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A B S T R A C T   

The Mississippi Delta in coastal Louisiana has some of the highest rates of land loss in the world. This land-loss 
crisis might become a global problem because most major deltas are expected to be vulnerable to land loss 
during the remainder of the 21st century and beyond. Despite this predicament, we do not understand how land 
loss in a deltaic environment proceeds in time and space. Here, we evaluate the spatial and temporal trends of 
land loss in the Lower Mississippi River Delta (LMRD) region using spatial statistics and landscape metrics. We 
used nearly 4800 Landsat images to construct a series of three-year cloud-free composites from 1983 to 2016. 
From these data, we created a stability index (SI), which is a dimensionless measure of the number of land-to- 
water transitions that a land pixel makes before being considered lost. Our results indicate that on the LMRD, 
75% of land loss is a single transition from land to water, while about 25% of land pixels have two or more 
transitions before being considered lost. Using a local indicator of spatial association, we show that pixels with 
similar SI tend to cluster together. Single transition clusters (low SI) form elongated shapes, they are densely 
packed, and they are predominantly, but not always, found on marsh edges. On the other hand, multi-transition 
clusters (high SI) form square-like shapes, they are more fragmented, and they are usually found in marsh 
interiors. Our analysis further shows that the land-loss area within the spatial patches with both high and low 
stability is strongly related to the density of land patches and their shape (R2 of 0.717 and 0.545 respectively). 
Our analysis suggests that land-loss pixels on the marsh edges undergo different temporal patterns of land loss 
compared to those in the marsh interior. We hypothesize that this arises because wave edge-erosion drives land 
loss on marsh edges, whereas subsidence-related flooding drives land loss in marsh interiors. The stability index 
provides a useful way to characterize the processes causing land loss.   

1. Introduction 

Deltas are found at the mouths of 40% of all coastal rivers (Caldwell 
et al., 2019) and cover a small portion of Earth's land surface, but they 
are home to some of the world's highest population densities and bio-
diversity (Austin, 2006; Ericson et al., 2006; Syvitski et al., 2009;  
Tessler et al., 2015). Despite the importance of deltas to ecological 
productivity and people's livelihoods, they are extremely vulnerable to 
land loss given their proximity to the sea. The land-loss problem is 
further exacerbated by human activities upstream; human-modified 
rivers and deltas through channelization and damming, which has de-
creased sediment delivery (Giosan et al., 2014). The decreased delivery 
of sediments to deltas, coupled with relative sea-level rise, has led to 
increased flooding and land loss in some major deltas (Newton et al., 
2012; Renaud and Kuenzer, 2012; Syvitski et al., 2009). 

Despite the potential value of deltas to ecological services and 
productivity, we lack a clear picture of spatio-temporal patterns of land 
loss (Blum and Roberts, 2012; Blum and Roberts, 2009; Day et al., 
2007; Day et al., 2000; Lam et al., 2018; Ortiz et al., 2017), which limits 
our ability to mitigate the issue. The Lower Mississippi River Delta 
(LMRD) is an ideal place to study this problem because land loss has 
been on-going and is documented for nearly a century. The LMRD, from 
1956 to 1990 has lost over 3400 km2, or about 25%, of deltaic wetlands 
(Blum and Roberts, 2012; Blum and Roberts, 2009; Day et al., 2007;  
Day et al., 2000; Morton, 2003). The LMRD accounts for more than 30% 
of the coastal wetlands in the United States and has the fourth largest 
basin area and seventh largest water discharge in the world. The LMRD 
is one of the largest and most ecologically essential deltas in the world 
and serves as an ideal model for creating sustainable solutions to land 
loss. 
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Previous studies of land loss in the LMRD relied on hand-drawn 
maps, ground sampling, and early satellite data to constrain the mag-
nitude of the problem (Britsch and Dunbar, 1993; Couvillion et al., 
2011; Craig et al., 1979; Houck, 1983; Penland et al., 2000a). These 
early studies had a coarse temporal resolution and were able to define 
the first-order trend of changing land area through time. But, as we 
move toward designing sustainable solutions for the LMRD, we also 
need to understand patterns of land loss over decadal timescales. To 
create reliable decadal-scale estimates of land loss, we can take ad-
vantage of the improved capability to create time-series composites and 
perform parallelized operations on time stacks of imagery (Donchyts 
et al., 2016a, b; Hansen et al., 2014; Pekel et al., 2016) that produce 
more temporally consistent datasets. 

Furthermore, most previous analyses did not consider the dynamic 
spatial and temporal nature of land loss (Britsch and Dunbar, 1993;  
Britsch and Dunbar, 1993; Couvillion et al., 2011; Penland et al., 
2000b). Recently, the methods to detect the dynamic nature of land loss 
have improved considerably, especially with substantial improvements 
in cloud computing and the capability to analyze deep-time stacks of 
imagery (Donchyts et al., 2016a, b; Gorelick et al., 2017). Afterall, land 
loss is not instantaneous; in most cases, it can transition from land to 
water and back to land again over periods ranging from months or years 
due to yearly to decadal changes in water level (Olliver and Edmonds, 
2017; Hiatt et al., 2019). Herein, we define two broad types of land loss: 
i) single-transition land loss occurs when land transitions once and 
becomes water for the remainder of the study period, and ii) multiple- 
transition land loss occurs when a parcel of land undergoes one or more 
land-to-water transitions before it is lost. 

These two types of land loss are rarely separated in coastal studies of 
the LMRD and can provide clues into the processes driving land loss. 
For example, coastal erosion acts on marsh edges that are exposed 
continuously to waves and ocean currents (Bernier et al., 2006; Blum 
and Roberts, 2009; Britsch and Dunbar, 1993; Couvillion et al., 2016;  
Couvillion et al., 2011; Day et al., 2000; Kesel, 1989; Penland et al., 
2000b). When viewed through time, coastal erosion is effectively in-
stantaneous as land irreversibly becomes water. In contrast, the process 
of subsidence can occur anywhere within the delta, including more 
inland areas. Subsidence, though not always, is often slower than edge 
erosion and loss may be preceded by more frequent flooding (McKee 
and Cherry, 2009; Miller et al., 2008; Morgan, 1972; Wells, 1996). 

In this paper, we develop a new approach to explore the spatial and 
temporal pattern of land loss in the Lower Mississippi River Delta 
(LMRD). Our methodology introduces the concept of a stability index as 
a measure of land-water dynamics as a temporal process rather than as 
a single event. In our study, we have defined land as lost only if it 
transitions from land to water and remains as water for at least the last 
two periods of observation. This method could be applied to any coastal 
environment that is experiencing land loss. We address three core re-
search questions to examine the patterns of deltaic land loss in the 
LMRD from 1983 to 2016: 1) What proportion of land loss undergoes 
single versus multiple transitions? 2) Are single or multiple transition 
pixels spatially clustered or dispersed? 3) Do these spatial clusters have 
varying morphologies? 

2. Material and methods 

2.1. Study area and datasets 

Our study area is the Lower Mississippi River Delta (LMRD), where 
we investigated watersheds at two different spatial scales (Fig. 1). 
Hydrological Unit Codes (HUCs) are designations by the United States 
Geological Survey (USGS), chosen to maintain consistency in the spatial 
scale of hydrological analysis. Within the LMRD, four HUC-6 water-
sheds are composed of 94 smaller HUC-12 watersheds (Fig. 1), with 
HUC-12 being the smallest designation assigned by USGS. We used 
coastal HUC-12 watersheds only, while avoiding large urban 

populations, resulting in modified HUC-6 watersheds being used for the 
analysis (Fig. 1). We exclude population centers because this study 
focuses on trying to link patterns to underlying natural processes and 
anthropogenic effects might influence these relationships. 

To build a dataset with spatial and temporal consistency we use 
satellite imagery from Landsat missions, which serve as the longest 
historical and open-source satellite dataset in the world. With its 30-m 
resolution and 16-day repeat cycle, Landsat products provide a globally 
consistent spatial and temporal resolution (Hansen et al., 2014; Ju 
et al., 2012; Li and Roy, 2017; Roy et al., 2010). Given the size of the 
study area, multiple Landsat scenes were needed for each HUC-12. 
However, not all Landsat scenes are usable because clouds and cloud 
shadow obscure land (Donchyts et al., 2016a; Hansen et al., 2014;  
Hansen and Loveland, 2012; Roy et al., 2010). To minimize issues with 
cloud cover and short-term weather systems, such as hurricanes and 
storms that rapidly alter land morphology, we created three-year tem-
poral composite imagery from using Landsat sensors (Chander et al., 
2009; Chander and Markham, 2003; Donchyts et al., 2016b; Goward 
and Williams, 1997). 

To generate the composite imagery, we evaluated nearly 4800 
Landsat tiles, each of which has less than 30% cloud cover (Table 1). 
Each composite image is created from three years of Landsat scenes. 
Only TM and ETM+ are used to maintain spatial and spectral con-
sistency (i.e., no MSS data are used). As Operational Land Imager (OLI) 
data from Landsat 8 was used in the final composite, we performed 
adjustments (Roy et al., 2016) to account for differences in sensing 
mechanism and spectral bands before combining them into a single 
image collection. All composites are for three years, except for the first 
period (1980 to 1983) when a limited number of images were available 
for our area of interest (Table 1). 

Our composite images are created from orthorectified and cali-
brated top-of-atmosphere (TOA) reflectance scenes to correct for be-
tween-scene variations in solar irradiance (Chander et al., 2013;  
Chander et al., 2009; Chander and Markham, 2003) as used by others 
(Donchyts et al., 2016a; Dong et al., 2016; Goldblatt et al., 2016;  
Hansen and Loveland, 2012; Kuleli et al., 2011; Shelestov et al., 2017). 
The final step in creating multi-year composites is reducing the stack of 
images on a per-band per-pixel for each three-year period into a single 
image via a percentile reducer. The three-year period allowed us to 
remove extreme hydrological events, such as floods or high tides. 

We use a percentile reducer on each three-year image collection to 
convert it to a temporal composite image. The percentile reducer uses 
the reflectance value corresponding to a user-defined percentile for 
each pixel (Fig. 2, Step 1). Percentile reducers generally perform better 
than a simple average because they are insensitive to outliers 
(Bornmann et al., 2013; Donchyts et al., 2016a, b; Pekel et al., 2016) 
and this method creates robust multi-year cloud-free composites 
(Donchyts et al., 2016a, b; Pekel et al., 2016). We use the 30th per-
centile value for each pixel because it performed well during composite 
creation (along with removing clouds and cloud shadows). 

2.2. Land-water classification: spectral unmixing and K-means clustering 

For each three-year composite image, we used spectral unmixing to 
determine the proportion of land or water in each pixel (Step 2, Fig. 2). 
As a soft classification technique, spectral unmixing allows for subpixel 
fractional abundance values of land or water classes for each pixel (Lu 
and Weng, 2007; Nath et al., 2014). To develop suitable land and water 
spectra, we collected endmember spectra from areas designated as 
permanent water and land bodies as designated by earlier global 
models (Donchyts et al., 2016a; Pekel et al., 2016). We used con-
strained spectral unmixing to make sure that the percentage of land or 
water for each pixel summed to one for each three-year composite 
(Keshava, 2003; Keshava and Mustard, 2002). We describe spectral 
unmixing using the linear mixing model (LMM) where we have M 
endmembers: 
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here x is the L by 1 spectrum vector, and S is the L by M matrix formed 
by the L endmembers, a is the fractional abundance (M by 1) for which 
we are solving, and w is the L by 1 additive observation noise vector 
(Keshava and Mustard, 2002). Since the images are temporal compo-
sites that are drawn from multiple dates over each three-year window 
and not a standard calibrated product from a single date, we use an 
adaptive percentile value composite that chooses a specific value for 
each pixel for the composite from the time stack. Hence, though linear 
spectral unmixing provides a percentage composition of each class and 
can be used for continuous measurement, a thresholding approach is 
needed with composites that are drawn from many different time slices 
(Liu and Yang, 2013; Nichol and Wong, 2007). 

Unsupervised k-means clustering was applied to the percentage 

water to generate a single value threshold to binarize land and water. 
The result was a land-water binary map for each three-year period that 
we use to assess spatial patterns of land loss. Also, while validation is 
possible for single reference imagery, a composite image provides a 
unique validation challenge and cannot be compared to a standard 
high-resolution image because it is time-transgressive. The overall 
process was assembled as a series of scripts in Google Earth Engine. 

2.3. Spatial disturbance and development of the stability index (SI) 

In this paper, we introduce the concept of the stability index (SI) 
and apply it to the land-water binaries. Our stability index is inspired by 
the ecological theory that shows how ecosystems often iterate toward 
stability (Averill et al., 1994; Loreau et al., 2003; Marleau et al., 2014), 
which we measured using the relative frequency of a pixel transitioning 
between land or water states. Our SI is based on the observation that 
not all pixels undergo a single transition from land to water because 
some pixels transition multiple times between land and water. We 
calculate the number of transitions the pixel experiences prior to the 
final water conversion only on the subset of pixels that are considered 
lost. Because pixels can transition from land to water and back again, it 
is difficult to define when a pixel is considered to be lost. Our opera-
tional definition is that a pixel is considered lost if it transitions from 
land to water at any point in the study period, and/or also remains 
water for at least the last two composites. With this definition, a pixel 
would be classified as land loss if it transitioned to water in the third-to- 
last composite and remained water for the final two composites. In 
principle, that same pixel (or others for that matter) could possibly 
transition back to land again in future timesteps. If this occurs, we 
would incorrectly count the pixel as land loss. This is a source of un-
certainty in our analysis, but we do note that less than 10% of land loss 
pixels are from the second-to-last timesteps, so even if this were to 
occur it is not the majority of the land loss pixels (Table 2). 

To capture the transition of a pixel from land to water or vice versa, 
we created difference images by subtracting composite at time t from 
the next composite at time t + 1 (Fig. 2, Step 3). These transitions are 
used to calculate SI, which assigns a measure of the stability to land-loss 
pixels: 

=

+

>n if n is even

n if n is odd

SI K

2
1

2

for K 0,

where K is the number of times a pixel changes from land to water and n 
is the number of difference images (here, n = 11 as we have 12 three- 
year composites). We posit SI is a measure of the inherent stability of a 
land pixel and its tendency to undergo transitions between land and 

Fig. 1. Map of the Lower Mississippi River 
Delta showing large coastal watersheds 
(HUC 6 scale) that do not contain large 
urban areas. Red lines show the HUC-6 
watersheds while the black lines show the 
coastal HUC-12 watersheds within each 
HUC-6 that form the area of interest. Boxes 
A-F show areas selected for further analysis 
within the overall basin. (For interpretation 
of the references to colour in this figure le-
gend, the reader is referred to the web 
version of this article.) 

Table 1 
Landsat image count for image composites.      

Start date End date # of images Instrument type  

1980-01-01 1982-12-31 56 Landsat TM 
1983-01-01 1985-12-31 108 Landsat TM 
1986-01-01 1988-12-31 269 Landsat TM 
1989-01-01 1991-12-31 240 Landsat TM 
1992-01-01 1994-12-31 276 Landsat TM 
1995-01-01 1997-12-31 294 Landsat TM 
1998-01-01 2000-12-31 503 Landsat TM & Landsat ETM+ 
2001-01-01 2003-12-31 636 Landsat TM & Landsat ETM+ 
2004-01-01 2006-12-31 648 Landsat TM & Landsat ETM+ 
2007-01-01 2009-12-31 606 Landsat TM & Landsat ETM+ 
2010-01-01 2012-12-31 514 Landsat ETM+ 
2013-01-01 2015-12-31 648 Landsat ETM+ & OLI 

Fig. 2. Six-step workflow for the overall approach, leading from raw satellite 
data to landscape metrics in spatially autocorrelated geographic areas. 
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water (i.e., its resistance to change from land to water). Therefore, a 
pixel with high SI experiences multiple transitions from land to water 
(i.e., it is stable in that it resists the transition), and pixels with low SI 
have a single transition from land to water. SI can obtain a maximum 
value of one, which would mean the pixel oscillates between land and 
water in every single time step. In this application, SI is not calculated 
for K = 0 because this represents a pixel that has remained either land 
or water throughout the entire period. It is important to note that SI 
does not quantify land to water transitions resulting from tidal or river 
flooding since these are events with small temporal footprints that we 
filter out during the process of creating the multi-year composites. 
Because our composites are every three years, a transition from land to 
water represents a fundamental shift to a different state (from land to 
water or water to land) across the three-year composites. This suggests 
to us that the transition reflects a longer-term change in the local en-
vironment of the pixel. 

2.4. Spatio-temporal autocorrelation 

Calculation of SI has the distinct advantage of collapsing the tem-
poral changes from multiple time steps into a single image. From this 
single image, we can then measure the spatial autocorrelation of tem-
poral dynamics using the SI values at each pixel. Moran's I is often used 
to measure the degree of spatial autocorrelation (Lam et al., 2018;  
Nagendra et al., 2004); however, it is a global measure that provides 
just one value for the entire landscape. Moran's I is further limited by 
the stationarity assumption that the statistical properties of the variable 
of interest do not change across the landscape (Cliff and Ord, 1970;  
Fotheringham, 2009; Griffith, 2006; Griffith, 1992; Ord and Getis, 
2001), which is frequently not the case. As our goal is to clearly identify 
clusters of high and low land-loss stability, we used the local Moran's I 
as our Local Indicator of Spatial Autocorrelation (LISA) to better un-
derstand interactions at the relevant scale of the land-to-water con-
version processes: 

=I z SI w z SI( ) ( )i i
j

ij j

where Ii is the LISA index for pixel i, z(SI)i and z(SI)j are the stability 
indices for pixel i or j in standardized form, and wij is the spatial weight 
(here, we used inverse-distance weighting with Euclidean distances), 
with the summation across all other j pixels (i ≠ j). 

The LISA analysis using the local Moran's I generates an index of 
how similar the SI value for a pixel is relative to its neighbors (Anselin, 
1995; Ord and Getis, 1995; Wulder and Boots, 1998). For each pixel's I, 
95% confidence intervals allow us to evaluate the statistical 

significance of local spatial autocorrelation. Compared to other local 
measures of spatial autocorrelation (such as Geary's c), the local Mor-
an's I more readily allows us to identify the way in which a pixel is 
similar or different from its neighbors. For instance, we calculate 
whether a local pixel has similarly high or low SI values relative to its 
neighbors (i.e., the type of statistically significant positive auto-
correlation between a pixel and its neighboring pixels rather than just 
the occurrence of spatial autocorrelation). Specifically in our context, 
the local Moran's I will identify areas where high SI pixels are sur-
rounded by high SI pixels (High-High autocorrelation, HH) and where 
low SI pixels are surrounded by low SI pixels (LL). Unlike other local 
autocorrelation methods, this method also identifies distinct types of 
dispersed spatial clusters where a high SI value was surrounded by low 
values (HL) or a low SI value pixel was surrounded by high SI value 
pixels (LH). In many applications, these dispersed arrangements are 
treated as a form of negative spatial autocorrelation and frequently are 
not analyzed in depth due to the low percentage of pixels in these 
classes and their complex spatial origin (Griffith, 2006; Griffith, 1992;  
Wulder and Boots, 1998). The percentage of area lost in each of the 
LISA classes was calculated for all HUC-12 watersheds. 

2.5. Landscape metrics: spatial configuration and morphology 

Landscape metrics have arisen as a method to quantify spatial het-
erogeneity and help to explain the relationship between process and 
patterns (Turner, 1989; Turner et al., 2001). Landscape patches for the 
LISA-derived cluster types (i.e., clusters of HH or LL pixels) served as 
the classes for the study. These determine the spatial distribution of 
pixels with high and low stability and their analysis using landscape 
metrics is used to measure their spatial configuration. We use Fragstats 
(v 4.2.1, developed by the Forest Science Department, Oregon State 
University) to quantify the configuration and morphology of landscape 
patch (Lin et al., 2015; Nagendra et al., 2004; Turner, 1989; Turner 
et al., 2001; Turner et al., 1993; Turner and Rao, 1990; Uuemaa et al., 
2009). For each LISA-derived cluster, we calculate landscape metrics 
(Table 3) that quantify the degree of fragmentation (patch density) and 
the shape of land loss (shape index). This choice was also informed by 
studies where factor analysis was performed across a few of these me-
trics to identify landscape metrics that are strongly correlated (Riitters 
et al., 1995). Each metric was calculated using a no sampling approach 
applied to the LISA classes. We also chose these landscape metrics based 
on the resolution of the spatial unit (HUC-12) and the imagery, because 
the spatial resolution impact the metric values and interpretation (Lin 
et al., 2015; Nagendra et al., 2004; Turner et al., 2001; Turner et al., 
1993; Turner and Rao, 1990; Uuemaa et al., 2009). 

For both HH and LL LISA classes, we calculated the percentage area 
lost, which describes the area lost in each HUC-12 watershed relative to 
all area lost in that watershed. We then used this percent area lost 
metric to test how land loss varied by landscape metric across the HUC- 
6 watersheds. This was done using two separate linear regression 

Table 2 
Pixels undergoing land to water transitions for each composite relative to total 
number of lost pixels during 1983 to 2018 (column 2) and the proportion of 
those pixels that experience different transition numbers (columns 3–7). Last 
two time steps from 2010 to 2016 are not show because they are used to de-
termine final pixel class as water.         

Composite year Land to 
water 
transitions 
relative to 
total (%) 

Percentage for each transition number 

1 2 3 4 5  

1983–1986 13.39 100.00     
1986–1989 9.69 100.00     
1989–1992 8.17 88.14 11.86    
1992–1995 10.72 90.70 9.30    
1995–1998 9.70 83.50 16.44 0.06   
1998–2001 10.47 77.56 20.53 0.96   
2001–2004 8.05 77.11 21.13 1.76 0.00 0.00 
2004–2007 20.01 77.01 20.24 2.71 0.04 0.00 
2007–2010 9.81 75.08 20.99 3.59 0.30 0.008 

Table 3 
Explanation of landscape metrics used: Patch Density and Shape Index.     

Metric Formula Description & use  

Patch density 
(PD) 

=PD NP
A

Higher PD values indicate a 
greater number of patches 
within the same area. PD is an 
indicator of fragmentation. 

NP=Number of Patches 
A = Total area of patches (m2) 
PD is always  > 0 but 
constrained by cell size. 

Shape index =Shape index
pij

aij

0.25 Shape index ranges from 1 to 
infinity. Shape index =1 
represents square patches and 
at higher values, patches 
become more irregular. 

pij = perimeter of patch ij (m) 
aij = square root of patch area 
(m2) adjusted by a constant to 
adjust for a square standard 
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models for HH and LL classes. In the two models, the percent area is the 
response variable, and the two landscape metrics (Patch Density and 
Shape) are continuous predictors while the HUC-6 watershed is a ca-
tegorical predictor variable. Individual t-statistics for each variable, as 
well as the F-statistic and adjusted r2 for the full model, are reported as 
metrics of the goodness of fit. Patch density and Shape were log- 
transformed to meet assumptions of normality. 

3. Results 

3.1. Land loss 

We define a pixel as land loss if it transitions from land to water at 
any point in the study period and also remains water for at least the last 
two composites. Our analyses showed that of all the land-loss pixels, 
75% undergo a single transition from land to water, while 21% of the 
pixels undergo two transitions from land to water and the remaining 
4% of the pixels undergo three or more transitions from land to water 
and back. (Table 4). 

The total land loss from 1983 to 2016 was 1403.85 km2 (Figs. 3 and 
4). The loss includes those land pixels that transition from land to water 
at any given three year time period of 1983 to 2016 and remain water 
pixels for the last two periods of our observation (2010–2016). 

Sudden increases in land loss that occurred in 2004–2007 are co-
incident with hurricanes Katrina and Rita (Barras, 2007). Though the 
impacts of single-year events and stochastic flooding are minimized by 
our methods, these events have a long-lasting effect that is captured in 
the 3-year image composites. All of the transitions from land to water, 
and water to land are presented in Table 2, where as the single tran-
sitions are captured in Table 3. Table 2 shows that single and multiple 
transition land loss is relatively steady in time, with the exception that 
transitions three or more times become more common later in the study 
period because these pixels require time to accumulate transitions. 

Besides those events, the land loss is relatively steady across the 
overall study area (Fig. 3). In the individual watersheds, loss is more 
variable through time. Barataria is relatively steady, but Calcasieu- 
Mermentau (hereafter CalcMerm) shows more variability at different 
times, compared to the overall study area. Terrebonne and Atchafalaya- 
Vermilion (hereafter AtchVerm) are highly variable and show fluctua-
tions from 1990 to 2000 that are not obviously present in other wa-
tersheds. 

3.2. Spatial clustering 

We found that the behavior of land loss pixels ranges from multiple 
transitions (high SI value) to single transitions (low SI value) (Table 4;  
Fig. 4). At the basin scale, CalcMerm and Barataria have the highest 
proportion of area lost in the LL class (Fig. 5a), closely followed by 
Terrebonne, while AtchVerm had the lowest amount of land loss. Most 
pixels are either in the HH or LL class, so the area lost in the HH class is 
inversely related to that in the LL class, with LL being dominant in most 
HUC-12 watersheds. We find a higher proportion of area lost that is HH 

class (Fig. 5b) in AtchVerm and Terrebonne while Barataria and Calc-
Merm have lower proportions. 

To understand how land loss and LISA classes are related, we ex-
amined six smaller subsets in detail (Figs. 6 and 7). These subsets were 
selected using a grid size of 20 by 20 km2 to represent land loss across 
all four HUC-6 watersheds, a varying degree of transitions, and the 
different LISA classes. The LISA analysis shows that most LL classes are 
either along shorelines or lake edges, as well as among fragmented 
land-water boundaries (Fig. 6). HH pixels tend to be more inland, away 
from the coastal edge. Since the landscape is highly fragmented in some 
areas, there are some isolated low and high values of SI that lead to the 
LH and HL class distribution (Fig. 6). 

The pixels that experience single transitions tend to be located 
across coastal shorelines and lake edges (Panel B & C of Fig. 7). Calc-
Merm shows coastal areas with low SI values (Panel F of Fig. 7), and 
most pixels have one transition from land to water. Barataria shows that 
areas with lower SI values (Panel E of Fig. 7) are distributed across 
internal lakes and coastal edges. Terrebonne low SI along edges (Panel 
A of Fig. 7) and higher SI values are located more inland (Panel D of  
Fig. 7). 

All watersheds show a mix of LISA classes with a mix of single and 
multiple transitions along with a substantial amount of HL and LH 
classes (Panel A and D of Fig. 8). For AtchVerm, we find LL clusters 
along coastal edges interspersed with some LL patches with HH clusters 
inland (Panel B, C of Fig. 8). CalcMerm has LL clusters along coastal and 
lake edges, and HH classes were clustered more inland (Panel F of  
Fig. 8), and Barataria shows areas with loss and lower SI values (Panel E 
of Fig. 8) distributed across internal lakes and coastal edges. 

3.3. Land-loss morphology 

The morphologies of clustered HH and LL LISA classes are different. 
The LL class tends to be clumped (low Patch Density value) while the 
HH class is more fragmented (high Patch Density value) (Fig. 9A). HH 
has lower Shape Index values owing to large fragmented patches in the 
HH class (higher patch density), with many of the patches being in-
dividual pixels (Fig. 9B). 

The relationship between patch density and land fragmentation is 
key in examining landscape patterns that directly affect land loss. Shape 
index determines the complexity of the morphology created as a result 
of such fragmentation. This relationship between land loss and land-
scape metrics was analyzed using a multiple regression model between 
percentage area lost in LL and HH LISA classes and log-transformed 
variables landscape metrics (Patch Density and Shape Index). HUC 6 is 
a categorical variable; the model suggests that while land loss is related 
to shape and patch density, it does not depend on the location/site of 
the analysis. 

We observe a strong positive relationship between land loss and 
both Patch Density and Shape, for both LL and HH based land loss. 
Interestingly, this is not sensitive to whether the loss undergoes single 
or multiple transitions because a positive relationship is observed for 
both LL and HH classes across the HUC 12 watersheds (Table 5). 

4. Discussion 

This study examines the overall land loss in the Lower Mississippi 
River Delta (LMRD) from 1983 to 2016 using Landsat data. The purpose 
of this study was twofold: to highlight the complexities inherent in 
robustly estimating land loss and to provide a means of combining 
spatial and temporal dimensions of loss using SI. The paper introduces 
the concept of SI to establish land-water transitions that occur in a 
natural pixel, before converting to water and being considered lost. The 
paper categorizes a lost pixel as one that transitions to water and re-
mains as a water pixel for the last two time periods of the study. By 
studying land loss that undergoes multiple transitions, relative to a 
single transition, we can identify important clues about the underlying 

Table 4 
Proportion of pixels undergoing different number of transitions for the overall 
area and each HUC-6 watersheds.         

Percentage of Pixels Undergoing Transition 

# of 
Transitions 

Overall Atchafalaya- 
Vermillion 

Barataria Calcasieu- 
Mermentau 

Terrebonne  

1 75.08 67.90 75.81 81.20 68.99 
2 20.99 27.44 20.20 16.50 24.45 
3 3.59 4.20 3.49 2.24 5.87 
4 0.30 0.46 0.47 0.06 0.67 
5 0.008 0.00 0.02 0.00 0.02 
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Fig. 3. Time series of land loss showing the area of land loss (left y-axis) and the area of land loss normalized by watershed area (right y-axis) that is lost in each time 
step and remains as a water class for the last two time steps. Since the 2013–2016 composite falls within the range determining loss, it is not included in the figure. 

Fig. 4. Top: Overall land loss and land gain from 1983 to 2016. Bottom: LISA classes derived from SI.  
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processes driving land loss in delta environments. Our results demon-
strate that though most land to water transitions occur as a single 
transition event (~75%), nearly 25% of the overall land area goes 
through two or more transitions between land and water before land 
loss. 

Interestingly, our results show that different LISA classes are often 
clustered and have different shapes and functional characteristics. We 
hypothesize that the LL and HH LISA classes represent different pro-
cesses that are driving land loss. For instance, the LL patches tend to 
have a low density and an elongated shape (Fig. 9); moreover, many of 
these patches are preferentially found on coastal and lake boundaries 
(Figs. 7, 8). Based on this pattern, and also the fact that most of these 
pixels undergo only a single transition from land to water, we suggest 

that they are primarily caused by wave edge erosion (Coleman, 1988;  
Day et al., 2000; Ortiz et al., 2017). 

Consequently, the opposite is true for HH patches. The HH patches 
tend to have a high patch density, meaning that they tend to have more 
patches per unit area and are less concentrated. As a result of the high 
patch density, the shape index of each cluster is much lower (Fig. 9), 
indicating they have a geometrical shape that is square-like, and 
sometimes even represent just a single or limited number of isolated 
land pixels. These pixels are probably converted to water by subsidence 
or vegetation dieback (Nyman et al., 1994; Nyman and DeLaune, 1999) 
that can occur away from the marsh edge. 

Our hypothesis that different land loss processes are associated with 
the different LISA classes requires field validation and more extensive 

Fig. 5. Box plots of percentage area lost 
belonging to A) LL LISA Class and B) HH 
LISA class for each HUC-12 watershed 
within the four HUC-6 boundaries. Each 
circular point represents a single HUC-12 
watershed and points are staggered along 
the x-axis for better viewing. The diamond 
represents the mean value of the distribu-
tion. 

Fig. 6. Subareas of the LMRD (20 by 20 km) that depict representative patterns of land loss between 1983 and 2016 only. Panel A & D are from Terrebonne, Panels B, 
C are from AtchVerm, Panel E is in Barataria and Panel F is in CalcMerm (see Fig. 1 for locations). Gray areas represent land that did not experience land loss or gain, 
light blue represents inland perennial water, dark blue designates coastal waters, and white shading indicates areas where land and water are not classified. (For 
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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testing. Field validation and observations from high-resolution images 
would allow us to estimate the error of omission and commission for 
our classification schemes and land-to-water transitions. But, our 
compositing approach also makes ground truthing the multiple changes 
that have occurred over decadal timescales that much more challen-
ging. Indeed, while our use of a series of multiyear composites over a 
30+ year period is a feature of this work, it also is the reason why we 
were unable to provide precise error estimates for the image classifi-
cations. 

But if our results are correct, it would suggest land loss in the LRMD 
is predominantly caused by edge erosion and/or rapid subsidence and 
flooding. LISA classes do not perfectly distinguish between land loss 
processes. For instance, LL patches, which predominantly occur on 
marshes edges can also occur far away from edges (see interior pixels in  
Fig. 8A,B,D,F). These interior LL pixels are not likely to be driven by 
wave edge erosion, but instead by rapid flooding and/or subsidence. 
Thus, if our interpretation of the LISA classes is accurate, it would 
suggest that roughly 75% of land loss on the LMRD is driven by wave 

Fig. 7. Subareas of the LMRD (20 by 20 km) that show different land to water transitions. Panel A & D lies in Terrebonne, Panels B, C lie within Atchverm, Panel E lies 
in Barataria and Panel F lies in Calcmerm (see Fig. 1 for locations). The larger the number of transitions, the higher the stability index. Gray areas represent land 
boundaries, light blue represents inland perennial water and dark blue designates ocean boundaries, and and white shading indicates areas where land and water are 
not classified. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

Fig. 8. Subareas of the LMRD (20 by 20 km) that depict cluster types, generated using the Local Indicator of Spatial Autocorrelation (see Fig. 1 for locations). The 
High-High (HH) and Low-Low (LL) values indicate positive autocorrelation versus HL and LH indicate spatial dispersion. Gray areas represent land boundaries, light 
blue represents inland perineal water and dark blue designates coastal waters, and and white shading indicates areas where land and water are not classified. (For 
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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edge erosion, and rapid flooding and/or subsidence. This provides a 
more nuanced interpretation than the recent analysis by Jankowski 
et al., 2017, who show, using the coastwide reference monitoring sta-
tion (CRMS), that shallow subsidence is the primary driver of loss. Most 
of the CRMS data come from interior pixels, and for obvious reason, 
those stations are not placed on marsh edges. We suspect that the CRMS 
data oversample the interior parts of islands where wave edge erosion 
does not occur. 

It is important to note that the processes of edge-erosion and sub-
sidence do not act in isolation. For both the LL and HH patches, we see 
that land loss increases as land becomes more fragmented, which is 
measured by the multiple regression models for both LL and HH patches 
(Table 5). This could arise if subsidence or edge-erosion increases edge- 
length, thus providing more opportunities for erosion. The combination 
of these processes can create a positive feedback loop and accelerate 
land loss (Lam et al., 2018; Nagendra et al., 2004). 

By studying the positively autocorrelated LISA classes, we were able 
to yield insights into the evolution of the delta environment more 
generally, and further show how LISA classes themselves may transition 
from one type to another as the landscape fragments. The use of both 
functional and spatial landscape metrics in the linear model provides 
evidence of a positive feedback loop between fragmentation and land 
loss. Delta processes such as subsidence, ponding, and sediment de-
position change the landscape morphology and can then be interpreted 
using these landscape metrics as process proxies. For example, previous 

studies in coastal areas have linked Patch Density to patch isolation and 
ultimately land fragmentation, by identifying overall increases in marsh 
edges for wind and wave actions to have a detrimental effect 
(Kindlmann and Burel, 2008; Ortiz et al., 2017; Turner and Rao, 1990). 
In the LMRD, an example of this pattern would be the fact that newly 
formed small ponds often merge with larger ponds and increase land 
fragmentation, while simultaneously growing pond area via edge ero-
sion and an increase in wind fetch (Ortiz et al., 2017). 

We find that core area, which refers to land area in the patch, at a 
distance from the edge decreases (Haines-Young and Chopping, 1996;  
Luck and Wu, 2002; Neel et al., 2004; Tischendorf, 2001). As core area 
fragments, further edges get exposed to wave and wind action further 
accelerating fragmentation. We posit that the high values of patch 
density and shape index, which represents a fragmented landscape with 
more edges, might allow for multiple process regimes to deteriorate 
land. The paper demonstrates that land loss as a spatio-temporal pro-
cess can be quantified using SI, which enables understanding the spatial 
and temporal trajectories of each pixel. 

5. Conclusions 

Deltas around the world are likely to experience land loss, but the 
driving causes of of land loss are hard to understand because of tran-
sitions between land loss and land gain. Our study provides a new 
spatio-temporal model to quantify the land loss and we use that model 
to hypothesize what processes drive patterns of land loss in the Lower 
Mississippi River Delta (LMRD). The new spatio-temporal model is 
sensitive to transitions between land and water, and on the LMRD 75% 
of land loss occurs by a single transition from land to water, while 25% 
of land loss experiences multiple transitions before becoming water. 
Single-transition loss pixels are clustered in space, have long, linear 
shapes, and are usually found along the shoreline. Multiple-transition 
pixels also are clustered in space, but have more compact shapes and 
are usually found in marsh interiors. Our data suggests that single- 
transition land loss is caused by wave-edge erosion, whereas multiple- 
transition land loss is caused by subsidence. Ultimately, field work will 
be helpful in better characterizing whether these classes are caused by 
subsidence or edge erosion, but the results hold promise for using long- 
term remote sensing information to determine processes of land loss. 
Moving forward, we think it is clear that the satellite record can provide 
a temporally rich depiction of the trajectory of land loss, including 

Fig. 9. Kernel density estimates of the distribution of (A) Patch Density for LL 
and HH type land loss classes and (B) Shape Index for LL and HH type land loss 
classes. The spatial metrics were calculated for HUC-12 watershed level. 

Table 5 
Multiple regression model results across HUC-12 watersheds using the land loss in low-low and high-high class as response variables. Log-transformed Patch Density 
and Shape Index are used as continuous predictors while HUC-6 watersheds act as categorical variables. Also contains the overall Adjusted R-squared, F-statistics, and 
p-value for both land loss in low-low and high-high class multiple regression model.       

LISA class Model terms Estimate ( ± SE) t-value P-value  

Low-low class (n = 95) Intercept 47.98( ± 3.27) 14.65  < 0.0001 
Patch density 6.41( ± 0.76) 8.44  < 0.0001 

Shape 7.63( ± 1.96) 3.89 0.0002 

Adjusted R-squared = 0.545 HUC6-Barataria 3.99( ± 2.73) 1.459 0.148 
HUC6-Calcmerm 
HUC6-Terrebonne 

Overall F-statistic = 22.58  3.99( ± 2.73) 1.289 0.201 
Overall P-value  < 0.0001  3.99( ± 2.73) 0.859 0.392 

High-high class (n = 95) Intercept -2.20( ± 2.98) -0.742 0.460 
Patch Density 6.78( ± 0.54) 12.655  < 0.0001 

Shape 13.25( ± 2.68) 4.937  < 0.0001 

Adjusted R-squared = 0.716 HUC6-Barataria -3.17( ± 1.90) -1.674 0.097 
HUC6-Calcmerm 
HUC6-Terrebonne 

Overall F-statistic = 47.06  -1.13( ± 2.10) -0.536 0.593 
Overall P-value  < 0.0001  0.38( ± 1.91) 0.198 0.843 
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single versus multiple transitions on a per-pixel basis. 
Through this work, we have chosen to focus on a single region, the 

LMRD, but the approaches used here should be readily transferable to 
other delta systems. Only with an increased understanding of the di-
versity of ways that land is lost through time can we begin to build 
more predictive models for future climate change. 
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