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ABSTRACT

The loss of coastal marshes is a topic of great con-

cern, because these habitats provide tangible

ecosystem services and are at risk from sea-level

rise and human activities. In recent years, a sig-

nificant effort has gone into understanding and

modeling the relationships between the biological

and physical factors that contribute to marsh sta-

bility. Simulation-based process models suggest

that marsh stability is the product of a complex

feedback between sediment supply, flooding re-

gime and vegetation response, resulting in eleva-

tion gains sufficient to match the combination of

relative sea-level rise and losses from erosion.

However, there have been few direct, empirical

tests of these models, because long-term datasets

that have captured sufficient numbers of marsh loss

events in the context of a rigorous monitoring

program are rare. We use a multi-year dataset

collected by the Coastwide Reference Monitoring

System that includes transitions of monitored

vegetation plots to open water to build and test a

predictive model of near-term marsh vulnerability.

We found that despite the conclusions of previous

process models, elevation change had no ability to

predict the transition of vegetated marsh to open

water. However, we found that the processes that

drive elevation change were significant predictors

of transitions. Specifically, vegetation cover in prior

year, land area in the surrounding 1 km2 (an esti-

mate of marsh fragmentation) and the interaction

of tidal amplitude and position in tidal frame were

all significant factors predicting marsh loss. This

suggests that (1) elevation change is likely better a

predictor of marsh loss at timescales longer than we

consider in this study and (2) the significant pre-

dictive factors affect marsh vulnerability through

pathways other than elevation change, such as

resistance to erosion. In addition, we found that,

while sensitivity of marsh vulnerability to the

predictive factors varied spatially across coastal

Louisiana, vegetation cover in prior year was the

best single predictor of subsequent loss in most sites

followed by changes in percent land and tidal

amplitude. The model’s predicted land loss rates

correlated well with land loss rates derived from

satellite data, although agreement was spatially

variable. These results indicate (1) monitoring the

loss of small-scale vegetation plots can inform pat-

terns of land loss at larger scales, (2) the drivers of
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land loss vary spatially across coastal Louisiana, and

(3) relatively simple models have potential as

highly informative tools for bioassessment, direct-

ing future research and management planning.

Key words: coastal marsh; stability; monitoring;

sea-level rise; erosion; fragmentation; tidal ampli-

tude.

INTRODUCTION

Coastal wetlands have long been a focus of intense

study, because they provide several tangible

ecosystem services and are at risk from sea-level

rise and human activities. Globally, the combina-

tion of sea-level rise and direct human disruption is

predicted to cause the loss of 36–70% of existing

wetlands by 2080 (Nicholls and others 1999). Rates

of land loss are especially high in coastal Louisiana,

which, in addition to experiencing direct human

disturbance and reduced sediment supply due to

channelization, experiences a high rate of coastal

subsidence (Shinkle and Dokka 2007; Glick and

others 2013).

Many potential contributing factors to wetland

loss, in both coastal Louisiana and more generally,

have been identified; however, the relative

importance of contributing factors may vary

regionally and depend on the spatial and temporal

scale considered (Day and others 2008). For

example, at the landscape scale, coastal wetlands

develop where the rates of accretion and organic

soil formation are greater than the rates of erosion,

subsidence and sea-level rise, and are maintained

where these rates are in equilibrium. These rates

are determined at multiple scales by the complex

feedback between physical factors, such as fre-

quency and duration of flooding events, and bio-

logical factors, such as vegetation biomass

production and decomposition rates (Fagherazzi

and others 2004; Temmerman and others 2005;

Kirwan and Guntenspergen 2010). In numerical

models, marsh platform dynamics, and thus marsh

stability (that is, resistance to submergence), are

driven by flooding, which has the dual effect of

increasing the transport of sediments to the marsh

surface and stimulating vegetative growth (Morris

and others 2002). In turn, vegetation biomass re-

duces surface-water flow rate and facilitates min-

eral sedimentation (Leonard and Luther 1995;

Ensign and others 2014). Additionally, above- and

below-ground biomass contributes to organic soil

formation (Nyman and others 1990) and is a sig-

nificant contributor to accretion (Nyman and oth-

ers 2006) and elevation change (McKee 2011), all

of which feed back onto flood depth and duration

(Cahoon and others 2006). These processes interact

to drive the absolute elevation change in the

marsh, which, when compared with the rate of sea-

level rise, determines the relative elevation change

(RSLRwet, Cahoon 2015), a direct estimate of

whether the marsh is on a stable trajectory or los-

ing ground.

One of the main applications of the insights of

numerical modeling of coastal marshes has been to

use relative elevation change rate as a proxy mea-

sure to predict marsh vulnerability. However, it has

been difficult to empirically establish how well the

putative drivers and measures predict marsh loss of

actual coastal wetlands. A major impediment to

direct empirical tests of the efficacy of elevation

change and accretion as predictive assessment tools

for marsh vulnerability is the relative scarcity of

appropriate data. There are few datasets with the

spatial coverage and temporal duration necessary

to test the relationships between physical/biological

factors and marsh stability. In this study, we used

an 8-year dataset collected by the Coastwide Ref-

erence Monitoring System (CRMS) to build a pre-

dictive model of marsh vulnerability. These data

included measures of vegetation characteristics,

marsh elevation, accretion, water level, water

temperature and surface-water salinity.

We defined marsh vulnerability as the probabil-

ity of transition from vegetated marsh to open

water and used the CRMS dataset to identify

transition events of monitored vegetation plots to

open water. We selected this measure of marsh

vulnerability, because it can include both shoreline

losses to erosion and interior losses to subsidence.

Furthermore, the spatial and temporal scale of

these transition events provides a robust dataset to

support quantitative analysis.

The goal of these analyses was to combine cur-

rent theory of marsh vulnerability with data from

the CRMS program to develop a predictive model

of marsh loss that can be applied to coastal wet-

lands to identify areas at greatest risk of marsh loss,

inform distribution of management resources and

evaluate restoration project effectiveness. To this

end, we used results from the literature to develop

a statistical model of marsh vulnerability that could

be tested with data from the CRMS program. We

found, despite wide theoretical support, RSET-

measured elevation change had no ability to pre-
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dict transition events in the subsequent year. Based

on the results of that analysis, we derived and fit an

alternative model that included the hypothesized

drivers of elevation change to predict transition

events and used multiple methods to rigorously

assess the model’s goodness of fit. Finally, we val-

idated the predictive model by comparing its pre-

dictions to independent data: historical rates of land

loss quantified with Landsat-TM data by Couvillion

and others (2011).

METHODS

Model Description

The stability of coastal marshes depends on both

vertical and horizontal processes: elevation change

rates that keep pace with rates of relative sea-level

rise and resistance to erosion at the marsh–water

interface (Mariotti and Carr 2014; Kirwan and

others 2016). Multiple processes interact through

hydrogeomorphic feedbacks to influence wetland

elevation gains (Cahoon and others 2006). For

example, tidal deposition of mineral sediments can

stimulate vegetation production (Harrison and

Bloom 1977; Friedrichs and Perry 2001), which, in

turn, contributes to elevation gains directly

through root zone expansion (McKee 2011) and

indirectly through enhancing mineral sediment

and organic matter accretion (Ensign and others

2014). Furthermore, as tidal amplitude increases,

primary production increases at lower elevations

resulting in increased sediment deposition and

subsequently, increased resistance to loss (Kirwan

and Guntenspergen 2010; Supplemental Appen-

dix). At the marsh–water interface, lateral erosion

increases with both the power of incident waves

and the total length of exposed marsh margin

(Mariotti and Fagherazzi 2010; Marani and others

2011). As such, an increase in the length of ex-

posed marsh margin, such as would occur with

fragmentation, is associated with greater risk of loss

to erosion and thus increased vulnerability to land

loss (Couvillion and others 2016).

To account for the major processes associated

with marsh stability, we derived an initial model

that included RSET-measured elevation change

and a proxy measure of land fragmentation. While

we have direct measures of elevation change, we

do not have direct measures of land fragmentation.

As a proxy, we used the percent land in the sur-

rounding square-kilometer of each site as a mea-

sure of land fragmentation.

In an alternative model, we replaced measured

elevation change with variables representing its

hypothesized drivers, as well as other factors

thought to drive marsh stability. In this model, we

included measures of vegetation production, tidal

range and position in the tidal frame. We detail the

rationale for each of these measures below.

Production of vegetation biomass is a critical

ecosystem function in coastal marshes that con-

tributes to marsh stability through multiple path-

ways. Energetically, macrophytes are the most

abundant primary producers in the marsh (Teal

1962) and play a key role in regulating stability. For

example, Turner and others (2004) found that

marshes with greater belowground biomass recov-

ered more quickly from disturbances than marshes

with lower energy reserves in the belowground

biomass pool. In addition to providing the basis for

all energy flow in the marsh, macrophyte primary

production is a key process driving hydrogeomor-

phic feedbacks among sediment accretion, eleva-

tion change and flooding (Morris and others 2002;

Mudd and others 2009; Baustian and others 2012).

Ideally, these feedbacks maintain the relative ele-

vation of the marsh within the tidal frame and

promote persistence of the marsh during periods of

sea-level rise (Cahoon and others 2006; Kirwan

and Guntenspergen 2012). However, marsh resi-

lience to sea-level rise is compromised when feed-

backs between flooding and vegetation growth are

disrupted (Marani and others 2007). Following

disturbances where vegetation is removed, these

hydrogeomorphic feedbacks break down, and

marshes and mangroves often convert to unvege-

tated mudflats (Cahoon and others 2003; Kirwan

and Murray 2008). We used percent cover as an

estimate of vegetative production.

Tidal range and position in the tidal frame are

hypothesized to have an interactive effect on marsh

stability. Wetlands high in the tidal frame are

hypothesized to benefit from having a ‘head-start’

on SLR or elevation capital (Cahoon 2015). How-

ever, areas lower in the tidal frame benefit from

deeper flooding, which is a key factor that regulates

marsh stability through enhancing sediment

accretion and biomass production. As flooding in-

creases, opportunity for the deposition of sus-

pended sediment increases (Friedrichs and Perry

2001). Increasing tidal range is hypothesized to

promote equilibrium lower in tidal frame (Kirwan

and Guntenspergen 2010) due to increased primary

production at lower elevations. The increased bio-

mass promotes sediment deposition (Ensign and

others 2014) via reduced flow velocity (Leonard

and Luther 1995; van de Koppel and others 2005),

and the net result of increasing tidal range is greater

resistance of the marsh to perturbations. (A de-
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tailed derivation of this result is presented in Sup-

plemental Appendix.) In contrast, the benefit of

higher position in the tidal frame is reduced with

increasing tidal range. In the alternative model, we

included tidal amplitude as a measure of tidal range

and daily average depth of flooding events as an

estimate of position in the tidal frame.

Data Description

CRMS Sites

In 2004, the Coastwide Reference Monitoring

System-Wetlands (CRMS) was implemented by the

Coastal Wetland Planning, Protection, and

Restoration Act (CWPPRA) to provide a network of

reference sites to assess restoration activities

(Steyer and others 2003). The 392 CRMS sites were

randomly selected from approximately 7000

potential coastal wetland sites using a stratified

random design (Steyer and others 2003) where

sites were allocated to major coastal wetland types

(fresh, intermediate, brackish, saline and swamp)

according to distributions of those habitats (Visser

and Sasser 1998). For this study, all swamp sites

and floating marsh sites were removed from the

analysis, leaving 290 sites.

Each CRMS site includes stations used for mea-

suring surface elevation change and vertical

accretion, a hydrology station for measuring hourly

water elevation and salinity and a 282.8-m transect

where vegetation community data are collected.

RSET Data

Rod surface elevation table (RSET) methods (Ca-

hoon and others 2002) were used to measure small

changes in elevation within CRMS sites. One RSET

benchmark is located at each CRMS site where it is

possible to measure an attached soil surface. Sites

were measured in 6-month intervals to provide an

estimate of cumulative elevation change over time.

Details of the RSET measurement methodology as

implemented in CRMS are available in Folse and

others (2014). For each sampling event, mean

elevation was calculated for each of four cardinal

directions, and elevation change was calculated for

each site using a linear regression of cumulative

elevation change versus time from 2008 to 2015.

Vegetation Data

Vegetation sampling was conducted within ten

2 m 9 2 m vegetation stations along the vegetation

transect at each CRMS site (Cretini and others

2011; Folse and others 2014). Stations were sam-

pled annually. At each station, the percent cover of

each plant species was visually estimated at the

peak of growing season (July 15–August 31). For

this study we used total cover as an indicator of

plant productivity. A complete description of the

methods and sampling design for collecting vege-

tation data in emergent marsh can be found in

Folse and others (2014).

In addition to using vegetation cover as a pre-

dictor variable of marsh vulnerability, as described

above, we also used plant cover to identify transi-

tion events. A transition from marsh to open water

was identified when: (1) a site had a nonzero value

for total cover at the beginning of the sample

interval (that is, 2007) and (2) at some point in the

interval (2007–2014) a zero value for total cover

was recorded and (3) total cover values remained

below 5% for the station for all subsequent years.

The year at which the first zero value for cover was

recorded as the year the transition occurred. To

translate these into a vector of binary responses

indicating transition events, years with nonzero

values for cover were recorded as zero (that is, no

transition to open water occurred), a one was re-

corded for the year the transition took place, and all

years subsequent to the transition event were re-

corded as ‘NA’ to indicate missing data. As a pre-

dictor variable, we used mean total cover across all

stations in each site in the preceding year (year

(t - 1)).

Hydrologic Data

Tidal amplitude was calculated from hydrologic

data that are collected hourly at all CRMS sites.

Water level, temperature, specific conductivity and

salinity data are collected hourly from surface wa-

ter at permanent monitoring stations. The water-

level benchmark was surveyed using real-time

kinematic technology, and water levels are refer-

enced to the NAVD 88 datum (Folse and others

2014). The calculation of mean tidal amplitude

from hourly data followed the harmonic tidal

analysis methods described in Snedden and

Swenson (2012) using data from 2008 to 2014.

Land/Water Data

Percent land was calculated from a land/water

classification analysis based on data from digital

imagery captured with at 1-m resolution with

Digital Mapping Camera (DMC) in 2012. Leica

imaging software was used to perform an unsu-

pervised classification based on the range of pixel

values into one of 50 classes. These classes were re-

coded into one of three categories: land, water and

flooded land. For this analysis, we combined the

D. R. Schoolmaster Jr. and others



land and flooded land categories within the 1 km2

area surrounding each CRMS site and converted it

to percent land.

Vulnerability Analysis

The response variable for this model is the proba-

bility of at least one transition event in site j in year

t, P(yjt = 1). The potential predictor variables vary

in one of two ways, across sites but not years (xj)

(that is, percent land) or across sites and years (xjt)

(that is, elevation change, vegetation cover, flood

depth and tidal amplitude). This gives the model,

P yjt ¼ 1
� �

¼ log it�1 b0þ b1X1jt�1 þ b2X2j
� �

where yjt indicates a transition event at any station

in site j at time t, b0 is a site-level intercept, b1 are

slopes of time-varying predictors, and b2 are slopes

of constant site-level predictors. This model as-

sumes that the probability of a transition to open

water at a given station at time t is independent of

the probability of a transition to open water at the

same station at time t - 1, given the set of predic-

tors and that transition has not yet happened, that

is,

We fit the model using a generalized linear

model with a binomial distribution and logit link

function. This was done with the glm function in

the stats package on the R statistical platform (R

Core Team 2015). We tested the assumption of

temporal independence by examining the lag-1

temporal autocorrelations of the Pearson residuals

within sites.To estimate the relative effect of each

factor on the probability of transition, we calcu-

lated the local sensitivity of each significant pre-

dictor for each CRMS site as

/ij ¼
@P̂ yj ¼ 1
� �

@xij
xijjb;�Xj

where P̂ yj ¼ 1
� �

is the predicted probability of a

transition event in site j, b is the vector of param-

eters of the model, and �Xj is the matrix of time-

averaged values of the drivers in site j. The output

of this gives, for each site, the percent change in the

probability of transition given a 1% increase in

value of driver i in site j.

Missing Data

Fewer and 3% of values were missing for cover

(2.3%), flood depth (2.9%) and percent land

(1.7%). Percent of missing data for tidal amplitude

and elevation change were 5.1% and 14.4%,

respectively. Missing data were imputed using a

multiple imputation procedure implemented by the

amelia() function from the Amelia package (Hon-

aker and others 2011). The final estimates for

missing values used for analysis were derived by

replacing each missing value with the median of its

corresponding values across all imputed datasets.

We assessed the efficacy of this method testing the

null hypothesis that the estimates generated using

the median values for the missing data across 100

imputed datasets were sampled from the distribu-

tion of estimates generated by fitting each impu-

tation separately. We failed to reject the hypothesis

for each variable (cover p = 0.92; tidal amplitude

p = 0.13; flood depth p = 0.19; percent land

p = 0.78; tidal amplitude 9 flood depth p = 0.17).

Model Validation

In addition to the standard model validation met-

rics typically calculated for logistic regressions, such

as AUC, true-positive and true-negative rates, we

conducted predictive checks for the fitted model

(Gelman and Hill 2009). To do this we used the

fitted parameters to simulate 1000 datasets of sim-

ilar form to the observed data and used these to

construct visualizations to evaluate the ability of

the fitted model to reproduce the patterns observed

in the original data. We used the model-simulated

data to predict the number of sites experiencing at

least one transition event for each year and the

number of years each site experienced at least one

transition event.

To test the classification accuracy of the model,

we calculated the ‘cutoff value’ of the predicted

probabilities that maximized the correct classifica-

tion rate and then used that cutoff rate to calculate

the optimum classification table for each model

(Hosmer and Lemeshow 2000).

Comparison with Historical Land Loss
Rates

To assess the model’s accuracy at site and basin-

wide spatial scales, we compared the predictions of

the fitted model to historical annual land loss rates

estimated from Landsat-TM based data from 1985

to 2010 (Couvillion and others 2011). These data

included estimates of land area for each CRMS site.

We estimated an annual loss rate, robs, as the slope

of the relationship between log(Land Area) and

time, where 1985 was used as the reference date

(that is, t = 0). Because we wanted to compare

Vegetation Cover, Tidal Amplitude and Land Area Predict



these to loss rates derived from probabilities of land

loss estimated from the logistic regression model,

any sites that experienced net land gain (that is,

robs < 0) were set to zero.

The average annual probability of land loss in site

j was estimated from the model as

rj ¼ 1�
YT

t¼1

1� P̂ yjt ¼ 1
� �

 !1
T

;

where P̂ yjt ¼ 1
� �

is the predicted probability of a

transition event in site j in year t, and T is the total

number of years for which predictions were cal-

culated.

RESULTS

Model Selection and Validation

The initial model, which included RSET-measured

elevation change and percent land as predictors, fit

the data much better than a null model which in-

cluded only an intercept term (DAIC = 40.1).

However, elevation change did not improve the fit

compared to a model that used only percent land

(DAIC ¼ 1:82Þ (Figure 1).

The alternative model, which replaced the direct

measurement of elevation change with tidal

amplitude, flood depth and vegetation cover, fit the

data much better than the null, intercept-only

model (DAIC ¼ 78:83Þ and better than the initial

model (DAIC ¼ 40:56). The parameter estimates of

the alternative model are shown in Table 1. The

temporal correlation of the Pearson residuals was

small (r = - 0.05, p = 0.579), suggesting that

temporal nonindependence had little influence on

the model estimates.

The alternative model distinguishes well be-

tween sites that experienced a transition and those

that did not. The mean predicted probability of

transition for sites that actually experienced a

transition event in a given year was 0.075, whereas

the predicted probabilities for sites that did not was

0.005 (t = - 9.62, df = 33.31, p value � 0.01,

AUC = 0.882). The cutoff predicted probability that

optimally separated the groups was 0.02, resulting

in a true-positive rate of 81.8% and a true-negative

rate of 83.8%.

The predictive checks of this model show that

across all sites, the model predicts well the number

of transition events for all years (Figure 2B). For

each year, the observed number of events falls

within the 95% confidence interval predicted by

the model. The model does show some variation in

the ability to correctly predict the total number of

events per site. Figure 2A shows for most sites that

experienced at least one transition event, the

model predicts well the number of years that it will

experience at least one event (that is, the observed

number of events falls within the 95% confidence

interval predicted by the model). In one site, the

actual number of years with at least one transition

event falls outside the bounds predicted by 1000

simulations of the model. In site CRMS2166, the

model under-predicted the number of events (0

predicted vs. 1 observed), suggesting that the model

is potentially missing a factor associated with vul-

nerability that is present at this site. There are three

sites in which the observed number of transition

events fell below the median number predicted by

the model. These sites represent potential ‘bright

spots,’ that is, they are more stable than predicted

by the model (Cinner and others 2017). For site

Figure 1. Relationships between predictor variables and

model-predicted probability of transition for the initial

model for A RSET-measured elevation change and B

percent land. The gray envelope indicated 95% confi-

dence region. The hashes on the x-axis indicate observed

data for that variable.
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CRMS0390, the median number of years predicted

to have at least one transition event was two; only

1 was observed. The median number of years with

events for sites CRMS0567 and CRMS2418 was

one; none were observed.

Parameter Interpretation

Interpreting the estimated parameters is difficult

given logit transformation; however, the sign of the

estimate is informative. Positive values of estimated

parameters indicate that increased values of the

predictor are associated with an increased proba-

bility of transition to open water (that is, greater

vulnerability, lesser stability). Negative parameter

estimates indicate that larger predictor values are

associated with lower probability of transition (that

is, lesser vulnerability, greater stability). Thus, the

model suggests that those sites that are less frag-

mented and have more vegetation cover are more

stable than sites that are more fragmented, and

have less cover (Figure 3).

Table 1. Estimated Parameters for Logistic Regression Model

Estimates Std. error P value

Intercept 1.03 0.82 0.211

Cover - 4.59 0.91 < 0.001

%Land - 5.87 0.91 < 0.001

Tidal Amp. 0.17 0.07 0.009

Flood Depth 0.08 0.03 < 0.001

Tidal Amp. 9 Flood Depth - 0.01 0.004 0.002

Figure 2. Posterior predictive checks of fitted model. In A the gray rectangles show the 95% confidence interval of

number of predicted transition events in each site that experienced at least one event for all years over 1000 simulations of

the model. The maximum possible number of transition events per site is 10. The black circles show the observed number

of transition events in each site across all years. The gray rectangles in B show the 95% confidence interval for the

predicted number of transition events per year over all sites from 1000 simulations of the model. Black circles show the

observed number of transition events per year.
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Due to the interaction between tidal amplitude

and flood depth, the relationship with marsh sta-

bility is complex. We hypothesized that the benefit

of being higher in the tidal frame was mediated by

larger tidal range. This hypothesized relationship

was observed in the data and is represented by the

negative parameter associated with the interaction

of tidal amplitude and flood depth. Given small ti-

dal amplitudes, higher daily flood depth (that is,

lower position in the tidal frame) is associated with

an increased probability of transition (Figure 4A).

However, given a larger tidal amplitude, the benefit

of greater daily flood depth out-weighs the risks,

resulting in a lower probability of transition

(greater stability) (Figure 4B, C).

To compare the importance of each predictor and

how it may change over the coast, we calculated

local sensitivities of each predictor at each site.

Figure 5 shows how the sensitivities vary across the

nine hydrologic basins of the Louisiana coast (de-

scribed in CWPPRA 1993). It shows that six of the

nine hydrologic basins were most sensitive to

changes in vegetative cover. Two basins, Mer-

mentau and Teche/Vermilion, were most sensitive

Figure 3. Relationships between predictor variables and

model-predicted probability of transition for the alter-

native model for A percent cover in previous year and B

percent land. The gray envelope indicated 95% confi-

dence region. The hashes on the x-axis indicate observed

data for that variable.

Figure 4. Relationships between average daily flood

depth (an indicator of position in tidal frame) and model-

predicted probability of transition at different tidal

amplitudes. A At very low tidal amplitude (5 cm)

increasing average daily flood depth increases marsh

vulnerability. At larger tidal amplitudes (for example, B

10 cm and C 20 cm) increasing flood depth is associated

with an increased marsh stability. The gray envelope

indicated 95% confidence region. The hashes on the x-

axis indicate observed data for that variable.
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to changes in percent land, and one, Mississippi

River, was most sensitive to flood depth. The effect

of the interactive nature of tidal amplitude and

flood depth is displayed in Figure 5. In the west-

ernmost basins, where tidal amplitude is very small

(< 2 cm), vulnerability increased with small

changes in flood depth (that is, sensitivity > 0). In

contrast, in the central basins, where tidal ampli-

tude is higher (> 15 cm), increases in flood depth

(that is, lower position in tidal frame) are associated

with increasing stability. As evidenced by the

length of the error bars, the sensitivity analysis also

shows that some basins are much more heteroge-

neous than others, in the sense that the sensitivity

to the drivers varies more across sites in some ba-

sins, such as Terrebonne and Barataria, than oth-

ers, such as Atchafalaya and Mississippi River.

Comparison with Historical Land Loss
Rates

The correlation between model predictions and

historical loss rates derived from satellite data

across all sites is high (r = 0.622, p < 0.01) (Fig-

ure 6). Moreover, the predicted and observed loss

rates tend to fall along the 1:1 line, indicating that

the model predicts the actual loss rates well. The

correspondence between predicted and historical

loss rates varies across the hydrologic basins (Fig-

ure 6). Although the model predicts the observed

average loss rates of each basin well (r > 0.4), the

basins east of the Atchafalaya Basin are, with the

exception of the Pontchartrain Basin, predicted

much better (r > 0.68) than those to the west. This

pattern suggests the existence of variation in the

processes contributing to land loss between the

eastern and western basins.

DISCUSSION

We used long-term monitoring data from coastal

Louisiana to test predictors of marsh transition to

open water. We found that elevation change was

not a significant predictor of transition events in

the subsequent year. Instead, we found that vege-

tation cover, tidal amplitude, position in tidal frame

and the relative amount of land in the surrounding

area were significant predictors of marsh vulnera-

bility. The reason that elevation change did not

predict land loss events is likely due to differences

in temporal scale between the measure of elevation

change and the transition event. The response

variable we used was the probability of at least one

transition event in the site in the subsequent year,

a near-term prediction. Because elevation change is

thought to be an important indicator of the marsh’s

ability to track sea-level rise, a long-term assess-

ment, it might not be surprising that elevation

change in one year is not predictive of the proba-

bility of land loss in the next year. It seems likely,

therefore, that we would have found greater pre-

dictive ability of elevation change had we used a

longer-term rates of land loss.

Each of the predictors in the final model was

chosen based on theorized relationships with

marsh stability. It is likely that the predictive signal

of near-term land loss demonstrated by the vari-

ables is derived from relationships with drivers of

both long-term and near-term stability, such as

elevation change and resistance to erosion,

respectively. For example, in addition to increasing

sedimentation rate, vegetation can also function to

attenuate wave energy (Gedan and others 2011)

and modify soil to resist erosion (Feagin and others

2009). Similarly, in addition to the effect of tidal

range on stability described by Kirwan and Gun-

tenspergen (2010) and in Supplemental Appendix,

tidal range may increase resistance to erosion by

distributing wave energy over a greater distance of

the tidal cycle (Rosen 1977).

The predictive variable most directly related to

erosional resistance was the relative amount of

land (versus water) in the surrounding area. It is a

measure correlated with both the length of exposed

marsh margin and/or the fragmentation of the

marsh landscape. Our model predicted that mar-

shes with less fragmentation were also less vul-

Figure 5. Scaled local sensitivity of predicted probability

of transition to each of the model’s predictors across the

nine hydrologic basins of Coastal Louisiana. Basins are

arranged west to east with the following abbreviations:

CS—Calcasieu/Sabine, ME—Mermentau, TV—Teche/

Vermilion, AT—Atchafalaya, TE—Terrebonne, BA—-

Barataria, MR—Mississippi River, BS—Breton Sound,

PO—Pontchartrain. The scaled sensitivity is the percent

change in predicted probability of transition given a one

percent change in the predictor.
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nerable to collapse, which is supported by recent

spatial analyses of coastal Louisiana (Couvillion

and others 2016). In this model, we used land area

estimates from a single year (2012). Although we

believe that the model would be improved with

annual estimates, the strong effects of land area

that we observed suggest that the pattern of vari-

ation in land area across sites remained similar over

the timescale of these data. Previous analyses have

associated the spatial patterns of marsh loss with

specific mechanisms of land loss. For example,

submergence, which occurs as a result of subsi-

dence, generally occurs in the interior marsh,

beginning with the formation of small ponds that

eventually coalesce and convert to large areas of

open water (DeLaune and others 1994; Friedrichs

and Perry 2001; Hartig and others 2002). The

mechanism of this effect is likely associated with

how fragmentation alters the flow of water into

and out of the marsh, and thus modifies where and

whether deposition of sediment occurs (Bass and

Turner 1997). Therefore, the organization of the

landscape structure can indicate the mechanisms of

loss, inform historic trends and future trajectories

of marsh loss (Kennish 2001) and also serve as an

indicator for vulnerability (Couvillion and others

2016).

The alternative predictive model performed

well in model validation assessments. It showed

high levels of sensitivity and specificity as mea-

sured by the true-positive and true-negative rates.

Furthermore, posterior predictive validation via

simulation showed that the model was able to

predict the number of years with at least one

transition event in most sites and total number of

sites with at least one transition event per year in

the observed data, indicating the model is well

specified.

Figure 6. Comparison of model-derived and Landsat-TM-derived historical loss rates at CRMS sites within the 7

hydrologic basins A–G that had enough data to support statistical conclusions and F all sites combined. The legend in each

subplot shows the correlation coefficient and p value (in parentheses) for the relationship in that basin. The lines in each

plot are identity lines showing 1:1 relationship.
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However, the strongest test for any predictive

model is how well it predicts patterns from inde-

pendent data (that is, data from a source other than

that used to calibrate/train the model). We con-

verted the predictions of this model to an average

annual probability of land loss to be compared with

average annual land loss rates calculated from

Landsat-TM data. We found that predictions from a

model based on transitions of annually resampled

vegetation plots were highly correlated with the

land loss rates estimated using satellite data (Fig-

ure 6). The variation in predictive ability of the

model across the hydrologic basins of coastal

Louisiana suggests variation in the drivers of land

loss. For example, the existence of areas where

satellite-derived land loss rates are less well pre-

dicted, suggests spatial variation in parameters

associated with the drivers included in the model or

the existence of additional, unidentified drivers.

However, the overall ability of the model to predict

land loss more generally illustrates the effectiveness

of using transition events in monitoring sites as an

indicator of larger-scale land loss.

A predictive model, such as this, that links local

measurements with probability of larger-scale land

loss can be an important tool for management and

restoration planning. The model suggests some

causal drivers of marsh vulnerability and, there-

fore, can be used to identify mitigation and

restoration strategies specifically targeted for those

drivers. Moreover, the model can be used to iden-

tify where loss is likely to occur in the near future,

which could help managers to develop more

effective restoration/mitigation strategies, spatially

and temporally.

Used as a tool to guide further inquiry, important

information can be derived from sites where the

model fit is weak. For example, comparing the

observed number of transition events to the dis-

tribution predicted by simulation of the fitted

model allows for the identification of ‘bright spots’

and ‘dark spots,’ that is, sites that are more stable or

less stable than predicted by the model. Analyses of

these sites could help identify additional drivers of

stability (Cinner and others 2017). At the basin

scale, Figure 6 shows that this model predicts his-

toric land loss rate better in the central and eastern

hydrologic basins of Louisiana than in the west-

ernmost basins. This suggests either variation in the

identity of drivers or variation in the estimated

coefficients between these areas. Finally, the anal-

ysis showed that sensitivity of marsh vulnerability

to the predictors varied both within and across

basins. This information can be used to inform the

efficacy of different potential restoration activities

(for example, targeting vegetation production vs.

tidal reconnection) in different areas across the

Louisiana coast.

Finally, although this study included only coastal

marshes of Louisiana, we expect the identity of

predictors, if not the exact parameter estimates to

be generalizable to other coastal wetlands. We

developed our statistical models from general the-

ory, as opposed to taking a data mining approach,

which would result in more specific, but less

interpretable models. The high degree of out-of-

sample predictive ability achieved by this confir-

matory framework allows an increased confidence

in the generality of these results and reflects

favorably on the current state of theory of coastal

marsh stability.

CONCLUSION

We have shown that a predictive model of marsh

stability estimated from a long-term monitoring

data can be used to test our current understanding

of drivers of marsh stability. The model confirms

that quantitatively assessing marsh vulnerability

requires including indicators of its ability to re-

spond dynamically to rising sea level, such as veg-

etation cover, tidal amplitude and position in the

tidal frame, as well as indicators of the its land-

scape-level context, such as degree of fragmenta-

tion or exposure to wave energy. Finally, we have

shown that output from site-level models can be

scaled up to inform basin or coast-wide assessment

tools. These models correlated well with indepen-

dent historical measures of land loss and thus can

be used for predicting land loss, directing manage-

ment resources and estimating effects of large-scale

restoration projects.

DATA AVAILABILITY

The CRMS data are available for public download

at the Web site of the Coastal Protection and

Restoration Authority: https://cims.coastal.louisi-

ana.gov/monitoring-data/ and at the Web site of

the Coastal Wetlands Planning, Protection and

Restoration Act: https://www.lacoast.gov/crms2/

home.aspx.
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