spanning four wetland types in 
coastal Louisiana, USA
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and individual litterbags were retrieved from each plot at four inter-
vals (1, 3, 6 and 12 months after installation) to follow a model of ex-
ponential decay. After retrieval, the above-  and below-ground litter 
bags were gently rinsed with deionized water over a 1-mm sieve, and 
remaining litter was oven-dried for at least 48 hr to a constant mass 
at 60°C (Halupa & Howes, 1995). The litter was then weighed and re-
tained for further chemical analyses. Per cent mass remaining (% MR) 
was calculated using the following equation:

where w0 is dry weight at time zero, and wt is dry weight at time t (days 
after installation).

The proportion of mass remaining over time was used to esti-
mate two parameters that describe the decomposition process: (1) 
the decay rate, or exponential decay constant, and (2) the asymptote, 
or non-decomposable fraction. The exponential decay constant was  
derived using a single negative exponential decay model:

where X is per cent mass remaining after time, t (days after installa-
tion) and −k is the instantaneous decay constant (per day) (Weider & 
Lang, 1982). Additionally, we used an asymptotic model to estimate 
the non-decomposable fraction, or asymptote:

where Ca is the asymptote, or fraction of material remaining (%; Weider 
& Lang, 1982). Because the single exponential decay model provided 
a better fit for decay constant estimates, we only used the asymptotic 
model to estimate asymptotes, not decay constants.

2.2.2 | Cellulose decay

In addition to litter decomposition, we also measured cellulytic activity 
using the cotton strip technique, which provides a measure of short-
term loss of labile carbon (Maltby, 1988). Cotton strips are made from 
artist canvas which is comprised of 98% holocellulose, and by using a 
standardized carbon source, we were able to isolate external factors 
that influence microbial activity (Mendelssohn et al., 1999; Slocum, 
Roberts, & Mendelssohn, 2009).

Cotton strips were installed in three replicate plots along a tran-
sect parallel to the litterbag transects. Below-ground cotton strips 
(10-cm wide × 30-cm long) were inserted vertically into the soil to a 
depth of 25 cm. The cotton strips were deployed four times season-
ally and retrieved after 12–14 days in the soil depending on the water 
surface temperature (Slocum et al., 2009). Above-ground cotton strips 
(20 cm × 20 cm) were deployed in October 2015, secured to the soil 
surface using landscape pins and retrieved 14 days later. Three cot-
ton strips (two test strips and one reference strip) were placed in each 
replicated plot. Reference strips, used to quantify the tensile strength 
of non-decomposed material, were handled exactly the same as the 
test strips, but retrieved immediately after deployment.

After retrieval, cotton strips were rinsed gently with deionized 
water to remove all soil and extraneous material, and the cotton strips 
were allowed to air-dry for at least 48 hr. Cotton strips were cut into 

2-cm substrips along the vertical profile, and decomposition of the 
2-cm substrips was measured as tensile strength lost, compared to 
the reference substrip, using a Dillon Quantrol™ Snapshot Tension 
Compression Motorized Test Stand tensometer connected to a Dillon 
Quantrol™ Advanced Force Gauge (Slocum et al., 2009). Cellulose 
decay rate was calculated as per cent cellulose tensile strength lost 
per day (% CTSL per day):

where T is the force (N) required to tear the test substrips, R is the 
force (N) required to tear the reference substrips and t is time (days) 
in the marsh.

2.3 | Predictive variables

2.3.1 | External drivers

All study sites were located within the 1-km2 boundary of a 
Coastwide Reference Monitoring Systems station (http://lacoast.
gov/crms2/home.aspx), where surface water salinity and surface 
water elevation are measured hourly. Marsh surface elevation of 
15 plots within each site (n = 360) were surveyed using Real Time 
Kinematic methodology (Gao, Abdel-Salam, Chen, & Wojciechowski, 
2005) with a Trimble R10 GNSS System (Trimble Navigation Limited, 
USA; Chen et al., 2011) and rectified to the North American Vertical 
Datum of 1988 (NAVD88) using Trimble Business Center 2.5 soft-
ware for data post-processing (Trimble Navigation Limited, USA). 
We used marsh elevation data in conjunction with surface water 
elevation data to calculate flood depth and duration for each of 15 
plots in each site.

Discrete soil and porewater samples were taken to measure a 
suite of environmental parameters in December 2014. At each site, 
two soil cores (10-cm diameter × 30-cm length) were collected near 
each of the three replicated plots along the below-ground litterbag 
transect (n = 72). After collection, the soil cores were sectioned into 
two increments (0–15 cm and 16–30 cm) and immediately placed on 
ice in the field and transported back to the laboratory, where they 
were homogenized. The first core was used for analysis of soil bulk 
density (Blake, 1965), % moisture (Blake, 1965), % organic mat-
ter (Oliver, Lotter, & Lemcke, 2001) and electrical conductivity (EC; 
Rhodes, 1996).

The second soil core was used to measure soil pH (Thomas, 1996), 
soil total C, N and P, soil extractable nutrients (PO4-P and NH4-N) and 
other elements of interest (Ca, Cu, Fe, K, Mg, Na, Ni, P). The homog-
enized soil was dried to a constant weight at 60°C, ground in a Wiley 
Mill (Model #4, 20 mesh; 850 μm) and separated into several scintil-
lation vials for multiple analyses. Soil total N and total C were mea-
sured using a Costech® 4010 Elemental Combustion analyzer (Nelson 
& Sommers, 1982; EPA Method 440). Extractions were performed 
for the following analyses: soil total P (HCl, Aspila, Agemian, & Chau, 
1976), PO4-P (Bray-2, Olsen & Sommers, 1982), NH4-N (KCl, Keeney 
& Nelson, 1982), and other parameters of interest (H2NO3, American 
Public Health Association, 2005a). Soil total P, PO4-P samples and 

% MR= (wt∕w0)×100

X=e−kt

X=Ca+ (1−Ca)e
−kat

% CTSL per day= [1− (T∕R)×100]∕t

http://lacoast.gov/crms2/home.aspx
http://lacoast.gov/crms2/home.aspx
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NH4-N were measured on a segmented flow AutoAnalyzer (Flow 
Solution IV AutoAnalyzer, O-I Analytical, USA; EPA Method 365.5; 
EPA Method 350.1). The remaining extracts were analysed with an 
inductively coupled argon plasma optical emission spectrometer (ICP-
OES) (Varian-MPX, Agilant, USA; American Public Health Association, 
2005b).

Simultaneously, four separate aliquots of porewater were col-
lected from a depth of 10 cm using the sipper-tube method (Vasilas 
& Vasilas, 2013). One aliquot of water was used to measure pore-
water pH (EPA Method 150.1) and salinity (EPA Method 120.1). 
The second porewater sample was used to measure porewater 
total N and total P following persulfate oxidation (D’Elia, Steudler, 
& Nathaniel, 1977; Ebina, Tsutsui, & Shirai, 1983) on a segmented 
flow AutoAnalyzer (Flow Solution IV AutoAnalyzer, O-I Analytical, 
USA). The third aliquot was filtered through a 0.45-μm filter to mea-
sure NH4-N, and PO4-P using a segmented flow AutoAnalyzer (Flow 
Solution IV AutoAnalyzer, O-I Analytical, USA; EPA Method365.5; 
EPA Method 350.1). The fourth aliquot was first filtered (45 μm) and 
then acidified to pH <2 to measure other elements of interest using 
an inductively coupled argon plasma optical emission spectrome-
ter (ICP-OES) (Varian-MPX, Agilant, USA; American Public Health 
Association, 2005b).

2.3.2 | Internal drivers

Above-  and below-ground biomass from each wetland type along 
the salinity gradient was collected to characterize chemical composi-
tion of the litter in July 2013 and 2014. In July 2014, subsamples of 
initial above- and below-ground air-dried biomass collected for each 
relevant dominant species within each wetland type were analysed 
for lignin content using the acid-detergent fibre and acid-insoluble 
ash techniques (Van Soest & Wine, 1968). Because insufficient 
initial biomass remained for further analyses, separate vegetation 
samples, previously collected from the study sites and analysed for 
total C and total N in July 2013, served as a proxy for the litter used 
in the litterbags. In July 2013, above-ground biomass was clipped 
at the soil surface from 0.25-m2 quadrats, separated into total live 
and total dead components, and weighed after drying to a constant 
mass at 60°C (Mendelssohn, 1979). After above-ground biomass was 
removed from the plot, a sharpened 10-cm PVC corer was used to 
collect below-ground biomass from the centre of the quadrat. The 
cores were taken to a maximum depth of 30 cm, or the entire root 
mat thickness and were washed in a 1-mm sieve to remove soil par-
ticles. Live roots and rhizomes were separated from dead roots and 
rhizomes and the remaining matrix of dead organic material based 
upon biomass colour, turgor and buoyancy (Schubauer & Hopkinson, 
1984). All material was dried at 60°C to a constant mass, and weighed. 
Above- and below-ground vegetation samples were then ground in 
a Wiley Mill (Model #4, 20 mesh; 850 μm), oven-dried at 60°C and 
analysed for total C and total N using a Costech® 4010 Elemental 
Combustion analyzer (Nelson & Sommers, 1982; EPA Method 440). 
Only values for live biomass samples were used in subsequent  
statistical analyses.

2.4 | Statistical analysis

We used a nonlinear regression to estimate decay constants and 
asymptotes from single exponential decay models and asymptotic 
models respectively. Nonlinear regression models were developed for 
each plot in each site (above-ground n = 72, below-ground n = 72). 
Only estimates from models that successfully converged were used 
in subsequent statistical tests. We used a mixed-model ANOVA with 
a randomized complete block design with sampling to compare vari-
ation in response variables (decay constants, asymptotes, cellulose 
decay rates). The fixed effect of wetland type was the treatment 
effect, basins represented error associated with blocking and three 
sites within each basin by wetland type treatment combination rep-
resented site-level error. Response variables were measured in three 
plots within each site, which represented sampling error. Principal 
component analysis (PCA) was used to explain variation in the envi-
ronmental parameter dataset, and an analysis of similarity (ANOSIM) 
was performed to determine whether the principal components (PCs) 
varied significantly among the treatment groups (wetland type). We 
calculated correlation coefficients to measure the linear association 
between redox potential and PC factor scores. Finally, we performed 
multiple linear regression analysis using the lm function to identify 
significant predictors of decomposition. For each response variable, 
we identified a full model a priori that included explanatory variables 
of known importance and relevance. The litter decomposition models 
predicted above- or below-ground litter decomposition rate as a func-
tion of litter quality, soil and porewater physico-chemistry, and flood-
ing. The cellulose decay models predicted above-  or below-ground 
cellulose decay rate as a function of soil and porewater physico-
chemistry and flooding. We used principal component factors as ex-
planatory variables to represent porewater and soil physico-chemistry 
and flooding. Because not all litter quality parameters were signifi-
cantly correlated with a principal component, we included litter lignin 
and nitrogen content as explanatory variables in the multiple regres-
sion analyses using the observed data in place of the factor scores. 
The following analyses were performed in SAS 9.3 software (SAS 
Institute Inc, 2011): nonlinear regression (proc nlin), ANOVA (proc 
mixed) and correlation analysis (proc corr). The following analyses 
were performed using R software (R Development Core Team, 2013): 
PCA, ANOSIM and multiple linear regression.

3  | RESULTS

3.1 | Response variables

3.1.1 | Litter decomposition

In all wetland types, above- and below-ground litter significantly de-
clined with time (Table 1, Figure 2). There was a significant interac-
tion between above- and below-ground decay rate and wetland type 
(p = .0004, df = 3, F = 6.46); however, regardless of wetland type, 
above-ground litter decomposed faster than below-ground litter. In 
both above- and below-ground litter pools, the decay rate was greatest 
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in the oligohaline marsh. In the above-ground litter pool, decay rate in 
the polyhaline marsh was significantly greater than decay rates in the 
fresh and mesohaline marshes (Figure 2a). In contrast, below-ground 
litter decay rates did not vary significantly among the fresh, mesoha-
line and polyhaline marshes (Figure 2b).

There was a significant interaction between above-  and below-
ground asymptotes and wetland type (p = .0356, df = 3, F = 3.04, 
Figure 2). Above-ground litter decomposition was more complete 
(smaller asymptote) than below-ground litter decomposition in all wet-
land types, with the exception of the oligohaline marsh, where they 
were equivalent. Within the above-ground litter pool, there was no 
significant variation in the fraction of litter remaining among the four 
wetland types (Figure 2a). In contrast, below-ground, the fraction of 
litter remaining was significantly higher in the mesohaline marsh com-
pared to all other wetland types (Figure 2b).

3.1.2 | Cellulose decay

Cellulose decay was greater below-ground than above-ground 
(Figure 3). Furthermore, trends in cellulose decay along the landscape 
salinity gradient were different between above-  and below-ground 
pools (p = .002, df = 3, F = 4.88). Above-ground cellulose decay was 
greatest in the polyhaline marsh, but otherwise similar among the 
other wetland types. Below-ground cellulose decay significantly  
increased along the gradient from fresh to polyhaline marsh.

Additionally, there was a significant interaction between wetland 
type and depth (p < .0001, df = 42, F = 3.98; Figure S1). At the sur-
face, cellulose decay rates were similar along the landscape gradient. 
As depth below the soil surface increased, there was a divergence in 
cellulose decay among the wetland types, and overall rates of decay 
were greater in the mesohaline and polyhaline marsh as compared to 
the fresh and oligohaline marsh.

3.2 | Predictive variables

The PCA generated three PCs that cumulatively explained 59% of 
the variance in the predictive variable dataset (Table S1). The first 
PC (PC1—Physico-chemical) explained 39% of the variance and was 
defined by porewater and soil physico-chemical properties including 
temperature, salinity and nutrient parameters. Annual surface water 
temperature was positively associated with PC1 (R2 = .65), as were 
porewater and soil salinity parameters such as porewater and soil EC 
(R2 = .90 and .89 respectively). Soil nutrient parameters such as soil 
total nitrogen and total phosphorus were negatively correlated with 
PC1 (R2 = −.90 and −.67 respectively). The second PC (PC2—Lignin) 
explained c. 13% of the variation and was defined by lignin content of 
above-ground (leaf) and below-ground (root) litter. Leaf lignin content 
was positively correlated with PC2 (R2 = .55), and root lignin content 
was negatively correlated with PC2 (R2 = −.55), whereas leaf and root 
litter nitrogen content were not significantly correlated with this or 
any other PC.

The third PC (PC3–Flooding) explained 7% of the database 
variance and was defined by elevation and flood duration parame-
ters. Wetland surface elevation was negatively correlated with PC3 
(R2 = −.55), and annual per cent time flooded was positively correlated 
with PC3 (R2 = .54).

There was a separation among the wetland types along both the 
PC1 (Physico-chemical) and PC2 (Lignin) axes (R = .212, p = .001 and 
R = .092, p = .001 for PC1 and PC2 respectively). As expected, the 
four wetland types separated by salinity (Figure 4a,b). Additionally, 
wetlands types with high leaf lignin content also had low root lignin 
content (Figure 4a,c).

Due to missing redox potential data, this parameter was not in-
cluded in the PCA or in the subsequent multiple regression analyses. 
However, redox potential varied significantly among the wetland 

Wetland type Pool Parameter Estimate SE t-value p-value

Fresh Above k 0.003 9.10E-05 32 <.0001

Oligohaline Above k 0.005 0.00041 13.1 <.0001

Mesohaline Above k 0.003 0.00012 20.8 <.0001

Polyhaline Above k 0.004 0.00012 33.7 <.0001

Fresh Below k 0.002 0.00011 15.6 <.0001

Oligohaline Below k 0.003 0.00024 12.9 <.0001

Mesohaline Below k 0.001 0.0001 12.8 <.0001

Polyhaline Below k 0.001 0.0001 13.3 <.0001

Fresh Above a 21.99 6.27 3.51 0.0008

Oligohaline Above a 23.02 5.43 4.24 <.0001

Mesohaline Above a 21.97 7.11 3.09 .003

Polyhaline Above a 7.67 9.41 0.82 .42

Fresh Below a 44.13 6.27 7.04 <.0001

Oligohaline Below a 31.85 5.21 6.11 <.0001

Mesohaline Below a 61.74 5.43 11.37 <.0001

Polyhaline Below a 44.18 5.95 7.43 <.0001

TABLE  1 Nonlinear regression 
estimates of single exponential decay 
constants (−k, per day) and asymptotes  
(a, %) for above- and below-ground litter 
decomposition
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types and was highest in the fresh marsh and lowest in the meso-
haline and polyhaline marshes (p < .0001, df = 3, F = 52.82; Figure 5). 
Additionally, redox potential was highly correlated with several well-
characterized parameters associated with PC1 (Physico-chemical) 
such as porewater EC and porewater sulphur (R2 = −.63, p < .0001; 
R2 = −.46, p = .002 respectively).

3.3 | Multiple regression analysis

Initial nitrogen content was the only significant predictor of above-
ground litter decomposition (Table 2), which increased with increasing 
litter nitrogen content (Figure 6a). Initial lignin content was a signifi-
cant predictor of below-ground litter decomposition (Table 2), which 
declined with increasing lignin content (Figure 6b).

Neither PC1 (Physico-chemical) nor PC3 (Flooding) had a signifi-
cant effect on above-ground cellulose decay (Table 2). In contrast, PC1 
(Physico-chemical) and PC3 (Flooding) were important predictors of 

below-ground cellulose decay (Table 2), which increased with increas-
ing salinity and flooding and decreasing soil nutrient concentrations 
(Figure 7a,b).

4  | DISCUSSION

To improve our understanding of how organic matter decomposi-
tion and the fate of carbon in coastal wetlands will be impacted by 
sea-level rise, we identified the internal and external drivers that 
influence decomposition in coastal wetlands across an estuarine sa-
linity gradient spanning fresh to polyhaline wetland types. Internal 
drivers, such as litter quality, are characteristics of the organic mat-
ter itself, whereas external drivers, such as hydrologic conditions, 
are characteristics of the environment (Aerts, 1997; Webster & 
Benfield, 1986), and their effects on decomposition may be ex-
pressed through both direct and indirect pathways. For example, 

F IGURE  2 Estimates of (a) above-
ground litter decay constants and 
asymptotes along the landscape gradient 
and (inset) relative above-ground biomass 
remaining over time, (b) below-ground litter 
decay constants and asymptotes along 
the landscape gradient and (inset) relative 
below-ground biomass remaining over 
time. Bars represent means (n = 18), and 
error bars represent SEs. Capital letters 
denote statistical significance of post-hoc 
multiple comparisons among asymptote 
means from both above- and below-
ground pools. Lowercase letters denote 
statistical significance of post-hoc multiple 
comparisons among decay constant means 
from both above- and below-ground pools 
(Fisher’s Protected LSD, α = 0.05)

(a)

(b)
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sea-level rise can impact soil organic matter decomposition indi-
rectly through changes in internal drivers, such as plant commu-
nity composition and litter quality, which control litter decay rate 
(Stagg, Schoolmaster, Krauss, et al., 2017). In this study, we found 
that, despite significant variation in environmental conditions along 
this gradient, external drivers, including porewater salinity and flood 
duration, had no significant predictive capacity for either above- or 
below-ground litter decomposition. Therefore, our results indicate 
that the indirect pathway mediated through changes in litter quality, 
an internal driver, was more important in controlling litter decom-
position than direct effects of external drivers along this landscape 
gradient.

Previous research has documented variation in lignin content 
among different wetland plant species (Buth, 1987; Guo, Lu, Tong, & 
Guohua, 2008), and our measurements of litter lignin content for fresh, 
oligohaline, mesohaline and polyhaline species were similar to those 
reported in the literature (Table 3). However, decay constants from 
mixed-species litter material will differ significantly compared to litter 
comprised of a single species (Chapman, Newman, Hart, Schweitzer, 
& Koch, 2013). Therefore, in situ measurements of litter mixtures that 
represent the vegetation community are critical for achieving accurate 
estimates of litter decay and identifying patterns of decomposition 
among different wetland types.

Because lignin content can differ significantly between two spe-
cies within the same wetland type or salinity zone, it is difficult to 
identify universal patterns of lignin content along a landscape-scale 
salinity gradient. Furthermore, changes in plant diversity along the 
landscape gradient may impact rates of decomposition. Odum (1988) 
observed greater plant diversity in fresh marshes compared to more 
saline marshes, which may affect the proportion of different species, 
and overall litter quality, in a litter mixture. Very few studies have 
compared litter quality and decomposition along a salinity gradient 
that incorporates changes in composition (Gallagher, Kibby, & Skirvin, 

1984; Lopes, Martins, Ricardo, Rodrigues, & Quintino, 2011; Scarton, 
Day, & Rismondo, 2002; Windham, 2001), and, as far as we know, this 
is the first study to quantify litter decomposition dynamics of differ-
ent wetland types across the entire coastal marsh landscape salinity 
gradient. Odum’s (1988) comparative review of fresh vs. polyhaline 
tidal marshes reports that freshwater macrophytes from the lower 
intertidal zone, such as Sagittaria latifolia, tend to have lower lignin 
content, higher nitrogen content and higher decay rates compared to 

F IGURE  3 Cellulose decay among different wetland types. Bars 
represent means (n = 540), and error bars represent SEs. Letters 
denote statistical significance of post-hoc multiple comparisons of 
means (Fisher’s Protected LSD, α = 0.05)

F IGURE  4 Principal Component Analysis biplots of observation 
projections, or factor scores, in component space for all comparisons 
between (a) principal component (PC) 1 and PC2, (b) PC1 and PC3, 
and (c) PC2 and PC3. In each plot, factor scores are coloured by 
wetland type. A subset of highly correlated vectors from each PC 
overlay the factor scores
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polyhaline, or saltmarsh, species. In contrast, freshwater macrophytes 
from the upper intertidal, such as T. latifolia, more closely resemble 
typical saltmarsh plants in their lignin and nitrogen content and exhibit 
slower rates of decay than plants from the lower intertidal fresh zone. 
In support of Odum’s conclusions, we found that litter decomposition 
was greatest in the oligohaline marshes, which were dominated by 
S. lancifolia and S. americanus and also had the lowest lignin content. 
The fresh marsh dominated by T. latifolia and P. hemitomon was similar 
in lignin content and decay rate to the mesohaline marshes dominated 
by S. patens, and the polyhaline marshes dominated by S. alterniflora 
and J. roemerianus. Thus, although landscape-scale salinity patterns 
of lignin content and litter decomposition are largely species-specific 

(Aerts & de Caluwe, 1997), it is clear that sea-level rise has the poten-
tial to alter the quality of carbon and indirectly impact decomposition 
along this gradient.

Similarly, initial litter quality, in the form of nitrogen content, was 
the best predictor of above-ground litter decomposition (Marinucci, 
Hobbie, & Helfrich, 1983; Taylor, Parkinson, & Parsons, 1989). 
Although some research identifies the ratio of lignin-to-nitrogen in ini-
tial litter quality as an important predictor of decomposition (Melillo, 
Aber, & Muratore, 1982; Valiela et al., 1984), our results indicate that 
only one of these variables was a significant predictor, either nitrogen 
content or lignin content, of above-  or below-ground litter decom-
position respectively. Likewise, a study by Melillo, Naiman, Aber, and 
Eshleman (1983) identified either lignin alone or in combination with 
nitrogen content as a significant predictor of decomposition. The sig-
nificance of one predictor over another may be due to interactions be-
tween initial litter quality and environmental conditions. In general, if 
exogenous nitrogen (e.g. from soil or water column) is readily available 
to microbes, and/or initial litter lignin content is high, then initial litter 
nitrogen content may have little impact on decay rate (Melillo et al., 
1982, 1984). Interestingly, despite these differences among above- 
and below-ground litter content, the pattern of decay along the land-
scape gradient was similar, with the greatest decomposition occurring 
in the oligohaline marsh. Although salinity is a known regulator of 
plant nitrogen dynamics (Bradley & Morris, 1991; Morris, 1980), we 
did not observe a simple linear decline in litter quality with increasing 
salinity. Thus, it is clear that litter decomposition is controlled through 
an indirect pathway mediated by internal drivers, but more research 
is needed to identify the ultimate drivers that generate optimal litter 
quality for enhanced decay in the oligohaline marsh.

To characterize the direct effects of sea-level rise on decompo-
sition, we controlled for the influence of litter quality by measuring 
the decay rate of a standard carbon source, cellulose, across the 
landscape-scale salinity gradient (Mendelssohn et al., 1999). Cellulose 
is a labile compound that rapidly decays during the initial phases of de-
composition and serves as a readily available fuel for microbial activity 

TABLE  2 Results of multiple linear regression analysis for litter decomposition and cellulose decay

Response variable Predictive variable Parameter estimate SE t-value p-value Model R2

Above-ground litter PC1 −1.77E-05 5.65E-05 −0.314 .755 .121

Decomposition PC3 −4.95E-05 1.31E-04 −0.378 .707

LeafN 0.0003 1.04E-03 2.68 **.009

LeafLignin −7.36E-05 2.18E-04 −0.338 .736

Below-ground litter PC1 4.31E-05 3.38E-05 1.27 .207 .395

Decomposition PC3 5.07E-05 6.76E-05 0.750 .456

RootN 3.53E-04 3.13E-04 1.13 .265

RootLignin −2.17E-04 3.63E-05 −5.98 ***1.10E-07

Above-ground PC1 0.042 0.032 1.30 .198 .027

Cellulose decay PC3 −0.021 0.075 −0.280 .780

Below-ground PC1 0.039 0.012 3.24 **.002 .195

Cellulose decay PC3 0.066 0.028 2.36 *.021

*p < .05; **p < .01; ***p < .001.

F IGURE  5 Variation in soil redox potential along landscape 
gradient. Box plot boundaries closest to zero represent the 25th 
percentile, the line within the boxes indicates the median, and 
boundaries farthest from zero represent the 75th percentile 
(n = 90). Whiskers indicate the 90th and 10th percentiles. Black dots 
represent outlying points. Letters denote statistical significance of 
post-hoc multiple comparisons of means (Fisher’s Protected LSD, 
α = 0.05)
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(Hodson, Chrsitian, & Maccubbin, 1984). Therefore, in addition to 
identifying external controls on decay, we were also able to charac-
terize the decomposition dynamics of the isolated labile carbon pool.

We found that below-ground cellulose decay increased with in-
creasing salinity, which supports findings from recent studies that soil 
respiration is stimulated by salinity in short-term exposures that do not 
incorporate changes in carbon source (Chambers et al., 2011; Weston 
et al., 2006). While increasing salinity can have direct impacts on or-
ganic matter mineralization through altering the soil chemical compo-
sition and releasing previously soil-bound organic carbon (Dou, Ping, 
Guo, & Jorgenson, 2005), the pattern of cellulose decay along this sa-
linity gradient was likely influenced by differences among the microbial 
communities (Chambers et al., 2013). As salinity continues to increase, 
sulphate reducers out-compete methanogens, and overall anaerobic 
metabolism is greater when sulphate is the dominant terminal elec-
tron acceptor (Sutton-Grier, Keller, Koch, Gilmour, & Megonigal, 2011; 
Weston et al., 2006).

In contrast to salinity, soil nutrients were negatively correlated 
with below-ground cellulose decay. Although Mendelssohn et al. 

(1999) found that soil nutrients had a significant positive influence on 
cellulose decay in a Phragmites australis-dominated wetland, this trend 
is not universal among all wetland types. For example, the review by 
Rybczyk, Garson, and Day (1996) illustrates varying impacts of soil 
nutrients on soil organic matter decomposition. Even so, it is unlikely 
that high soil nutrients would directly inhibit cellulose decay. Rather, 
we propose that the stimulatory effect of elevated salinity and greater 
sulphate availability overcame the potential negative effects of low 
soil nutrient concentrations.

Flooding was also a strong predictor of decomposition, and had 
a direct positive effect on below-ground cellulose decay. Although 
greater flood duration can lead to anaerobic soil conditions (Gambrell 
& Patrick, 1978; Ponnamperuma, 1984), which can limit the rate of 
decomposition (Day & Megonigal, 1993; McKee & Seneca, 1982; 
White & Trapani, 1982), decomposition is not always slower under an-
aerobic conditions. For example, Kirwan, Langley, Guntenspergen, and 

F IGURE  6 Linear regression of (a) above-ground litter 
decomposition and litter nitrogen content and (b) below-ground 
litter decomposition and litter lignin content. Fresh, oligohaline, 
mesohaline and polyhaline wetland types differentiated by shape 
symbols

F IGURE  7 Linear regression of below-ground cellulose decay and 
(a) PC1 (Physico-chemical) and (b) PC3 (Flooding). Fresh, oligohaline, 
mesohaline and polyhaline wetland types differentiated by shape 
symbols

(a)

(b)
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Megonigal (2013) observed a stimulatory flooding effect on root and 
rhizome decomposition. Furthermore, soil redox potential along this 
landscape gradient was more closely correlated with porewater salin-
ity than with flood duration (Pw EC: R2 = −.62, p < .0001; AnnFlood: 
R2 = −.39, p = .01), indicating that the stimulating effect of flooding 
was not strongly associated with anaerobic conditions. Therefore, we 
propose that the positive relationship between flooding and cellulose 
decay illustrates the well-documented observation that microbial ac-
tivity is moisture-limited (Frasco & Goode, 1982; Halupa & Howes, 

1995; Newell, Arsuffi, & Palm, 1996; Reice & Stiven, 1983), at least 
in the top 20 cm of the soil profile. At further depths, cellulose decay 
below the soil surface was likely oxygen limited as soils become more 
reduced with increasing depth (Maltby, 1988; Schipper & Reddy, 
1995). Similar to our findings, low oxygen availability has been iden-
tified as a primary inhibitor of cellulose decay at depths below 22 cm 
(Mendelssohn et al., 1999).

Surprisingly, none of the environmental drivers we measured 
had predictive capacity for above-ground cellulose decay. Although 

TABLE  3 Litter lignin content of dominant species from each wetland type. Litter condition identified as live (L), dead (D) or unknown (U)

Species Litter type Lignin content (%) Study

Typha latifolia Leaves 12.2L Current study

5.8L Moran & Hodson (1989)

39.5–42.7D Welsch & Yavitt (2003)

18.2D Poi de Neiff, Neiff, & Casco  
(2006)

Roots 7.3L Current study

Panicum hemitomon Leaves 6.4–7.3L Current study

6.4L Moran & Hodson (1989)

5.9D Osborne, Inglett, & Reddy (2007)

Roots 8.8–12.2L Current study

Sagittaria lancifolia Leaves 7.7–7.7L Current study

18U Laursen (2004)

Roots 5.4–7.4L Current study

26U Laursen (2004)

Schoenoplectus americanus Leaves 7.9–8.9L Current study

20.5D Ball & Drake (1997)

Roots 4.7–7.5L Current study

14.43–26.50L Saunders, Megonigal, & Reynolds 
(2006)

Spartina patens Leaves 7.8–9.2L Current study

14.2D Ball & Drake (1997)

Roots 14.8–18.6L Current study

26.95–30.41L Saunders et al. (2006)

Juncus roemerianus Leaves 9.9L Current study

6U Benner et al. (1987)

Roots 13.7L Current study

5.1U Benner et al. (1987)

Spartina alterniflora Leaves 5.5–5.7L Current study

15.1L Maccubbin & Hodson (1980)

13.1–16.8L Hodson et al. (1984)

11.7U Wilson (1985)

11–12D Wilson, Buchsbaum, Valiela, & 
Swain (1986)

4.3–6.1U Benner et al. (1987)

Roots 13.7–15.2L Current study

12.2–19.3U Hodson et al. (1984)

9.3U Benner et al. (1987)
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above-ground cellulose decay varied significantly across the landscape-
scale salinity gradient (higher in polyhaline marsh), salinity per se was 
not a significant predictor of decay (sensu Mendelssohn et al., 1999). 
Several recent studies have illustrated that salinity can indirectly af-
fect soil respiration through changes in microbial function, resulting 
in higher rates of carbon mineralization at higher salinities (Chambers 
et al., 2011; Neubauer, 2013; Sutton-Grier et al., 2011; Weston et al., 
2006). Thus, we hypothesize that an unidentified mediating factor that 
varies with wetland type, such as microbial function (Capone & Kiene, 
1988), is regulating cellulose decay. We suggest that future studies 
include focused measures of microbial structure and function along 
this landscape-scale gradient to confirm the mechanism of indirect ef-
fects of salinity on cellulose decay (Hopfensperger, Burgin, Schoepfer, 
& Helton, 2014; Morrisey et al., 2014; Neubauer, Givler, Valentine, & 
Megonigal, 2005).

In summary, our study showed that the indirect effect of sea-
level rise on litter decomposition was mediated through changes in 
plant community composition and litter quality, which resulted in 
declining rates of litter decomposition along the gradient from oli-
gohaline to polyhaline marshes. However, when we controlled for 
changes in litter quality, we found that increasing salinity and flood-
ing stimulated decay of labile carbon (cellulose). We have identified 
two mechanisms of organic matter loss operating at different tem-
poral scales that provide insight to the potential for long-term car-
bon storage as sea-level rises. Our results indicate that as sea level 
rises, initial direct effects of salinity will stimulate decay of labile 
carbon, but over time as vegetation community composition shifts 
to more saline wetland types, litter decay (decay of refractile car-
bon) will decline, yielding greater potential for long-term soil car-
bon storage through net accretion (Loomis & Craft, 2012). Recent 
studies have highlighted the importance of scale in considering the 
influence of sea-level rise on carbon loss from wetland systems 
(Herbert et al., 2015; Neubauer et al., 2013). Our research provides 
an example of how multiple mechanisms of carbon loss operating 
at different scales can yield different rates and patterns of organic 
matter decomposition, which is relevant not only in coastal wet-
lands but also in other ecosystems such as grasslands, shrublands 
and forests, where plant-mediated responses to climate change will 
have significant impacts on carbon dynamics (Jobbagy & Jackson, 
2000).
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