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Abstract 

This research focused on the Roseau cane (Phragmites australis) dieback assessment in 

the lower MRD of Louisiana and introduced a comprehensive and systematic multi-source remote 

sensing method for assessing wetland and Roseau cane dieback and habitat dynamics analysis 

from three scale levels from large-scale to small scale.   

Large-scale historical vegetation/land change analyses were conducted in the lower MRD 

based on Landsat in the past two decades (2001 - 2021). A strong increasing trend of vegetation 

was found since 2005. Around 51 km2 of dieback area was detected which accounts for 11% of the 

overall vegetation coverage. This research showed that 65.8% of the dieback occurred in the 

Roseau cane area from 2010 to 2019 while the Roseau cane only accounted for 49.7% of overall 

vegetation coverage in 2010. The result proved that Roseau cane was more vulnerable to dieback 

in the lower MRD compared with other wetland vegetation.  

A Roseau cane habitat classification scheme for two main passes in the lower MRD based 

on the mid-scale Worldview image is proposed. Through Support Vector Machine (SVM) 

classification method, the two variants of Roseau cane, the Delta Phragmites and European 

Phragmites can be separated in the study area. The results shared around 79% of agreement with 

the Landsat-derived classification result. In addition, the results indicated no significant 

differences between them in the detected areas where dieback occurred between 2019 and 2021. 

Furthermore, this research monitored small-scale Roseau cane habitat dynamics in a 

selected drone mapping site in Pass-A-Loutre from the fall of 2020 to May 2022. This research 

developed a new sampling strategy based on drone which effectively solves the limited 

accessibility challenge in the coastal environment. The experimental results demonstrate that SVM 

could produce a reliable habitat mapping accuracy of over 85%. The massive death of vegetation 
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coverage indicated that the hurricane event had a severe impact on small-scale ecosystems, 

however, this research didn't observe a significant difference in damage level among the wetland 

vegetation species. The landscape indices used in this study can be used as a reference for the 

analysis of ecosystem landscape patterns in other small scales studies. 
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Chapter 1. Introduction 

1.1. Background 

The coastal wetland is one of the most productive ecosystems, accounting for 10 to 30 

percent of the productivity of all marine life, known as the "Earth's kidneys" (Singh et al, 2017). 

The coastal wetland is a unique ecosystem formed by the dual role of sea and land. It provides 

many indispensable ecosystem services such as natural habitats for a variety of coastal organisms, 

plays a key role in storing blue carbon, slows coastal erosion, promotes sediment deposition, and 

accelerates tidal beach expansion (Barbier et al, 2011; Costanza et al, 2014; Duarte et al, 2013). 

However, biological invasion, human interference, natural disturbances, and other factors have 

caused significant wetlands loss in the past few decades worldwide (Temmerman et al, 2013). 

With the concern of the potential high wetland vanishing rate of coastal wetland ecosystems, 

coastal ecologists pay increasing attention to the monitoring and protection of the wetland (Zedler 

et al, 2005). 

The Mississippi River Delta (MRD), with the main outlets entering the Gulf of Mexico 

from Louisiana state, is the seventh-largest river delta in the world (by watershed area), containing 

12,000 km2 of coastal wetlands and accounting for 40 percent of the salt marshes in the contiguous 

United States (Corbett et al, 2006). Considering the fragmented environment and diversified 

species habitat, this area is vital for ecological study. It has far-reaching significance in providing 

wildlife habitats, protecting biodiversity, and maintaining regional ecological balance. However, 

Louisiana suffered a football field-sized wetland loss per hour from 1932 to 2016 (Jaccard, 2018). 

In the MRD, Roseau cane (Phragmites australis) is a critical and rapidly changing landscape and 

plays a key role in the first line of defense against the loss of wetlands because of its flood-tolerant 

and salt-resistant adaptability.  
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Roseau cane is a typical perennial gramineous plant and often dominants many coastal 

wetland ecosystem plant communities (Chambers, et al, 1999; Antonelli et al, 2002). This is 

because the well-developed aerenchyma in the Roseau cane can transport the oxygen generated by 

photosynthesis of the aboveground part to the underground part, providing sufficient oxygen for 

the root zone microorganisms (Clevering, 1997). In addition, Roseau cane can adapt to the high-

salinity environment by adjusting the level of solute permeability in leaves (Lissner, et al, 1997). 

Therefore, under different environmental conditions such as water depth, salinity, and extreme 

climate, Roseau cane can maintain high reproductive capacity through morphological and 

physiological characteristics changes. Studies have shown that when the width of Roseau cane 

habitat in coastal areas is more than 300 m, wind speed and wave height can be effectively reduced 

(Jiao, et al, 2015). Roseau cane also can effectively intercept silt and deposit it, gradually 

expanding the beach area, which provides a natural medium to deposit river sediment discharge to 

nearby wetlands instead of the deep ocean to prevent wetland loss (Hu, et al, 2021).  

Roseau cane dieback has been observed in the past few decades, and the death of coastal 

marsh grass has been widespread in North America, Europe, and Asia (Knight, et al, 2018). Coastal 

officials and scientists start to pay intensive attention to studying and monitoring the Roseau cane 

dieback. The first cases of Roseau cane dieback in the MRD were reported around the fall of 2016 

(Knight, et al, 2020). The dieback was presumed caused by a scale insect named N. biwakoensis 

(Suir, et al, 2018) or Roseau cane scale (RCS). Current observations suggest that Roseau cane 

diebacks are often followed by wetlands converted to open water, other wetland vegetation 

becoming dominant species, and in rare cases a return to healthier and robust stands of Roseau 

cane (Harris, 2020). Such different scenarios likely relate to differences in flooding stress, salinity 

stress, and/or the number of previous dieback events (Knight, et al, 2020).  
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Figure 1. Roseau cane dieback in the lower Mississippi river delta 

 

Mapping the distribution of Roseau cane and assessing the impact of RCS on different host 

plant species is critical for managing this emerging crisis. Since 2016, scientists from institutes 

including Louisiana State University (LSU) and the United States Department of Agriculture 

(USDA) initiate the preliminary remote sensing-based method to monitor the health condition 

change in the MRD to detect the impact of scale invasion (Schneider, et al, 2019). The introduction 

of remote sensing technology including satellite and drone images effectively increased the speed 

of investigation in the MRD and serve the need for ecologists. While it is well-known that RCS 

have caused Roseau cane dieback in the MRD in recent years, how much of this dieback is the 

result of the macro-environmental changes and disturbances from other factors is still unknown 

and challenging to quantify. The application of large-scale satellite data analysis significantly 

benefited the investigation of the MRD. Analysis of satellite imagery by the US Army Corps of 

Engineers suggests diebacks may have begun earlier than 2016, and the analysis of NDVI change 
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between years gives some indication of the severity of the Roseau cane dieback in the delta area 

(Suir, et al, 2018).  

1.2. Research Questions 

Mapping the Roseau cane habitat is critical to assess the spatial distribution of Roseau cane, 

its growth status, and its interactions with other wetland plants in response to wetland disturbances 

and environmental changes. Remote sensing monitoring of coastal wetland vegetation normally 

required long-term observations. Considering time traceability, data availability, and data spatial 

resolution, Landsat is the best data source for long-term large-scale research (Li, et al, 2021). In 

the wetland areas, there is also a phenomenon of mixed Roseau canes with other vegetation. The 

normally used Landsat series images often contained mixed pixels, making it difficult to obtain 

high-precision Roseau cane distribution information especially when there are multiple variants of 

Roseau cane coexist. Considering the limitation of hyperspectral imagery due to availability and 

high cost, storage, and data processing, developing methods for using high-resolution satellite and 

drone mapping of Roseau cane subspecies is highly desirable and valuable. Benefiting from the 

development of satellites, high-resolution satellite imagery, such as Worldview is more suitable 

for the classification of mixed vegetation. In the face of large-scale and high-frequency 

classification requirements of coastal salt marsh vegetation, spectral features of vegetation are 

difficult to distinguish from the coarse-resolution images. Furthermore, separating coastal wetland 

vegetation species is challenging with limited spectral bands and difficulty to get ground truth 

observation in wetlands. The remote sensing system of the drone or low-altitude unmanned aerial 

vehicle (UAV) has become increasingly popular and gradually applied in land mapping, which is 

a powerful supplement to satellite remote sensing and manned aerial remote sensing. 

Current studies indicated limited awareness of the healthy status of Roseau cane and 
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difficulty in mapping dieback areas in the MRD over a long period due to relatively high water 

dynamics, and most of the research is carried out at a single scale level, with various research 

methods and technologies, and a systematic multi-source observation method for Roseau cane has 

not yet been formed. This makes it difficult for geographers and ecologists or wetland managers 

with different scientific research and management purposes to choose remote sensing technologies 

and methods for Roseau cane monitoring. In addition, there are two major variants of Roseau cane 

in the MRD which showed significant differences in resistance with the scale infection (Cronin, et 

al, 2020). Fragmented coastal wetlands require studies based on high-resolution imagery while 

separating variants of Roseau cane with limited spectral bands is usually challenging for traditional 

methods. In general, this research will address these key research questions. 

i. If the Roseau cane dieback distribution in the lower MRD can be assessed by large-

scale remote sensing images such as Landsat? Is there any anomaly in Roseau cane 

in recent 20 years? 

ii. Whether the distribution change of Roseau cane can be detected in the MRD 

through Landsat Archived imagery? Whether Roseau cane suffered more damage 

than other vegetation in the MRD? 

iii. Given the condition of fragmented coastal wetlands, is it possible to map wetland 

habitat and Roseau cane distribution using high-resolution multispectral 

WorldView imagery? Is it possible to separate the variants of Delta and European 

Phragmites from this dataset?  

iv. Can we develop a flexible and rapid mapping and monitoring solution for Roseau 

cane dieback and habitat mapping based on drone and multispectral cameras? What 

are the vegetation changes in the study site in the past year, especially after 
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Hurricane Ida damage happened in 2021?  

1.3. Objectives 

To solve these research questions, this research has set the following objectives: 

i) Conduct a large-scale assessment of historical land/vegetation coverage change in the 

lower MRD based on Landsat Archived imagery to provide the macro wetland changes 

patterns in the past two decades in comparison to the changes in Roseau cane areas in 

selected years based on data availability and water level recording. 

ii) Assess the overall trend of dieback in the lower MRD and identify areas with most 

dieback. 

iii) Test the capability to map Roseau cane distribution at a large scale through Landsat 

imagery and ancillary data and conduct large-scale Roseau cane change analysis. 

iv) Experiment to map Roseau cane habitat distribution in a mid-scale moderate extent of 

major river outlets based on the first high-resolution multispectral WorldView satellite 

imagery and test its capability to separate Roseau cane variants.  

v) Develop a rapid, multi-seasonal, and small-scale drone mapping solution to monitor 

Roseau cane habitat dynamics and test the capability to map Roseau cane variants 

through drone sensors. 

1.4. Contributions and Significance 

Considering the limitation of hyperspectral imagery due to availability and high cost, 

developing methods for using high-resolution satellite and drone mapping of different Roseau cane 

variants and habitat dynamics is highly desirable and valuable. Also, it is worthwhile to examine 

the linkage between the dieback area and the response from different vegetation classes. 
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To conduct a comprehensive investigation of the spatial and temporal heterogeneity of 

Roseau cane in the MRD, this research proposed a comprehensive multi-source remote sensing 

study in this research. The major contributions of this research include: 

i. Besides assessing the overall wetland dieback, this study also successfully 

extracted the spatial distribution of Roseau cane and compared Roseau cane 

dieback with the overall wetland dieback. The final analysis result revealed that 

Roseau cane has undergone much more severe damage than other non-Roseau cane 

vegetation in the MRD in recent years. 

ii. Classification based on high-resolution multispectral imagery successfully 

generated vegetation habitat mapping and differentiated Roseau cane variants. The 

result also cross-validated the Landsat-derived Roseau cane distribution. 

iii. This research developed a drone mapping solution by combining field sampling 

with a drone sampling approach to overcome the significant challenges of limited 

accessibility in coastal wetlands and lack of sufficient samples. This method not 

only makes reliable wetland habitat mapping possible but also provides a solution 

to rescue data from past field trips that lack sufficient samples for classification.       

As a result, the application of multi-source remote sensing data analysis will greatly 

increase the wetland manager’s awareness of the spatial distribution and overall health status of 

Roseau cane. It could help them identify the severe dieback areas and increase their capabilities in 

response to further dieback events.  
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Chapter 2. Literature Review 

In recent years, the acceleration of the development of human society has led to the 

deterioration of the ecological environment, especially in coastal areas. The coastal wetland 

vegetations mostly grow near water. With complex and diverse structure types, they are one of the 

most fragile and economically valuable ecosystems (Kaplan et al, 2017). Considering that coastal 

wetland vegetation plays a vital role in ecosystem and is indispensable to the protection of the 

coastal areas, acquiring accurate and timely dynamic change of vegetation coverage is necessary 

for wetland management (Gedan et al, 2011).  With increasing attention paid to ecological issues, 

many studies focusing on monitoring the coastal wetlands vegetation have emerged (Berni et al, 

2009; Watts et al, 2012). The research purpose of these studies includes guiding wetland 

protection/restoration decisions.  

2.1. Roseau cane dieback 

The term "dieback" refers to biotic (such as disease) or abiotic (such as temperature) factors 

leading to the gradual death of the above-ground parts of plants from the top down (Mueller-

Dombois, 2008). Taking the Roseau cane dieback in wetland ecosystem in North America as an 

example, its typical characteristics are the above-ground part of the Roseau cane turns chlorosis 

from the top down, withered, and died rapidly in a short period (Alber et al, 2008; Elmer et al, 

2013). 

Although Roseau cane dieback is widely spread in a variety of ecosystems around the 

world, the related mechanism of its outbreak is still unclear (Beaudette, 2020). Among many 

abiotic factors, the weather conditions have a profound impact on ecosystem structure and 

processes, and many processes related to climate factors may result in dieback. For example, an 

increase in global temperature may cause some regions to become unusually drought, and plants 
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respond to drought by adjusting their physiological behavior, which will eventually lead to the 

death of plants (DaMatta et al, 2006). In addition, salinity, soil physicochemical properties, 

nutrient availability, and toxic substance content also could affect plant growth (Knight, et al, 

2020). Under these unfavorable conditions, the plants could become more sensitive, fragile, and 

prone to death.  

In addition to the abiotic factors, more studies have found that biotic factors, such as 

invasive species, play a more important role in the occurrence of Roseau cane dieback. The 

invasion of a scale insect named N. biwakoensis might cause the major Roseau cane dieback in the 

MRD region (Suir, et al, 2018). This scale could cause similar dieback symptoms under 2 years 

round controlled experiment (Knight, et al, 2020). In addition, the plant's conditions, such as 

genetic diversity and adaptability to the environment, also affect the occurrence of dieback. A team 

of researchers in Europe, the Netherlands, and Germany found that Roseau cane populations with 

lower genetic diversity were more prone to dieback (Brix, 1999). Furthermore, the research team 

from LSU found that the dominant variant of Roseau cane in the MRD, the Delta Phragmites 

variant is more vulnerable to dieback when facing scale infection compared with the European 

Phragmites variant, which might have a profound impact on the wetland vegetation cover change 

in the future (Knight, et al, 2020). 

Most previous research produces the result from field and aerial surveys (Li et al, 2020). 

Due to the unique location and complexity of the coastal wetland vegetation, the investigation of 

these regions is costly and challenging. The fragmented nature of the coastal wetland also restricted 

the relatively large-scale study of the landscape functional characteristics and spatial pattern 

changes (Carle et al, 2014), which also limited our ability to detect the Roseau cane dieback. To 
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solve this problem, this research introduced multi-source remote sensing technology for wetland 

vegetation monitoring and dieback identification. 

2.2. Wetland Vegetation Monitoring and dieback identification Based on Remote Sensing  

Historically, aerial photography was the first remote sensing method used to assist the 

wetland vegetation investigation (Sharitz, 1986). However, it is costly and time-consuming to map 

and monitor wetland vegetation on a regional scale by aerial photography. In the mid-1970s, the 

appearance of satellite remote sensing greatly improved the method of collecting spatial-temporal 

data (Xie et al, 2018). Since then, remote sensing technology had entered an era of rapid 

development, including the advance of sensors with various spectral and spatial resolutions and 

the use of multiple remote sensing satellites with various orbits and revisit periods. The precision 

of remote sensing data was also greatly improved due to the synchronous development of 

algorithms and computer technology, and the hardware cost of data processing is correspondingly 

reduced. Therefore, multi-spectral and multi-temporal remote sensing data became available in 

various fields of coastal environmental research. Up to now, remote sensing technology has 

become the main source of coastal surface cover information extraction, landscape type change 

detection, and biological invasion monitoring, and has been successfully applied to vegetation 

classification and mapping (Kumar et al, 2015).  

2.2.1. Large-scale optical Remote sensing for dieback detection 

Optical remote sensing image data is the most widely used remote sensing data for large-

scale coastal wetland vegetation study due to its large historical archived dataset, relatively mature 

and diversified classification methods, and rapid data acquisition period. Previous scholars have 

used optical images to study the distribution of salt marshes in the coastal zones and achieved a 

relatively high classification accuracy of the coastal wetland vegetation species. Remote sensing 
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technology is also the main method for ecologists to obtain large-scale and multi-scale geographic 

and ecological data (Hu et al, 2015). The most widely used dataset is Landsat. The spatial 

resolution of Landsat is 30m, but the temporal resolution is relatively low (1 scene in 16 days), 

and the images are greatly affected by the atmosphere. Case studies like Liu used Landsat images 

to extract the distribution of Spartina alterniflora in China's coastal zones in 1990, 2000, 2013, and 

2018 (Liu et al, 2022). Xu detected the boundary of the salt marshes in Jiangsu coastal zones based 

on the Landsat images and calculated their ecosystem service values (ESV) of them (Xu, 2016).  

For the dieback detection, O’Donnell successfully extracted the biomass decline of S. 

alterniflora caused by dieback events based on 25 years Landsat Archived dataset in the Georgia 

coast region (O’Donnell et al, 2016). Li combined 20 years of Landsat-derived NDVI with a 

stacked autoencoder neural network to identify the dieback in the North Inlet-Winyah Bay, South 

Carolina. (Li et al, 2020). The NDVI-based dieback detection proved effective in large-scale 

coastal wetland vegetation coverage change research. 

2.2.2. High-Resolution Remote sensing for Wetland Vegetation Research 

Wetland vegetation classification is an important direction of wetland vegetation remote 

sensing research, which can be used to accurately grasp the dynamic changes of wetland vegetation 

spatial distribution and identify the dieback area through classified dead vegetation coverage. 

However, the research is normally limited by the spatial resolution and spectral resolution of 

remote sensing images, and there will be issues that "same object with different spectrum" and 

"different object with the same spectrum" (Ren et al, 2019). Belluco used ROSIS, CASI, MIVIS, 

IKONOS, and QuickBird remote sensing data to obtain vegetation maps through unsupervised K-

means and supervised algorithms. His result proved that spatial resolution affected classification 

accuracy more significantly than spectral resolution (Belluco et al, 2006). 
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At present, the data used for remote sensing monitoring of coastal wetland vegetation has 

gradually changed from moderate-resolution satellite data such as Landsat and SPOT to high-

resolution satellite imagery, such as Worldview serials data and QuickBird. Sebastien Rapinel 

(Rapinel et al, 2015), Wang (Wang et al, 2021), and Liu (Liu et al, 2016) used moderate-resolution 

data for their studies, while other scholars using high-resolution data, such as Thomas Richard 

Allen (Richard et al, 2013) and Zhou (Zhou et al, 2016), concluded that the high-resolution data 

were more suitable for the classification of mixed vegetation. Although the resolution of moderate-

resolution remote sensing images is not as good as that of high-resolution data, it is still suitable 

for large-scale research due to the free-of-cost-to-purchase datasets. In addition, scholars also 

started to explore the applicability of the fusion of high-resolution remote sensing data with other 

remote sensing data in wetland vegetation research. Amani et al. conducted wetland vegetation 

classification based on multi-source and multitemporal satellite data methods (Amani et al, 2017). 

Besides, hyperspectral, LiDAR, and aerial imaging techniques have been gradually applied to the 

extraction of wetland vegetation in small-area investigations (Pande-Chhetri et al, 2017). 

2.2.3. Wetland Vegetation Classification Methods 

In terms of the application of remote sensing classification methods in wetland research 

and dieback detection, Maximum Likelihood Classification (MLC), Support Vector Machine 

(SVM), Decision Tree model (DT), K-Nearest Neighbor (KNN), and Neural Network (NN) are 

the most used method. Wang extracted the Normalized Difference Vegetation Index (NDVI) and 

Vegetation Water Index (VWI) derived from Beijing-1 data and implemented the vegetation 

classification of the Poyang Lake wetland by using SVM (Wang et al, 2012). Jing used a visible 

light vegetation index to establish decision tree rules to extract aquatic vegetation in the study area 

(Jing et al, 2016). Besides, some scholars used multi-temporal remote sensing images to classify 
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wetland vegetation based on the seasonal growth cycle of wetland vegetation. Dechka used 

IKONOS-2 images in spring and summer to analyze NDVI and extract texture features to 

differentiate the wetland vegetation species (Dechka et al, 2002). Davranche used a binary 

classification tree algorithm to estimate the area of the Roseau cane and submerged plants in the 

Ganges and Indus River basins based on multi-temporal SPOT5 images (Davranche et al, 2010). 

Laba used QuickBird data to extract invasive vegetation and Roseau cane in 4 wetlands located in 

the Hudson River using the MLC (Laba et al, 2008). Zhang used an object-oriented method to 

analyze Hyperion data and identified 14 plantation communities in the Kissimmee River Valley 

wetland in South Florida through machine learning classification (Zhang et al, 2013).  

Some vegetation in coastal wetlands is annual herbaceous plants, which undergo a 

complete phenological cycle including the germination, growth, and wilt in a year. The plant 

morphology and chlorophyll content change constantly. Many studies have shown that the 

different characteristics of salt marsh vegetation at different seasons can be reflected in the 

difference in its spectral characteristics (Hladik et al, 2013). Based on this characteristic, 

Fernandes successfully separated the Roseau cane from other wetland vegetation species 

(Fernandes et al, 2013).  

2.3. Drone-related study in wetland vegetation monitoring 

Optical images in coastal zones are greatly affected by cloud cover and tidal inundation, 

and the availability of optical remote sensing data is often sparse and uneven, so it is difficult to 

obtain appropriate seasonal phase images throughout the year. For long-term monitoring, the 

frequency of marsh data updates in some areas is more than three years. For the rapidly changing 

coastal area, there are still gaps and challenges in obtaining salt marsh information (Sun et al, 

2018). In recent decades, the drone-based remote sensing system has become a powerful research 
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tool for wetland vegetation investigation. This kind of low-altitude remote sensing system with 

high flexibility, high efficiency, high resolution, and low-cost features could meet the requirements 

of geographical spatial information acquisition in the fragmented coastal zone area. As an effective 

supplement to satellite remote sensing and conventional aerial photogrammetry, drone remote 

sensing system has the advantages of high mobility, high timeliness, high resolution, and low cost 

in the application research of drone remote sensing in island coastal zone monitoring (Colomina 

et al, 2014).  

Compared with satellites, the drone can observe a smaller research area at any time with 

fewer restrictions and obtain hyperspectral images quickly (Cao et al, 2020). In addition, compared 

with satellite platforms, the flight observation height of drones on low-altitude remote sensing 

platforms greatly reduces the distance between sensors and ground objects, and the spatial 

resolution of acquired image data can reach centimeter-level. Due to the advantages of low cost, 

high operational flexibility, high spatial resolution, and high spectral resolution in the data 

acquisition work of the UAV platform, the platform makes many manual remote sensing data 

acquisition tasks faster and more time-efficient (Li et al, 2019), however, the application of a drone 

to obtain spatial information of the wetland is not perfect. There is also still a limitation in the field 

work procedure, such as the limitation of flight time and the fragmented ground environment with 

restricted access to the land targets. Thus, the study of drone mapping with insufficient ground 

samples has great value for fieldwork. 

In general, with the increasing diversification of remote sensing data, the efficiency of 

vegetation status detection and classification accuracy is constantly improving. The combination 

of multi-source remote sensing data and classification method is beneficial for coastal wetland 

vegetation monitoring and dieback detection.  
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2.4. Methodology Overview  

This research involves the usage of Landsat satellite imagery, high-resolution Worldview 

satellite imagery, and modern multi-spectral drone technology, combined with auxiliary data 

including aerial photos accessed from the National Agriculture Imagery Program (NAIP) and 

hourly water level recording from the Coastwide Reference Monitoring System (CRMS).  

For large-scale Roseau cane monitoring, this research collected 20 years historical Landsat 

imagery. Comparing multiple thresholds of land/water and vegetation boundaries based on various 

vegetation indices, the most accurate one was applied to generate historical vegetation coverage 

change in the lower MRD. Then dieback area was detected based on vegetation index change. The 

vegetated area will also be classified as Roseau cane versus non-Roseau cane based on 

corresponding aerial photos for further analysis.  

For mid-scale wetland vegetation habitat mapping based on high-resolution satellite 

imagery, this research selected and experimented with multiple pixel-based classification methods 

to classify Roseau cane habitats and other wetland vegetation using Worldview image, especially 

the two major variants in the region. The SVM method have the highest accuracy in the classified 

results. In addition, the classified distribution of the Roseau cane area is used for further validating 

the corresponding Landsat classification result and checking whether there is a significant 

difference in the distribution of these two variants of Roseau cane in the dieback area.  

For the small-scale drone mapping with rapid surveys, this research conducted multi-

season field data collection and developed a new sampling strategy to map wetland habitats based 

on high resolution drone image. Using a second drone to get drone sampling points with fewer 

spectral bands and higher resolution could greatly improve the classification method, especially in 

a situation with restrained field access to sufficient sampling points.   
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Chapter 3. Study Area and Data Collection 

3.1. Lower Mississippi River Delta 

The study site is located at the lower Mississippi River Delta as showed in Figure 2. The 

Mississippi River has a total length of about 6,260 km and is the longest river flowing in North 

America. It is the fourth-longest river (in length) and the fifteenth-largest river (in volume) in the 

world (Mehlhorn et al, 2019). The Mississippi River basin (including the Atchafalaya River basin) 

covers an area of 3.34× 106 km2, accounting for more than 40% of the continental area of the 

United States (Piazza, 2014). The total amount of freshwater flowing into the Gulf of Mexico is 

around 450 km3 per year (Tweel et al, 2012). The Mississippi River forms a subtropical landscape 

consisting of rivers, wetlands, and small islands on the lower coast, flowing south into the Gulf of 

Mexico. At the edge of the delta, the Chandeleur Islands provide protection against ocean storms 

in the densely populated coastal areas of Louisiana, including New Orleans. In the Mississippi 

River estuary, several strands composite the bays of the river branch and enter the sea, the sediment 

accumulation in each branch exceeds the erosion rate of the waves, then the sediment deposition 

extends along the branches, forming large sediment bars that branch out into the sea and forming 

the lower Mississippi River delta which is like birds' feet from the view of the satellite (Blum and 

Harry, 2012). The delta region is relatively low and flat, with an elevation of -3 ~ 2 m relative to 

sea level. Over the past century, at least 37 major floods have occurred in the Mississippi River, 

leading to the distribution of wetlands and depressions on both sides of the riverbank (Coleman et 

al, 1998). 

The waterbodies within the Mississippi River Delta are a natural wildlife breeding ground. 

The river carries a large amount of organic matter into the bay, creating a nutritious environment 

for fish, shrimp, shellfish, and other wildlife to breed and grow. The Mississippi Delta provides a 
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range of natural habitats and resources that are beneficial not only to Louisiana and the coastal 

areas but to the entire United States. The coastal area has a variety of wetland landscapes, 

connecting the land and the sea. Louisiana wetlands are one of the most productive and important 

natural resources in the United States (Costanza et al, 1989; Elsey-Quirk et al, 2021). Natural 

embankments, barrier islands, forests, salt marshes, and other areas constitute a complex 

ecosystem and habitat.  

 

Figure 2. The study area of the MRD 
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In the MRD, wetland vegetation is a critical and rapidly changing landscape. Roseau cane 

is a perennial plant, with a stem height of around 1-3 m. The leaves are lanceolate and linear, 

normally around 30 cm long, and 2 cm wide. The Roseau cane flowers are highly recognizable 

and normally produced around late August, 15 - 40 cm long and 10 cm wide (Elias and Peter, 

1990). Other typical vegetation species in the MRD include bull tongue, cutgrass, and cattail. From 

our plant survey conducted at our drone site starting in September 2020, the typical wetland 

vegetation species are listed in Figure 3.  

 

Figure 3. Typical wetland vegetation species in MRD 

3.2. The datasets 

To monitor the wetland in the region, this research proposes to conduct multi-source 

remote sensing-based integrated research. The primary data used for MRD-wide Roseau cane 

dieback monitoring is the Landsat dataset. This research collected 20 years (2001-2021) historical 

archived cloud-free multispectral Landsat collection 2 level 2 dataset product from the United 

States Geological Survey (USGS), the sensor including 30 m resolution Landsat 5 Thematic 



19 
 

Mapper (TM) images (2001-2012) and 30 m resolution Landsat 8 Operational Land Imager (OLI) 

images (2013-2021). The auxiliary datasets for the Landsat study include corresponding hourly 

CRMS water level recording and meter/sub-meter resolution NAIP aerial photos. 

The dataset used for differentiating variants of Roseau cane is the Worldview-2 dataset. As 

the first high-resolution satellite sensor with multispectral bands, the Worldview series of imagery 

has gained wide attention for various research. The Worldview-2 satellite was first launched on 

October 6, 2009, and operates in a 770 km high sun-synchronous orbit, capable of providing 0.46 

m resolution panchromatic images and 1.8 m resolution multi-spectral images. Worldview space-

borne multi-spectral remote sensor not only has four standard spectral segments (Red, Green, Blue, 

and Near-infrared) but also includes four additional diverse spectral segments (Coast, Yellow, 

Red-edge, and Near-infrared), which will provide the ability to conduct accurate change detection 

and mapping (Upadhyay et al, 2012). For this study, this research purchased 0.5 m resolution pan-

sharpened 8-bands multispectral Worldview images from Apollo Mapping company. 

The drone datasets in this research mainly include multi-spectral datasets collected from 

the 10 bands Micasense Rededge-M/MX dual camera. The drone Platform used in the study is DJI 

600 Pro which capable to fly for around 20 minutes with 1 set batteries. The flight height is 120 m 

with 75% overlap, the orthophotos generated could archive 8 cm resolution. A Phantom 4 RGB 

camera was also applied in the field survey, these datasets are collected at 40 m flight height which 

is available to produce 2 cm resolution orthophotos for drone sampling tests. In addition, multiple 

field surveys were conducted using cm-level RTK GPS to retrieve ground truth sample location 

for the research.  
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Chapter 4. Large-scale Assessment of Wetland and Roseau Cane Dieback 

Based on Landsat imagery 

4.1. Introduction 

Since 2016, there is a break of dieback events reported in lower MRD associated with scale 

infection, and its impact may be traceable to longer history (Suir, et al, 2018). There is a strong 

need to conduct a long-term MRD-wide survey of vegetation to assess the macro-environmental 

change for the Roseau cane habitat through historical vegetation/land change detection, however, 

traditional methods face the challenge of lack of sufficient data archive. Landsat is a continuous 

Earth Observation satellite program developed under a joint program of the USGS and NASA. 

The Landsat program has an extremely long duration and provides abundant data through multi-

spectral sensors. Its data are relatively stable, have global coverage, and are easy to obtain. This 

research proposed using Landsat as the primary dataset for long-term large-scale wetland 

monitoring in lower MRD. 

For historical vegetation/land dynamic change, it is important to detect the accurate 

vegetation/land boundary. Theoretically, the segmentation thresholds of the vegetation/water body 

indices are all 0. However, some studies have shown that in practice, it is still necessary to adjust 

the threshold according to the specific scene to achieve optimal segmentation results (Ji et al, 

2009). This study will test the adjusted threshold method in lower MRD and check whether it is 

still capable of achieving higher accuracy than the normal threshold. 

The distribution and dieback of wetland vegetation have vital value for the wetland 

manager to oversee the entire region and is beneficial for designing better protection and 

restoration plan in the MRD. To deal with the challenge of intense water level dynamics and its 

impact on vegetation and land appearance in coastal regions, this study first examined water levels 
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for all Landsat images in the past two decades and found the images from 2010 and 2019 are the 

most suitable dataset for dieback assessment. The images will extract the vegetation coverage 

based on the adjusted threshold values of vegetation indices. Then, NDVI-derived statistical 

thresholds were applied for dieback assessment on these vegetation coverage areas. 

Due to the challenge to identify vegetation species from coarse resolution images, 

separating Roseau cane from other wetland vegetation species typically requires large-scale field 

sampling of vegetation types, which is challenging for coastal wetlands due to its fragmentation 

characteristics, limited accessibility, and high costs. One objective of this chapter is to test the 

hypothesis of whether this study can extract large-scale Roseau cane distribution through Landsat 

imagery with the support of high-resolution aerial photos. If the hypothesis is true, it will allow 

this research to compare the overall wetland dieback with mixed vegetation to those diebacks from 

Roseau cane.  

4.2. Method 

The overall objective of this section is to introduce a research method to monitor the 

wetland vegetation coverage change throughout the lower MRD based on moderate-resolution 

remote sensing data (Landsat). This chapter introduce the method and results of a large-scale 

assessment of wetland and Roseau cane dieback based on Landsat images. The workflow consists 

of three main stages shown in Figure 4. After collecting and preprocessing all the historical 

archived datasets, stage 1 of this section compared multiple water/vegetation boundary extraction 

thresholds based on the vegetation/water index combination. These thresholds will be validated 

through the randomly generated points from corresponding NAIP aerial photos and selected as the 

best-fitting one to generate 20 years of land/vegetation coverage products in lower MRD. Stage 2 

will introduce the NDVI-derived dieback detection method to identify the anomaly region of the 
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study area based on the vegetation coverage extracted from the last step. In this stage, image pairs 

(2010, 2019) were selected referencing CRMS water level recording and available NAIP aerial 

photos. Stage 3 will conduct SVM classification of Landsat images with the training samples from 

the interpretation of auxiliary NAIP aerial photos to distinguish Roseau cane and non-Roseau cane 

vegetation types. After the generation of all the datasets, a statistical assessment was conducted on 

the vegetation coverage changes and dieback conditions in the lower MRD. 

 

Figure 4. Workflow for Landsat-based wetland historical vegetation coverage change and 

dieback assessment 

4.3. Dataset and pre-processing 

The primary data we used for large-scale wetland and Roseau cane dieback monitoring is 

the Landsat dataset. We also collected corresponding NAIP images for the accuracy assessment of 

the newly adjusted threshold values and used them to generate training/accuracy assessment 

samples for the classification of Roseau cane. In addition, we collected water level data from 

CRMS for the selection of images with minimal water level differences. 

Launched on March 1, 1984, Landsat 5 was designed and built at the same time as Landsat 

4 and carried the same sensor: Thematic Mapper (TM) and Multispectral Scanner System (MSS). 
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In November 2011, the TM sensor ceased operation due to aging electronics, and a few months 

later engineers turned the MSS sensor back on (Wulder et al, 2016).  

Launched on February 11, 2013, Landsat 8 carries two sensors, OLI (operational land 

imager, land imager) and TIRS (thermal infrared sensor, thermal infrared sensor). The images 

acquired by the OLI land imager were used in this study. The Landsat 8 OLI image includes 9 

bands, one panchromatic band with a resolution of 15 m and eight multispectral bands with a 

resolution of 30 m, with an imaging width of 185 km×185 km. The spatial resolution of the images 

acquired by the TIRS thermal infrared sensor is 100 m, this dataset was not used in our study. 

Compared with the previous Landsat series satellites, the red, near-infrared, and short-wave 

infrared bands on Landsat 8 are narrowed, the radiation resolution (radiation resolution) is 

increased to 16 bits, and the signal-to-noise ratio (signal-to-noise ratio) is improved. These 

improvements increased the vegetation discrimination capability of the Landsat 8 satellite. 

Table 1. Bands information on Landsat satellite dataset  

 Landsat-5 Landsat-8 

Sensor TM OLI 

Lunch date March 1984 February 2013 

Spatial Resolution (m) 30 30 

Band name Bandwidth (μm)  

Coastal aerosol N/A 0.43-0.45 

Blue 0.45-0.52 0.45-0.51 

Green 0.52-0.60 0.53-0.59 

Red 0.63-0.69 0.63-0.67 

Near Infrared (NIR) 0.77-0.90 0.85-0.87 

Short-wave infrared 1 (SWIR 1) 1.55-1.75 1.56-1.65 

Short-wave infrared 2 (SWIR 2) 2.08-2.35 2.10-2.29 

Repeat-Cycle 16 days 16 days 
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The USGS published Landsat Collection 2 dataset in 2020. Collection 2 datasets include 

Level 1 and Level 2 data, no subscription is required, and can be downloaded directly at query 

time. Collection 2 Level 1 data has improved the accuracy of geometric correction and radiometric 

calibration comparing to Collection 1 Level 1 data. In particular, the accuracy of geometric 

corrections has been greatly improved with the introduction of a new version of ground control 

points (GCPs Phase 4). GCPs Phase 4 combines the control points of Landsat 8 and ESA's 

Sentinel-2, which greatly improves the accuracy of image ensemble correction. Unlike the ordered 

Collection 1 Level 2 data (except for the US), the Collection 2 Level 2 data includes both surface 

reflectance in the multispectral band and surface temperature in the thermal infrared band. The 

algorithm used for atmospheric correction has also been improved. The algorithm for processing 

Landsat 8 images is the Land Surface Reflectance Code (LaSRC) algorithm (version 1.5.0), and 

the algorithm for processing Landsat 4-7 images are the Landsat Ecosystem Disturbance Adaptive 

Processing System (LEDAPS) algorithm (version 3.4.0). The DN value of the Collection 2 level 

2 dataset image needs to be multiplied by 0.0000275 (scale factor) and then subtracted by 0.2 to 

convert to the value of surface reflectance. For example, if the DN value of the image multispectral 

band of Collection 2 Level 2 is 32000, then the reflectance value of this pixel is 0.68. This research 

collected 38 scenes of cloud-free Landsat C2L2 images from USGS spanning from 2001 to 2021. 

The Landsat images are listed in Table 2. 
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Table 2. Cloud-free Landsat images in lower MRD from 2001 to 2021 

Sensors Year Month Day Start Time (GMT) End Time (GMT) 
 2021 4 21 16:25 16:26 
 2021 4 5 16:25 16:26 
 2021 3 4 16:26 16:26 
 2021 1 15 16:26 16:26 
 2020 4 2 16:25 16:26 
 2019 10 9 16:26 16:26 
 2019 9 7 16:26 16:26 
 2019 4 16 16:25 16:26 
 2019 1 10 16:25 16:26 
 2018 4 29 16:25 16:25 

Landsat 8 OLI 2018 4 13 16:25 16:25 
 2016 4 23 16:25 16:26 
 2016 4 7 16:25 16:26 
 2016 3 22 16:25 16:26 
 2016 1 18 16:26 16:26 
 2015 10 14 16:26 16:26 
 2014 12 14 16:26 16:26 
 2014 11 28 16:26 16:26 
 2014 1 12 16:27 16:27 
 2013 10 24 16:27 16:28 
 2011 10 3 16:14 16:14 
 2010 10 16 16:16 16:16 
 2010 9 30 16:16 16:16 
 2009 1 30 16:11 16:12 
 2008 10 26 16:09 16:10 
 2008 3 16 16:16 16:16 
 2007 1 25 16:21 16:21 

Landsat 5 TM 2006 11 22 16:20 16:21 
 2005 10 18 16:14 16:14 
 2005 9 16 16:14 16:14 
 2004 10 15 16:10 16:11 
 2004 3 21 16:05 16:05 
 2004 2 18 16:05 16:05 
 2003 11 14 16:04 16:04 
 2003 3 19 15:59 16:00 
 2003 1 14 15:58 15:58 
 2002 12 29 15:58 15:58 
 2001 12 26 16:05 16:05 
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The orthophoto aerial images mainly used in this research are provided by the National 

Agricultural Imagery Program (NAIP). The NAIP began in 2003 with the primary goal of making 

digital orthophotos available to government agencies and the public within a year. NAIP imagery 

is administered by the U.S. Department of Agriculture (USDA). The dataset can be used for crop 

hazard measurement, change detection, land classification, forestry management, and 

environmental investigation. The NAIP image data are high-resolution aerial images (1 meter 

GSD), including 4 spectral bands: blue band: 400 ~ 580 nm; green band: 500 ~ 650 nm; red band: 

590 ~ 675 nm; and near-infrared band: 675 ~ 850 nm. The NAIP image is mostly collected from 

the crop growing season, generally from May to October in a 5-year cycle (after 2009, it changed 

into a 3-year cycle), the cloud cover is less than 10%, and the solar elevation angle is the horizontal 

direction of the collection is greater than 30°. NAIP imagery is orthorectified and data quality is 

checked before the supplier delivers it to the user. To meet the experimental requirements of this 

paper, preprocessing operations include image mosaic and projection. 

Coastwide Reference Monitoring System (CRMS) is a long-term wetland monitoring 

program funded by Coastal Wetlands Planning, Protection, and Restoring Act (CWPPRA) since 

1990. This program has set up approximately 390 sites in the coastal area of Louisiana. The CRMS 

website provides hourly recorded water level data from 2008, which helps our research to select 

the Landsat dataset to minimize the difference of water level in the Landsat images for NDVI-

derived dieback detection. ArcGIS is the major software platform used for conducting the 

processing procedure and further analyzing the result of these datasets in this research. 

4.4. Task 1: Historical land and vegetated area dynamics in lower MRD  

The purpose in this section is to assess the historical vegetation dynamics in the region to 

reflect the macro-environmental change for the Roseau cane habitat. In open ocean waters and 
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estuarine wetlands, due to the lack of sufficient ground data, limited accessibility in wetlands, and 

high cost of field investigation, the application of remote sensing estimation is particularly 

important. Compared with the traditional field sampling methods, Landsat is a suitable image for 

that large-scale assessment which can provide vital information for monitoring the wetland 

species.  

There are many methods for vegetation coverage and water body extraction, which can be 

roughly divided as the single-band method (Lu et al, 2011), the multi-band spectral relationship 

method (Gao et al, 2016), the vegetation/ water body index method (Xiong et al, 2010), and image 

classification method (Nghi et al, 2008). For example, based on Landsat MSS data, Shih used the 

density segmentation method and the unsupervised classification method to extract water bodies, 

and the difference in the accuracy of the results obtained by the two methods was about 3% (Shih 

et al, 2016). Barton used the AVHRR image to extract the water body and monitored the flood by 

using the ratio operation of the near-infrared and red bands (Barton et al, 2016). Lu Jiaju used the 

threshold method, the chromaticity discrimination method, and the ratio measurement method to 

extract the water body from the TM data, which could identify small water bodies (Lu et al, 1992). 

McFeeters found that the ratio operation between the green band and the near-infrared band can 

largely suppress the vegetation and highlight the information about the water body. Therefore, 

Normalized Difference Water Index (NDWI) was created based on these two bands and used for 

water extraction (McFeeters et al, 1996). Xu found that the short-wave infrared band can reflect 

more water features than the near-infrared band. Therefore, the short-wave infrared band was used 

to replace the near-infrared band to construct a modified Normalized Difference Water Index 

(mNDWI), which could achieve a better water body extraction result (Xu et al, 2005). In general, 

the vegetation/ water body index method, especially the several key vegetation/ water body indices 
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listed below, is currently the most widely used algorithm in vegetation coverage extraction and 

water body extraction due to its simplicity and effectiveness. This research implemented this 

vegetation/water index method and selected the best-fitting index threshold in the study.  

4.4.1 Vegetation and water indices for land and vegetated area extraction 

1. Normalized Difference Vegetation Index (NDVI): NDVI calculates vegetation index 

within a value range between -1 to 1 based on a simple equation as below and is the most widely 

used vegetation index tested in various studies.  

𝑁𝐷𝑉𝐼 =
𝑅𝑛𝑖𝑟 − 𝑅𝑟𝑒𝑑
𝑅𝑛𝑖𝑟 + 𝑅𝑟𝑒𝑑

 

Where Rnir and Rred represent the reflectance values of the red and near-infrared bands 

respectively. 

2. Enhanced Vegetation Index (EVI): EVI is often used in areas covered by dense 

vegetation. The formula showed below:  

𝐸𝑉𝐼 = 2.5 ×
𝑅𝑛𝑖𝑟 − 𝑅𝑟𝑒𝑑

𝑅𝑛𝑖𝑟 + 6 × 𝑅𝑟𝑒𝑑 − 7.5 × 𝑅𝑏𝑙𝑢𝑒 + 1
 

Where Rnir, Rred, and Rblue represent the reflectance values of the near-infrared, red, and 

blue bands. The range of the value is -1~1, and the range of normal green vegetation area is 0.2-

0.8. The EVI is one of the main indexes used in the biophysical parameter products, which can 

reduce the influence of atmospheric and soil noise at the same time, and stably reflect the 

vegetation conditions in the measured area. The EVI can detect detailed surface vegetation 

characteristics. The range of the red band and the near-infrared band is narrower, which not only 

improves the ability to detect sparse vegetation but also reduces the influence of water vapor. At 

the same time, the application of the blue band corrects the scattering of atmospheric  
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3. Land Surface Moisture Index (LSWI): LSWI is the normalized value of the 

reflectance in the near-infrared and short-wave infrared bands. LSWI representation refers to the 

moisture content in the vegetation canopy, which has a wide range of applications in the extraction 

of wetland feature information. Its calculation formula is as follows: 

𝐿𝑆𝑊𝐼 =
𝑅𝑛𝑖𝑟 − 𝑅𝑠𝑤𝑖𝑟
𝑅𝑛𝑖𝑟 + 𝑅𝑠𝑤𝑖𝑟

 

In this equation, Rnir is the near-infrared band; Rswir is the shortwave infrared band. 

4. modified Normalized Difference Water Index (mNDWI): McFeeters proposed 

NDWI in 1996, namely:  

𝑁𝐷𝑊𝐼 =
𝑅𝑔𝑟𝑒𝑒𝑛 − 𝑅𝑛𝑖𝑟

𝑅𝑔𝑟𝑒𝑒𝑛 + 𝑅𝑛𝑖𝑟
 

where: Rgreen is the green band; Rnir is the near-infrared band (McFeeters et al, 1996). 

NDWI mainly utilizes the characteristics of strong water absorption and almost no reflection in 

the near-infrared band, while vegetation reflectivity is very strong. However, since NDWI only 

considers vegetation factors, ignoring the two important features of buildings and soil, when 

extracting water body information through NDWI, the reflectivity of the green band is much higher 

than that of the near-infrared band, so the extraction results inevitably contain many mixtures pixel, 

especially soil and building object, the accuracy will decrease. Based on the analysis of NDWI, 

Xu modified the band combination that constituted the index, replaced the near-infrared band in 

NDWI with the short-wave infrared band (SWIR), and proposed mNDWI, which showed below: 

𝑚𝑁𝐷𝑊𝐼 =
𝑅𝑔𝑟𝑒𝑒𝑛 − 𝑅𝑠𝑤𝑖𝑟

𝑅𝑔𝑟𝑒𝑒𝑛 + 𝑅𝑠𝑤𝑖𝑟
 

The spectral characteristics of shadows such as buildings in the green band and near-
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infrared bands are similar to water bodies (Xu et al, 2005). When the short-wave infrared band 

replaced the near-infrared band, the contrast between the calculated indices of water and buildings 

can be significantly enhanced, and the difference between these two objects can be greatly 

increased. Xu conducted experiments with this index on remote sensing images containing 

different types of water bodies, and most of them obtained better results than NDWI (Xu et al, 

2005). The experiment also found that mNDWI can reveal the small-scale features of water bodies, 

such as the distribution of suspended sediments, and changes in water quality compared with the 

NDWI. 

4.4.2. Determine thresholds for land and vegetated area mapping 

The vegetation/water body index can highlight the spectral difference between the 

vegetation coverage and water body with other land objects, but to extract the exact 

vegetation/water boundary, the index image needs to be segmented by threshold. To better 

determine the optimal threshold of our research area, auxiliary data such as remote sensing images 

and terrain data with higher spatial resolution in the same area can be combined, and through 

adjustment of the threshold, most water bodies can be extracted while reducing the erroneous 

extraction of other ground objects categories (Liu et al, 2012).   

Considering the fragmented nature of wetland vegetation and the existence of floating 

vegetation in the MRD, the NDVI threshold value of vegetation is normally slightly higher, 

normally above 0.2 (Couvillion et al, 2013). Wang conducted a comprehensive wetland vegetation 

coverage/water boundary experiment along the coastal area of China and found that the 

mNDWI/VIs method which combined mNDWI, and EVI could achieve 98% accuracy in water 

body extraction. In addition, the combination of EVI, NDVI, and LSWI also archived 96.2% 

accuracy of vegetation boundary extraction (Wang et al, 2020), this adjusted threshold showed in 
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Table 3. This research will test whether this threshold could produce more accurate 

vegetation/water bodies in lower MRD. 

Table 3. Adjusted Threshold for Vegetation/Water Boundary extraction in the MRD 

 Threshold 

Water Boundary mNDWI > EVI and EVI < 0.1 

Vegetation Boundary EVI ≥ 0.1, NDVI ≥ 0.2 and LSWI > 0 

4.4.3. Accuracy Assessment 

Accuracy assessment is an important step in remote sensing research, and it is also an 

important test to check whether the extraction method of vegetation coverage/water body is 

reliable. Water body extraction means that the objects in the study area are divided into two 

categories: water body and land area, so the method of image classification accuracy is used to 

evaluate the extraction results.  

In remote sensing, normally the ground-truth observation data were used and calculate the 

percentage of correctly identified objects to determine the overall accuracy. This study used NAIP 

images as the ground reference for accuracy assessment. This research generated 120 random 

points in the research area and generated the classified accuracy assessment dataset based on visual 

interpretation. The accuracy assessment points have been classified as water/non-water or 

vegetation/no-vegetation based on their location and surrounding texture.  There are 50 points 

located in the water area while 70 points are in the non-water region, for vegetation coverage, 47 

points are in the vegetated area while 73 points are in the non-vegetation area. The distribution of 

these points showed in Figure 5.  
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Figure 5. Distribution of the randomly generated accuracy assessment points: (a) Vegetation 

Coverage; (b) Water Boundary Extraction 

4.4.4. Vegetation/Land Boundary Extraction 

This study used September 30, 2010, Landsat 5 TM image for the vegetation/land boundary 

extraction test since it has a relatively low water level recording and abundant NAIP images which 

benefit accuracy assessment. 46 scenes of NAIP aerial photos taken from May 10, 2010, were also 

collected to evaluate the accuracy of the threshold selected. 

Based on the vegetation/water body index image, NDVI = 0.2 is used as the initial threshold 

for vegetation coverage detection, and mNDWI = 0 is also used as the initial threshold for water 

body extraction. Then the segmented vegetation/water body index image is generated based on the 

initiating threshold, while the vegetation coverage/water body distribution of Landsat images 

based on the adjusted threshold is also obtained and compared with the result. The extraction 

results showed in Figure 6 and Figure 7. 
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It can be seen from Table 4 that the overall accuracy of the adjusted threshold extraction 

results is generally better than the initiating threshold. Compared with the Landsat images, it can 

be found that the adjusted threshold method is better than the initiating threshold in the shallower 

waters.  Considering the wetland environment, the initiating threshold is more likely to be affected 

by some other factors, such as planktonic algae on the water surface, which will cause misclassified 

of the water body boundary. Therefore, for the region of the shallow or vegetated water on the 

MRD, the appropriate vegetation coverage/water body extraction should use the adjusted 

threshold. The adjusted threshold this research applied could extract more detailed information 

about water and vegetation, the extraction of shallow water is more accurate, and the overall 

accuracy is better than the single index initiate threshold. 

Table 4. Classification Accuracy of the Threshold Applied for Vegetation/Water Boundary 

extraction in the MRD 

 Initiate Threshold Adjusted Threshold 

Vegetation Boundary 95.8 % 98.3 % 

Water Boundary 97.5 % 99.2 % 
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Figure 6. Vegetation boundary extracted in the lower MRD: (a) Initiate threshold; (b) Adjusted 

Threshold 

 

 

Figure 7. Water boundary extracted in the lower MRD: (a) Initiate threshold; (b) Adjusted 

Threshold 
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4.4.5. Historical vegetation coverage/Water boundary dynamics in lower MRD 

In the last section, this research proved that the adjusted threshold values could extract 

more accurate vegetation/land boundaries in the lower MRD. This research then further applied 

this method in the lower MRD through the long-time series Landsat archived dataset and 

quantitatively analyzed the produced result. 

From the historical change shown in Figure 8, despite the significant season variations, the 

results indicated the overall vegetation coverage in the region is slightly increasing while the land 

area is decreasing in the past two decades. This region experienced a relatively significant decrease 

of land and vegetation coverage since the beginning of 2016 which corresponded with the first 

reported case of scale infection of the Roseau cane in the MRD. This research also observed a 

strong decrease of land and vegetation area since 2020, which might relate to cold weather event 

at that following time which might lead to the massive death of wetland vegetation. If concentered 

on the growing season data (August-October), then a strong increasing trend existed in the MRD 

region since 2005 shown in Figure 9. This might indicate the vegetation's continuous expansion 

during the growing season in the lower MRD. 
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Figure 8. Land and vegetated area Change in the lower MRD 

 

 

 

Figure 9. Land and vegetated area change in the lower MRD based on images in Growing 

Season (August - October). 



37 
 

Considering the geographic location characteristics, the changing pattern may vary in the 

different subregions of watersheds. For example, watersheds close to inland may be more sheltered 

from storm surges and erosions and grow more land through the sediment from the Mississippi 

river. However, watersheds face directly open gulf water and waves may have a higher chance of 

losing more land and vegetation, which offset the changes in the entire study site. Therefore, this 

research examined the land and vegetated area change dynamics in these subregions of watersheds 

as shown in Figure 10 and Figure 11. Much severe variation of vegetation and land area change 

can be observed in the Octave Pass and Main Pass watershed area while relatively stable in the 

Southern part of the MRD including the Pass-a-Loutre, Southwest, and South Pass region. This 

might cause by relatively more Roseau cane distributed in this southern part of the MRD.  

In summary, the historical vegetation/land change analysis provided an overall assessment 

of the wetland vegetation status from 2001 to 2021 across the lower MRD, it still missing the 

detailed information of the dieback distribution. In the next section, NDVI-derived dieback 

detection will be introduced to get an overview of this phenomenon in the lower MRD region. 
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Figure 10. Vegetation Coverage Change in lower MRD watersheds 

 

Figure 11. Land Area Change in MRD watersheds 
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4.5. Task 2: Wetland and Roseau cane dieback assessment 

The detection of dieback regions in lower MRD is one of the main objectives of this 

research. In this section, the distribution and dieback of wetland vegetation are detected and 

quantitatively analyzed based on the selected Landsat images.  

Normally, the NDVI value can reflect a reduction in vegetation growth conditions due to 

wetland vegetation diebacks which could result in thinning or death of vegetation. Considering the 

thresholding methods are often applied in change detection analysis (Wang et al, 2007), Miller has 

successfully used statistics characteristic of NDVI difference value to identify the dieback region 

in South Carolina (Miller et al, 2018). However, their result is based on the threshold values 

derived from the entire study area NDVI difference, while this research will apply the method to 

the vegetated area extracted from the adjusted threshold values from the last section for vegetation 

dieback in the lower MRD. 

First, this research collected the Landsat-derived vegetation coverage map for NDVI 

change analysis. Then calculate the difference in NDVI value between these two images. 

Following the statistic threshold principle, this research divided the pixel of the NDVI-difference 

map into three categories: 

1) Dieback area where the value difference of NDVI is less than -1 standard deviation, which 

means this vegetated area suffered from significant vegetation decline. 

2) No significant change area where the absolute value difference of NDVI is less than 1 standard 

deviation which means the NDVI value change is not significant from a statistical perspective 

and considering this research tested this threshold only on the vegetated environment, this area 

is classified as no change. 

3) Increased Vegetation area where the NDVI difference is bigger than 1 standard deviation, 
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indicating that the vegetated area has denser vegetation or grows better than in previous years. 

4.5.1. Dataset Selection 

Dieback assessment based on vegetation index change in the coastal areas needs to deal 

with the challenging issue of constantly changing water levels and its impact on land and area 

appearance on satellite images. Therefore, this research aimed to select images with desired time 

frame, similar seasonality, and minimal water level difference. As a result, this research selected 

the Landsat C2L2 products retrieved on October 9, 2019, and September 30, 2010, around 4 pm 

GMT, from the two decades of cloud-free images, which has the lowest mean water level 

difference of around 2cm, shown in Table 5. This research collected the hourly recorded water 

level data from the CRMS website. Among all the stations located in coastal Louisiana, three 

CRMS stations were selected located in the MRD region. Both images were collected during the 

growing season of Roseau cane (August - October). 

Table 5. Selected CRMS water level hourly recording in the MRD in the growing season Landsat 

images from 2010 to 2019 

Adjusted Water Elevation to Datum (m)  Average Water Elevation (m) 

Date CRMS0162 CRMS0159 CRMS2634 
 

10/9/2019 0.652272 0.551688 0.691896 0.631952 

9/7/2019 0.286512 0.21336 0.374904 0.291592 

10/14/2015 N/A 0.109728 0.158496 0.134112 

10/24/2013 -0.070104 -0.036576 0.079248 -0.009144 

10/16/2010 N/A 0.41148 0.615696 0.513588 

9/30/2010 N/A 0.51816 0.795528 0.656844 
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4.5.2. Result 

The purpose of this section is to assess vegetation dieback in the entire site through NDVI 

change analysis. In Figure 12, this research classified the NDVI difference map between 2010 with 

2019 to vegetation dieback level assessment in the lower MRD.  

The results indicated around 51.09 km2 of dieback area in the MRD from 2010 to 2019, 

which accounted for around 11.61% of the overall wetland vegetation in the MRD as shown in 

Table 6. Besides, around 9.67% of the vegetated area experienced a total loss of vegetation in 

2019. It clearly showed most of the dieback and vegetation loss areas located in the outskirt of the 

east and south regions of the lower MRD. This result indicted the wetland manager should put 

more focus on the protection of wetland vegetation in these dieback and vegetation loss regions. 

While the relatively stable vegetation areas accounted for 65.68% and may cause less concern for 

wetland conservation.  

Table 6. Statistics of vegetation change area (km2) in the MRD 

Class type Area Percentage of overall vegetation coverage 

Vegetation to non-Vegetation 42.54 9.67 % 

Dieback 51.09 11.61% 

non-Vegetation to Vegetation 92.27 20.98% 

Vegetation (No change) 288.9 65.68% 

Increased Vegetation 57.26 13.02% 

Overall Vegetation Coverage (2010) 439.88  

 

In addition, this research also identified 20.98% of areas that changed from non-vegetation 

areas to vegetated areas and 13.02% increased vegetation areas which are mostly located in the 

side area of each channel, and largely happened in the northern part of the MRD. These changes 
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should be the results of sediment deposits from the Mississippi river, marsh protection projects to 

conserve wetlands, and vegetation expansion.   

 

Figure 12. Vegetation dieback assessment map based on NDVI change in the lower MRD from 

2010 to 2019. 

4.6. Task 3: Roseau cane distribution mapping 

The purpose of this section is to test the capability to separate Roseau cane from other 

vegetation classes using Landsat images. Considering the difficulty to get sufficient ground 
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samples and the difficulty of visual interpreting the distribution of Roseau cane due to the coarse 

resolution of Landsat images, it is necessary to use a high-resolution auxiliary dataset for the task. 

Samiappan applied a two-class classification of Roseau cane and non-Roseau cane to identify its 

distribution based on UAV images (Samiappan et al, 2017). This research conducted a similar 

experiment to classify these two classes based on Landsat and meter-level resolution aerial photos. 

Specifically, this research applied pixel-based SVM classification on the Landsat images based on 

the training and accuracy assessment samples identified from the high-resolution NAIP aerial 

photos. 

4.6.1. SVM 

A fast and high-precision classification algorithm of remote sensing images is the key to 

implementing dynamic monitoring, evaluation, and forecasting of the wetland environment. The 

SVM algorithm is designed on the VC dimension theory of statistical learning theory and the 

principle of minimum structural risk. This algorithm seeks to obtain the best generalization ability 

and the best compromise between the complexity of the model and the learning ability from limited 

sample information (Bao et al, 2009). SVM has become a simple, robust, and reliable classification 

method and is widely applied in many remote sensing studies (Zhang and Xie, 2013). Therefore, 

this research adopted SVM for classification.  

4.6.2. Impact of texture analysis on Roseau cane classification  

Remote sensing images contain abundant spectral information as well as valuable texture 

information. In traditional vegetation classification research, the spectral information of remote 

sensing images acts as the main source for the classifier, and the texture information is often 

ignored (Lu et al, 2007). Adding texture features may result in improving the classification 

accuracy. Especially, Roseau cane has unique structural characteristics could seem from high 
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solution images. It is usually much taller than other marsh species, occupied larger areas, and may 

have a coarse texture. Yet, in higher resolution images such as those from drones, gaps, and 

understory vegetation may be visible. This research would like to test the hypothesis of whether 

adding texture images in the classification can improve the accuracy of  Roseau cane classification. 

The results may be scale-dependent due to the above reasons. Therefore, this research will test this 

hypothesis both in Landsat, WorldView, and drone images.   

Landsat-8 texture images were extracted to supplement the spectral information for the 

classification of the wetland vegetation in the MRD region. Relevant studies have proved that for 

texture images, the extraction window size is a key parameter (Chen et al, 2004). How the window 

size affects the accuracy of texture improvement in wetland classification is still unknown. A larger 

window size increases the chance of finding bigger texture patterns, thereby reducing errors in 

classification. However, considering the fragmented nature of the wetland vegetation environment, 

especially the Roseau cane habitat patch size is relatively small compared to the 30 m resolution 

of Landsat images, this research set the maximum tested window size as 7 × 7 pixels size (210 × 

210 meters). The window size was initially set to 3×3 pixels size and was later increased to 5×5 

and 7×7 pixels size. The texture features were selected using the standard deviation value of the 

window size. 

4.6.3. Accuracy Assessment 

To assess the overall classification accuracy and the effectiveness of texture information, 

high-resolution NAIP images were used to support the training of the classifier and accuracy 

assessment.  For each Landsat image, we generated 100 random points in the extracted vegetation 

area and visually identified each point whether it is in the Roseau cane habitat or not in the NAIP 

images. Among them, 80 points were selected as the training dataset to extract the spectral and 
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texture information from the Landsat images, the number of each class is shown in Table 7. The 

other 20 points served as the accuracy points to assess the final product generated after SVM 

classification, each class contains 10 points.  

Table 7. Training sample numbers for Landsat classification in the MRD 

Image Date Roseau cane non-Roseau cane 

2010 42 38 

2019 39 41 

 

4.6.4. Roseau cane classification results 

The SVM classification produced a high overall accuracy at 75% result, this result proved 

the method is capable of separating Roseau cane and non-Roseau cane vegetation classes. After 

successfully classifying the Landsat images using the SVM method, this research found that the 

texture feature introduced method could archive a classification accuracy of around 80% to 90%, 

which is higher than the spectral-only classification accuracy with a 75% accuracy as shown in 

Table 8. This result indicates that the texture feature is beneficial to improve Roseau cane 

classification for the large scale with Landsat imagery. Through the extraction of texture features, 

the texture information between different objects is strengthened, making it easier to distinguish 

between different vegetation covers. 

Table 8. Overall Classification Accuracy (%) for Landsat in the MRD 

Image Date SVM 
SVM+Texture 

(3×3) 

SVM+Texture 

(5×5) 

SVM+Texture 

(7×7) 

2019 75 80 80 75 

2010 75 70 90 80 
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For texture images with different window sizes, the impact on vegetation classification is 

also different. In this study, the vegetation classification accuracy of the 5 × 5 window size is 

slightly higher than other window sizes. When the window size is too large, it oversimplified the 

ground feature texture, and a smaller window size ensures the homogeneity of pixels within the 

window but also reduces the texture difference between different objects. For this study area, a 

window size of 5 × 5 is more suitable for the classification of vegetation than other window sizes. 

From the classified MRD vegetation statistic, this study found the overall vegetation 

coverage in the lower MRD increased by around 11% from 2010 to 2019 during the growing 

season while the Roseau cane coverage decreased by around 5% at the same time shown in Table 

9. In addition, this study also found that Roseau cane occupied around two thirds of the dieback 

area distribution in the region listed in Table 10. These results indicate the Roseau cane 

experienced much more damage than other non-Roseau cane wetland vegetation species which 

might relate to the scale infection since 2016.  

Table 9. Classified Roseau cane and non-Roseau cane area (km2) in the MRD 

Image Date Roseau cane Non-Roseau cane Overall Roseau cane Percentage 

2010 218.53 221.34 439.88 49.7% 

2019 204.73 284.89 489.62 41.8% 

 

The final product of the classified Roseau cane distribution in the MRD showed in Figure 

13. From the distribution map, the main Roseau cane decreased areas were in the southern part of 

the MRD, especially the river estuary area. 

Table 10. Statistic of Roseau cane and non-Roseau cane in the dieback area 

Vegetation type Area Percentage of overall dieback area 

Roseau cane 33.65 65.86% 

non-Roseau cane 17.44 34.14% 

Overall Dieback 51.09  
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Figure 13. Roseau cane distribution in MRD for (a) 2010 and (b) 2019 based on Landsat images. 

4.7. Summary 

This chapter introduced a comprehensive, systematic large-scale remote sensing method 

for assessing wetland and Roseau cane dieback in lower MRD. The proposed methodology in this 

section creates a series of vegetation/land change maps in lower MRD from 2001 – 2021 as well 

as large-scale Roseau cane distribution maps.  

This research tested the adjusted threshold values for vegetation/water body boundary 

extraction based on the combination of NDVI, EVI, LSWI, and mNDWI. The result proved it 

could archive higher accuracy comparing initiate threshold methods. Then we applied this method 

to extract 20 years of vegetation/water change in the lower MRD. The results indicated the overall 

vegetation coverage in the region is slightly increasing while the land area is decreasing in the past 

two decades. While other subregions showed slightly increased vegetation coverage, the 

vegetation coverage in Pass-a-Loutre subregion decreased. Further effort should assess whether 
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Pass-a-Loutre is subjected to more severe scale infection as well. In future research, these macro 

wetland changes will be combined with the delta-wide scale samples in the Roseau cane areas to 

analyze their relationship.   

One major objective of this study is to assess the dieback conditions in lower MRD. 

Through the vegetation NDVI change, the dieback region was successfully extracted in the lower 

MRD and found around 51 km2 of the wetland experienced vegetation dieback in the lower MRD 

which accounted for 11% of the overall wetland vegetation coverage and around 9% of vegetation 

coverage losses in the MRD from 2010 to 2019.  

Our classification test produced high-accuracy results to separate Roseau cane from non-

Roseau cane. This research further tested whether the addition of texture information could 

improve the accuracy of supervised SVM classification in the lower MRD. The results proved the 

texture information could increase the overall classification accuracy by around 5-15% and the 

5×5 window size generated the best result. 

Through the final classified result, this research found the Roseau cane decreasing while 

other marsh land cover increased in the lower MRD from 2010 to 2019. The result concluded that 

the major dieback events happened on Roseau cane in the MRD, which indicated that Roseau cane 

is especially vulnerable to dieback in the lower MRD, and extra attention should be paid to further 

investigate their impact on wetland recovery. 
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Chapter 5. Mid-scale Roseau Cane Habitat Mapping Through High-

resolution Multispectral WorldView Imagery 

5.1 Introduction 

There is a study showing the two variants of Roseau cane - Delta Phragmites and European 

Phragmites have significant differences facing RCS infection (Cronin et al, 2010), the biomass of 

European Phragmites is less impacted by scale infection compared to Delta Phragmites under 

small-scale controlled experiment. How this difference of resistance will affect their distribution 

on a larger scale is still unknown. It is imperative for wetland management to know the distribution 

characteristics of the two variants of Roseau cane on a relatively larger scale and its habitat 

environment. 

Considering the variants of Roseau cane share similar spectral characteristics, the Landsat 

dataset is not suitable for this task because the resolution was too coarse and limited bands. This 

research selected Worldview images for mid-scale analysis considering it is capable to provide 

high-resolution multispectral information of the study site. Whether Worldview images can 

effectively separate Delta Phragmites and European Phragmites based on mainstream 

classification algorithms and technical tools is still a challenge.  

Based on the usage of each classifier algorithm in the current research of classification 

problems, this paper compares four classification methods of K Nearest Neighbor (KNN), 

Maximum Likelihood Classifier (MLC), Support Vector Machine (SVM), and Random Forests 

(RF) to test their capability for separating Roseau cane variants and habitat classification The study 

area includes two main river outlets: the main pass and south pass of the lower MRD. Typical 

wetland vegetation species are identified and investigated in the field survey. Ancillary data such 

as aerial photographs, Landsat images, and expert opinions from wetland ecologists have 



50 
 

cooperated in the field survey. The final classified Worldview result was used to cross-validate the 

Roseau cane distribution results from Landsat Classification established in Chapter 4. 

5.2 Method 

This chapter introduced the method and results of Worldview-based wetland vegetation 

classification research. Mid-scale wetland Roseau cane habitat classification is used to obtain the 

spatial distribution of the Roseau cane in the main pass located in the Delta National Wildlife 

Refuge and the South Pass of the MRD. The south pass is the southmost river outlet extended from 

the main Mississippi river flow direction and subjects to gulf wave impact, while the main pass is 

located in the east-north of the bird-foot delta that may be sheltered more by the Pass-a-Loutre 

region. This research selected these two outlets based on their geographical representative 

locations as well as data coverage in the 2021 WorldView imagery. The two major variants of the 

Roseau cane may be difficult to identify on moderate-resolution optical remote sensing images 

such as Landsat 8. This research selected high-resolution 8-band WorldView-2 (WV-2) images 

with 0.5m spatial resolution to classify Reseau cane habitat, and especially to differentiate the two 

major variants of Roseau cane in the lower MRD. The main research steps in this section are as 

follows. 

(i) First, WV-2 images and field survey GPS sampling points were collected and 

preprocessed. 

(ii) To solve the registration issue, this research further checked each sample point and 

slightly adjusted the location to ensure correct matching of the field samples and the image 

locations Then, this research performed visual interpretation on the WV-2 images to generate extra 

training samples and accuracy assessment samples for each class designed in this research.   
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(iii) This research compared MLC, SVM, KNN, and RF classification using ArcGIS 

software to identify the optimal classification method for Roseau cane habitat classification. This 

research then further adds texture to this optimal classification method to assess whether texture 

can help improve Roseau cane habitat classification accuracy. 

(iv) Finally, the best Roseau cane habitat classification result based on SVM was selected 

to detect different wetland vegetation classes. This research further used the classified Roseau cane 

distribution in these two outlets to cross-validate the Roseau cane distribution extracted from the 

corresponding Landsat image to assess the reliability of its distribution in a large area and assess 

the difference of distribution of Delta Phragmites with European Phragmites in the detected 

dieback area. 

5.3 Dataset and field data collection 

5.3.1. Worldview 2 image 

The WorldView-2 satellite was launched on October 6, 2009, with an orbital altitude of 

770 km and a revisit period of 1.1 days. It is the first commercial high-resolution imagery with 

multispectral bands that preferable for vegetation habitat classification (Shridhar et al, 2015). The 

WV-2 image used in this study has eight multispectral bands with 1.85 m spatial resolution in the 

wavelength range of 400-1040 nm as shown in Table 11 but pan-sharpened to 0.5 m resolution by 

the vendor.  
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Table 11. Satellite parameters of WorldView-2 

Launch Date October 6, 2009  

Revisit time 1.1 day  

Orbit Altitude 770 km (Sun-synchronous) 

 Period 93.4 min 

 Equator Crossing Time 10:30 am descending node 

 Panchromatic band (0.46m) 450-1040 nm 

  Coastal Blue: 400-450 nm 

  Blue: 450-510 nm 

 Multispectral bands (1.85m) Green: 510-580 nm 

Bands  Yellow: 585-625 nm 

  Red: 630-690 nm 

  Rededge: 705-745 nm 

  Near-infrared 1: 770-895 nm 

  Near-infrared 2: 860-1040 nm 

 

In addition to the traditional blue, green, red, and near-infrared bands, WV-2 also has four 

distinctive bands: Coastal Blue (400-450nm), Yellow (585-625 nm), Red Edge (705-745 nm), and 

Near Infrared 2 (NIR2, 860-1040 nm). The Coastal band is proved effective in plant identification 

and analysis and is sensitive to chlorophyll absorption of healthy vegetation (Heenkenda et al, 

2014). In addition, this band is very useful for water depth research and supports oceanography 

research based on the specification parameter of chlorophyll. Because the band is often affected 

by atmospheric scattering, atmospheric correction techniques have been applied. The Yellow band 

is a very important band to test the characteristic index of "yellowness", both on land and in water. 

At the same time, the panchromatic band can be used as an auxiliary correction for the true color 

band combination, which improves the effectiveness of visual interpretation of vegetation habitat. 
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The red-edge band is a newly added band, in which some vegetation types strongly respond to the 

highly reflective bands, which can assist the analysis of plant growth, directly reflect the relevant 

information about plant health status, and assist the classification of vegetation types. The NIR2 

band partially overlaps the NIR 1 band but is less affected by the atmosphere. This band supports 

plant analysis and the quantitative study of wetland vegetation (Li et al, 2019).  Larger spectrum 

range and targeted eight-band design capable of detecting the corresponding natural ecosystems 

such as land, sea, forest, grassland, and wetland. This capability makes the application of WV-2 

images could improve the classification characteristics and serves better for the wetland vegetation 

information extraction and analysis of these regions.  

The WV-2 optical images used in this study were acquired on September 11, 2021, to detect 

the growing season spectral characteristics of the Roseau cane. The study area at lower MRD was 

at low tide with no cloud cover. The 1+8-band bundle of WV-2 is currently priced around $24-

44/km2, which is still relatively expensive. Considering the Roseau cane distribution in MRD is 

extremely fragmented, the images that covered the main pass and south pass of MRD were 

purchased for this study due to funding limitations and research needs.  

The WV-2 images were captured at a 36.2 off-nadir. It is orthorectified and pan-sharpened 

by the company. The images were also geometrically corrected according to the GPS coordinates 

of landmark features collected in the field and corresponding NAIP images, and the Root-mean-

square deviation (RMSE) was controlled to 0.6 m. 

5.3.2. Field data collection 

The Roseau cane field surveys were conducted in the study area on November 9, 2021. 

This research first generated 150 accessible randomly distributed points along each pass as the 

initiate survey locations for the field data collection. The vegetation class information was 
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collected based on the field survey of those accessible location with the assistance of wetland 

experts from the AgCenter, LSU.  

Considering the vast area of our study, the base station of our Trimble R10 RTK-GPS 

(Real-Time Kinematics Global Positioning System) is not sufficient to cover the whole study site. 

This research used handheld GPS Trimble GEO7X in field survey to measure the location of 

wetland vegetation sampling points. The horizontal positioning accuracy of this device could 

archive 0.22 m according to our field test experiment with Trimble R10 RTK GPS.  

Since the interior of the study area is mainly swamp with limited accessibility for walking 

in combination with the low tide season sampling that limits boat accessibility, this research ended 

up with collected 132 points in the main pass and 154 points in the south pass. To enrich the 

training sample set and validation sample set, the survey team performed multiple collections on 

each vegetation class found at a location to ensure sufficient training and accuracy assessment 

samples for each class. 

5.3.3. Classification Scheme 

According to the field survey, the main wetland vegetation type in the study area was 

Roseau cane, and it has two major variants in the study area including widely spread Delta 

Phragmites and relatively less distributed invasive European Phragmites. The Delta Phragmites is 

confirmed as the dominant wetland vegetation species in the area through field survey. Other 

wetland vegetation includes Alligator Weed, Saw Grass, Cutgrass, Cattail, Bull tongue, etc. This 

research used spectrometer to measure the spectral difference of Delta Phragmites with European 

Phragmites, showed in Figure 14. They shared similar spectral curve, however the field data still 

showed Delta Phragmites have relatively higher reflectance compared to European Phragmites in 
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all wavelengths especially in red band and red edge band. This spectral difference indicate it is 

possible to separate them based on multi spectral bands images. 

 

Figure 14. Spectral comparison of Delta Phragmites with European Phragmites 

According to the research need and sample numbers for each vegetation, this research 

composed nine categories for classification including water, marsh grass, Delta Phragmites, 

European Phragmites, shrub/woody vegetation, dead vegetation, mud, bare soil, and man-made.  

A total of 240 sample points were GPS surveyed in the research area and randomly divided into 

training samples and validation samples according to the ratio of 8:2. However, the available 

samples covering all category classes in the study area are still not sufficient for some minority 

classes. Therefore, this research added a few samples in those classes based on visual 

interpretation.  

The visual interpretation of remote sensing images refers to the manual interpretation and 

extraction of remote sensing images by professionals with solid professional knowledge (Sabins, 

2007). In wetland vegetation classification at the mid-scale, researchers can interpret some 

vegetation classes from the high-resolution images based on empirical knowledge of field mapping 
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and correlation between image features, especially on 0.5 m WV-2 images. For wetland vegetation 

identification, visual interpretation may not replace field survey as the main vegetation typing 

method but is useful to add more samples in those identifiable areas to solve the challenging issue 

of limited samples in those classes with insufficient training samples. A total of 131 extra sampling 

points were visually identified and divided as training and accuracy assessment samples, the 

overall training sample and accuracy assessment sample number for each class are shown in Table 

12, and the spatial distribution of these sample points is shown in Figure 15. The patch of some 

wetland vegetation species is relatively small and fragmented and might be in the inaccessible area 

in the field, limiting our ability to retrieve sufficient GPS samples for classification. Considering 

the difficulty for field survey, the total training and accuracy assessment dataset is relatively small, 

while there is study showed this small number dataset could still achieve reasonable classification 

results (Lou et al, 2020). 
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Figure 15. Distribution of the Training and Accuracy Assessment Samples for WV-2 images: (a) 

the Main Pass; (b) the South Pass 

 

Table 12. Training and accuracy assessment sample numbers for WV-2 classification 

Classes Individual Species Training sample Acracy Assessment 

Water Water 59 12 

Marsh Grass 

Alligator Weed   

Saw Grass   

Cutgrass 43 10 

Bull Tongue   

Cattail   

Delta Phragmites Delta Phragmites 71 13 

European Phragmites European Phragmites 21 10 

Shrub/Woody Vegetation Black Widow 21 10 

Dead Vegetation All dead plant types 20 10 

Mud Mud 24 11 

Barren Soil Soil 15 7 

Man-made 
Boat, Concreate 

Platform, Tank 
10 5 

Overall  284 87 
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5.4 WV-2 Classification 

The classification of remote sensing images is the most critical part of remote sensing work. 

The advantages and disadvantages of different classifiers and classification methods largely 

determine the accuracy of classification results. Therefore, it is crucial to select a classifier that is 

suitable for wetland vegetation classification in the MRD.  

There are many studies on the classification of wetland vegetation using optical remote 

sensing images, and the accuracy of classification has been improving with the improvement of 

spatial resolution and the development of the classification of methods. In recent years, many 

representative classification methods have emerged in the research of remote sensing data 

classification (Yang, et al, 2003). Each of these classification methods has its characteristics, and 

early studies mostly used simple classifiers (Du, et al, 2012), and later, with the continuous 

development of machine learning theory, various new classifier algorithms emerged (Mountrakis 

et al, 2011), and were successfully applied in remote sensing data classification tasks.  This section 

focuses on a comparative study of several commonly used classification methods including KNN, 

MLC, SVM, and RF for Roseau cane variants and habitat classification.  

5.4.1. Classification methods 

1. KNN 

The KNN classification method stands for K-nearest neighbors and is the simplest method 

among all selected classification algorithms. The basic idea of this classification method (Wang 

and Zhang, 2013) is to find the K nearest samples in the feature space and assign classes based on 

majority voting or distance-weighted voting. In the KNN algorithm, the neighboring samples 

selected are training samples that have been correctly identified. The method determines the class 

based on the majority category of the N nearest ones or weighted voting. Therefore, the KNN 
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method is only relevant to a very small number of neighboring samples when making category 

decisions. 

2. MLC 

MLC classifies images into two or more categories by statistically establishing a set of 

nonlinear discriminant functions based on the maximum likelihood ratio Bayesian criterion 

method. MLC assumes that the distribution functions of each category are normally distributed 

and automatically selected training areas and calculates the attribution probabilities of each sample 

area for classification. 

3. SVM 

SVM is a machine learning algorithm based on the statistical learning theory proposed by 

Vapnik et al. in 1999 (Vapnik, 1999). For multi-classification problems, one-to-one methods 

(OAO), one-to-many methods (OAA), etc. are usually used in SVM (Hsu and Lin, 2002). For two-

class SVMs, the basic principle of classification is that the two classes of sample points in the 

training sample can be separated by finding a classification hyperplane and as far as possible from 

that plane. Since SVM is based on the structural risk minimization criterion, its generalization 

ability is significantly better than some traditional learning methods. It can show good 

generalization ability in classification problems and obtain relatively high classification accuracy.  

4. RF 

The principle of RF (Random Forest) was based on the Bootstrapping method, in a given 

M sample data set, after M times of random sampling, a sample set containing M training samples 

can be obtained and then based on each sample set for training to construct a decision tree, and at 

the node of the decision tree, a subset containing K attributes is first randomly selected from the 
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set of attributes of that node, and then an optimal attribute is selected from this subset for division 

(Breiman, 2001). 

When the random forest is constructed, the test samples are inputted into each decision tree 

for class output or regression output; in the case of classification problems, the final category is 

output based on voting, and in the case of regression problems, the mean value of each decision 

tree output is used as the result. This study used RF embedded in ArcGIS, which used Leo 

Breiman's Random Forest Algorithm (O'Neil et al, 2018). 

5.4.2. Does add texture improve Roseau cane habitat classification accuracy? 

Once the optimal classification method is selected in the above section, this research take 

experiment on the hypothesis of whether adding texture information can improve Roseau cane 

habitat classification accuracy in the scale of WV-2 images. Texture features are calculatable 

properties of ground objects from high-resolution imagery and are widely used for classification. 

The basic units of texture are called texture elements, and texture is usually a composite of either 

a regular or random arrangement of texture elements. In the field of image vision, the texture is 

considered as a two dimensions function of the variation and repetition of grayscale or color of the 

pixel (Peters, 2007). Remote sensing images are processed to reflect the spectral characteristics of 

features by reflectance values, and texture structure can be characterized by inter-image pixel 

values, which can detect the macroscopic and microscopic structures of images comprehensively. 

In this study, the difference in texture features between different wetland species might be used 

for classification. This study considers the unique tall stem of Roseau cane as the most outstanding 

difference from other wetland vegetation, which may generate a rougher texture. Therefore, this 

research selected standard deviation for the texture experiment, the different window sizes of 

Texture images include 3×3, 5×5, and 7×7.  
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5.5. Result 

 The accuracy verification of WV-2 image classification aims to determine the accuracy of 

the classification process, and this study uses multiple criteria to verify the accuracy of Roseau 

cane habitat classification. The specific criteria include: Overall Accuracy (OA), which is a 

probabilistic statistic that indicates the probability that a random sample matches the actual type 

of the area in the classification result for any random sample; Producer Accuracy (PA) indicates 

the conditional probability that a random sample selected arbitrarily from the reference data has a 

feature type that matches the feature type at the same location on the classification result image; 

User Accuracy (UA), which is the conditional probability that the feature type of a random sample 

selected from the classification result is consistent with the actual type of the ground; Kappa 

coefficient is a method to quantitatively evaluate the consistency between the classification map 

and the reference data which is more objectivity. The results are shown in Table 13.   

Table 13. Classification Accuracy (%) comparison of WV-2 classification in the MRD. 

  KNN MLC SVM RF 

Class UA  PA  UA PA  UA  PA  UA PA 

Barren Soil 100.00 100.00 100.00 100.00 100.00 100.00 77.78 100.00 

Dead 

Vegetation 
100.00 70.00 100.00 90.00 100.00 80.00 100.00 70.00 

Delta 

Phragmites 
52.94 69.23 72.73 61.54 73.33 84.62 52.94 69.23 

European 

Phragmites 
66.67 80.00 61.54 80.00 90.91 100.00 80.00 40.00 

Man Made 66.67 80.00 100.00 60.00 100.00 100.00 100.00 60.00 

Marsh Grass 50.00 66.67 53.85 77.78 87.50 77.78 41.18 77.78 

Mud 80.00 72.73 84.62 100.00 84.62 100.00 71.43 90.91 

Open Water 92.31 100.00 92.31 100.00 100.00 100.00 100.00 91.67 

Shrub/Woody 

Vegetation 
100.00 30.00 100.00 50.00 100.00 80.00 100.00 40.00 

Overall 

Accuracy 
73.56 80.50 90.80 71.26 

Kappa 0.70 0.78 0.90 0.67 
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 The results show that the OA of the KNN algorithm is 73.56%, the kappa is 0.70, the OA 

of the MLC algorithm is 80.5%, the kappa is 0.78, while the OA of the SVM algorithm is the 

highest one which is 90.8%, kappa is 0.9, and the OA of RF algorithm is lowest at 71.26%, kappa 

is 0.67. The classified distribution of each class showed in Figure 16 and Figure 17. The KNN 

classified result have a relative overestimation of the European Phragmites and contained many 

misclassified water pixels to man-made. The other two methods showed an underestimation of 

European Phragmites and an overestimation of the marsh grass class. These two methods couldn’t 

distinguish Delta Phragmites from European Phragmites in the research region compared with 

SVM. The result proved that the SVM was more suitable for classification than the other 3 methods 

and was selected for further analysis.  

 For the SVM result, most of the classes could be well distinguished and the producer and 

user accuracies were mostly above 80%, with the highest precision in the Bare soil, Man-made, 

and Water, followed by European Phragmites and Dead vegetation. The classification accuracies 

of the two Roseau cane variants, European Phragmites and Delta Phragmites, are good in general, 

and the producer and user accuracies of these two variants range from 73.33% to 100.00%. It is 

seen in Table 14, there is around 45.1% vegetation coverage in the study area. The Delta 

Phragmites are the dominant species in the region, accounting for 80.8% of the overall vegetation 

coverage in the research area; While European Phragmites account for 2.7% of the overall 

vegetation coverage. In addition to the two variants of the Roseau cane, Dead Vegetation consists 

of 3.46% of the overall vegetation coverage.    
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Table 14. The percentage of the total area for each class 

Class type Area (km2) % Of Total area % Of Total Vegetation area 

Bare Soil 0.75 0.70  

Dead Vegetation 1.66 1.56 3.46 

Delta Phragmites 38.75 36.43 80.80 

European Phragmites 1.29 1.22 2.70 

Man Made 0.11 0.11  

Marsh Grass 4.26 4.01 8.89 

Mud 3.72 3.50  

Open Water 53.82 50.60  

Shrub/Woody Vegetation 1.99 1.87 4.14 

Total Vegetation Area 47.96 45.1  

Total Area 106.36   

 

 The addition of texture information, on the other hand, only slightly improved the overall 

classification accuracy, showed in Table 15. Besides, the classified result presented more salt and 

pepper noise, which might be caused by the fragmented appearance of Roseau cane stands in the 

high-resolution WV imagery.  



64 
 

 

Figure 16. Classification Results for Worldview 2 in Main Pass: (a) KNN; (b) MLC; (c) SVM; 

(d) RF; (e) Study area in Main Pass. 
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Figure 17. Classification Results for WV-2 in South Pass: (a) KNN; (b) MLC; (c) SVM; (d) RF; 

(e) Study area in Main Pass. 
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Table 15. Classification Accuracy of Texture Image added to the SVM classification (%) 

 SVM 
SVM+Texture 

(3×3) 

SVM+Texture 

(5×5) 

SVM+Texture 

(7×7) 

Class UA PA UA PA UA PA UA PA 

Barren Soil 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 

Dead 

Vegetation 
100.00 80.00 100.00 80.00 100.00 80.00 100.00 80.00 

Delta 

Phragmites 
73.33 84.62 64.71 84.62 78.57 84.62 76.47 100.00 

European 

Phragmites 
90.91 100.00 100.00 100.00 100.00 100.00 100.00 100.00 

Man Made 100.00 100.00 100.00 100.00 83.33 100.00 100.00 100.00 

Marsh Grass 87.50 77.78 87.50 77.78 88.89 88.89 100.00 88.89 

Mud 84.62 100.00 90.91 90.91 83.33 90.91 78.57 100.00 

Open Water 100.00 100.00 100.00 100.00 100.00 91.67 100.00 91.67 

Shrub/Woody 

Vegetation 
100.00 80.00 88.89 80.00 90.00 90.00 100.00 70.00 

Overall 

Accuracy 
90.80 89.66 90.80 91.95 

Kappa 0.90 0.88 0.90 0.91 

 

5.6 Cross-validation with Landsat Classification  

This research selected the Landsat image obtained on November 15, 2021, which is the 

closest cloud-free image to the WV image, for cross-validation the classification results. NAIP 

images obtained between November 30 and December 2 of 2021 were also collected for visual 

interpretation of one hundred randomly distributed Roseau cane and non-Roseau cane samples 

following the procedure described in Chapter 4. These points are then further divided into training 

and accuracy assessments. SVM classification was applied to the Landsat images, the final 

classified product reached an 85% overall accuracy. The classified Landsat images were then 

further cropped and resampled according to the WV-2 image extent. 
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The classified results comparison showed in Figure 18 and Figure 19. The results based on 

Roseau cane percentages showed around 79% agreement between the two classified results, seen 

in Table 16. This result validated the effectiveness of the Landsat classified result. From the change 

detection analysis, the Landsat classified result showed a slight underestimation of the Roseau 

cane distribution, most of the misclassified Roseau cane is along the banks of water channels.  

Table 16. Agreement of Worldview Classified Result (W) with Landsat Classified Result (L) 

Class type Area (km2) Percentage 

Roseau cane (W & L) 27.11 69.94 

Roseau cane (W), non-Roseau cane (L) 5.08 13.10 

non-Roseau cane (W & L) 3.56 9.18 

non-Roseau cane (W), Roseau cane (L) 3.02 7.78 
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Figure 18. Comparison of Classification Results of Worldview 2 (W) (a) with Landsat 8 (L) (b) 

in the Main Pass and agreement classification (c). 
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Figure 19. Comparison of Classification Results of Worldview 2 (W) (a) with Landsat 8 (L) (b) 

in the South Pass and their agreement classification (c). 
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5.7 Difference of Roseau cane Variants Distribution in the Dieback Area 

Landsat images obtained on November 15 of 2021 were selected for dieback analysis. 

Landsat images of September 30, 2019, were selected as the baseline of dieback detection, 

considering this research region has continuously recorded scale infection starting from 2019. The 

next step is to apply the adjusted threshold in both images to generate vegetation coverage and 

then calculate the NDVI difference of the vegetated area between them. Based on the statistics 

calculation of the NDVI difference value, the dieback region was successfully extracted. The 

extracted dieback area was then further cropped to the same area as the Worldview images and 

resampled to the same pixel size. 

The next step of this research was to extract the classified vegetation area of Worldview 

results, overlapping with the detected dieback area from Landsat. The percentage of each 

vegetation type in the dieback is shown in Table 17. Comparing each vegetation type percentage 

of the overall vegetation coverage in the research region, no significant differences between them 

were observed in this research, especially Delta Phragmites (79.5% vs 80.8%) and European 

Phragmites (3.65% vs 2.7%), which indicates that no evidence in our experiment showing Delta 

Phragmites significantly more than European Phragmites distributed in dieback. Considering Delta 

Phragmites are much more vulnerable than European Phragmites facing scale infection, this might 

indicate that other stressors besides the scale infection also play important roles in the Roseau cane 

dieback in this area especially the damage of Hurricane Ida happened in September 2021.  
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Table 17. The percentage of each vegetation type in the dieback area and the total vegetated area. 

Class type Area (km2) 
% Of Total Vegetation 

Dieback Area 

% Of The Class type to 

Total Vegetation Coverage 

Dead Vegetation 0.49 2.72 3.46 

Delta Phragmites 14.31 79.53 80.8 

European 

Phragmites 
0.66 3.65 2.7 

Marsh Grass 1.58 8.79 8.89 

Shrub/Woody 

Vegetation 
0.96 5.31 4.14 

 

5.8 Summary  

This chapter conducted a comparative analysis of several remote sensing classification 

methods based on WV-2 including KNN, RF, CNN, and SVM. Among all these four classification 

methods, SVM proved to be the most accurate one with highest OA and kappa. The addition of 

texture information in SVM provided no significant improvement in the classification accuracy 

but generated wide-speared salt and pepper noise, which indicated a problem with texture-aided 

classification at the mid-scale due to the fragmented appearance of Roseau cane stands. 

The SVM result was used to identify and map the Roseau cane habitat. It could effectively 

distinguish the Delta Phragmites from the European Phragmites. The classified result showed the 

Delta Phragmites occupied around 80% of the overall vegetation coverage in the study area while 

only 2.7 % of the vegetation area belong to the European Phragmites. 

Finally, the classified Worldview result was cross-validated with the Landsat classification 

method established in Chapter 4. The result showed an agreement of around 79%, indicating a 

reliable Roseau cane extraction from the large-scale Landsat images for the entire study site. Most 

of the difference was detected in the banks of the water channel area. Furthermore, although Delta 
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Phragmite consisted of nearly 80% of the dieback area, the dieback rates for most categories were 

comparable to their percentage. 
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Chapter 6. Roseau Cane Habitat Mapping and Monitoring through Rapid 

and Multi-Seasonal Drone Sensors 

6.1 Introduction 

Wetland ecosystems are vulnerable to natural and human disturbances. Current methods of 

monitoring estuarine wetlands are often based on field surveys in small plots, difficult to monitor 

in a large area. In addition, the highly heterogeneous landscape pattern of estuarine wetlands 

greatly increased the difficulty of wetland vegetation species investigation and identification. 

There is a growing need for more rapid and responsive remote sensing data acquisition in wetland 

vegetation research. Satellite-based multispectral remote sensing images can take advantage of 

their large observation range, fixed revisit period, and extensive historical data in long-term and 

wide-range remote sensing applications and monitoring (Slagter et al, 2020). However, in small-

scale wetland remote sensing monitoring, multispectral satellite images are easily constrained by 

factors such as spatial resolution and image availability, which need to be supplemented by other 

data resources.  

With the development of drone technology and small multispectral sensor technology in 

recent decades, drone-based low-altitude remote sensing has become another important methods 

for remote sensing image acquisition. Capable of carrying multispectral cameras and flying at 

lower altitudes, drone technology is not only easy to acquire remote sensing images with high 

spatial resolution but also convenient for drone takeoff and landing to acquire remote sensing 

images with a high temporal resolution, which is critical for studying unexpected disturbances 

such as a hurricane, storm surges, and freeze events (Goodbody et al, 2017).  

 This study designed comparative experiments to determine whether the newly introduced 

10 bands drone remote sensing images can achieve high accuracy of wetland species classification 

especially the two variants of the Roseau Cane. Various landscape types of estuarine wetlands in 
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MRD, including various vegetation plants, were extracted by using the drone remote sensing image 

based on supervised classification methods. Wetland vegetation information extraction aslo 

designed for seasonal change analysis. Given the difficult accessibility of wetland field sampling, 

this study developed a drone sampling strategy for classification, which might help conduct small-

scale ecosystem landscape research. In addition, the research will also test the capability to detect 

the damaged area of Roseau cane and assess the seasonal change pattern of the wetland vegetation 

coverage.  

6.2 Method 

 This section proposes multi-temporal drone remote sensing image change analysis, which 

is specifically divided into five steps.  

 In the first step, the multispectral drone is used to acquire seasonal remote sensing images 

for pre-processing. This research analyzed the errors generated in the process of wetland 

vegetation classification and found many challenges. To avoid noise and image quality degradation 

due to insufficient light for the camera and the time limit spent for traveling to sites, the flight time 

is generally from 11:00 am to 4:00 pm in the wetland sites.  

 Step 2 is to take field investigation, construct the classification scheme of the estuary 

wetland landscape, divide the RTK-GPS surveyed samples as training samples, and verify samples. 

However, limited wetland accessibility may lead to not evenly distributed sampling points in the 

study area and a lack of sufficient samples for a certain type of wetland species. To solve this issue, 

a phantom 4 nature color drone is used to gather drone sampling images with lower flight height 

and higher spatial resolution.  

 In the third step, this research generates randomly distributed sample points in the study 
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area following the drone sampling procedure and identifies extra training samples and accuracy 

assessment samples to supplement the GPS-surveyed samples for classification. However, due to 

the angle of sunlight and tall vegetation types, some areas of the images are covered with shadows, 

which increases the heterogeneity of similar species and the similarity of different species, thus 

making the classification process more difficult. To deal with this problem, shadow was added as 

a separate class in the classification test. 

 The fourth step uses the overall training samples to generate multiple classifiers and 

compare the classification result. The confusion matrix is used to evaluate the accuracy of the 

classified results, then choose the most accurate one for wetland habit mapping.  

 In the last step, the seasonal change pattern of the wetland vegetation coverage change is 

explored through Landscape indices.  

6.3 Dataset and Preprocessing 

6.3.1. Study Area 

A 0.2 km2 study site located in Pass-a-Loutre of lower MRD was selected for the drone 

mapping study. The major vegetation type in the study area includes Delta Phragmites, European 

Phragmites, Cutgrass, and Cattail. The vegetation growth condition in this study area is a mixed 

growth pattern of Roseau cane and Marsh Grass, and the area is a typical wetland vegetation type 

of the MRD. The south part of the study site has relatively shallow water and is difficult to access 

in person during the fall season of 2021 due to extremely low water levels. This research area 

experienced extremely cold weather during February 2021 and heavy damage from Hurricane Ida 

in September 2021, many dead vegetation areas were observed in the study site. By referring to 

the actual ground vegetation growth area, this research designed the drone flight path to carry out 
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the drone multispectral image acquisition on March 22, September 24, November 7, 2021, and 

April 28, 2022. The location of the drone field data collection area in this experiment is shown in 

Figure 20.  

 

Figure 20. The drone monitoring site in Pass-A-Loutre of lower MRD (March 22, 2021). 

6.3.2. RedEdge-MX Dual Camera System 

Micasense Multispectral Camera Company, USA, has recently developed and designed a 

RedEdge-MX Blue multispectral camera based on RedEdge-MX. This new RedEdge-MX Blue 

together with the previous RedEdge M forms the RedEdge-MX Dual Camera 10-band imaging 

system. The system corresponds to the multiple bands of imaging sensors carried by Landsat8 and 

Sentinel-2A satellites and acquires more spectral information in one flight, which can be used in 

many fields such as agriculture, forestry, urban planning, and water quality monitoring. The 
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MicaSense Dual camera which capable of simultaneously collect 10 discrete spectral bands 

contains two cameras with a focal length of 5.5 mm, a field of view of 47.2°, and the image 

resolution of 1280×960 for each camera. The camera system was calibrated with the 0.3 m×0.3 m 

gray plate reflectance before and after a flight. The band parameters of the MicaSense RedEdgeM 

multispectral imager are shown in Table 18.  

Table 18. Band information of Micasense RedEdge-MX Dual Camera system 

RedEdge M RedEdge MX - Blue  

Band 

Center 

Wavelength 

(nm) 

Bandwidth 

(nm) 
Band 

Center 

Wavelength 

(nm) 

Bandwidth 

(nm) 

Blue 475 32 Coastal Blue 444 28 

Green 560 27 Green 531 14 

Red 668 14 Red 650 16 

Red Edge 717 12 Red Edge 705 10 

Near IR 842 57 Red Edge 740 18 

 

6.3.3. Orthophoto Generation 

Drone images are significantly different from satellite images in terms of navigation, 

positioning, and payload (Colomina et al, 2014). Because of these differences, drone images need 

to be preprocessed before image analysis, which includes air-triple encryption, orthorectification, 

and image stitching. Nowadays, with the continuous development of science and technology, the 

cost of software for processing drone aerial survey images is decreasing and the processing 

capacity is increasing. It has become a reality to use low-altitude drones to quickly acquire and 

generate orthophoto images for analysis.  

Agisoft Metashape (previously Agisoft Photoscan) is a 3D scanning software system from 

the Russian company Agisoft LLC. The software uses computer vision methods to process small-
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size, large numbers, and high-overlap images acquired by low-altitude drones. It is capable of 

automatically reconstructing 3D point clouds and generating digital surface models (DSM) from 

the point clouds, and then generates Digital Orthophoto Map (DOM). Agisoft Metashape can 

obtain the flight attitude parameters and GPS information directly from the image without a camera 

check and can centralize any photo according to the latest multi-view 3D reconstruction 

technology with high efficiency and accuracy. In addition, the software can generate 3D models 

with ground coordinates by adding multiple control points. The entire workflow, both the 

orientation of the image and the reconstruction of the 3D model is fully automated. Since Agisoft 

Metashape can generate high-resolution orthophotos and DEM models with fine color textures 

after the above steps, it has been widely used in many related studies (Sona et al, 2014). 

Agisoft Metashape mainly uses Structure from Motion SfM (SfM) algorithm to preprocess 

drone images by using multiple drone images Position Orientation System (POS) data to align all 

images spatially. In the term of SfM, the structure refers to the 3D point cloud of the scene, the 

motion refers to the position and direction of the camera, and the SfM is capable of generating the 

position of the point cloud through the moving camera to the interconnection between points (Ma 

et al, 2015). The motion information is used to computationally recover the projection matrix of 

the drone camera and the three-dimensional structure of the scene, thereby obtaining a three-

dimensional scene with coordinate information, and finally generating a three-dimensional point 

cloud (Turner et al, 2012). The SfM technique mainly uses the Scale-Invariant Feature Transform 

(SIFT) algorithm, which extracts the feature points and performs centralized vectorization on the 

extracted feature points. The SIFT algorithm extracts the feature points, matches the feature points 

with the vector description in the rated pattern, eliminates the mismatched points after the software 
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self-tested matching results, and finally uses the corrected matching feature points to do image 

stitching (Komárek et al, 2018).  

Agisoft Metashape was used to generate the orthophotos of the study area, and the process 

was as follows. 

(1) Data input. Input all the filtered 10 bands images and the POS data corresponding to 

each image into the software. Input the reflectance calibration parameters from the reflectance 

calibration board to transfer the initiated DN value of the image to the reflectance value. 

(2) Image alignment. It is automatically processed by Agisoft Metashape at this stage, is 

used to build a sparse point cloud by finding the positions of the cameras when the photos are 

taken through the input POS data, and the image alignment is performed while reading the internal 

calibration parameters of the camera to correct for the image distortion present in each image. 

(3) Point cloud generation. The program uses the acquired image pixel value to calculate 

the image depth information based on the predicted orientation of the camera, then generates a 

dense point cloud. 

(4) Create a grid model. The program will quickly reconstruct the 3D model of the target 

based on the dense point, that is, using the internal lines, surfaces, and other data of the images, to 

reproduce the real morphological characteristics of the objects. 

(5) Given texture. For the completed grid model, each part of the model will be given the 

texture of the original image. The final texture and the ground surface resolution (GSD) will 

depend on the quality of the images obtained in this study. 

(6) DOM output. Choose orthophoto as the mapping mode, then output the digital 

orthophoto map of the study area. 
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6.3.4. Field data collection 

This research used Trimble R10 RTK GPS to get centimeter-level accuracy ground 

sampling points, ensuring accuracy for high spatial resolution remote sensing classification. The 

experiment setups included drone flights with ground vegetation sampling based on RTK GPS. 

The team distributed ten targets at the relatively flat areas as ground control points for accurate 

georeferencing of each field survey samples. The flight was conducted in clear, cloud-free 

conditions between 11:00 and 14:00, with a flight height of 120 m, 70% overlap, and 8m/s flight 

speed. The final orthophotos generated from Agisoft had around 8 cm spatial resolution. Then the 

project team will collect randomly distributed samples and the targets for classification and 

accuracy assessment with RTK GPS. The project team repeated the drone data collection 

procedure on March 22, September 24, November 7, 2021, and April 28, 2022, for multi-temporal 

data collection.  

6.3.5. Drone Sampling 

Considering the difficulty faced in the field survey, this research adopted two ways to 

obtain sample data in the field: one way is to take measurements by centimeter-level positioning 

accuracy RTK GPS; the other way is to use another drone flight at a much lower altitude with 

much higher resolution images for visual identification of randomly selected samples. While fully 

utilizing the available battery power from the industrial drones for the maximum extent of habitat 

mapping, the relatively cheaper DJI phantom drones with a natural color camera and more battery 

packs allow lower flights for higher resolution images in partial or entire study areas. The higher-

resolution images provide enhanced texture information that is useful and critical for separating 

plant types. For example, in this research, Roseau cane vegetation on the 8 cm images might look 
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very similar to other wetland marshes, and hence is difficult to determine the vegetation types. But 

its unique tall crown structure in the 1 cm resolution drone sampling images can be identified.    

The drone used in the drone sampling is DJI Phantom 4, which is a multi-rotor vehicle 

equipped with six visual sensors, two sets of infrared sensors, one set of ultrasonic sensors, a 

GPS/GLONASS dual-mode satellite positioning system, and a compass dual redundant sensor to 

help the vehicle acquire the stable and high-precision image and positioning data. The drone carries 

a digital camera with three visible bands, with a camera pixel count of 20 million and a dimension 

of 5472 × 3678 pixels. The flight height were 40 m, flight speed were 8m/s, 70% overlap, and 70% 

sidelap. The flight control platform software used is Atlas Flight, which is our MicaSense camera 

recommended and can generate flight plans based on presetting flight parameters (Jiang et al. 

2020). 

 In this section, the results of the field survey and the drone images were both taken into 

consideration, and 9 categories were identified, including Dead Vegetation, Delta Phragmites, 

European Phragmites, Man Made, Marsh Grass, Mud, Water, Shrub/Woody Vegetation and 

Shadow. The number of samples for training (T) and accuracy assessment (A) in each field trip is 

listed in Table 19. 
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Table 19. Training and accuracy assessment sample numbers for Roseau cane habitat 

classification 

  03.21.2021 09.24.2021 11.07.2021 04.22.2022 

Class T  A  T A T A  T A 

Dead 

Vegetation 
26 10 38 11 28 17 35 10 

Delta 

Phragmites 
63 10 73 12 71 11 97 16 

European 

Phragmites 
20 10 34 11 39 10 20 10 

Man Made 10 5 10 5 13 5 10 5 

Marsh Grass 76 23 93 26 82 17 105 31 

Mud 12 5 14 5 20 15 20 10 

Water 45 10 45 10 23 21 39 10 

Shadow 20 10 20 10 22 13 20 10 

Shrub/Woody 

Vegetation 
20 10 20 10 20 10 20 10 

Overall 292 93 347 100 318 119 366 112 

 

6.3.6. Wetland Landscape Index 

Landscape spatial pattern refers to the spatial arrangement of landscape patches of different 

sizes and shapes. It is an important indicator of landscape heterogeneity (O'Neill et al, 1988). 

Wetland landscape pattern is the result of the combined effect of various ecological and 

hydrological processes. By calculating the landscape index, a series of data with statistical 

characteristics can be obtained, so that the distribution pattern of wetland landscapes at different 

times can be comparatively analyzed.  

When analyzing the landscape pattern by landscape index, the landscape is usually divided 

into three metrics: landscape metrics, class metrics, and patch metrics. In this study, the landscape 

metrics and class metrics are mainly studied, and the main software for calculation is the landscape 

pattern index software Fragstas 4.2. This research combined remote sensing technology and 
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knowledge of landscape ecology to preprocess the wetland landscape classification map of the 

drone site and calculated the landscape indices of each typical wetland vegetation (Delta 

Phragmites, European Phragmites, and Marsh Grass, etc.) for each period by ArcGIS and Fragstats 

software. Since there is limited research on the small-scale landscape pattern method as a 

reference, this research selected several key landscape indices for analysis by combining the 

characteristics of the internal landscape of the research area. 

Some of the selected indicators and calculation formulae are as follows: 

(1) Class Area (CA), CA is the area of individual landscapes. 

(2) Percentage of Landscape (PLAND) 

𝑃𝐿𝐴𝑁𝐷 =
∑ 𝑎𝑖𝑗
𝑛
𝑗=1

𝐴
(100) 

Where, and represents the area of the j patch in the i landscape type; A is the total area 

of all landscapes. The PLAND characterizes the percentage of the area of a patch type 

to the total area of the landscape and is an important basis for determining the dominant 

species in the landscape. 

(3) Patch Density (PD) 

𝑃𝐷 =
𝑁𝑖
𝐴𝑖

 

where Ni represents the total number of patches of this landscape type and Ai represents 

the total area of this landscape type. PD reflects the degree of fragmentation and spatial 

heterogeneity of the landscape. In general, the higher the PD, the higher the 

fragmentation level of the landscape type. 

(4) Mean Patch Size (MPS) 

𝑀𝑃𝑆 =
𝐶𝐴

𝑁𝑃
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Where CA represents the total area of a patch type, and NP is the number of patches. 

The MPS is used to characterize the integrity and fragmentation of the landscape type, 

the larger the MPS, the lower the fragmentation level of the landscape type. 

(5) Landscape Shape Index (LSI) 

𝐿𝑆𝐼 =
0.25𝐸

√𝐴
 

Where E indicates the total length of all patch boundaries. LSI reflects the complexity 

of the landscape, the lower value of LSI, the better the roundness of the landscape, 

which represents the simpler its shape, and conversely, with the larger value of LSI, 

the more complex its shape. 

(6) Largest Patch Index (LPI) 

𝐿𝑃𝐼 =
max(𝑎𝑖𝑗)

𝐴
(100) 

where max(aij) represents the maximum patch area in each type, and A represents the 

overall path area. The LPI helps to determine the dominant type of landscape. 

(7) Shannon’s Evenness Index (SHEI) 

𝑆𝐻𝐸𝐼 =
−∑ (𝑝𝑖 × 𝑙𝑛 𝑝𝑖)

𝑚
𝑗=1

𝑙𝑛𝑚
(0 ≤ 𝑆𝐻𝐸𝐼 ≤ 1) 

Where m indicates the number of landscape types in the study area, and Pi indicates the 

proportion of the area of the i type of landscape to the total area of the whole landscape. 

The larger the value of SHEI, the closer the ratio of the area occupied by different patch 

types in the landscape and the higher the degree of homogeneity. 

(8) Shannon’s Diversity Index (SHDI) 
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𝑆𝐻𝐷𝐼 = −∑(𝑝𝑖 × 𝑙𝑛 𝑝𝑖)

𝑚

𝑗=1

 

The value of SHDI reflects the level of diversity of the landscape. In the whole study 

area, if the area of different types of landscapes is in equal proportion, it indicates high 

diversity of the landscape. On the contrary, if the proportion of the area of different 

types of landscape in the whole study area is very different, the landscape shows low 

diversity. 

6.4 Drone Classification 

This study conducted high-resolution drone remote sensing image classification based on 

field survey points combined with drone sampling points to extract wetland vegetation distribution 

information and change pattern during the year. To improve the accuracy of change analysis, 

comparison experiments of four commonly used classification methods were designed and 

implemented. In addition, this research also tested whether the addition of texture information 

could improve the overall accuracy. 

6.4.1 Classification Method Comparison 

This study has selected orthophotos taken from April 22, 2022, for the classification 

comparison test. Based on the usage of each classifier algorithm in current research on 

classification problems, this paper selects typical methods of KNN, MLC, SVM, and RF. The 

accuracy of the classification results was verified by using the validation samples collected in the 

field and through drone sampling. The overall accuracy (OA), Kappa coefficient, user accuracy 

(UA), and producer accuracy (PA) of each classification result were calculated separately by 

establishing confusion matrices for the classification schemes in the drone study areas. The 

comparison result is listed in Table 20. 
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Table 20. Classification accuracy of Roseau cane habitat based on the drone image collected on 

April 22, 2022 

  KNN MLC SVM RF 

Class UA  PA  UA  PA  UA  PA  UA PA 

Dead 

Vegetation 
76.92 100.00 55.56 100.00 100.00 100.00 90.91 100.00 

Delta 

Phragmites 
66.67 75.00 68.18 93.75 76.19 100.00 69.57 100.00 

European 

Phragmites 
47.06 80.00 70.00 70.00 100.00 90.00 100.00 40.00 

Man Made 100.00 60.00 100.00 40.00 100.00 100.00 100.00 60.00 

Marsh Grass 80.00 51.61 80.00 77.42 90.00 87.10 76.47 83.87 

Mud 77.78 70.00 100.00 70.00 100.00 80.00 90.00 90.00 

Water 90.91 100.00 100.00 100.00 90.91 100.00 100.00 100.00 

Shadow 100.00 100.00 100.00 60.00 100.00 100.00 100.00 100.00 

Shrub/Woody 

Vegetation 
90.91 100.00 100.00 70.00 100.00 80.00 100.00 70.00 

Overall 

Accuracy 
76.79 78.57 91.96 84.82 

Kappa 0.73 0.75 0.91 0.82 

 

In terms of classification accuracy, the SVM method has the best overall accuray (91%) 

compared to KNN (77%), MLC (78%), and RF (84%). In terms of each class type, KNN and MLC 

both have lower accuracy in Dead vegetation, Delta Phragmites, and European Phragmites. For 

KNN, European Phragmites clearly showed overestimation in the whole study site, and poor 

classification accuracy at 47%. For MLC, Dead vegetation showed a relative overestimation in the 

whole study site, while MLC has a significant underestimation of Delta Phragmites distribution 

shown in Figure 21. RF, on the other hand, performs poorly in the classification of the two variants 

of Roseau cane, especially the poor performance of European Phragmites with a PA of only 40%, 

indicating that it is difficult to accurately distinguish between Delta Phragmites and European 
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Phragmites in this study compared to SVM, besides some shallow water area also been 

misclassified as mud. In general, SVM produced highest classification accuracy and can 

distinguish Delta Phragmites and European Phragmites more accurately and can improve the 

detection of water boundaries to a certain extent, so the subsequent studies of this experiment are 

based on SVM. 

 

Figure 21. Results of Roseau cane habitat classification based on drone survey on April 22, 

2022: (a) KNN; (b) MLC; (c) SVM; (d) RF 

6.4.2 Will Texture improve Roseau cane classification accuracy? 

When optical data were used for classification, it may be difficult to distinguish some 

marsh vegetation clusters with similar spectral curves because they had a similar spectral curve. 

Therefore, in this research, we further extracted texture features from the images and used the 

texture information for marsh wetland vegetation cluster identification. From the last section, this 
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research found SVM has the best classification accuracy, thus different window sizes of texture 

information were applied in SVM classification. The texture images were generated using the 

standard deviation value of the pixel in the window, and the experimented window sizes include 

3 × 3, 5 × 5, and 7 × 7. The classification result is listed in Table 21.  

Table 21. Classification Accuracy of Texture Image added to the SVM classification (%) 

  SVM 
SVM+Texture 

(3×3) 

SVM+Texture 

(5×5) 

SVM+Texture 

(7×7) 

Class UA  PA  UA PA  UA  PA  UA PA 

Dead 

Vegetation 
100.00 100.00 80.00 80.00 77.78 70.00 100.00 90.00 

Delta 

Phragmites 
76.19 100.00 77.78 87.50 92.86 81.25 100.00 81.25 

European 

Phragmites 
100.00 90.00 100.00 60.00 85.71 60.00 85.71 60.00 

Man Made 100.00 100.00 75.00 60.00 60.00 60.00 83.33 100.00 

Marsh Grass 90.00 87.10 82.35 90.32 80.00 90.32 76.92 96.77 

Mud 100.00 80.00 88.89 80.00 90.91 100.00 100.00 90.00 

Water 90.91 100.00 90.91 100.00 100.00 100.00 100.00 100.00 

Shadow 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 

Shrub/Woody 

Vegetation 
100.00 80.00 90.00 90.00 81.82 90.00 100.00 80.00 

Overall 

Accuracy 
91.96 85.71 85.71 89.29 

Kappa 0.91 0.83 0.83 0.87 

 

When texture information was added, the classification results showed a reduction in the 

number of small patches and a slight reduction of the overall accuracy which is similar to the 

texture result in the WV-2 experiment. The overall accuracy slightly increased with the larger 

window size may indicate that more background texture input may improve the classification 

result. In general, the differentiation effect is not obvious for the classification compared with 
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spectral features, and the following research will only use SVM without texture input in the next 

section about the change analysis.  

6.5 Change Analysis 

6.5.1 Multitemporal Classification 

 To investigate the vegetation cover changes reflected by the multi-temporal images, this 

study used the classification method selected in the previous section to classify the collected 

multitemporal drone-derived orthophotos for each period, and the changing pattern of the study 

site was analyzed in terms of landscape indices. The accuracy of the classified results is listed in 

Table 22. 

Table 22. Classification Accuracy of Each period Drone image (%) 

  03.21.2021 09.24.2021 11.07.2021 04.22.2022 

Class UA  PA  UA PA  UA  PA  UA PA 

Dead 

Vegetation 
90.91 100.00 83.33 90.91 80.00 94.12 100.00 100.00 

Delta 

Phragmites 
71.43 100.00 73.33 91.67 77.78 63.64 76.19 100.00 

European 

Phragmites 
88.89 80.00 100.00 36.36 77.78 70.00 100.00 90.00 

Man Made 100.00 100.00 100.00 60.00 83.33 100.00 100.00 100.00 

Marsh Grass 94.74 78.26 83.33 96.15 93.75 88.24 90.00 87.10 

Mud 100.00 80.00 83.33 100.00 100.00 100.00 100.00 80.00 

Water 100.00 100.00 90.91 100.00 100.00 100.00 90.91 100.00 

Shadow 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 

Shrub/Woody 

Vegetation 
90.91 100.00 100.00 90.00 100.00 100.00 100.00 80.00 

Overall 

Accuracy 
91.40 87.00 91.60 91.96 

Kappa 0.90 0.85 0.90 0.91 
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Among all the 4 periods of orthophoto, the overall classification accuracy of the SVM 

method is higher than 85%. The accuracy of September data is slightly lower, the OA of September 

data is 87% and the Kappa coefficient is 0.85, partially because the data was captured under the 

very strong interference of sunlight change due to cloud. The classification accuracy of other 

periods both reached OA above 91% and Kappa coefficient above 0.90. The classification 

accuracy of the Mud, Water, and Man Made classes was relatively stable in all four periods, with 

UA between 83.3% to 100% and PA between 83.3% to 100%.  

The accuracy of the vegetated area varied slightly between the four periods. The best results 

were obtained in Shrub/Woody vegetation, then the Marsh Grass, and Dead Vegetation. For 

variants of the Roseau cane, the accuracy of Delta Phragmites or European Phragmites was 

relatively low among the 9 categories, with UA around 75% and PA of 80% in all the periods. 

From the distribution of each period result seen in Figure 22, it is seen that there is a 

significant change in dead vegetation coverage since March 2021 when the study site experienced 

a severe cold weather event in February 2021, and the September result showed a significant 

impact of vegetation death might be caused by the Hurricane Ida. In addition, the low water level 

in the winter season turned the large area of shallow water to mud in November 2021 data. After 

that, there is a recovery process of vegetation in the study area, and almost all the previous dead 

vegetation areas were replaced with newly grown wetland vegetation. The distribution of the 

variants of Roseau cane, Delta Phragmites and European Phragmites is mostly located in the bank 

area of the water channel. 
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Figure 22. Multitemporal Roseau cane habitat Classification Result: (a) 03.21.2021; (b) 

09.24.2021; (c) 11.07.2021; (d) 04.22.2022 

6.5.2 Wetland Vegetation Landscape Change 

 This research collected the selected landscape indices for vegetation change analysis. 

These indices include Class Area (CA); Percentage of Landscape (PLAND); Patch Density (PD); 

Mean Patch Size (MPS); Largest Patch Index (LPI); Landscape Shape Index (LSI); Shannon's 

Diversity Index (SHDI) and Shannon's Evenness Index (SHEI). The 5 vegetation classes have been 

selected for analysis, including Dead Vegetation, Delta Phragmites, European Phragmites, Marsh 

Grass, and Shrub/Woody Vegetation. 

In our study area, the dominant vegetation coverage is Marsh Grass which occupied around 

30%-40% vegetated area, while Delta Phragmites occupied around 20%, European Phragmites 

occupied less than 10%, and Shrub/Woody vegetation occupied around 3%. From Figure 23, there 
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is a significate drop in CA/PLAND of Marsh Grass can be observed from September 2021 to 

November 2021, while it also accompanied by an increased CA/PLAND of Dead Vegetation 

which indicates that Marsh Grass experienced severe damage during this period. This might be 

caused by Hurricane Ida happened in September 2021. Meanwhile, the Delta Phragmites and 

European Phragmites slightly increased in the study area and might claim some area after the death 

of Marsh Grass. The CA/PLAND of Marsh Grass slightly back to normal in April 2022, indicating 

a fast recovery of wetland marshes within half a year. A significant decrease of CA/PLAND of 

Dead Vegetation indicates that healthy vegetation expanded in the study area for a fast recovery.  

 

Figure 23. CA and PLAND change for vegetation-related classes. 

LPI represents the dominant species in the study area, which prove to be the Marsh Grass 

in our study area in all four periods, as seen in Figure 24. The LPI of Marsh Grass is significantly 

higher than other vegetation types, however, it experienced a decreasing trend between September 

and November, indicating the degree of domination declined due to the massive death of Marsh 

Grass during this period. LSI represents the fragmentation level of the class. In our study area, 
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Delta Phragmites has the highest LSI than other vegetation types, indicating it is the most 

fragmented vegetation class. This might be because of the resolution impact on plant appearance 

in high-resolution drone images. Delta Phragmites often has tall stems and sparse leaves. At the 

centimeter level, high-resolution drone images, the understory plants, water, and mud between the 

gaps among stems may cause a fragmented appearance of Phragmites patches.  

 

Figure 24. LPI and LSI change for vegetation-related classes. 

 As can be seen from Figure 25, the Point Density (PD) of Delta and European Phragmites 

is the highest among all the vegetation types, which means they are more fragmented than other 

vegetation, like the LSI result, the patches of variants of Roseau cane tend to be dispersed and the 

overall landscape appears fragmented, it is more likely been influenced by stressors in the study 

area. Shrub/Woody vegetation, on the other hand, is the least fragmented vegetation type in the 

study area and very stable in all four periods. For MPS, the Marsh Grass has the highest value 
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which means the patch of Marsh Grass is normally bigger than other vegetation types, it also 

experienced a significant decline after September, considering the PD increased in the same period, 

it indicts many big patches been cut into a small one.  

 

Figure 25. PD and MPS change for vegetation-related classes. 

 As for Figure 26, the Shannon's Diversity Index (SHDI) and Shannon's Evenness Index 

(SHEI) in the entire study showed a stable increase trend from March 2021 to November 2021, 

which indicates an increase in landscape diversity and evenness. The sudden decline after 

November 2021 indicates some vegetation types expanded more than other vegetation types, 

which is the rapid growth of Marsh Gross in this study site.  
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Figure 26. SHDI and SHEI change for vegetation-related classes. 

6.5.3 Impact of Hurricane Damage and Recovery Process 

 The MRD experienced severe damage caused by Hurricane Ida during the first week of 

September 2021. The September drone image shortly captured the after-event status especially the 

wiped-out areas due to strong wind. The November field trip observed obvious vegetation recovery 

in some dead vegetation areas but the impact of the Hurricane on vegetation may continue due to 

possible saltwater intrusion. To examine whether specific vegetation types are more vulnerable to 

hurricane damage, this research extracts the dead vegetation area from September 24 orthophotos 

and overlaps it with the previous March 2021 classified result to analyze the vegetation 

composition that was wiped out by the hurricane. This study cross-compared this result with the 

class type to total vegetation coverage in March, the comparison result is listed in Table 23. The 

results showed that the main Dead Vegetation was from 56.31% of Marsh Grass, 21.39% of Delta 

Phragmites, and 16.61% of already dead vegetation. These three accounted for 94.31%. European 

phragmites accounted for 3.38%. One may interpret these vegetation classes with higher numbers 

as being more vulnerable. However, when cross-checking these percentages with the coverage 

percentage in the wetland area, these two percentage numbers are comparable, indicating those 
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vegetation classes with higher coverage may suffer more due to their larger coverage. This is 

different from the assumption that taller Phragmites plants may suffer more damage from the 

strong hurricane wind. In addition, this research observed massive Marsh Grass death in November 

data. Since most of the inner wetland areas in the Mississippi River outlets usually receive more 

fresh water from the Mississippi River, more freshwater vegetation may present in the marsh grass 

class, and Phragmites are relatively more salt-tolerant in this study site. Therefore, the continued 

death of large marsh grass areas might indicate the impact of saltwater intrusion that killed 

freshwater vegetation for a much longer period.     

Table 23. The percentage of each vegetation type in March corresponding to the Dead vegetation 

area in September and their total coverage in March 

Class type 
% Of Dead Vegetation 

in September 

% Of The Class type to Total 

Vegetation Coverage in March 

Dead Vegetation 16.61 19.39 

Delta Phragmites 21.39 22.07 

European Phragmites 3.38 3.05 

Marsh Grass 56.31 53.59 

Shrub/Woody Vegetation 2.31 1.89 

  

 This research further explored the recovery process of our study area based on the April 

2021 survey as shown in Table 24. The result showed that from September to November, half of 

the dead vegetation remain dead, and the first phase of recovery mainly lead by the Delta 

Phragmites, with around 21% dead vegetation area occupied by the Delta Phragmites. Then from 

November 2021 to April 2022, Marsh Grass expanded to around 64% of the dead vegetation area, 

which is significantly larger compared with other vegetation types. 
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Table 24. The percentage of each changed type of Dead Vegetation in November 2021 and April 

2020 

Changed type % From September to November % From November to April 

No change 56.12 2.18 

Delta 

Phragmites 
21.24 26.32 

European 

Phragmites 
8.60 4.88 

Marsh Grass 12.81 64.01 

Shrub/Woody 

Vegetation 
1.22 2.62 

 

6.6 Summary 

To solve the challenge of limited accessibility in a wetland environment, this research 

introduced a drone sampling method using a second small drone to fly at lower altitudes through 

these areas. This method could be made wetland habitat classification possible without sufficient 

field survey samples. The final classification results showed high accuracy and fit our field 

observations of the vegetation coverage in the study area.  

Then, this study used a drone to conduct habitat change analysis and observations at our 

study site. To accurately depict the boundary of each vegetation type, KNN, MLC, SVM, and RF 

classification methods were compared, and SVM proved to be the most accurate one with an 

overall accuracy above 87% in all 4 periods of time. This research also tested the hypothesis that 

adding texture info might be helpful for classification, however, our test result on 8 cm orthophotos 

disproved it. This might be due to the limitation of the pixel-based approach method applied in the 

study. The overall result showed the distribution of each vegetation type experienced significant 

change during our study periods. Marsh Grass is the dominant vegetation type in our study area 

and the Delta Phragmites proved to be the most fragmented. Our results showed an increase in 
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landscape diversity and evenness of our study area until November 2021 before the hurricane 

event. In general, the overall landscape is still fragmented with a little variation that might cause 

by seasonal change or hazardous events.  

Finally, this research applied drone monitoring for hurricane damage and wetland 

vulnerability and recovery analysis. The expansion of dead vegetation due to the hurricane damage 

was observed, and the massive death of vegetation coverage since then indicate that hurricane 

event has a non-negligible impact on small-scale ecosystems. This research also observed that the 

following recovery process was led by the expansion of Delta Phragmites at first then Marsh Grass 

took the major role. 
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Chapter 7. Discussion and Conclusions 

The overall objectives of this research include assessing the Roseau cane dieback condition 

in lower MRD and analyzing the spatial and species variations based on moderate resolution 

Landsat imagery; conducting mid-scale Roseau cane habitat mapping based on high-resolution 

and multispectral satellite imagery of WV; developing an approach for flexible and reliable 

multitemporal Roseau cane habitat monitoring based on drone technologies. In addition, this 

research also discussed whether texture could improve Roseau cane habitat classification accuracy 

under different scale level.  

From the large-scale perspective of the lower MRD, the spatial and temporal changes of 

the vegetation coverage and land boundary vegetation in the past 20 years were revealed by 

combining the multi-temporal Landsat series remote sensing images and NAIP aerial photos. The 

dieback area has been detected through NDVI change of vegetation and analysis with the 

distribution of Roseau cane in the region. Combining these two analyses, this research can separate 

Roseau cane distribution and compare its dieback with the overall wetland dieback with mixed 

vegetation.  

From the mid-scale perspective of the Main pass and South pass of MRD, the spatial and 

temporal distributions of wetland vegetation species, especially the two variants of Roseau cane, 

were accurately extracted using the SVM classification method based on Worldview images. The 

result was also used to cross-validate Landsat-derived Roseau cane distribution and further discuss 

the difference between Delta Phragmites with European Phragmites in the dieback area. 

From the selected small-scale local ecosystem landscape of MRD, the spatial and temporal 

variation characteristics and expansion patterns of wetland vegetation communities were extracted 
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through multi-temporal drone surveys and analyzed based on landscape indices. In addition, the 

impacts of the hurricane and the recovery process were discussed.  

7.1 Summary of the Results and Conclusions 

From the large-scale analysis, a more accurate adjusted threshold was applied for 

vegetation/water boundary extraction. Twenty years of vegetation/land change maps for the MRD 

from 2001-2021 were generated, as well as the distribution map of Roseau Cane in selected years. 

Thus, a strong increasing trend of vegetation expansion was found in the MRD during the growing 

season, which may be a result of growing sediment stabilization from the Mississippi river. The 

dieback area detected through NDVI difference accounted for approximately 51 km2 of wetlands 

in the MRD from 2010 to 2019, representing 11% of the overall wetland vegetation coverage in 

the area. When combining dieback distribution with the classified Roseau cane distribution, this 

research found that nearly 65% of the overall dieback was from Roseau cane. This percentage was 

much higher than its proportion of the overall vegetation, which indicated that the Roseau cane 

suffered more damage than other vegetation species in lower MRD.  

From the mid-scale analysis, several classification methods were compared, and found that 

SVM had the highest accuracy. After generating the classification result, Delta Phragmites can 

successfully be distinguished from European Phragmites in the study area. This study found Delta 

Phragmites occupied about 80% of the overall vegetation cover in the study area in contrast with 

only 2.7% of the European Phragmites in the vegetation area. The results also shared around 79% 

of agreement with the Landsat-derived classification result, validating the effectiveness of the 

large-scale Reseau cane extraction result. In addition, the results indicate no significant differences 

between European Phragmites and Delta Phragmites in the detected areas where dieback occurred 
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between 2019 and 2021 since their dieback percentages were proportional to their coverage 

percentage. 

From the small-scale analysis, this research also compared several classification methods 

and had a similar result that SVM produced the highest accuracy. This research has successfully 

used field survey points combined with drone sampling methods to classify the study area. This 

study found marsh grass type to be the dominant vegetation type and Delta Phragmites proved to 

be the most fragmented vegetation type in the study area in the centimeter-level drone mapping. 

In general, the overall landscape remained fragmented with little variation that could be caused by 

seasonal changes or hazardous events.  

The texture of images is an import characteristic in remote sensing. This study conducted 

experiment of impact of adding texture images in different scale level. The result showed adding 

texture images helped improving the overall classification accuracy in large scale remote sensing 

images such as Landsat. For mid-scale high-resolution images such as WV-2 and small-scale 

drones images, due to highly fragmented appearance of certain wetland vegetations under these 

scale level, adding texture images have no significant improvement of the overall accuracy. 

7.2 Limitation and Future Work 

Although this paper combines multi-source remote sensing data and a supervised 

classification method to extract Roseau cane habitats and analyze wetland landscape features and 

patterns with application of landscape ecology theory, some work needs further investigation due 

to the limitation of time and platform. 

(1) This research mainly analyzes spectral features, using a pixel-based classification 

method without considering the object-oriented method. The produced salt and pepper 

noise in the study area suggests that current pixel-based classification methods cannot 
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fully take advantage of texture information. Whether the object-oriented method can 

further improve the classification accuracy needs to be further investigated. 

(2) When analyzing the landscape characteristics of wetland vegetation, this study selects 

some landscape indices for analysis, but due to the limitation of data availability, only 

4 periods of change of landscape patterns are analyzed. Further long-term research is 

needed for the landscape patterns of the seasonal change on small-scale ecosystems and 

the driven factor behind it. 

(3) The research on the relationship between dieback with water level and salinity is not 

sufficient. In future work, the spatial distribution pattern of vegetation in lower MRD 

wetlands under water-salinity gradient change might be quantitatively analyzed by 

combining the wetland vegetation biomass survey data and water depth and salinity 

data. 
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