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ABSTRACT 

 Coastal marshes are important nursery habitats for many commercially important 

invertebrate species, yet these marshes are being lost worldwide at an unprecedented rate 

due to subsidence, erosion, climate change, and human activity. As marsh is lost, it 

creates the opportunity for submerged aquatic vegetation (SAV) colonization and 

establishment in newly created open water areas. Blue crabs, Callinectes sapidus, use 

both marsh edge and SAV habitat during the juvenile stages and support one of the 

largest fisheries in the Gulf of Mexico, worth over $70 million in 2015. This thesis 

studied the linkages between habitat type, SAV cover, benthic prey availability, and blue 

crab abundance and mortality due to predation. In different habitat types and across a 

gradient of marsh fragmentation, crab pots and throw traps were used to conduct monthly 

crab abundance surveys and benthic cores sampled benthic invertebrate communities. 

This study found that blue crab abundances, benthic invertebrate biomass, and benthic 

invertebrate community composition were insensitive to marsh fragmentation but did 

vary significantly with habitat type. These results have implications for future blue crab 

populations in coastal Louisiana where if marsh loss occurs as projected, poor 

recruitment by juvenile blue crabs into the adult population due to less available nursery 

habitat and food availability may lead to time-lagged decreases in the commercial blue 

crab fishery, unless SAV colonizes areas of high marsh fragmentation to serve as an 

alternative nursery habitat for juvenile blue crabs.  
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CHAPTER I - INTRODUCTION 

Habitat fragmentation and subsequent habitat loss occur both naturally and 

anthropogenically and are of great concern in areas where the fragmenting habitat cannot 

be restored. Habitat fragmentation breaks an intact habitat into patches interspersed with 

a new habitat type (Ewers and Didham 2006). The concern over habitat fragmentation 

centers around consequent losses in habitat connectivity and interior area and how 

decreases in these factors can affect species dependent on them. Often, a habitat edge will 

act as a barrier to emigration, disrupting habitat connectivity that can ultimately result in 

decreased species richness for habitat specialists (Ries and Debinski 2001; Brückmann et 

al. 2010). Some species can be endemic to a habitat type and require relatively large 

home ranges wherein food, shelter, and mating opportunities can be found. Examples 

include the Northern spotted owl and Belding’s Savannah sparrow, where these species’ 

populations and genetic variability can and do suffer with habitat fragmentation and net 

habitat loss (Lamberson et al. 1992; Powell 2006). Sometimes these edges can be 

successfully crossed if the distance between patches is small enough or there is a 

structure in place to rectify loss of connectivity (Glista et al. 2009). 

In some cases, fragmentation is not necessarily a detriment to all local organisms. 

Some species thrive in edge habitat, which increases in the initial stages of habitat 

fragmentation. Fonderflick et al. (2013) found that birds classified as habitat generalists, 

in that they use both open and forested habitat, were more abundant near forest edges 

than in the forest interior. Menke et al. (2012) also found higher species richness and 

frugivore abundance at forest-farmland edges than in forest interior, where habitat 

generalists were more abundant than habitat specialists at edge habitat. In fact, plant-
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frugivore networks were more robust and more connected at forest-farmland edge than in 

forest interior (Menke et al. 2012). These positive edge effects can be explained by 

resource distribution, where edge habitat can support greater abundances than interior 

habitat because some resource, like food, is more abundant near the edge habitat 

(Macreadie et al. 2010; Fonderflick et al. 2013). Other studies posit that habitat 

fragmentation independent of habitat loss could actually prevent invasive species 

establishment (Alofs and Fowler 2010; Brown et al. 2012; Rahel 2013).  

One particular habitat that is experiencing substantial fragmentation in many areas 

is coastal salt marsh. A total of 15,845 km2 of coastal marsh was lost over the course of 

14 years in 14 river deltas worldwide (Coleman et al. 2008). Satellite imagery analysis 

found that from 1998 to 2004 approximately 181.3 km2 (17,900 ha) of saltwater wetlands 

were lost in the Gulf of Mexico (Stedman and Dahl 2008). The rate of decrease 

accelerated in the Gulf between 2004 and 2009, with an average annual loss of 55.8 km2 

(5,520 ha) leading to an estimated 384.5 km2  (38,000 ha) lost over five years (Dahl 

2011; Dahl and Stedman 2013). Salt marshes serve as important nursery areas for many 

fish and invertebrate species, including those that support commercial and recreational 

fisheries (Thomas and Zimmerman 1990; Minello and Rozas 2002; Lipcius et al. 2005; 

Strange et al. 2008). Fragmentation of these habitats is thus concerning not only in the 

context of biodiversity and species abundances, but also for the economic livelihood of 

coastal communities. While some species do occupy the salt marsh interior, many of 

these commercially and recreationally harvested species occupy the marsh edge habitat 

(Thomas and Zimmerman 1990; Rozas et al. 2012). Responses to fragmentation are thus 

likely to be complex, depending on the stage of progression and the species in question. 
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This thesis focuses on the responses of blue crab (Callinectes sapidus Rathbun) 

populations to fragmentation of their salt marsh habitat. Blue crabs support valuable 

commercial fisheries throughout their range, worth up to $216 million (NMFS 2017). 

Juvenile blue crabs settle into estuarine vegetated nursery habitats during the megalopae 

stage and remain in these structured habitats where prey availability is high and predation 

pressure is low (Heck and Thoman 1984; Orth and van Montfrans 1987; Minello et al. 

2003; van Montfrans et al. 2003).  Marsh fragmentation could impact crab populations 

directly, through effects on recruitment, growth, or mortality, or indirectly through 

impacts on prey availability. Understanding how blue crab populations will respond as 

marsh landscapes fragment will inform future management plans for this commercially 

important species. 

Each chapter of this thesis is written in the form of an independent manuscript. As 

a result, some introductory material is repeated in multiple chapters. Chapter topics are as 

follows: 

Chapter II. Linkages between marsh fragmentation, SAV cover, and blue crab 

abundance and mortality due to predation. 

Chapter III. Assessment of benthic invertebrate communities in a fragmenting 

marsh landscape.  
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CHAPTER II – LINKAGES BETWEEN MARSH FRAGMENTATION, SAV COVER, 

AND BLUE CRAB ABUNDANCE AND MORTALITY DUE TO PREDATION 

Introduction 

Habitat fragmentation occurs in landscapes worldwide and is often blamed for 

decreases of biodiversity, although that is perhaps an incorrect conclusion as positive 

biodiversity responses to habitat fragmentation, independent of habitat loss, have been 

found (Fahrig 2003). The process of fragmentation occurs both naturally and 

anthropogenically and can eventually lead to habitat loss. Some species that utilize a 

habitat are documented to react negatively to habitat fragmentation and subsequent 

habitat loss (Lamberson et al. 1992; Powell 2006) while other species exhibit increased 

abundances near habitat edges provided by increased habitat complexity (Menke et al. 

2012; Fonderflick et al. 2013). 

One type of habitat experiencing extensive fragmentation and loss are coastal 

wetlands. Coleman et al. (2008) examined aerial photographs of 14 river deltas 

worldwide and found that 15,845 km2 of coastal wetland was lost over 14 years due to 

conversion into agricultural or industrial land and open water expansion. More than 

300,000 km2 are predicted to also be lost over the next 20 years (Coleman et al. 2008). 

Images of the Mississippi River delta reveal that coastal wetlands were lost at an average 

rate of 30 km2 per year from 1985 to 1997 (Coleman et al. 2008). Further satellite 

imagery analysis found that from 1998 to 2004 approximately 44,800 acres (17,900 ha) 

of saltwater wetlands were lost in the Gulf of Mexico (Stedman and Dahl 2008). This 

decrease continued in the Gulf between 2004 and 2009 with an average annual average of 

13,800 acres (5,520 ha) saltwater wetlands lost leading to an estimated 95,000 acres 
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(38,000 ha) lost over five years (Dahl 2011; Dahl and Stedman 2013). This loss is caused 

by a high subsidence rate, exacerbated by sea level rise and anthropogenic landscape 

changes such as canal dredging and land use conversion (Coleman et al. 2008; Stedman 

and Dahl 2008; Dahl 2011; Dahl and Stedman 2013). Saltwater intrusion also has an 

effect on loss, as increasing salinities will change soil chemistry, vegetation communities, 

and sediment accretion rates (Day et al. 2000; Strange et al. 2008; Day et al. 2011). 

Decreasing marsh elevation due to subsidence leads to longer tidal inundation periods, 

which lower sediment retention rates so that the marsh vegetation cannot uptake required 

minerals (Day et al. 2000; Day et al. 2011). Vegetation stress levels then increase to the 

point where marsh vegetation will die and further intensify elevation loss through loss of 

root turgor, oxidation of soil organic matter, and elevation collapse (Day et al. 2000; Day 

et al. 2011).  

As these coastal wetlands sink and disappear they often fragment by breaking into 

smaller patches surrounded by open water. Marsh fragmentation reduces marsh interior 

area and increases edge habitat. Edge is beneficial for some species including many fish 

and macroinvertebrates because individuals can utilize the marsh platform as a nursery 

habitat during tidal inundation periods and still rely on open water habitat for survival 

when the marsh is not inundated (Thomas and Zimmerman 1990; Minello and Rozas 

2002; Lipcius et al. 2005; Strange et al. 2008).  

There is also the potential for submerged aquatic vegetation (SAV) to colonize the 

newly bare substrate between marsh patches potentially providing an alternate habitat for 

species dependent on marsh edge (Strange et al. 2008; Saunders et al. 2013). SAV have 

high light requirements and are therefore limited to shallow water habitats with low 
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turbidity (Strange et al. 2008). Rising sea levels may promote landward migration of 

SAV as coastal marshes subside and SAV colonizes areas that were formerly marsh 

(Strange et al. 2008). Juvenile crustacean and fish densities are higher and predation rates 

lower in SAV relative to bare sediment (Heck and Thoman 1981; Wolcott and Hines 

1990; Lipcius et al. 2005; Canion and Heck 2009). Yet SAV species generally prefer low 

nutrient sandy substrates over substrates with high organic content, such as a newly 

submerged marsh (Strange et al. 2008; see citations within). Therefore, the extent to 

which SAV will colonize the newly bare substrate created by fragmenting marsh is 

unknown (Strange et al. 2008).  

One species of nekton that may benefit from marsh fragmentation is the blue crab, 

Callinectes sapidus Rathbun. This euryhaline crab is common along the Atlantic and 

Gulf Coasts of the United States and supports a large commercial fishery (NMFS 2016). 

Blue crabs first enter estuaries as megalopae and generally settle into vegetated nursery 

habitats before metamorphosing into the first juvenile stage (Orth and van Montfrans 

1987; Boylan and Wenner 1993; van Montfrans et al. 2003), although they have also 

been found to settle initially onto bare sediment prior to dispersal to vegetated habitats 

(Rakocinski and McCall 2005). These early juvenile blue crabs remain in structured 

habitats, where predation pressure is lower and prey availability is presumably higher, 

until they reach a size that offers a refuge from predation (Heck and Thoman 1984; 

Minello et al. 2003). Because juvenile blue crabs rely on marsh edge and SAV as nursery 

habitat, it is important to understand how these habitats interact reciprocally in terms of 

their use by crabs and how different stages of habitat fragmentation can affect blue crabs. 

Identifying the complex relationships between juvenile blue crab populations, marsh 
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fragmentation, and SAV cover is vital to understanding how blue crab populations will 

respond to future scenarios. 

This study investigated the impacts of marsh fragmentation and submerged 

aquatic vegetation (SAV) cover on blue crab abundance and mortality due to predation in 

Terrebonne Basin, Louisiana. The Terrebonne Basin supports a large blue crab fishery, 

with annual landings averaging 12.2 million pounds between 2000 and 2013 (Bourgeois 

et al. 2014), and is currently facing substantial land loss at a rate of 11.9 km2 yr-1 (Barras 

et al. 2003). Specific objectives of this study were (1) to quantify juvenile and adult blue 

crab abundances in different habitats (marsh edge, SAV, bare substrate open water) along 

a marsh fragmentation gradient, and (2) to determine if there are differences in predation 

rates on juvenile blue crabs in different habitats.  

Methods 

Study design 

This research was conducted at three study sites in Terrebonne Basin, Louisiana. 

Each site (2 × 2 km) was centered on a Coastwide Reference Monitoring System station 

(CRMS 0369, 0345, and 0311, Figure 1) and contained three 500 × 500 m subsites 

selected to cover a range of marsh fragmentation. Site selection was based on local 

occurrence of a range in the degree of marsh fragmentation, accessibility, and land-owner 

permission. Collaborators at The Water Institute of the Gulf quantified the distribution of 

habitats at each subsite using satellite imagery, by delineating marsh and water 

boundaries on a 1-m scale (Figure 2).  
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Figure 1 Locations of study sites in Terrebonne Basin, Louisiana, USA. 

The yellow dots represent the locations of the three sites centered around CRMS 0369, 0311, and 0345. 
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Figure 2 Subsite land-water delineations.  

Delineations are at the 1-m scale for a) CRMS 0369, b) CRMS 0311, and c) CRMS 0345 in Terrebonne Basin, Louisiana. The bring 

green color indicated land and the other colors indicate water. Super-imposed are the unified, continuous fragmentation values of the 

individual subsite, where higher values represent areas of low marsh fragmentation and lower values represent areas of high marsh 

fragmentation.  

 

These delineations were used to calculate a unified, continuous fragmentation 

metric that included normalized measures of marsh perimeter, marsh area, and marsh 

patch number, following Bogaert et al. (2000). Each component is normalized relative to 

the maximum and minimum value possible for the geographic space analyzed and are 

independent of the used units of measurement (Bogaert et al. 2000). Although Bogaert et 

al. (2000) also included patch isolation in their fragmentation metric, we did not include 

patch isolation due to computational difficulties driven by the large number of marsh 
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patches in some areas (up to 680 patches in a single 500 × 500 m subsite). This 

fragmentation metric was calculated at spatial scales relevant to the life history stage 

being examined due to differences between mobility: at the 500 m × 500 m subsite level 

for adult blue crabs (≥ 40 mm carapace width, collected using crab pots), and at the 50 m 

× 50 m level for juvenile blue crabs (< 40 mm carapace width, collected using a throw 

trap). The resulting fragmentation metric is a continuous variable with higher values 

representative of lower marsh fragmentation and lower values representative of higher 

marsh fragmentation (Figure 2).  

Adult and juvenile blue crab abundance 

Adult and sub-adult blue crab abundances were assessed monthly from April–

September 2016 using modified commercial crab pots (24” × 24” × 13.5” high, 1.5” 

mesh, 3 entry funnels, no escape rings) with terrapin-excluding devices installed in the 

entry funnels. Nine pots were deployed throughout each subsite each month for a total of 

27 pots per study site. Pot deployment locations were randomly selected from a set of 

locations that had previously been surveyed for depth and SAV presence by Water 

Institute personnel. Pots were baited with three previously-frozen menhaden (3 menhaden 

per pot) and collected 24 ± 2 hours after deployment. All caught crabs were sexed, 

measured for carapace width (CW), and weighed to determine total crab biomass per pot. 

Missing limbs were noted. Date and time of deployment and collection, site, 

fragmentation level, water depth, and presence of SAV were also recorded. 

Juvenile crab abundances were surveyed monthly by throw trapping (Rozas and 

Minello 1997; Hitch et al. 2011; La Peyre and Gordon 2012) from May through 

September 2016 at two randomly selected stations within each subsite in each habitat 
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(marsh edge, bare sediment, and SAV [if present]). SAV was only present at the 

northernmost site (CRMS 0369). Throw sampling in the marsh habitat occurred at the 

marsh edge, as juvenile blue crab density is greatest within 1 m from the marsh edge 

(Minello and Rozas 2002). The throw trap is a 1-m × 1-m aluminum frame with 1.6-mm 

nylon mesh covered sides. The trap was tossed from a boat into the sampling habitat to 

land squarely and the sides checked to ensure there were no gaps between the trap bottom 

and the substrate. Date, time, site, habitat, water depth, and salinity were recorded. For 

marsh and SAV habitat throw traps, percent cover by plant species was estimated visually 

and recorded. Height of four plants of the dominant species were also measured and 

recorded. Above-water vegetation was cut and discarded outside the throw trap. Below-

water vegetation was removed and bagged. A 1-m bar seine, constructed of 1” PVC and 

1.6-mm nylon mesh fabric, was swept through the trap 3 times from each side, for a 

minimum of 12 total sweeps. During sweeps, the net disturbed the sediment to capture 

any buried crabs. After each sweep net contents were examined, and any observed blue 

crabs were separated and bagged. Remaining detritus was bagged after each sweep. 

Sweeping continued until 5 consecutive sweeps yielded no blue crabs. Bagged crabs, 

detritus, and vegetation were frozen upon return from the field. In the lab, blue crabs 

were sorted from thawed samples and measured for carapace width (CW). 

Data were analyzed using linear mixed-effects models or generalized linear 

mixed-effects models, depending on the response variable in question (Table 1). 

Analyses were broken down to address specific questions. Adult blue crab catch-per-unit-

effort (CPUE) and biomass were first analyzed for all samples where SAV was absent, 

testing for effects of subsite-level fragmentation and month. Adult CPUE and biomass 
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were then analyzed for the only site where SAV was present (North site, CRMS 0369), 

testing for effects of SAV presence/absence and month. Juvenile density and individual 

CW were first analyzed for all samples where SAV was absent, testing for effects of 

habitat type (marsh edge vs. bare sediment), fragmentation (calculated as described above 

in a 50 m × 50 m area surrounding the throw trap), and month. To examine differences in 

marsh vs. SAV usage by juvenile blue crabs, juvenile density and individual CW were 

then analyzed for SAV and marsh samples at the northernmost site only (CRMS 0369, 

the only site where SAV was present), testing for effects of habitat type (marsh edge vs. 

SAV), percent cover of vegetation within the throw trap, and month. Marsh 

fragmentation and percent cover of vegetation values were scaled prior to analyses, 

which standardized the values to a mean of 0 and standard deviation of 1 for ease of 

analysis and interpretation. For full model details, see Table 1.  
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Details of models used in adult and juvenile blue crab data analyses 

Life history 

stage 
Response variable 

Subset of data 

used 
Model type Family (link) Fixed factors  

Random 

factors 

Adult CPUE (crabs pot-1) 
Samples with SAV 

absent 
GLMM 

Neg. binomial 

(log) 

Fragmentationa, Month, 

Fragmentationa × Month 
Site 

Adult CPUE (crabs pot-1) 
Samples from 

CRMS 0369 
GLMM 

Neg. binomial 

(log) 

SAV presence, Month, SAV 

presence × Month 
Subsite 

Adult Biomass + 0.0001 
Samples with SAV 

absent 
GLMM Gamma (log) Fragmentationa, Month Site 

Adult Biomass + 0.0001 
Samples from the 

CRMS 0369 
GLMM Gamma (log) SAV presence, Month Subsite  

Juvenile Density (crabs m-2) 

Marsh edge and 

bare samples from 

all sites 

GLMM 
Neg. binomial 

(log) 

Fragmentationb, Habitat, Month, 

Fragmentationb × Month 

Site, Subsite 

(nested 

within site) 

Juvenile Density (crabs m-2) 

Marsh and SAV 

samples from 

CRMS 0369 

GLMM 
Neg. binomial 

(log) 
Habitat, Percent plant cover, Month Subsite 

Juvenile Log10(CW) 

Marsh edge and 

bare samples from 

all sites 

LMM N/A 

Fragmentationb, Habitat, Month, 

Fragmentationb × Month, Habitat × 

Month 

Site, Subsite 

(nested 

within site) 

Juvenile Log10(CW) 

Marsh and SAV 

samples from 

CRMS 0369 

LMM N/A 

Habitat, Percent plant cover, Month, 

Habitat × Month, Percent plant cover 

× Month, Habitat × Percent plant 

cover × Month 

Subsite 

Note: Details are after model selection using AIC scores. GLMM indicates generalized linear mixed-effects models, while LMM indicates linear mixed-effects models. 

 aFor analyses of adult CPUE and biomass, fragmentation was calculated at the 500 m × 500 m subsite-scale.  

bFor analyses of juvenile density and CW, fragmentation was calculated at the 50 m × 50 m scale, centered on the throw trap. 
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For all adult and juvenile analyses, AIC-based model selection was used to 

determine the most parsimonious model. Certain interactions involving predictor 

variables of great interest (i.e., the interactions between fragmentation and habitat type) 

were always retained in the final models, but other interactions were dropped if they were 

not included in the most parsimonious model as determined by comparing AIC scores. 

Thus, higher-order interaction terms are included in some models but not others. P-values 

for fixed effects were obtained using Type III Likelihood Ratio tests. Insignificant 

interactions with continuous variables (i.e., fragmentation and percent plant cover) were 

removed and the analysis re-run to obtain p-values for fixed effects. All analyses were 

conducted in R, v. 3.4.3, using the lme4, afex, multcomp, and AICcmodavg packages. 

Juvenile blue crab mortality due to predation 

Mortality risk of juvenile blue crabs was assessed using tethering experiments 

(Heck and Wilson 1987; Aronson et al. 2001; Hovel and Lipcius 2002) conducted during 

the summers (June and July) of 2016 and 2017. Three to four crabs were tethered 

simultaneously in each habitat (marsh edge, bare sediment, and SAV) in each subsite at 

the North site. Each simultaneous round of tethering was considered a block for statistical 

analyses, and a total of 8 blocks were conducted. Juvenile blue crabs ranging from 10–30 

mm carapace width (CW) were collected with a throw trap and bar seine the mornings of 

the experiments. Tethers (100–110 cm long), constructed of 10 and 20 lb.-test 

monofilament fishing line, were attached to the carapaces of the crabs using 

cyanoacrylate glue. The other end of the tethers was tied through holes drilled near the 

top of 2-foot-long 0.5” PVC tethering poles, with one tether/crab attached to each pole. 

Deployed tethering poles were pushed their entire length into the bottom substrate 
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leaving the tethered crabs on the substrate surface. Crabs were left for 24 ± 2 hours 

before collection. The absence of a crab after 24 hours was assumed to be mortality due 

to predation, based on tethering trials conducted in the lab and the field prior to the 

experiments that indicated minimal tether failure. Date, time, marsh fragmentation level, 

habitat, vegetation data, individual crab CW, and crab presence/absence after deployment 

were measured as necessary and recorded. 

Mortality rates were analyzed using a generalized linear mixed-effects model with 

a binomial distribution and a logit link function. Habitat type was a fixed factor and block 

was a random factor. Model selection occurred to determine the best way to include 

individual crab CW: as a fixed effect with interactions or as a fixed effect without 

interactions. Models were compared by AIC score, and the most parsimonious model was 

determined to include the fixed effects of habitat and CW and the random effects of block 

and subsite. Fixed effect P-values were obtained with Type III Likelihood Ratio tests. 

Analyses were conducted in R, v. 3.4.3, using the lme4, afex, and multcomp packages. 

Results 

Effects of marsh fragmentation on adult blue crab CPUE and biomass 

Adult blue crab CPUE varied significantly across the months of this study (Figure 

2) but was not related to subsite-level fragmentation (Table 2). There was a significant 

month × fragmentation interaction, which was investigated by fitting separate GLMMs 

for each month, with all other model specifications identical to those described in Table 

1. Adult blue crab CPUE increased with increasing marsh fragmentation in July but was 

unrelated to marsh fragmentation during the other months of the study (Figure 3). Adult 

biomass showed similar temporal patterns as with adult CPUE, varying significantly 
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across the months of the study with the lowest biomass in April and the highest biomass 

in June, and was not related to subsite-level fragmentation (Table 2).  

 

 

Figure 3 Median adult blue crab CPUE over the months of this study.  

The lower bound of the box signify the first quartile of CPUE, the dark bar within the box marks the media CPUE, and the upper 

bound of the box is the third quartile. Whiskers indicate 95% confidence intervals, while open circles represent CPUE outliers for that 

month.  

 

Table 1  

Results of marsh fragmentation analyses on adult blue crab CPUE and biomass 

 Effect DF χ2 P 

CPUE    

 Fragmentation 1 2.99 0.08 

 Month 5 148.42 < 0.0001 

 Fragmentation × Month 5 13.21 0.02 

Biomass    

 Fragmentation 1 0.67 0.41 

 Month 5 23.67 0.0003 
Note: P-values are from Type III Likelihood Ratio tests.  
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Figure 4 Adult blue crab CPUE across marsh fragmentation.  

Adult blue crab CPUE across marsh fragmentation during the months of the study across all three sites (a) and during the month of 

July (b). Marsh fragmentation, on the x-axis, increases from left to right. Points in panel A have been jittered slightly to reduce overlap 

and aid visualization.  
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Effects of SAV presence on adult blue crab CPUE and biomass 

Both adult crab CPUE and biomass were significantly influenced by the presence 

of SAV, with greater abundance and biomass when SAV was present (Table 3). On 

average, 4.22 ± 2.25 (mean ± SE) blue crabs were caught per pot with a biomass of 476.1 

± 39.62 g when SAV was present, compared to 2.95 ± 2.46 crabs with a biomass of 302.3 

± 33.62 g when SAV was absent. Month again had a significant effect on abundance but 

did not have a significant effect on biomass (Table 3). There was a significant effect of 

the interaction between SAV presence and month, where in the months of June, August, 

and September adult CPUE was significantly higher in areas with SAV present. The 

months of April, May, and July saw no significant trend in CPUE and SAV presence.  

 

Table 2  

Results of SAV presence analyses on adult blue crab CPUE and biomass  

 Effect DF χ2 P 

CPUE    

 SAV presence 1 21.89 < 0.0001 

 Month 5 50.04 < 0.0001 

 SAV presence × Month 5 18.68 0.002 

Biomass    

 SAV presence 1 6.57 0.01 

 Month 5 5.19 0.39 
Note: P-values are from Type III Likelihood Ratio tests. 

 

Effects of marsh fragmentation on juvenile blue crab density 

Juvenile density was significantly greater in marsh edge habitat (9.17 ± 1.75 crabs 

m2) than in bare, unvegetated sediment (1.42 ± 0.37 crabs m2), and varied across the 

months of the study. While there was no significant main effect of marsh fragmentation 
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on juvenile blue crab density there was a significant marsh fragmentation × habitat 

interaction, where density increased in bare sediment habitat as marsh fragmentation 

increased but was unrelated to marsh fragmentation in marsh edge habitat (Table 4, 

Figure 4).  

 

Table 3  

Results of marsh fragmentation analysis on juvenile blue crab density 

Effect DF χ2 P 

Fragmentation 1 1.77 0.18 

Habitat 1 50.66 < 0.0001 

Month 4 69.21 < 0.0001 

Fragmentation × Habitat 1 4.32 0.04 
Note: P-values are from Type III Likelihood Ratio tests.  

 

 

Figure 5 Juvenile blue crab density across marsh fragmentation.  

Closed circles indicate densities from bare sediment and open circles indicate densities in marsh edge habitats. The dashed line 

indicates the trend in marsh edge and the solid line indicates the trend in bare sediment. Marsh fragmentation, on the x-axis, increases 

from left to right.  
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Effects of marsh fragmentation on juvenile blue crab carapace width 

Individual juvenile blue crab CW was significantly affected by habitat, month, the 

fragmentation × month interaction, and the habitat × month interaction (Table 5). 

Although raw mean and SE individual juvenile CW in marsh edge habitats was higher 

(8.87 ± 0.20 mm) than in bare sediment (9.01 ± 0.28 mm), LMM analysis indicated the 

opposite pattern, with greater CW in marsh edge than bare (P = 0.001). This is likely due 

to the significant habitat × month interaction (see below), and to the unbalanced nature of 

the CW analysis. Juvenile CW varied significantly with marsh fragmentation in the 

month of September, but not during the other months. In the months of June and July 

juvenile CW was higher in marsh edge habitat than bare sediment (n = 110 and 88, 

respectively), while in the month of September CW was higher in bare sediment than 

marsh edge (n = 605). May and August did not have significant differences in juvenile 

CW between habitat type (n = 42 and 88, respectively). In marsh habitat, month had a 

significant effect on juvenile CW where juvenile CW was lower in September than all 

other months. Neither month nor fragmentation exhibited significant effects on juvenile 

CW in bare sediment habitats.  

 

Table 4  

Results of marsh fragmentation analysis on juvenile blue crab CW (mm) 

Effect DF χ2 P 

Fragmentation 1 0.51 0.48 

Habitat 1 10.48 0.001 

Month 4 35.58 < 0.0001 

Fragmentation × Month 4 36.78 < 0.0001 

Habitat × Month 4 27.97 < 0.0001 
Note: P-values are from Type III Likelihood Ratio tests. 
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Effects of habitat and percent plant cover on juvenile blue crab density and CW 

Juvenile density and CW both varied significantly with habitat type and month 

(Table 6). On average, marsh edge habitat had 8.80 ± 2.70 (mean ± SE) juvenile crabs m-

2 measuring 9.76 ± 0.36 mm CW, while SAV habitat had 19.14 ± 4.99 juvenile m-2 

measuring 8.18 ± 0.18 mm CW. Percent plant cover had a significant effect on individual 

juvenile crab CW, where CW increased as percent cover increased. Juvenile crab CW 

also varied with the percent plant cover × month and habitat × percent plant cover × 

month interactions (Table 6). In marsh edge habitat, juvenile CW did not vary with 

percent plant cover but did across months, where CW in the month of September was 

lower than in the other months of the study. In SAV juvenile CW was not significantly 

influenced by percent plant cover but did vary significantly across month, where CW was 

higher in August than the other months. There was a significant habitat × percent plant 

cover interaction influencing juvenile CW where during the months of May, July, and 

September juvenile CW decreased in SAV as percent plant cover increased, but in 

August juvenile CW increased in SAV as percent plant cover increased. Juvenile CW in 

June was not influenced by the habitat × interaction.  
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Table 5  

Results of habitat and percent plant cover analyses on juvenile blue crab density and CW 

 Effect DF χ2 P 

Density    

 Habitat 1 12.66 0.0004 

 Percent plant cover 1 0.03 0.87 

 Month 4 25.20 < 0.0001 

CW    

 Habitat 1 28.88 < 0.0001 

 Percent plant cover 1 9.05 0.003 

 Month 4 121.36 < 0.0001 

 Habitat × Month 4 8.36 0.08 

 Percent plant cover × Month 4 19.16 0.0007 

 Habitat × Percent plant cover × Month 4 18.34 0.003 
Note: P-values are from Type III Likelihood Ratio tests. 

 

Effects of habitat type on juvenile blue crab mortality due to predation 

Juvenile mortality due to predation was reduced in SAV (31.3% of crabs consumed in 24 

h) compared to marsh edge (48.3% of crabs consumed) and bare habitat (46.7% of crabs 

consumed, Table 7), but this reduction in mortality was not statistically significant when 

considered in the context of an α-level of 0.05 (Table 8). Carapace width did not have an 

effect on mortality due to predation (Table 9).  

 

Table 6  

Summary of results from tethering experiments examining mortality due to predation 

Habitat type 
No. of crabs 

consumed 

No. of crabs 

unconsumed 

Proportion of 

crabs consumed 

SAV 26 57 0.313 

Marsh edge 43 46 0.483 

Bare sediment 42 48 0.467 
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Table 7  

Results of habitat type analyses on juvenile blue crab mortality due to predation 

Comparison z P 

Marsh edge vs. bare sediment 0.136 0.9898 

SAV vs. bare sediment -2.119 0.0858 

SAV vs. marsh edge -2.262 0.0611 
Note: Values are from Tukey contrasts/ multiple comparison of the mean.  

 

Table 8  

Results of habitat type and CW analysis on juvenile blue crab mortality due to predation 

Effect DF χ2 P 

Habitat 2 6.42 0.04 

CW 1 0.74 0.39 
Note: P-values are from Type III Likelihood Ratio tests. 

 

Discussion 

This study examined blue crab abundance, size, and distribution in a fragmenting 

salt marsh landscape, at both the juvenile and adult stages. Crab pots were used to sample 

adults, while a throw trap was used to sample juveniles. 

Adult blue crab abundance and biomass did not vary across levels of marsh 

fragmentation, at least across the range of fragmentation levels sampled in this study. 

Adult abundance and biomass did differ among the habitats examined, however, and 

were higher in areas with SAV present than in areas without SAV. SAV likely offers 

additional protection from predators due to the increased structure present in the SAV 

(Heck and Thoman 1981; Canion and Heck 2009). Alternatively, greater adult abundance 

and biomass in SAV relative to bare sediment could also be related to food availability, 

as densities of many organisms are higher in SAV than adjacent bare sediment (Harrod 
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1964; Thayer et al. 1975; Heck and Wetstone 1977). It should be noted that although 

CPUE was higher in SAV than bare sediment, the nature of the sampling method does 

lend some uncertainty to these conclusions. Crab pots are baited and attract crabs from 

variable distances depending on water flow, bait freshness, water temperature, and a 

number of other variables. Because SAV can be quite patchy, and although we sampled 

for SAV immediately adjacent to the pot, it is possible that crabs were attracted from 

outside the SAV. Given the water depth and bottom type, however, we feel that crab pots 

represented the most efficient and effective method for sampling adult blue crabs for this 

study. 

Relationships between juvenile blue crab density and marsh fragmentation were 

dependent on habitat type. Juvenile density increased in bare sediment habitat as marsh 

fragmentation increased but was unrelated to marsh fragmentation in marsh edge habitat. 

When considering the lack of an overall effect of marsh fragmentation, results are similar 

to previous studies. Hovel and Lipcius (2002) also did not see juvenile blue crab density 

change with fragmentation, nor did Hitch et al. (2011) find a significant effect of 

fragmentation within a marsh type on nekton densities. Higher juvenile blue crab density 

in bare sediment habitats at higher marsh fragmentation levels could be due to increased 

habitat complexity: at higher marsh fragmentation levels, there would be greater amounts 

of edge habitat in the vicinity, allowing the juveniles to venture into the unvegetated bare 

sediment. Alternatively, there could be increased densities in bare sediment at higher 

fragmentation levels due to a decrease in available marsh habitat with crabs avoiding 

conspecifics to avoid cannibalism or other density-dependent factors at higher densities 

within edge habitat (Perkins-Visser et al. 1996). 
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Juvenile crab density varied significantly across the three habitats assessed in this 

study. Although we were unable to compare densities across all three habitats due to 

computational difficulty, overall juvenile densities were greatest in SAV followed by 

marsh and lowest in bare, unvegetated habitat. Previous studies have reported increased 

growth and density in vegetated habitats compared to non-vegetated habitats (Heck and 

Thoman 1984; Thomas and Zimmerman 1990; Perkins-Visser et al. 1996; Lipcius et al. 

2005). These structured habitats provide greater food supply relative to bare sediment 

(Harrod 1964; Heck and Wetstone 1977, see Chapter III of this thesis) and may also 

provide protection from predation (Heck and Thoman 1981), although we found no 

significant differences in mortality rates in the tethering experiments conducted in this 

study. Interestingly, we did not observe a significant effect of percent plant cover on 

juvenile crab densities in vegetated habitats. This suggests that the presence of vegetation 

is more important than the amount of vegetation present. Even at low percent cover, 

marsh edge and SAV likely provide a greater food supply and greater protection than do 

bare sediment habitats (Heck and Thoman 1984; Heck and Wilson 1987; Canion and 

Heck 2009). 

Juvenile blue crab size did not vary across a range of marsh fragmentation but did 

vary between different habitats. Although model results contrasted with the patterns seen 

in the raw means (likely due to the significant habitat × month interaction and to the 

unbalanced nature of the CW analysis), model results show that juvenile blue crabs in 

marsh edge habitat were larger than those in bare sediment habitat. It is important to note 

that the difference in CW between the habitats is quite small, ≈ 0.14 mm, and thus may 

be only minimally relevant biologically. This study also found that juvenile crabs in 
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marsh edge were larger than juveniles in SAV. The difference between juvenile blue crab 

size in marsh edge and bare sediment can be the result of greater food availability in 

marsh edge habitats, compared to bare sediment, as higher animal abundances are 

associated with vegetated habitats (Heck and Wetstone 1977; R.J. Orth et al. 1984). The 

difference in juvenile blue crab size in marsh edge and SAV can be the result of active 

substrate selection by the juvenile crabs, where smaller crabs are selecting the SAV 

habitat, possibly for increased protection against predation (Heck and Thoman 1981; 

Heck and Coen 1995). On the other hand, the size differences this study found between 

marsh edge, bare sediment, and SAV can be the result of a habitat filter effect, where 

smaller crabs in bare sediment are better able to hide in a minimally structured habitat 

than larger juveniles, which could be more vulnerable to predation.  

Juvenile and adult blue crabs appear to respond similarly to a fragmenting marsh 

landscape. Neither adult nor juvenile crab abundances varied with marsh fragmentation, 

but both adult and juvenile crabs were in higher numbers in areas with SAV. The results 

from this study suggest that blue crab densities are not sensitive to landscape-level 

patterns of marsh fragmentation, but are instead sensitive to local-scale patterns of habitat 

availability, such as the presence of vegetation (Thomas and Zimmerman 1990; Lipcius 

et al. 2005). Essentially, if the preferred habitats are available, there will be crabs. It is, 

however, also possible that direct effects of marsh fragmentation will be seen at greater 

levels of marsh fragmentation than were assessed here. Perhaps levels of marsh 

fragmentation have not reached the threshold where extreme fragmentation leads to 

habitat loss as small patches of marsh disappear. 
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Although marsh fragmentation does not appear to directly affect blue crab 

abundance and density (at least at the levels of fragmentation assessed here), there is 

likely to be an indirect effect due to changes in the availability of the various habitats as 

marsh fragmentation (and marsh loss) progresses. As the marsh fragments, unless SAV is 

colonizing these newly bare habitats, there will likely be overall losses in populations 

because juvenile blue crabs might not have available nursery habitat. Megalopae will 

have farther to migrate to reach areas with suitable nursery habitat, or else density-

dependent effects, like cannibalism or reduced growth, will increase because so many 

individuals are restricted within limited nursery habitat until they grow to a size where 

they are less vulnerable to predation and have greater mobility to further disperse into 

areas with fewer crabs. Under this scenario, the blue crab fishery will respond after a 

time-lag as the remaining adult blue crabs are harvested and the juveniles do not recruit 

successfully due to limited nursery habitat. Without new habitat being created (either 

SAV colonization, or marsh growth), blue crab populations and the fishery may 

experience an eventual decrease in yield if the marshes of coastal Louisiana continue to 

fragment. 
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CHAPTER III – ASSESSMENT OF BENTHIC INVERTEBRATE COMMUNITIES IN A 

FRAGMENTING MARSH LANDSCAPE 

Introduction 

Habitat fragmentation, the breaking up of a continuous landscape, occurs 

naturally and anthropogenically. This process is usually associated with negative effects 

on biodiversity and ecological networks because fragmentation often occurs 

simultaneously with habitat loss, which is documented as having severe negative effects 

on biodiversity and ecosystem health (Fahrig 2003). However, there are positive effects 

that can arise from habitat fragmentation: increased ecological network strength (Menke 

et al. 2012), inhibited invasive species establishment (Alofs and Fowler 2010), and 

increased habitat complexity, which in turn can promote positive edge effects (Macreadie 

et al. 2010; Fonderflick et al. 2013). Coastal wetlands, such as tidal salt marshes, are 

vulnerable to habitat fragmentation due to sea level rise, subsidence, and lack of 

sedimentation and it is important to study the effects of marsh fragmentation on resident 

faunas. 

Habitat fragmentation can cause direct and indirect effects on species living in 

and near the habitat. A direct effect would be to cause a species’ abundance or density to 

decline because there is not enough intact habitat to support that population (Lamberson 

et al. 1992; Powell 2006). An indirect effect would be to strengthen the relationship 

within a food web network because increased edge habitat allows greater access to 

resources (Macreadie et al. 2010; Menke et al. 2012). There is also opportunity as one 

habitat fragments, and subsequently disappears, for another habitat that is more tolerant 

of the new conditions to expand its range and colonize the newly vacant area. In the case 



 

29 

of Mississippi River Delta coastal wetlands, land loss may be succeeded by expansion of 

submerged aquatic vegetation (SAV), where the SAV can colonize the newly bare 

substrate, as suggested by the results of past studies (Patriquin 1975; Orth and Moore 

1988; Cho and May 2006). 

These changes in plant regime may carry over to changes to the benthic 

invertebrate communities. Tidal marshes are very productive in terms of both primary 

and secondary production (Strange et al. 2008). Benthic invertebrates perform many 

important ecosystem functions including bioturbation of the sediment, sediment 

stabilization, substrate oxygenation, and secondary production (Algoni 1998). These 

organisms make up the diet for many animals, including the blue crab (Callinectes 

sapidus Rathbun), a species known to be voracious, opportunistic, generalist feeders. 

They are known to eat a wide range of prey organisms, including conspecifics (Millikin 

and Williams 1984, see citations within; Hines et al. 1990). In the face of increasing 

marsh fragmentation, the increased marsh edge created by initial low levels of 

fragmentation can be beneficial for habitat-generalist species, such as blue crabs, by 

providing them greater access to habitat that may serve as a refuge from predators and as 

a source of available prey. 

It is unknown how the benthic invertebrate community change across varying 

levels of marsh fragmentation in the northern Gulf of Mexico. This study aims to rectify 

this knowledge gap by investigating the effects of marsh fragmentation and habitat type 

on benthic invertebrate community composition and biomass.  
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Methods 

Study design 

This research was conducted at three study sites in Terrebonne Basin, Louisiana. 

Each site (2 × 2 km) was centered around a Coastwide Reference Monitoring System 

station (CRMS 0369, 0345, and 0311) and contained three 500 × 500 m subsites selected 

to cover a range of levels of marsh fragmentation. Site selection was based on local 

occurrence of a range of marsh fragmentation, accessibility, and land-owner permission. 

Collaborators at the Water Institute of the Gulf quantified fragmentation at each subsite 

using satellite imagery, by delineating marsh and water boundaries on a 1-m scale. These 

delineations were used to calculate a unified, continuous fragmentation metric that 

included normalized measures of marsh perimeter, marsh area, and marsh patch number, 

following Bogaert et al. (2000). Each component is normalized relative to the maximum 

and minimum value possible for the geographic space analyzed and are independent of 

the used units of measurement (Bogaert et al. 2000). Although Bogaert et al. (2000) also 

included patch isolation in their fragmentation metric, we did not include patch isolation 

due to computational difficulties driven by the large number of marsh patches in some 

areas (up to 680 patches in a single 500 × 500 m subsite). This fragmentation metric was 

calculated for a 50 m × 50 m area surrounding each sample. 

Benthic invertebrate survey 

To assess potential prey availability for juvenile blue crabs, benthic cores were 

collected in May, July, and September 2016. These cores were collected in conjunction 

with juvenile blue crab abundance surveys described in Chapter 2. Four cylindrical 

benthic cores, 7 cm in diameter ×10 cm deep, were taken from the area immediately 
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surrounding each throw trap, placed collectively into a labeled plastic bag and placed on 

ice. Upon return from the field, core samples were refrigerated. Within seven days of 

collection, cores were sieved with tap water over a 508-µm mesh sieve and subsequently 

preserved in 75% ethanol dyed with rose bengal (USGS 2010; USGS 2012). Core 

samples (i.e., the four combined cores) were sub-sampled via the fixed-fraction method. 

Each sample was drained of ethanol and spread evenly across a tray (22.9 × 33.0 cm) 

with a superimposed uniform grid (18 cells, each 5.72 × 6.99 cm). Any invertebrates 

visible to the naked eye at this time were removed from the sample, identified, counted, 

and preserved in plastic vials of 70% ethanol, and noted to have been sorted from 100% 

of the original sample (USGS 2010; USGS 2012). An online random number generator 

(www.random.org/sequences) was used to randomly select one-third of the grid cells 

containing sample matter. The contents of these selected grids were removed from the 

whole sample, after which the invertebrates within the subsample were sorted into broad 

taxonomic groups, enumerated, and preserved in plastic vials of 70% ethanol (USGS 

2010; USGS 2012). Dry weight for each taxonomic group in each sample was measured 

after drying for 48 h at 60C.  

Analyses 

Abundances and biomass of organisms were extrapolated to represent the entire 

benthic sample prior to analyses. Data were analyzed using generalized linear mixed-

effects models (GLMM), permutational analysis of variance (PERMANOVA), and non-

metric multidimensional scaling (nMDS, Table 9).  

Total benthic invertebrate biomass (dry weight) in each sample, including that for 

rare taxon groups, was analyzed for effects of fragmentation and habitat using GLMMs 
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(gamma distribution, log link). Although a gamma distribution fit the data best, a gamma-

GLMM will not accept response values of 0. Prior to fitting GLMMs, a small constant 

(0.00000001, less than 1% of the lowest sample value) was thus added to all invertebrate 

biomass measurements. Total benthic invertebrate biomass was first analyzed for marsh 

edge and bare sediment samples from all three sites, using a GLMM (gamma distribution, 

log link) to test for effects of habitat type (marsh edge vs. bare sediment), marsh 

fragmentation, and month. Total benthic invertebrate biomass was then analyzed for the 

only site where SAV was present (CRMS 0369), using a GLMM to test the effects of 

habitat type (marsh edge. vs. bare sediment vs. SAV) and month.  

Benthic community composition (abundance of individuals in each taxon group, 

excluding rare taxa) was then analyzed for all marsh edge and bare sediment samples 

from all three sites, using PERMANOVA (Bray-Curtis dissimilarity index) to test for 

effects of habitat type (marsh edge vs. bare sediment), fragmentation, and month. Benthic 

community composition was then analyzed for the only site where SAV was present and 

sampled (CRMS 0369), using PERMANOVA to test the effects of habitat type (marsh 

edge vs. bare sediment vs. SAV) and month. Taxon groups occurring in less than 5% of 

samples were excluded prior to analyses to avoid influences upon results by rare taxon 

groups. 

Abundances of Polychaeta and Ostracoda, two of the most common taxon groups 

(Table 10), were analyzed using GLMMs (negative binomial family, log link), for marsh 

edge and bare sediment samples from all three sites to test for effects of fragmentation 

and habitat type (marsh edge vs. bare sediment) on taxon group abundances. Random 

effects included month and subsite nested within site, and a separate GLMM was used for 
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each group. Finally, the effects of habitat type (marsh edge vs. bare sediment vs. SAV) 

and month on Polychaeta and Ostracoda abundances were analyzed using GLMMs, with 

a negative binomial family and log link specified, for the only site where SAV was 

present and sampled (CRMS 0369). Subsite was included as a random effect, and a 

separate GLMM was used for each group. Model selection occurred to determine the best 

way to include month: whether as a fixed effect with interactions, a fixed effect without 

interactions, or as a random effect. Models were compared using AIC scores, and the 

most parsimonious model was selected as the best model. P-values for fixed effects were 

obtained using Type II Wald Chi Sq. and Type III Likelihood Ratio tests. Insignificant 

interactions with continuous variables were removed and the analyses re-run prior to 

reporting. All analyses were run in R, v. 3.4.3, using the vegan, lme4, afex, car, 

multcomp, and ggplot2 packages. 
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Details of models used in benthic community data analyses 

Response 

variable 
Subset of data used Analysis 

Independent variables/ 

Fixed Effects 

Family 

(link) 

Random 

Effects 

Total Invertebrate 

Biomass + 

0.00000001 

Marsh and bare samples 

from all 3 sites 
GLMM Fragmentation, Habitat, Month 

Gamma 

(log) 

Site, Subsite 

(nested within 

Site) 

Total Invertebrate 

Biomass + 

0.00000001 

Samples from CRMS 

0369 
GLMM Habitat, Month, Habitat × Month 

Gamma 

(log) 
Subsite 

Community 

composition 

Marsh and bare samples 

from all 3 sites 
PERMANOVA 

Fragmentation, Habitat, Month, 

Habitat × Month 
N/A N/A 

Community 

composition 

Samples from CRMS 

0369 
PERMANOVA Habitat, Month, Habitat × Month N/A N/A 

Polychaeta 

Abundance 

Marsh and bare samples 

from all 3 sites 
GLMM Fragmentation, Habitat 

Negative 

binomial (log) 

Site, Subsite 

(nested within 

Site), Month 

Ostracoda 

Abundance 

Marsh and bare samples 

from all 3 sites 
GLMM 

Fragmentation, Habitat, 

Fragmentation × Habitat 

Negative 

binomial (log) 

Site, Subsite 

(nested within 

Site), Month 

Polychaeta 

Abundance 

Samples from CRMS 

0369 
GLMM Habitat, Month 

Negative 

binomial (log) 
Subsite 

Ostracoda 

Abundance 

Samples from CRMS 

0369 
GLMM Habitat, Month 

Negative 

binomial (log) 
Subsite 

 

Note: GLMM indicates Generalized Linear Mixed-effects Model and PERMANOVA indicates Permutational Analysis of Variance.  
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Results 

Sorted invertebrates were identified as belonging to thirteen different taxonomic 

groups (Table 10). These taxonomic groups represent four phyla: Arthropoda, Annelida, 

Mollusca, and Nematoda. All taxonomic groups identified in the samples were found to 

be items in juvenile blue crab diet analyses (Laughlin 1982; Alexander 1986; Mansour 

1992; Cote et al. 2001).  

Table 9  

Taxonomic groups used to classify benthic invertebrates 

Group Taxonomic Level 

Frequency of 

occurrence (% of 

total samples) 

Insecta Class 57.3 

Polychaeta Class 56.2 

Ostrocoda Class 39.3 

Gastropoda Class 37.1 

Bivalvia Class 30.3 

Nematoda Phylum 29.2 

Tanaidacea Order 25.8 

Copepoda Order 19.1 

Amphipoda Order 18.0 

Acari Sub-class 4.5 

Cumacea Order 2.2 

Decapoda Order 1.1 

Hirudinea Class 1.1 
 

 

Effects of marsh fragmentation on benthic invertebrate biomass 

Benthic invertebrate biomass varied significantly with marsh fragmentation, 

habitat and month across the three sites (Table 11). Across all three sites, benthic 

invertebrate biomass increased as marsh fragmentation increased and was significantly 
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higher in marsh edge (15.7 ± 7.5 mg dry weight per sample) than bare sediment (3.2 ± 

0.9 mg dry weight per sample) habitats. Benthic invertebrate biomass also varied 

significantly among months, being lower in September (2.4 ± 1.0 mg dry weight per 

sample) than in May (8.2 ± 2.2 mg dry weight per sample) and July (17.3 ± 10.9 mg dry 

weight per sample).  

Table 10  

Results of marsh fragmentation analysis on benthic invertebrate biomass 

Effect DF χ2 P 

Fragmentation 1 4.24 0.04 

Habitat 1 10.75 0.001 

Month 2 10.96 0.004 
Note: P-values are from a Type III Likelihood Ratio test. 

 

Effects of habitat type on benthic invertebrate biomass  

Benthic invertebrate biomass did not vary among habitat types in CRMS 0369 

(the only site with SAV present) but was significantly influenced by month. There was 

also a significant habitat × month interaction (Table 12), where biomass differed among 

the three habitats in July (higher in marsh edge than bare sediment or SAV; Type III 

likelihood ratio test, P = 0.001), but not in May (Type III Likelihood ratio test, P = 0.69) 

or September (Wald χ2 test [LRT failed to converge], P = 0.110).  

Table 11  

Results of habitat type analysis on benthic invertebrate biomass 

Effect DF χ2 P 

Habitat 2 2.41 0.30 

Month 2 7.74 0.02 

Habitat × Month 4 12.04 0.02 
Note: P-values are from a Type III Likelihood Ratio test. 
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Figure 6 Benthic invertebrate biomass in different habitat types  

Bars represent the mean biomass and the whiskers represent the standard error of the mean. Asterisks indicate a significant difference.  

 

Effects of marsh fragmentation on benthic community composition  

Benthic community composition across all three sites did not differ across the 

range of fragmentation values observed but was significantly different between marsh 

edge and bare sediment habitats and also across the months of this study (Table 13). 

There was no effect of fixed effect interactions on community composition. In marsh 

edge habitat, the benthic communities were composed largely of Tanaidacea, Polychaeta, 

and Amphipoda while benthic communities in bare sediment were heavily composed of 

Ostracoda, Nematoda, and Copepoda (Figure 6). Benthic community composition in the 

month of July is significantly different from community composition in May and 

September, where the benthic communities in July were largely composed of Copepoda 

and Nematoda (Figure 6).  
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Table 12  

Results of marsh fragmentation, habitat, and month PERMANOVA on benthic community 

composition 

Source DF 
Sum of 

Squares 
F P 

Fragmentation 1 0.321 0.902 0.552 

Habitat 1 1.144 3.221 0.0002 

Month 2 2.935 4.131 0.0001 

Habitat × Month 2 0.634 0.892 0.612 

Residual 67 23.802   
 

 

 

Figure 7 A nMDS plot of benthic community composition across all study sites 

The circles represent samples from bare sediment, triangles are samples from marsh edge habitat. Blue shapes are samples from July, 

red shapes are from May, and green shapes are from September. The colored polygons show the groupings of samples from each 

month. 
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Effects of habitat type on benthic community composition  

Benthic community composition was significantly dissimilar across months but 

was not dissimilar between the three habitat types (marsh edge, bare sediment, and SAV, 

Table 14) when considered only for the site where SAV was found (CRMS 0369). 

Benthic community composition in the month of May was significantly different from 

community composition in July, where communities in May were composed of Bivalvia, 

Polychaeta, Amphipoda, and Ostracoda while communities in July were composed of 

Nematoda, Insect, Copepoda, and Tanaidacea (Figure 7).  

 

Table 13  

Results of habitat type and month PERMANOVA on benthic community composition 

Source DF 
Sum of 

Squares 
F P 

Habitat 2 0.9070 1.3443 0.1550 

Month 2 2.0451 3.0309 0.0002 

Habitat × Month 4 1.4082 1.0435 0.3928 

Residual 33 11.1334   
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Figure 8 A nMDS plot of benthic community composition at CRMS 0369 

Circles are bare sediment samples, triangles are marsh edge samples, and squares are SAV samples. The colored polygons represent 

the groups formed by samples in each month.  

 

Effects of marsh fragmentation on common taxon abundances  

Abundances of polychaetes and ostracods, two taxon groups frequently 

encountered in samples, varied significantly between habitat types across the three sites 

(Table 15). Polychaeta abundance did not vary across marsh fragmentation but was 

significantly higher in marsh edge habitats than bare sediment habitat (Figure 8). 

Ostracoda abundance increased as marsh fragmentation increased and was significantly 

higher in bare sediment habitats than marsh edge (Figure 8). Ostracoda abundance was 

also seen to increase in marsh edge habitats as marsh fragmentation increased.  
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Table 14  

Results of marsh fragmentation analyses on common taxon abundances in all study sites 

Effect DF χ2 P 

Polychaeta    

Fragmentation 1 2.349 0.125 

Habitat 1 19.520 < 0.0001 

Ostracoda    

Fragmentation 1 1841.28 < 0.0001 

Habitat 1 6847.76 < 0.0001 

Fragmentation × Habitat 1 9.19 0.002 
Note: P-values come from Type II Wald χ2 tests.  

 

 

Figure 9 Polychaeta and Ostracoda abundance across all study sites 

Bars represent mean abundance and the whiskers represent the standard error of the mean. Asterisks indicate a significant difference 

between habitats for a given taxon group.  

 

Effects of habitat type on common taxon abundances  

Polychaete and ostracod abundances were significantly different between habitats 

and months at CMRS 0369 (the only site with SAV present, Table 16). Polychaeta 
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abundances were significantly higher in marsh edge than in bare sediment or SAV 

(Figure 9). Ostracoda abundances were significantly lower in marsh edge than in bare 

sediment or SAV, and abundances in September were significantly different from 

abundances in July, but not significantly different from abundances in May (Figure 9).  

 

Table 15  

Results of habitat type analyses on common taxon abundances at CRMS 0369 

Effect DF χ2 P 

Polychaeta    

Habitat 2 9.46 0.009 

Month 2 12.11 0.002 

Ostracoda    

Habitat 2 6.79 0.03 

Month 2 7.04 0.03 
Note: P-values are from Type III Likelihood Ratio tests.  

 

 

Figure 10 Polychaeta and Ostracoda abundance at CRMS 0369 

Bars represent the mean abundance and whiskers represent the standard error of the mean in a) different habitat types and b) months of 

the study. Different letters within a taxon group indicate significant differences.  
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Discussion 

This study assessed benthic invertebrate communities across a fragmenting marsh 

landscape by examining benthic invertebrate biomass, community composition, and the 

responses of individual taxon groups. Benthic cores were used to sample benthic 

invertebrates across a gradient of marsh fragmentation and in different habitat types 

(marsh edge, bare sediment, and SAV).  

Total benthic invertebrate biomass across all three sites varied across a range of 

marsh fragmentation, between marsh edge and bare sediment habitats, and across the 

months of the study. Total biomass increased significantly as marsh fragmentation 

increased, perhaps because of an increase in habitat complexity (increased edge habitat). 

Biomass was significantly greater in marsh edge habitats than bare sediment across all 

three sites. Biomass was also greater in marsh edge when compared to bare sediment and 

SAV habitats when considering only CRMS 0369 (the only site with SAV) but only in 

the month of July (when benthic biomass was highest). These findings are similar to past 

studies that have found greater benthic infaunal amounts in vegetated habitat than in 

unvegetated substrate (Harrod 1964; Heck and Wetstone 1977; Orth et al. 1984) and 

support the concept of vegetated aquatic habitats acting as nursery habitats due to 

increased prey availability. The similarities in benthic invertebrate biomass between bare 

sediment and SAV habitats could be related to the species of SAV that was sampled. 

Invasive Eurasian milfoil, Myriophyllum spicatum, was the dominant SAV species 

present at CRMS 0369 and has been found to create nocturnal hypoxic events (C. Martin, 

University of Florida, personal communication), which could prevent invertebrate 
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establishment in its vicinity. Species within the taxonomic groups found in this study, 

like Polychaeta and Bivalvia, exhibit a range in tolerance to hypoxic levels (Diaz and 

Rosenberg 1995; Vaquer-Sunyer and Duarte 2008) and it is reasonable to assume that the 

taxon groups found in greater abundance in the SAV habitat (like Ostracoda) are able to 

establish themselves within those SAV beds. However, because this study did not 

identify invertebrates beyond the levels specified (Table 10), we cannot make too many 

assumptions about hypoxia tolerance of the individuals collected.  

Community composition also differed among the habitats sampled, with marsh 

edge habitat containing macrofaunal individuals belonging to Amphipoda, Tanaidacea, 

Polychaeta, and Insecta, while bare sediment communities were largely composed of 

meiofaunal groups including Nematoda, Copepoda, and Ostracoda. These differences in 

assemblage suggest that the differences in total biomass, as described above, are driven 

by the benthic community (taxon groups containing larger individuals vs. groups with 

smaller individuals). Benthic invertebrate community composition was not found to vary 

between the three habitat types present at CRMS 0369 (the only site with SAV present) 

but this may have been due to the smaller number of samples used in the analysis. The 

observed differences in the benthic invertebrate community composition is likely mainly 

due to factors known to influence benthic invertebrate distributions: non-random 

recruitment, differential mortality after recruitment (Rader 1984), density-dependent 

processes, and tolerance to physical factors (Kneib 1984).  

The differences in polychaete and ostracod abundances in different habitat types 

reflect the differences in these taxon habitat preferences. Polychaetes are a diverse group 
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of organisms where two families, Nereidae and Capitellidae, are common in marsh 

habitat, forming burrows around plant roots (Heard 1982), while ostracods prefer to settle 

in soft sediments, like those present in the non-vegetated and SAV habitats at CRMS 

0369 (Keyser 1977). Although ostracods were found at greater abundances than 

polychaetes, their smaller size may explain biomass measurements equivalent to the 

polychaetes sampled.  

Although benthic infauna communities were quite different among the habitat 

types examined, within a habitat type benthic infauna communities were insensitive to 

landscape-scale patterns of marsh fragmentation at the range investigated, when 

considering total biomass and community composition. As with results observed for 

juvenile blue crabs (Chapter II of this thesis), this suggests that direct effects of 

fragmentation are minimal. Yet total invertebrate abundance and biomass are likely to be 

indirectly influenced by marsh fragmentation due to changes in the availability of 

different habitats, as implied by noted habitat differences. Given that these invertebrate 

organisms are commonly consumed by a number of fish and macroinvertebrate species, 

changes in distribution, abundance, and community composition may cascade up through 

the food web in coastal salt marshes as fragmentation increases and the relative extent of 

habitat changes.  

Patterns observed in this study are similar to those observed for juvenile blue 

crabs (see Chapter II), with exception to abundances in SAV habitat. This difference 

could be explained by the relative greater mobility juvenile blue crabs have compared to 

benthic invertebrates that allows them to move to areas, either higher in the water column 
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or to a different habitat altogether, with higher dissolved oxygen levels during hypoxic 

events. Benthic invertebrates and blue crabs did not appear to be influenced by a 

landscape pattern of marsh fragmentation at spatial scale sampled and instead were more 

affected by the habitats present. Benthic invertebrate biomass and juvenile blue crab 

density were greater in marsh edge habitats than bare sediment. Although causality 

cannot be determined using the results of this study, it is possible that the greater food 

availability in marsh edge may be one factor underlying the greater abundance of blue 

crabs in that habitat. It is also possible that both juvenile blue crabs and benthic 

invertebrates respond similarly to favorable habitat, due to environmental conditions. 

That benthic invertebrate biomass and community composition were not different 

between bare sediment and SAV habitats also suggests that greater juvenile blue crab 

densities in SAV habitats are driven by greater protection against predation and not food 

availability (Heck and Thoman 1984, Chapter II of this thesis). However, past studies 

investigating the nursery habitat properties of SAV beds (Heck and Wetstone 1977; Heck 

and Wilson 1987; Orth and van Montfrans 1987; van Montfrans et al. 2003) were 

conducted in seagrass beds while the SAV in this study was a freshwater/brackish 

species.  

One reason for seeing lack of statistical significance between the three habitat 

types at CRMS 0369 could be the patchiness of benthic invertebrate distributions 

(Morrisey et al. 1992). Samples were collected such that one bare sediment, one marsh 

edge, and one SAV (if present) sample were collected in close proximity (2- 30 m) so one 

area with all three habitat types nearby could very much have similar communities, 
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despite the different habitat types. This is seen in Figure 7 where several samples from 

bare sediment and SAV habitats are located very close together, indicating low 

assemblage dissimilarity. There were also a select number of samples that had very high 

abundances of taxa that could have mitigated the significance of effects on community 

composition and biomass. Increasing the sample size and duration of the study could 

have helped this issue.  

This study found that benthic invertebrate communities varied with habitat type 

and with patterns in the broad landscape at the spatial scale sampled. Higher benthic 

invertebrate biomass in marsh edge habitats suggest that juvenile blue crabs utilize marsh 

edge as much because of increased food availability as for predator avoidance. This 

conclusion was also supported by the lack of habitat differences in predation mortality in 

this study (Chapter II of this thesis). Increased habitat complexity can explain the 

observed trend of higher benthic invertebrate biomass in areas with higher marsh 

fragmentation, as there is increased marsh perimeter in these areas. Habitat fragmentation 

is likely to continue to have significant effects on benthic invertebrate communities until 

a threshold is reached at very high levels of fragmentation where the loss of marsh habitat 

greatly decreases the relative amount of available habitat for these benthic invertebrate 

communities and the juvenile blue crabs that depend on them.  
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CHAPTER IV – SUMMARY AND CONCLUSIONS 

The fragmentation of coastal salt marshes is of great concern not only because of 

potential changes in biodiversity but also because of potential impacts on fisheries 

supported by these habitats. Coastal salt marshes are experiencing extensive habitat 

fragmentation worldwide, including in the Mississippi River Delta (Barras et al. 2003; 

Coleman et al. 2008). Future projections for habitat loss, preceded by fragmentation, are 

expected to continue due to increasing sea level rise, high rates of marsh subsidence, and 

anthropogenic activity (Day et al. 2000; Coleman et al. 2008). 

Currently, the fragmentation of salt marshes in coastal Louisiana does not appear 

to negatively affect blue crab populations (Chapter II of this thesis). Rather, blue crab 

populations respond primarily to the presence of available habitat. Blue crabs utilize 

marsh edge as a nursery habitat during the juvenile stage, as evidenced by high densities 

of juvenile blue crabs in the marsh edge. Marsh edges provide greater prey availability 

(i.e., greater invertebrate biomass, types and sizes of invertebrate prey) compared to bare 

sediment. As the marsh landscape fragments, initial increases in available marsh edge 

habitat likely follow; but once fragmentation reaches a certain level, marsh edge habitat 

will begin to decrease, with potentially negative impacts on juvenile blue crabs. Blue crab 

populations and fisheries may experience time-lagged decreases due to the failure of 

juvenile blue crabs to recruit into the adult population because of a lack of nursery 

habitat.  

Effects of marsh loss on coastal species, including blue crabs, can be mitigated if 

submerged aquatic vegetation (SAV) colonizes newly-created open water areas.  SAV 
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beds support high densities of juvenile blue crabs, likely due to increased protection from 

predators (Chapter II of this thesis). Yet SAV habitat does not appear to provide a greater 

benthic invertebrate food supply for juvenile blue crabs, at least in the area studied here 

(Chapter III of this thesis). It may also be important to take into account the species of 

SAV that is colonizing newly-created open water areas, as invasive SAV species (e.g., 

Eurasian watermilfoil) are quite common in coastal Louisiana and can cause hypoxic 

events at night when photosynthesis ceases (C. Martin, University of Florida, personal 

communication). Future research should investigate the differences between SAV type 

(freshwater/brackish vs. saline species) nursery habitats that could influence juvenile blue 

crabs.  

Marsh fragmentation and land loss can be mitigated by increased sedimentation 

from terrestrial systems. A reduction in sediment supply due to extensive engineering of 

the Mississippi River and associated levees has left these coastal marshes starving for 

sediment. Sediment diversions are currently being planned in several areas of coastal 

Louisiana, with the goal of diverting sediment from the Mississippi River and back into 

the coastal marshes. Increased sediment supply from these diversions may help mitigate 

land loss by allowing coastal salt marshes to keep up with rising sea levels, thus ensuring 

adequate marsh edge habitat for juvenile blue crabs and other species.  
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