
DELTA DYNAMICS: UNDERSTANDING PROCESS, PATTERN, AND PEOPLE 

USING REMOTE SENSING AND SYSTEMS ANALYSIS IN COASTAL LOUISIANA 

AND AMAZON RIVER DELTA 

 
 
 
 
 
 
 
 
 
 

Samapriya Roy 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Submitted to the faculty of the University Graduate School 

in partial fulfillment of the requirements 

for the degree Doctor of Philosophy 

in the Department of Geography, Indiana University 

July 2019 



ProQuest Number:

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that  the author did not send a complete manuscript
and  there  are missing pages, these will be noted. Also, if material had  to be removed,

a note will indicate the deletion.

ProQuest

Published  by ProQuest LLC (  ). Copyright of the Dissertation is held  by the Author.

All rights reserved.
This work is protected against unauthorized copying under  Title 17, United  States Code

Microform Edition © ProQuest LLC.

ProQuest LLC.
789 East Eisenhower Parkway

P.O. Box 1346
Ann Arbor,  MI 48106 - 1346

13902783

13902783

2019



ii 
 

Accepted by the Graduate Faculty, Indiana University, in partial fulfillment of 
the requirements for the degree of Doctor of Philosophy. 

 
 
 

Doctoral Committee 
 

       Scott Robeson, PhD 
 
 
 
                        Douglas Edmonds, PhD 
 
 
 

Taehee Hwang, PhD 
 
 
 

Eduardo Brondizio, PhD 
 
 

 
April 22, 2019 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



iii 
 

Acknowledgments 

 

One of the most challenging moments in my doctoral pursuit was figuring out the problem I 

wanted to work on. This challenging time made me try, and fail and try again, and keep 

changing approaches. Throughout this process, I was lucky to have found mentors, friends, 

and family who pushed with me just a nudge at a time. The “why” behind why we do 

research has always been fascinating to me because my approach has always been about 

problem-solving, which is likely a carryover from my days as an engineer. Science, as per 

me, should be eclectic; it should be simple; it should be approachable and reproducible and 

beautiful and not exclusive in any way. I hope that my research touches upon at least a few 

facets of that goal. 

I want to take the time to thank my committee members who in some way or the other 

kept me grounded and let me evolve with my ideas. I think sometimes the hardest thing for an 

international student is to find an extended support group, a version of  “family” away from 

home. To that end, I would like to thank the office staff in the Geography Department namely 

Susan White and Kristi Carlson, those early morning conversations with them kept me 

connected. I want to thank my family for being supportive, for trusting me while I was still 

figuring things out for myself and doing this without expectations. I was lucky to have 

amazing friends like Landon Yoder who gave me comments and edits and have spent a lot of 

time with me trying to teach me everything from topic sentences to relearning approaches in 

writing. Also, none of this would have been possible without the presence of my best friend, 

mentor, and partner Briana Whitaker. I think I like to borrow the idea from quantum 

entanglements. We are entangled with a few people even at a distance, in every good way 

that I can think of, in effects that are independent of time. Thank you for all of these 

experiences.  



iv  

Samapriya Roy 
 

 
DELTA DYNAMICS: UNDERSTANDING PROCESS, PATTERN, AND PEOPLE 

USING REMOTE SENSING AND SYSTEMS ANALYSIS IN COASTAL LOUISIANA 

AND AMAZON RIVER DELTA 

 
 
My dissertation research spans several topics in spatial landscape theory. In the first project, I 

examined the temporal dynamics of land loss in the Lower Mississippi River Delta (LMRD), 

with a focus on identifying temporal stability and spatial patterns of loss. After creating 

composite images that were classified into land and water, I developed and used a novel 

stability index to quantify the transitionary behavior of land and water pixels. I found that 

while most land in LMRD is lost in a single transition (nearly 75%) the remaining 25% of the 

land area undergoes multiple transitions between land and water before permanently 

transitioning to water. This indicates that there dynamic nature of deltaic land loss and the 

importance of repeated measurements across varying time scales to understand delta stability. 

For the second part of the LMRD project, I used multi-sensor analysis to analyze land loss 

and fragmentation at varying spatial, temporal, and spectral resolutions. I found that finer 

spatio-temporal resolution more effectively removes atmospheric anomalies, such as cloud 

and haze, and improves quantitative estimates of land loss. At the same time, higher spectral 

resolution allowed us to differentiate land and water better. In a third project on the Amazon 

River Delta (ARD), I applied a novel methodology using multilayer network analysis coupled 

with remote sensing approaches to improve spatial estimates of urban flood vulnerability in 

Belem, Brazil. I created an adjusted vulnerability index using indicator variables to improve 

on estimates from urbanicity, permeability, and link to flooding potential. I found that there 

are stark differences in vulnerability between planned and unplanned settlements. Through 

my dissertation research, I have provided evidence for the importance of using high spatial 



v  

and temporal resolutions in delta landscapes. The novel methods that I have developed 

provide better estimates of land loss and the associated vulnerability to flooding in delta 

environments. This work can be extended to other delta regions of the world in future 

research to assess vulnerability as sea-level continues to rise and populations in delta 

environments increase. 

 

 
Scott Robeson, PhD 

 
 
 

Douglas Edmonds, PhD 
 
 
 

Taehee Hwang, PhD 
 
 
 

Eduardo Brondizio, PhD 
 



vi 
 

Table of Contents 

Chapter 1: 
Introduction…………………………………………………………………………..………..1 

Chapter 2: Spatial and temporal patterns of land loss in the Lower Mississippi River Delta, 
1984-
2016…………………………………………………………………………………………..12 

Chapter 3: Remotely sensed measurement of land loss and gain in the Lower Mississippi 
River Delta using Landsat, Sentinel-2, and PlanetScope within the Google Earth Engine….48 

Chapter 4: Urban Flood Vulnerability in Belém, Brazil: Application of Adjusted 
Vulnerability Index using Multilayer Geo-constrained Networks…………………………...86 

Chapter 5: Conclusion and Summary……………………………………………………...131 

Curriculum Vitae 



1 
 

Chapter 1: Introduction 

Globally, deltas remain some of the most populated and vulnerable regions of the world – 

with a higher population growth rate than the global average (Costa and Brondízio, 2011; 

Edmonds et al., 2017; Syvitski et al., 2009). Deltaic populations are growing at 1.59% per 

year, which outpaces the world growth rate of 1.11%. As a result, average population 

densities in deltas are high and increasing with time, rising from 322 people/km2 in 2000 to 

projected values of 422 people/km2 by 2020 (Edmonds et al., 2017). High population 

densities, coupled with climate change and natural and anthropogenic modifications, put 

deltas around the world under constant threat of flooding, degradation, and loss (Mansur et 

al., 2016; Overeem and Brakenridge, 2009; Syvitski et al., 2009). Despite the incredible 

importance of deltas to ecological productivity and people’s livelihood, they are extremely 

vulnerable to land loss. Substantial anthropogenic modifications of delta processes and 

environments have accelerated the natural delta cycle which consists of time dependent delta 

formation and degradation. The acceleration in the delta cycle has subsequently contributed 

to increased flooding and associated land loss in deltas across the globe (Newton et al., 2012; 

Renaud and Kuenzer, 2012; Syvitski et al., 2009; Tessler et al., 2015).  

In deltaic environments, the extent of flooding, along with land and water 

morphology, serve as proxies or indicators of the processes driving land loss. Despite the 

potential value of deltas to ecological dynamics, including overall productivity and value of 

ecosystem services, we continue to lack finer resolution understanding of how much and 

where land is converting to water. Analyzing spatial changes in morphology of degrading 

wetlands requires high temporal and spatial resolution that allows pixel-level examination of 

the changing spatial and temporal extent. Similarly, understanding the socio-economic 

vulnerability of people living in these delta areas allows us to understand why these areas 

have the highest population densities despite being some of the most threatened landscapes.  
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Large populations living in the delta area over the next couple of decades will experience 

increasing vulnerability owing to flooding extent combined with socioeconomic 

vulnerability. (Edmonds et al., 2017; Overeem and Brakenridge, 2009; Syvitski et al., 2009; 

Tessler et al., 2015).  Delta dynamics has hence long been considered essential to 

understanding delta vulnerability. River deltas across the globe are starved of riverine 

sediment load, and plagued by increased storm surges, and sea-level rise (Rabalais et al., 

2002; Turner and Rabalais, 1991; Walling, 2008; Walling and Fang, 2003). The additional 

loss of land area due to human development and pollution further reduces delta ecosystem 

resilience by exposing vital infrastructure to increased storm damage (Adger and Kelly, 2012; 

Janssen, 2007; Renaud and Kuenzer, 2012). While land loss estimates have been a reliable 

source of estimating the current health of landscapes, rapidly changing landscape such as 

deltas require frequent and robust methods of land loss and change detection. This 

dissertation has two primary objectives: i) assessing morphological changes in terms of land-

water boundaries and associated land loss across the Louisiana coastline using high-

resolution remote sensing approaches and ii) assessed flood vulnerability and its change with 

increasing urbanization in Belem, an urban delta system within the Amazon River Delta 

(ARD). The following three chapter titles represent the summation of these works. 

Chapter 2 – Spatial and temporal patterns of land loss in the Mississippi River Delta, 

1980-2016 

Chapter 3 – Remotely sensed measurement of land loss and gain in the Lower 

Mississippi River Delta using Landsat, Sentinel-2, and PlanetScope within the Google 

Earth Engine 

Chapter 4 – Urban Flood Vulnerability in Belém, Brazil: Application of Adjusted 

Vulnerability Index using Multilayer Geo-constrained Networks 
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1.1 Research significance and contributions 

In the following sections, I summarize the main contributions of my research. I will discuss 

the research topics in full in the later chapters. 

Two chapters of my dissertation deal with spatial and temporal scale patterns in the 

LMRD. For the second chapter, my research develops a new understanding of delta 

morphology and land loss dynamics using long-term data from Landsat missions (Chander 

and Markham, 2003; Hansen and Loveland, 2012; Roy et al., 2010). The ultimate goals of 

this section of the study were to 1) understand the magnitude and patterns of land change and 

land loss 2) evaluate periodic stability of a land pixel transitioning to water using a novel 

stability index and 3) assess periodicity and morphology of land loss in deltaic landscapes. I 

created a temporally rich and spatio-temporally consistent dataset to analyze land-water 

conversions, identify the dominant transformations (i.e., loss or gain) within each watershed 

boundary, and evaluate the patterns of change using landscape and class metrics. The work 

leverages big data and distributed computing (Donchyts et al., 2016; Gorelick et al., 2017; 

Shelestov et al., 2017) to produce novel products utilizing a time-series, sub-pixel 

classification, which ultimately enhances our understanding of land-water transitions. This 

study allowed me to both qualitatively and quantitatively analyze multiple facets of deltaic 

land loss via visual interpretation of maps and spatial clustering analyses, respectively.  

The third chapter of my dissertation revisits the LMRD and augments my long-term 

spatio-temporal analysis of land loss to further examine land loss estimates as a function of 

the sensor characteristics. To do this, I investigated how the use of different spatial, temporal, 

and spectral resolution affects our understanding of land loss patterns in river deltas. A 

secondary aim of this chapter was to develop a streamlined workflow for users to incorporate 

multiple satellite sensors into their research studies (Tolle et al., 2011; Wilkinson et al., 

2016). We derived land loss estimates from Landsat, Sentinel, and PlanetScope constellation 
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sensors with spatial resolutions set at 30m, 20-10m, and 3m (respectively) and with a 

temporal resolution of 16 days, 5 days and 1 day (respectively). My analyses applied a 

monotonic trend using the Mann-Kendall statistic (Bogucki et al., 2012; Hamed, 2008; 

Hamed and Rao, 1998) for both index based (Normalized Difference Water Index) (Gao, 

1996; McFeeters, 1996; Xu, 2006) and constrained spectral-unmixing (Keshava, 2003; 

Keshava and Mustard, 2002) based land loss analysis. We found large scale variability in the 

estimated land loss across all three sensors. Interannual scales introduce significant signal to 

noise ratios which tend to over and underestimate overall loss across shorter temporal 

windows. As climate events become more stochastic and with improvements in Earth 

Observation systems, short-term assessment of landscape changes will be critical to 

understanding the overall health of the delta region.  

In my fourth chapter, I examined anthropogenic vulnerability and adaptation among 

communities living in deltaic landscapes to urban flooding. My analysis within the 

Metropolitan area of Belem, Brazil took into consideration different spatial units such as 

census sectors and bairros as well as social units designated as planned and unplanned 

settlements. In my work, I developed a novel index known as the adjusted vulnerability index 

(AVI) to examine the effects of spatial clustering and dispersion of social-economic variables 

on the overall vulnerability experienced by census sector as the finest spatial unit. My work 

further leverages remote sensing methodologies to generate high spatial and temporal 

resolution land cover datasets (Antrop and Van Eetvelde, 2000; Azzari and Lobell, 2017; 

Gorelick et al., 2017) along with climate datasets such as precipitation (Funk et al., 2015; 

Katsanos et al., 2016) and tide (Flater, 1998, 1996) that serve as proxy indicators describing 

how vulnerability is clustered within the city. I combine multiple methods such as Analytical 

hierarchical process (AHP), Local Indicator of Spatial Autocorrelation (for spatial clustering) 

and a multilayer network analysis to create the AVI (Anselin, 1995; Ord and Getis, 2001; 
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Saaty, 1987, 2008).  This study allowed me to both assess the spatial and social distribution 

of vulnerability across varying spatial scales. The method I developed could be used for 

adding a temporal dimension to understand evolving changes in urban vulnerability to 

flooding.  

 

1.2 Dissertation structure 

This dissertation has three main parts: 

The second chapter is dedicated to assessing the overall land loss by area and by 

morphology within the Lower Mississippi River Basin (LMRB). The idea for this paper was 

developed during discussions with the author's co-advisors (Douglas Edmonds & Scott 

Robeson). The author did the paper write-up, and data analysis for this paper and his co-

advisors provided detailed feedback and comments, and another coauthor (Alejandra Ortiz) 

provided detailed feedback and comments. 

The third chapter revisits the first paper and is on improving estimates of land loss 

using multiple remote sensing sensors within the Lower Mississippi River Basin (LMRB). 

The author developed the idea of this paper. The author led the paper to write up and data 

analysis while detailed feedbacks were provided by his advisor (Douglas Edmonds) and 

coauthors (Tyson Swetnam and Joseph Mascaro). This paper is being prepared for 

publication in the Remote Sensing of Environment. 

The fourth chapter is on estimating spatially adjusted urban vulnerability to flooding 

in the urban delta, in our case, Belem, Brazil. The author developed the idea of this paper. 

The author led the paper write-up and data analysis with feedback from his committee 

member (Eduardo Brondizio) and coauthors (Landon Yoder and Vitor Dias). Vitor Dias 

collected the in situ data for this paper in the summer of 2018. This paper is being prepared 
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for publication in Sustainability Science as a follow up to our earlier paper (Mansur et al., 

2016).  

 

The author published an additional second author, as well as three third-author papers. An 

additional third-author paper and one fifth-author paper are in review. These co-authored 

works are relevant to the overall dissertation topic, but they are not discussed here to maintain 

brevity and have been included in the CV for completeness. 
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Abstract 

The Mississippi Delta in coastal Louisiana has some of the highest rates of land loss in the 

world. This land-loss crisis is likely to become a global problem because most major deltas 

are expected to be vulnerable to land loss during the remainder of the 21st century and 

beyond. Despite this predicament, we lack basic information regarding how land loss in a 

deltaic environment proceeds in time and space. Here, we evaluate the spatial and temporal 

trends of land loss and gain in the Lower Mississippi River Delta (LMRD) region and then 

examine the spatial patterns of overall loss using landscape metrics. We used nearly 4800 

Landsat images to construct a series of three-year cloud-free composites from 1983 to 2016. 

From these data, we created a stability index (SI), which is a dimensionless measure of the 

number of land-to-water transitions that a land pixel makes before converting permanently to 

water. We then used a local indicator of spatial association to assess spatial clustering of land 

loss and to further assess the spatial morphology using patch density and shape metrics. Our 
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results indicate that 75% of land loss is a single transition from land to water, while about 

25% of land pixels have two or more transitions before changing to water. Our analysis 

further shows that the land-loss area within the spatial patches with both high and low 

stability (or high and low values of SI) is strongly related to the density of land patches and 

their shape (R2 of 0.717 and 0.545 respectively). Furthermore, our work suggests that using 

the SI, in combination with local spatial autocorrelation analysis and landscape metrics, 

serves as an effective tool to monitor and analyze land loss in deltaic environments.  

 

Keywords: land loss, fragmentation, LISA, Fragstats, Google Earth Engine, Landsat 

 

2.1. Introduction 

Though deltas cover less than 3% of Earth’s land surface, they are home to some of the 

world’s highest population densities and biodiversity (Austin, 2006; Ericson et al., 2006; 

Syvitski et al., 2009; Tessler et al., 2015). Despite the incredible importance of deltas to 

ecological productivity and people’s livelihoods, they are extremely vulnerable to land loss 

given their proximity to the sea. The land-loss problem is exacerbated by human activities 

upstream; people have extensively modified rivers and deltas through channelization and 

damming, which has decreased sedimentation delivery. The decreased delivery of sediments 

to deltas, coupled with rises in sea level, has led to increased flooding and land loss in deltas 

worldwide (Newton et al., 2012; Renaud and Kuenzer, 2012; Syvitski et al., 2009).  

Despite the potential value of deltas to ecological services and productivity, we lack a 

clear picture of spatio-temporal patterns and magnitude of land loss (Blum and Roberts, 

2012, 2009; Day et al., 2007, 2000; Lam et al., 2018; Ortiz et al., 2017). The MRD accounts 

for more than 30% of the coastal wetlands in the United States and has the fourth largest 

basin area and seventh largest water discharge in the world. The Mississippi River Delta 
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(MRD), based on subsidence from 1956-1990 has suffered a wetland loss amounted to over 

3400 km2 or about 25% of the overall deltaic wetlands (Blum and Roberts, 2012, 2009; Day 

et al., 2007, 2000; Morton, 2003). These characteristics make the MRD one of the largest and 

most ecologically essential deltas in the world and serve as an ideal model for creating 

sustainable solutions to land loss.  

Previous studies of land loss in the MRD relied on hand-drawn maps, ground 

sampling, and early satellite data. (Britsch and Dunbar, 1993; Couvillion et al., 2011; Craig et 

al., 1979; Houck, 1983; Penland et al., 2000a). These early studies convincingly 

demonstrated the severity of the land loss problem over long periods. But, as we move 

toward designing sustainable solutions for the MRD, we also need to know how land loss 

operates over shorter timescales. Unfortunately, existing methods are not easily applied to 

shorter periods because the methods are imprecise and also because the land loss is dynamic. 

To create more reliable short-term estimates of land loss, we take advantage of the improved 

capability to create time-series composites and perform parallelized operations on time stacks 

of imagery (Donchyts et al., 2016a, 2016b; Hansen et al., 2014; Pekel et al., 2016) that 

produce more temporally consistent datasets.  

In this paper, we develop a new approach to the land-loss problem in the Lower 

Mississippi River Delta (LMRD) to explore the spatial and temporal pattern of permanent 

land loss. We have defined land to be permanently lost, only if it transitions from land to 

water and remains as water for the last two periods of observation. We address three core 

research questions to examine the patterns of deltaic land loss in the LMRD from 1983 to 

2016. 1) What proportion of land loss undergoes single versus multiple transitions? 2) Are 

single or multiple transition pixels spatially clustered or dispersed? 3) Do these spatial 

clusters have varying morphologies? Our methodology uses a novel concept of stability index 
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as a temporal measure of land water dynamics and land loss trajectory evaluating land loss as 

a continuous process instead of a single snapshot in time. 

In recent years, the methods used to detect and decipher the spatial patterns of land 

loss have improved considerably, especially with substantial improvements in cloud 

computing and the capability to analyze deep time stacks of imagery (Donchyts et al., 2016a, 

2016b; Gorelick et al., 2017). In addition to the challenges of analyses at high spatio-

temporal resolution, most previous analyses focus on permanent land loss (Britsch and 

Dunbar, 1993, 1993; Couvillion et al., 2011; Penland et al., 2000b). But, not all land loss is 

permanent, as coastal land can transition from land to water and back to land again over 

periods ranging from months or years. Herein, we define two broad types of land loss: i) 

single-transition land loss occurs when land transitions once and becomes water permanently 

(over the course of our study), and ii) multiple-transition land loss occurs when one or more 

land-to-water transitions precede the permanent loss from land to water.   

These two types of land loss are rarely separated in coastal studies of the LMRD and 

can provide clues into the processes driving land loss. For example, coastal erosion acts on 

marsh edges that are exposed continuously to waves and ocean currents (Bernier et al., 2006; 

Blum and Roberts, 2009; Britsch and Dunbar, 1993; Couvillion et al., 2016, 2011; Day et al., 

2000; Kesel, 1989; Penland et al., 2000b). When viewed through time, coastal erosion is 

effectively instantaneous as land irreversibly becomes water. In contrast, the process of 

subsidence can occur anywhere within the delta, including more inland areas. Subsidence, 

though not always, is often slower than edge erosion and loss may be preceded by more 

frequent flooding (McKee and Cherry, 2009; Miller et al., 2008; Morgan, 1972; Wells, 1996).  
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2.2. Material and Methods 

2.2.1 Study Area and Datasets 

Our study area is the Lower Mississippi River Delta (LMRD), where we investigated 

watersheds at two different spatial scales (Figure 2.1). Hydrological Unit Codes (HUCs) are 

designations by the United States Geological Survey (USGS), chosen to maintain consistency 

in the spatial scale of hydrological analysis. Within the LMRD, four HUC-6 watersheds are 

composed of 94 smaller HUC-12 watersheds (Figure 2.1), with HUC-12 being the smallest 

designation assigned by USGS. We used coastal HUC-12 watersheds only while avoiding 

large urban populations, resulting in modified HUC-6 watersheds being used for the analysis 

(Figure 2.1). Though anthropogenic processes are realized further downstream, the study was 

focused on highlighting patterns and process of land loss in a delta system as a whole. The 

study further focuses on trying to link patterns to underlying natural processes that in 

conjunction with anthropogenic effects play a detrimental effect on the delta lifecycle further 

justifying decision to exclude areas with large urban clusters and populations. The modified 

HUC-6 Boundaries and the selected HUC-12 watersheds within these boundaries are shared 

as supplemental material.  

 

Figure 2.1: Large coastal watersheds (HUC 6 scale) within the LMRD that do not contain 

large urban areas. Smaller watersheds (HUC-12 scale) also area shown within each (Twilley 

et al., 2016). Yellow boxes show areas selected for further analysis within the overall basin. 
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Spatial and temporal consistency for long-term land loss analysis has relied on historical 

maps and satellite imagery such as that provided by the Landsat continuity missions, which 

serve as the longest historical and open source satellite dataset in the world. With its 30-meter 

resolution and 16-day repeat cycle, Landsat products provide a globally consistent spatial and 

temporal resolution (Hansen et al., 2014; Ju et al., 2012; Li and Roy, 2017; Roy et al., 2010). 

Given the size of the study area, multiple Landsat scenes were needed for each HUC-12. 

However, not all Landsat scenes are usable owing to the presence of clouds and cloud 

shadows which can limit the ability to monitor land (Donchyts et al., 2016a; Hansen et al., 

2014; Hansen and Loveland, 2012; Roy et al., 2010). To minimize issues with cloud cover 

and short-term weather systems, such as hurricanes and storms that rapidly alter land 

morphology, temporal composite imagery were created from Landsat 5-8 missions (Chander 

et al., 2009; Chander and Markham, 2003; Donchyts et al., 2016b; Goward and Williams, 

1997).  

To generate the composite imagery, we evaluated nearly 4800 Landsat tiles with less 

than 30% cloud cover (Table 2.1). Each multi-year composite image is created from three 

years of Landsat scenes over the study area. Only TM and ETM+ are used to maintain spatial 

and spectral consistency (i.e., no MSS data are used). All composites are for three years 

except the first period (1980 to 1984) since a limited number of images were available (Table 

2.1) for our area of interest at the beginning of the period of record.  

Table 2.1: Landsat image count for creating image composites with a 30th percentile 

composite calculated to minimize cloud cover per band. Here Landsat TM (includes Landsat 

4 & 5) and Landsat ETM+ (Landsat 7 & 8). 

Start Date End Date # of Images Instrument Type  
1980-01-01 1984-12-31 56 Landsat TM  
1983-01-01 1985-12-31 108 Landsat TM  
1986-01-01 1988-12-31 269 Landsat TM  
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1989-01-01 1991-12-31 240 Landsat TM  
1992-01-01 1994-12-31 276 Landsat TM  
1995-01-01 1997-12-31 294 Landsat TM  
1998-01-01 2000-12-31 503 Landsat TM & Landsat ETM+  
2001-01-01 2003-12-31 636 Landsat TM & Landsat ETM+  
2004-01-01 2006-12-31 648 Landsat TM & Landsat ETM+  
2007-01-01 2009-12-31 606 Landsat TM & Landsat ETM+  
2010-01-01 2012-12-31 514 Landsat ETM+  
2013-01-01 2015-12-31 648 Landsat ETM+  

 

For each image in our composite, we used orthorectified and calibrated top-of-

atmosphere (TOA) reflectance scenes to correct for between-scene variations in solar 

irradiance, as suggested by (Chander et al., 2013, 2009; Chander and Markham, 2003) and 

used by many (Donchyts et al., 2016a; Dong et al., 2016; Goldblatt et al., 2016; Hansen and 

Loveland, 2012; Kuleli et al., 2011; Shelestov et al., 2017). The final step in creating 

multiyear composites is reducing the stack of images per-band per-pixel for each three-year 

period into a single image. The three-year period allowed us to remove extreme hydrological 

events, such as floods or high tides.  

 

 

 

 

 

 

 

 

 

 

Figure 2.2: Six-step workflow for the overall approach, leading from raw satellite data to 

landscape metrics in spatially autocorrelated geographic areas.  

Landsat 4, 5, 7, 8 Top of Atmosphere Reflectance 

1983-2016: Percentile Reduced Cloud Free Composite every three years 

Constrained Spectral Unmixing and K-Means clustering with binarization 

Step-1 

Step-2 

Difference Images from binary images (ti to ti+1th Composite) Step-3 

Stability Index (SI) from difference images Step-4 

Localized Indicator of Spatial Autocorrelation (LISA) analysis on SI raster Step-5 

Patch Density and Shape index (landscape metric) analysis for positively 
autocorrelated LISA classes (LL and HH classes)  

Step-6 
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For each three-year period, we use a percentile reducer on each image within a 

collection, which uses the reflectance value corresponding to the nth percentile for each pixel 

(Step 1 in Fig. 2). Percentiles generally perform better than taking a simple average because 

they are not sensitive to outliers (Bornmann et al., 2013; Donchyts et al., 2016a, 2016b; Pekel 

et al., 2016) and this method creates robust multiyear cloud-free composites (Donchyts et al., 

2016a, 2016b; Pekel et al., 2016). We use the 30th percentile value for each pixel because it 

performed well during composite creation (along with removing clouds and cloud shadows).    

2.2.2 Land-Water Classification: Spectral Unmixing and K-Means clustering 

For each three-year composite image, we used spectral unmixing to determine the proportion 

of land or water in each pixel. As a soft classification technique, spectral unmixing allows for 

subpixel fractional abundance values of land or water classes for each pixel (Lu and Weng, 

2007; Nath et al., 2014). To develop suitable land and water spectra, we collected endmember 

spectra from areas designated as permanent water and land bodies as designated by earlier 

global models (Donchyts et al., 2016a; Pekel et al., 2016). We used constrained spectral 

unmixing to make sure that the percentage of land or water for each pixel summed to one for 

each three-year composite (Keshava, 2003; Keshava and Mustard, 2002). We describe 

spectral unmixing using the linear mixing model (LMM) where we have M endmembers: 

𝑥𝑥 = �𝑎𝑎𝑖𝑖𝑠𝑠𝑖𝑖 + 𝑤𝑤 = 𝑆𝑆𝑆𝑆 + 𝑤𝑤
𝑀𝑀

𝑖𝑖=1

 

here x  is the L by 1 spectrum vector, and S is the L by M matrix formed by the L 

endmembers, a is the fractional abundance (M by 1) for which we are solving and w is the L 

by 1 additive observation noise vector (Keshava and Mustard, 2002). Since the images are 

temporal composites that are drawn from multiple dates over each three-year window and not 

a standard calibrated product from a single date, we use an adaptive percentile value 

composite that chooses a specific value for each pixel for the composite from the time stack. 
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Hence, though linear spectral unmixing provides a percentage composition of each class and 

can be used for continuous measurement, a thresholding approach is needed with composites 

that are drawn from many different time slices (Liu and Yang, 2013; Nichol and Wong, 

2007). Unsupervised k-means clustering was applied to the percentage water to generate a 

single value threshold to binarize land and water. The result was a land-water binary map for 

each 3-year period that we use to assess spatial patterns of land loss. Also, while validation is 

possible for single reference imagery, a time series composite provides a unique challenge 

when comparing to a standard high-resolution image.  As such, we perform a validation using 

existing global datasets such as those, provided by (Donchyts et al., 2016a; Pekel et al., 

2016). These global validation datasets themselves are a result of binarization (Donchyts et 

al., 2016a) and field validation (Pekel et al., 2016) which provides robustness to our overall 

methodology and to our use of adaptive thresholding which allows for better class separation 

for matching with these validation datasets. The overall process was assembled as a series of 

scripts in Google Earth Engine. 

2.2.3 Spatial Disturbance and Development of the Stability Index (SI) 

In this paper, we introduce the concept of the stability index (SI) and apply it to the 

land-water binaries. Our stability index is inspired by the ecological theory that shows how 

ecosystems often iterate towards stability, which can be measured using the relative 

frequency of a pixel to move between land or water states (Averill et al., 1994; Loreau et al., 

2003; Marleau et al., 2014). Our SI is based on the observation that not all pixels undergo a 

single change from land to water, with some pixels transitioning multiple times between land 

and water. For every pixel ultimately classified as a permanent loss, we calculate the number 

of transitions that that pixel undergoes. Difference images are created by subtracting 

Compositet-Compositet+1 (where t is a specific composite in our time series data and t+1 is 

the next composite) which captures the transition of a pixel from land to water or vice versa. 
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These transitions are used to calculate SI which assigns a measure of the stability to land-loss 

pixels:  

SI=
K

�
𝑛𝑛
2  𝑖𝑖𝑖𝑖 𝑛𝑛 𝑖𝑖𝑖𝑖 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒

𝑛𝑛 + 1
2  𝑖𝑖𝑖𝑖 𝑛𝑛 𝑖𝑖𝑖𝑖 𝑜𝑜𝑜𝑜𝑜𝑜

 for K >0  ,  

where K is the number of times a pixel changes from land to water and n is the number of 

difference images (here, n=11 as we have 12 three-year composites).  We posit SI is a 

measure of the inherent stability of a land pixel and its tendency to undergo transitions 

between land and water (i.e., its resistance to permanent change from land to water). 

Therefore, a pixel with a high SI is one that has multiple transitions from land to water (i.e., it 

is stable in that it is able to resist the transition), and pixels with low SI have a single 

transition from land to water. The value of K  relative to the number of difference images 

provides a range of SI values with a maximum value of one which would mean the pixel 

oscillates between land and water in every single time step. In this application, SI values are 

not calculated for K=0 because this represents a pixel that has remained either land or water 

throughout the entire period of the study. It is important to note that SI does not quantify land 

to water transitions resulting from tidal or river flooding since these are events with small 

temporal footprints that we filter out during the process of creating the multiyear composites. 

Because our composites are every three years, a transition from land to water represents a 

fundamental shift to a different state (from land to water or water to land) across the three-

year composites. This suggests to us that the transition reflects a longer-term change in the 

local environment of the pixel. 

2.2.4 Spatio-Temporal Autocorrelation 

Calculation of the stability index per pixel through time collapses the temporal differences 

between the land and water binaries from multiple time steps into a single image with a 

measure of inherent stability. Land loss across the landscape, however, can be thought of as a 
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spatially autocorrelated process. Moran’s I (Lam et al., 2018; Nagendra et al., 2004) is often 

used to measure the degree of spatial autocorrelation; however, Moran’s I is a global measure 

that provides just one value for the entire landscape. Moran’s I is further limited by the 

stationarity assumption that the statistical properties of the variable of interest do not change 

across the landscape (Cliff and Ord, 1970; Fotheringham, 2009; Griffith, 2006, 1992; Ord 

and Getis, 2001), which is frequently not the case. As a result, we used a Local Indicator of 

Spatial Autocorrelation (LISA) to better understand interactions at the relevant scale of the 

land-to-water conversion processes: 

Ii=SIi �wij
j

SIj 

where Ii is the LISA index for pixel i,SIi and SIj are the stability indices for pixel i or j in a 

standardized form, and wij is the spatial weight (here, we used inverse-distance weighting 

with Euclidean distances), with the summation across all other j pixels (i≠j). 

The LISA analysis generates an index of how similar the SI value for a pixel is 

relative to its neighbors (Anselin, 1995; Ord and Getis, 1995; Wulder and Boots, 1998). For 

each pixel’s I, 95% confidence intervals allow us to evaluate the statistical significance of 

local spatial autocorrelation. Each pixel could then be identified as tending towards being 

similar or different from its neighbors. For instance, High-High (HH) and Low-Low (LL) 

refers to statistically significant autocorrelation where a pixel has similarly high or low SI 

values to its neighbors (i.e., positive autocorrelation between themselves and their 

neighborhood pixels). This refers to areas where pixels with a high and low value of stability 

are spatially clustered. Similarly, dispersed spatial arrangements were also identified where a 

high SI value was surrounded by low values (HL)  or a low SI value pixel was surrounded by 

high SI value pixels (LH). In many applications, these dispersed arrangements that have 

negative spatial autocorrelation are of less interest owing to the low percentage of pixels in 

these classes and their complex spatial origin (Griffith, 2006, 1992; Wulder and Boots, 1998).  
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The percentage area lost in each of the LISA class was calculated for all HUC-12 watersheds 

while considering the dominant LISA class for positive autocorrelation. The percentage value 

was then plotted for each HUC-12 watershed in relation to landscape metrics that were 

subsequently calculated.  

2.2.5 Landscape metrics: Spatial Configuration and Morphology 

Landscape metrics have arisen as a method to quantify spatial heterogeneity and help 

to explain the relationship between process and patterns (Turner, 1989; Turner et al., 2001). 

Landscape patches within the LISA derived cluster types (as provided by positive and 

negative autocorrelations) served as landscape classes for the study. These determine the 

spatial distribution of pixels with high and low stability and their analysis using landscape 

metrics is used to measure their distribution. We use Fragstats (v 4.2.1, developed by the 

Forest Science Department, Oregon State University) to quantify the configuration and 

morphology of landscape patch stability over space and time. We focus on landscape metrics 

that provide a measure of shape, size, and structure (Lin et al., 2015; Nagendra et al., 2004; 

Turner, 1989; Turner et al., 2001, 1993; Turner and Rao, 1990; Uuemaa et al., 2009). We 

calculate these metrics on each spatio-temporal cluster derived from the LISA. We chose 

landscape metrics (Table 2.2) that quantify the degree of fragmentation (patch density) and 

the shape of land loss (shape index). This choice was also informed by studies where factor 

analysis was performed across a few of these metrics to identify landscape metrics that are 

strongly correlated (Riitters et al., 1995). Each metric was calculated using a no sampling 

approach applied to the LISA classes. Landscape metrics were selected (Table 2.2) keeping 

in mind the finest resolution of the spatial unit (HUC-12) and the spatial resolution of the 

imagery since spatial units and the spatial resolution impact the metric values and 

interpretation (Lin et al., 2015; Nagendra et al., 2004; Turner et al., 2001, 1993; Turner and 

Rao, 1990; Uuemaa et al., 2009). 
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Table 2.2: Explanation of landscape metrics used: Patch Density and Shape Index. 

Metric Formula Description & use 

Patch Density 

(PD) 

𝑃𝑃𝑃𝑃 =
𝑁𝑁𝑁𝑁
𝐴𝐴

 

NP=Number of Patches 

A= area(m2) 

PD is always > 0 but constrained by cell size.  

 

Higher PD values indicate a greater 

number of patches within the same 

area. PD is an indicator of 

fragmentation. 

Shape index 
𝑆𝑆ℎ𝑎𝑎𝑎𝑎𝑎𝑎 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 =

0.25 𝑝𝑝𝑖𝑖𝑖𝑖
�𝑎𝑎𝑖𝑖𝑖𝑖

 

pij = perimeter of patch ij (m) 

aij = square root of patch area (m2) adjusted by a 

constant to adjust for a square standard 

 

Shape index ranges from 1 to 

infinity. Shape index =1 represents 

square patches and at higher values, 

patches become more irregular. 

 

For both HH and LL LISA classes, we calculated the percentage area lost, which 

describes the area lost in each HUC-12 watershed relative to all area lost in that watershed. 

We then used this percent area lost metric to test how land loss varied by landscape metric 

across the HUC-6 watersheds. This was done using two separate linear regression models for 

HH and LL classes. In the two models, the percent area is the response variable, and the two 

landscape metrics (PD and Shape) are continuous predictors while the HUC-6 watershed is a 

categorical predictor variable.  Individual t-statistics for each variable, as well as the F-

statistic and adjusted r2 for the full model, are reported as metrics of the goodness of fit. PD 

and Shape were log-transformed to meet assumptions of normality.  

 

2.3. Results 

2.3.1 Permanent Land Loss 

We define permanent land loss as any pixel that transitions from land to water and remains 

water for at atleast the last two time periods of our study. Our analyses showed that, of all the 
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permanent land-loss pixels, 75% undergo a single transition from land to water, while 21% of 

the pixels undergo two transitions from land to water and the remaining 4% of the pixels 

undergo three or more transitions from land to water and back. (Table 2.3).   

 

Table 2.3: Percentage of pixels undergoing transitions for the overall area and within HUC-

6 watersheds. 
 

Percentage of Pixels Undergoing Transition 
# of 

Transitions 
Overall Atchafalaya-

Vermillion 
 

Barataria Calcasieu-
Mermentau 

 

Terrebonne 

1 75.08 67.90 75.81 81.20 68.99 
2 20.99 27.44 20.20 16.50 24.45 
3 3.59 4.20 3.49 2.24 5.87 
4 0.30 0.46 0.47 0.06 0.67 
5 0.008 0.00 0.02 0.00 0.02 

 

In total, the permanent land loss from 1983-2016 was 1403.85 km2 (Figure 2.3, Figure 2.4). 

The permanent loss includes those land pixels that transition from land to water at any given 

three year time period of 1983 to 2016 and remain water pixels for the last two periods of our 

observation (2010-2016).  
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Figure 2.3. Time series of permanent land loss, which refers to land that is lost in each time 

step and remains as a water class for the last two time steps (2010-13 and 2013-2016). Since 

the 2013-2016 composite falls within the range determining permanent loss, it is not included 

in the figure.  

 

Sudden and unusually high increases in the land loss that occurred in 2004-2007 can be 

attributed to events such as hurricanes Katrina and Rita (Barras, 2007). Though the impacts 

of single-year events and stochastic flooding are minimized by our methods, these events 

have a long lasting effect that is captured in the 3-year image composites that we generated 

for our study. Besides those events, the land loss is relatively steady across the overall study 
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area and the Barataria and Calcasieu-Mermentau (hereafter CalcMerm) watersheds, but more 

variable through time in Terrebonne and Atchafalaya-Vermilion (hereafter AtchVerm; Figure 

2.3). 

2.3.2 Spatial Clustering 

We found that behavior of land pixels undergoing land loss is spread across 

undergoing multiple transitions (high SI value) and single transitions (low SI value) (Table 

2.3; Figure 2.7). The LISA analysis shows that most LL classes are either along shorelines or 

lake edges, as well as among fragmented land-water boundaries (Figure 2.4). HH pixels tend 

to be more inland, away from the coastal edge. Since the landscape is highly fragmented in 

some areas, there are some isolated low and high values of SI that lead to the LH and HL 

class distribution (Figure 2.4).  

At the basin scale, CalcMerm and Barataria have the highest proportion of area lost in 

the LL class (Figure 2.5a), closely followed by Terrebonne, while AtchVerm had the lowest 

amount of land loss. Most pixels are either in the HH or LL class,  so the area lost in the HH 

class is inversely related to that in the LL class, with LL being dominant in most HUC-12 

watersheds. We find a higher proportion of area lost that is HH class (Figure 2.5b) in 

AtchVerm and Terrebonne while Barataria and Calcmerm have lower proportions.  
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Figure 2.5. Box plot of percentage area lost belonging to A) LL LISA Class and B) HH LISA 

class for each HUC-12 watershed within the four HUC-6 boundaries. Each circular point 

represents a single HUC-12 watershed and points are staggered along the x-axis for better 

viewing. The diamond represents the mean value of the distribution 

 

To understand how land loss (Figure 2.6) and LISA classes (Figure 2.7) are related, we 

examined six smaller subsets in detail. These subsets were selected using a grid size of 20 by 

20 square kilometers to represent land loss across all four HUC-6 watersheds, a varying 

degree of transitions, and the different LISA classes.  
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Figure 2.6. Subareas of the LMRD are shown (20 by 20 km2) to depict representative 

patterns of land loss between 1983 and 2016 only. Red indicates land loss; green indicates 

land formation. Panel A & D lies in Terrebonne, Panels B, C lie within Atchverm, Panel E 

lies in Barataria and Panel F lies in Calcmerm. Gray areas represent land boundaries, light 

blue represents inland perineal water and dark blue designates world ocean and sea 

boundaries, and white shading indicates an area where past data does not accurately specify 

land and water boundaries. 

   

The pixels that experience single transitions tend to be located across coastal and lake edges 

(Panel B & C of Figure 2.7). Calcmerm shows coastal areas with low SI values (Panel F of 

Figure 2.7), and most pixels have one transition from land to water. Barataria shows areas 

lower SI values (Panel E of Figure 2.7) distributed across internal lakes and coastal edges. 

A C 

F E 

B 

D 
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Terrebonne low SI along edges (Panel A of Figure 2.7) and higher SI values are located more 

inland (Panel D of Figure 2.7).    

 

  

Figure 2.7: Subareas of the LMRD are shown (20 by 20 km2) to depict the number of land to 

water transitions. Panel A & D lies in Terrebonne, Panels B, C lie within Atchverm, Panel E 

lies in Barataria and Panel F lies in Calcmerm. The larger the number of transitions, the 

higher the stability index. Gray areas represent land boundaries, light blue represents inland 

perineal water and dark blue designates world ocean and sea boundaries, and white shading 

indicates an area where past data does not accurately specify land and water boundaries.   

 

Unlike the other sub-watersheds, many locations in Terrebonne have LISA classes that have a 

mix of single and multiple transitions and varying SI values along with a substantial amount 

of HL and LH classes (Panel A and D of Figure 2.8). For AtchVerm, we find LL clusters 

A C 

F E 

B 

D 
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along coastal edges interspersed some LL patches with HH clusters inland (Panel B, C of 

Figure 2.8). Calcmerm has LL clusters along coastal and lake edges, and HH classes were 

clustered more inland (Panel F of Figure 2.8), and Barataria shows areas with permanent loss 

and lower SI values (Panel E of Figure 2.8) distributed across internal lakes and coastal 

edges.  

 

  

Figure 2.8: Subareas of the LMRD are shown (20 by 20 km2) to depict cluster types, 

generated using the Local Indicator of Spatial Autocorrelation. The High-High (HH) and 

Low-Low (LL) values indicate positive autocorrelation versus HL and LH indicate spatial 

dispersion. Gray areas represent land boundaries, light blue represents inland perineal 

water and dark blue designates world ocean and sea boundaries, and white shading indicates 

an area where past data does not accurately specify land and water boundaries.  

  

A C 

F E 

B 

D 
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2.3.3 Land-loss Morphology 

If we examine the morphology of each HH and LL LISA class, we find that the LL 

class tends to be clumped (low Patch Density value) while the areas in the HH class is more 

fragmented (high Patch Density value) (Figure 2.9A). HH has lower Shape Index values 

owing to large fragmented patches in the HH class (higher patch density), with many of the 

patches being individual pixels.   

 

Figure 2.9: Kernel density estimates of the distribution of (A) Patch Density for LL and HH 

type land loss classes and (B) Shape Index for LL and HH type land loss classes. The spatial 

metrics were calculated for HUC 12 watershed level. 

 

The relationship between patch density and land fragmentation is key in examining 

landscape patterns that directly affect land loss (Lam et al., 2018; Rutledge, 2003; Turner and 

Rao, 1990). Shape index determines the complexity of the underlying morphology created as 

a result of such fragmentation. This relationship between land loss and landscape metrics was 

analyzed using a multiple regression model between percentage area lost in LL & HH LISA 

classes and log-transformed variables landscape metrics (Patch Density and Shape Index). 

HUC 6 is a categorical variable; the model suggests that while land loss is related to shape 

and patch density, it is not significantly related to the location/site of the analysis. 
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Table 2.4: Multiple regression model results across HUC-12 watersheds using the land loss 

in low-low and high-high class as response variables. Log-transformed Patch Density and 

Shape Index are used as continuous predictors while HUC 6 watersheds act as categorical 

variables. Also contains the overall Adjusted R-squared, F-statistics, and p-value for both 

land loss in low-low and high-high class multiple regression model. 

LISA Class Model Terms Estimate (±SE) t-value P-value 
Low-Low Class 
(n = 95) 
 
Adjusted R-
Squared = 0.545 
 
Overall F-
statistic = 22.58 
 
Overall P-value 
<0.0001 

Intercept 
Patch Density 

47.98(±3.27) 
6.41(±0.76) 

14.65 
8.44 

<0.0001 
<0.0001 

Shape 7.63(±1.96) 3.89   0.0002 
HUC6-
Barataria 
HUC6-
Calcmerm 
HUC6-
Terrebonne 
 

3.99(±2.73) 
 
3.99(±2.73) 
 
3.99(±2.73) 

1.459 
 
1.289 
 
0.859 

  0.148 
 

  0.201 
 

  0.392 

High-High 
Class 
(n = 95) 
 
Adjusted R-
Squared = 0.716 
 
Overall F-
statistic = 47.06 
 
Overall P-value 
<0.0001 
 

Intercept 
Patch Density 

-2.20(±2.98) 
 6.78(±0.54) 

-0.742 
 12.655 

  0.460 
<0.0001 

Shape 13.25(±2.68)  4.937 <0.0001 
HUC6-
Barataria 
HUC6-
Calcmerm 
HUC6-
Terrebonne 
 

-3.17(±1.90) 
 
-1.13(±2.10) 
 
 0.38(±1.91) 

-1.674 
 
-0.536 
 
 0.198 

  0.097 
 

  0.593 
 

  0.843 

We observe a strong positive relationship between land loss and both PD and Shape, for both 

LL and HH based land loss. Interestingly, this is not sensitive to whether the loss undergoes 

single or multiple transitions because a positive relationship is observed for both LL and HH 

classes across the HUC 12 watersheds (Table 2.4,).  
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2.4. Discussion and Conclusions 

This study examines the overall land loss in the Lower Mississippi River Delta (LMRD) from 

1984 to 2016 using Landsat data. The purpose of this study was twofold: to highlight the 

complexities inherent in robustly estimating land loss and to provide a means of combining 

spatial and temporal dimensions of loss using SI. The paper introduces the concept of SI to 

establish land-water transitions that occur in a natural pixel, before converting to permanent 

water, which in our paper is referred to as permanent loss. By studying land loss that 

undergoes multiple transitions, relative to a single transition, we may identify important clues 

about the underlying processes driving land loss in delta environments. Our results are the 

first to demonstrate that though most land to water transitions occur as a single transition 

event (~75%), over 25 % of the overall land area goes through two or more transitions 

between land and water before a permanent loss.   

SI further elucidates the dynamic nature of deltaic systems as compared to loss 

models in other systems, such as studies on global forest loss (Hansen et al., 2013). With 

forest loss to gain at about 34% or study about the global permanent water area where the net 

gain of permanent water is twice as much as net loss (Pekel et al., 2016). As the number of 

oscillations between land and water for each pixel increases and reach an extreme value, the 

pixels undergoing these oscillations dramatically decreases. AtchVerm and CalcMerm 

represent areas where the land loss is clustered around coastal and lake edges. By contrast, in 

Barataria, we find a mix between areas undergoing loss and gain interspersed amongst one 

another, and in Terrebonne, we find areas with distributed losses including loss along man-

made canals and fragmented coastal edges. 

Interestingly, our results show that different LISA classes are often clustered and have 

different shapes and functional characteristics. We hypothesize that the LL and HH LISA 

represent different processes that are driving land loss. For instance, the LL patches tend to 
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have a low density and an elongated shape (Figure 2.10); moreover, many of these patches 

are preferentially found on coastal and lake boundaries (Figure 2.4 and 9). Based on this 

pattern, and also the fact that most of these pixels undergo only a single transition from land 

to water, we posit that they are primarily caused by wave-edge erosion (Coleman, 1988; Day 

et al., 2000; Ortiz et al., 2017). Though, it is important to note that LL patches located away 

from edges (see interior pixels in Figure 2.9F) are not likely to be driven by wave-edge 

erosion. 

Consequently, the opposite is true for HH patches. The HH patches tend to have a 

high patch density, meaning that they tend to have more patches per unit area and are less 

concentrated. As a result of the high patch density, the shape index of each cluster is much 

lower (Figure 2.10), indicating they have a geometrical shape such as a square-like shape and 

sometimes even represent just a single or limited number of isolated land pixels. If our 

interpretation of the LISA classes is accurate in terms of the processes associated with them, 

it would suggest that roughly 75% of land loss on the LMRD is driven by wave edge erosion 

and other processes that create single transition pixels. This stands in contrast to the recent 

analysis by (Jankowski et al., 2017), who show using the coastwide reference monitoring 

station (CRMS) that shallow subsidence is the primary driver of loss. Most of the CRMS data 

come from interior pixels, and for obvious reason, those stations are not placed on marsh 

edges. We suspect that the CRMS data oversample the interior parts of islands where 

subsidence can act.  

It is important to note that the processes of edge-erosion and subsidence do not act in 

isolation. For both the LL and HH patches, we see that land loss increases as land becomes 

more fragmented, which is measured by the multiple regression models for both LL and HH 

patches (Table 2.4). This could arise as subsidence or edge-erosion, which further increases 

edge-length, thus providing more opportunities for erosion. The combination of these 
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processes can a positive feedback loop and accelerate land loss (Lam et al., 2018; Nagendra 

et al., 2004). In particular, for those clusters that have undergone more than a single 

transition, flooding due to subsidence could cause edge erosion and ultimately lead to 

permanent loss.  

By studying the positively autocorrelated LISA classes, we were able to yield insights 

into the evolution of the delta environment more generally, and further show how LISA 

classes themselves may transition from one type to another as the landscape fragments. The 

use of both functional and spatial landscape metrics in the linear model provides evidence of 

a positive feedback loop between fragmentation and land loss. Delta processes such as 

subsidence, ponding, and sediment deposition change the landscape morphology and can then 

be interpreted using these landscape metrics as process proxies. For example, previous 

studies in coastal areas have linked PD to patch isolation and ultimately land fragmentation, 

by identifying overall increases in marsh edges for wind and wave actions to have a 

detrimental effect (Kindlmann and Burel, 2008; Ortiz et al., 2017; Turner and Rao, 1990). In 

the  LMRD, an example of this pattern would be the fact that newly formed small ponds often 

merge with larger ponds and increase land fragmentation, while simultaneously growing 

pond area via edge erosion and an increase in wind fetch (Ortiz et al., 2017).  

We find that core area which refers to core area in the patch, at a distance from the 

edge decreases (Haines-Young and Chopping, 1996; Luck and Wu, 2002; Neel et al., 2004; 

Tischendorf, 2001). As core area fragments further edges get exposed to wave and wind 

action further accelerating fragmentation. We posit that the high values of patch density and 

shape index, which represents a fragmented landscape with more edges might allow for 

multiple process regimes to deteriorate land. The paper demonstrates that land loss as a 

spatio-temporal process can be quantified using SI, which allows for understanding spatial 

and temporal trajectories of each pixel.  
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2.5. Conclusions 

Deltas around the world are highly vulnerable, but predictive models of land loss are 

challenging to develop because of oscillations between land loss and land gain. Our study 

provides a new spatio-temporal model to quantify the land loss and also highlights the 

underlying processes driving patterns of land loss in the LMRD. While future work will have 

to determine if the LL and HH classes in this study are caused by subsidence or edge erosion, 

our results hold promise for using remote sensing to determine processes of land loss. 

Determining the process driving land loss is essential for effective restoration of coastline, 

and not all coasts have the data infrastructure of the LMRD where causes of land loss can be 

directly measured. Future studies should use higher spatial and temporal resolution datasets 

to further our understanding of these processes at the fine scales and potentially identify 

smaller patches for increased study and management.  

Through this work, we have chosen to focus on a single region, the LMRD. However, 

the approaches used here should be readily transferable to other delta systems across the 

globe. Only with an increased understanding of the diversity of ways that land is lost through 

time can we begin to build more predictive models for future climate change. Such an 

approach will allow land managers to prioritize areas with the most rapid loss to implement 

protection and restoration measures affecting multiple deltaic environments. 
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Abstract 

Globally, river delta ecosystems are under threat from changes to riverine sediment load, 

increased storm surge, and sea-level rise. Loss of land area, human development, and 

pollution reduce delta ecosystem resilience, further exposing vital civil infrastructure to 

increased storm damage. To better understand these natural events and human-related threats 

in deltas, we evaluated multiple Earth Observation Systems (EOS) platforms, leveraging 

improvements in spatial and temporal resolution over legacy NASA Landsat series imagery, 

European Space Agency (ESA) Sentinel-2, and finally to the private PlanetScope CubeSat 

constellation. We use Google Earth Engine (GEE) cyberGIS to compare land area change and 

ecosystem health at weekly, monthly, and annual intervals. Our approach involves index-

based pixel-level classification against constrained spectral unmixing, for sub-pixel 

classification. GEE allowed comparisons of land loss and fragmentation across the three 

sensors. We classified land and water classes to estimate land loss. A total of 15,090 images 

mailto:roysam@iu.edu
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were analyzed across Landsat, Sentinel-2, and PlanetScope sensors, with a total of 180 bi-

monthly composites. This approach allowed us to refine land loss estimates by filling in 

spatiotemporal and spectral windows that better account for inland fragmentation, which 

accelerates overall land loss in deltas. Results showed declining land areas and increasing 

fragmentation for both index-based and sub-pixel analysis. Land loss estimates are a function 

of temporal periods of the imagery, the number of images used for compositing and the 

resultant benefit of the method used for classification. The improved estimates of land loss 

identification of at-risk areas elucidated by this study will be used to help protect vulnerable 

populations, providing indirect savings to local governments through improved mitigation 

strategy.  

Keywords: Delta, composites, Sensor, Landsat, fragmentation 

3.1 Introduction 

River deltas, where a half billion people live worldwide, are intrinsic to human 

civilization; they support agriculture, control drinking water quality, and provide coastal 

defense against storms. Globally, river deltas are increasingly under threat from changes in 

riverine sediment load (Rabalais et al., 2002; Turner and Rabalais, 1991; Walling, 2008; 

Walling and Fang, 2003) and increased storm surge and sea-level rise (Syvitski et al., 2009). 

Deltas are in a constant state of flux, yet we have been limited in our ability to make recurrent 

observations of their dynamism, owing to the lack of availability of remotely sensed 

observational data. As a result, the nature of land loss and gain in deltaic systems remains 

poorly observed, and the underlying causes of change unclear. Time-sensitive observations 

and finer granularity of data can yield important clues as to the evolution of these landscapes 

in general, and to the quantitative rate of change from natural and anthropogenic causes 

narrowly. To better understand these natural events and human-related threats in deltas, we 
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evaluated multiple NASA Earth Observation Systems (EOS) platforms, leveraging 

improvements in spatial and temporal resolution over legacy Landsat series imagery, to 

European Space Agency (ESA) Sentinel-2, and finally to the PlanetScope CubeSat 

constellation. 

Satellite-based EOS provide a > 40-year record of global river delta dynamics. 

However, until recently the availability of legacy satellite datasets limited their use in the 

detection of long-term patterns; coupled with limited computational resources to handle 

analysis over large areas, few studies have explored the variability of land loss from inter-

annual to the decadal time scale. An important challenge to estimating land loss in coastal 

environments is pixel classification. This is challenging because most commonly a pixel can 

consist of more than one thematic class, and this mixed pixel problem is further dependent on 

spatial resolution, of the sensor and also increasing fragmentation. Soft classification reduces 

issues of sub-pixel thematic information gathering and the mixed pixel issue and is agnostic 

of the spatial resolution of the sensor (Atkinson, 2005; Foody, 2004; Zhang et al., 2013)and 

the image. Our land loss classification method was divided into binarization; based on single 

class index-based image analysis, the Normalized Difference Water Index (NDWI) (Gao, 

1996; Han-Qiu, 2005), and soft image classification technique such as  Constrained Spectral 

Unmixing (Foody, 2004; Heylen and Scheunders, 2011; Keshava, 2003; Keshava and 

Mustard, 2002; Zhang et al., 2013) 

Using EOS data obtained from three different systems, we test the effects of increased 

temporal frequency data (Figure 3.1), greater spatial granularity and spectral characteristics 

of each dataset (Figure 3.3) on delta land loss estimates. Specifically, we used NASA Landsat 

ETM+ 7 & Landsat OLI 8; hereafter referred to as ‘Landsat’, ESA Sentinel-2A and 2B, 

hereafter referred to as ‘Sentinel-2’, and PlanetScope constellation of over 150 cube satellites 
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to explore delta dynamics at 16-day, 5-day and 1-day temporal observation windows and at 

30m, 10m, and 3 m spatial resolution, respectively (Figure 3.3).  

Our study seeks to answer two questions: 1) Does increased spatiotemporal resolution 

data improve delta land-loss and land-gain measurements at an interannual rate? 2) How do 

soft image classification techniques function to estimate land-loss land-gain? We take an 

open science approach to our data analysis, including an effort at FAIR (findable, accessible, 

interoperable, and reusable) data principles (Wilkinson et al., 2016) and contributing to open 

source repeatable analysis guidelines and tools. By being cloud-based, GEE enables a user to 

send an algorithm to the dataset rather than creating local copies of the dataset. Using 

publicly available Landsat and Sentinel-2 collections within GEE the users can reproduce our 

analysis with GEE JavaScript environment and the Python-based API backend to GEE.  

3.2 Methodology 

3.2.1 Study Area 

We explored deltaic dynamics in six, 20x20 km cells in the Lower Mississippi River 

Delta (LMRD); the cells represented four larger Hydrologic Unit Code-6 watersheds (USGS 

designation HUC-6) and were selected to ensure that the full diversity of delta landforms 

(Figure 3.2) and land loss patterns were present within our analysis. Interannual variability in 

variables such as sediment flow, sea surface temperature, and tidal effects alter the observed 

effects that are captured based on the period of observation. While a larger time scale is 

useful to get rid of biases related to interannual variability effects (Allison, 2012; Bianchi and 

Allison, 2009; Kolker et al., 2011), these variations yield important information about the 

underlying process regimes that changes in delta morphology occurring on shorter time 

scales. Seasonal flooding effects, as well as major events like hurricanes and cyclones (both 

episodic and periodic), can be captured over smaller interannual time periods (Barras, 2007; 

Pratolongo et al., 2013; Restrepo and Kettner, 2012; Reyes et al., 2004; Xu and Wu, 2006). 
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While this fine grain measurement was not possible a couple of years ago, improvements in 

the temporal frequency of sensors such as Sentinel-2 and PlanetScope varying from 5 days to 

almost 1 day greatly enhances the number of possible consistent observations across a 

system.  

 

 

Fig 1. AOI to showing 20x20 km2 grids within the four HUC-6 watersheds of interest 

3.2.2 Earth Observation and Analysis Systems 

The growth of subaerial deltaic regions has been observed by satellites since the late 

1970s, owing to the first of the NASA Landsat series missions (Rouse et al., 1978; Xia, 1998) 

along with ground observations that could validate these loss and growth cycles. Earth 

observation systems (EOS) have changed rapidly in recent years, owing to higher spatial and 

temporal resolution data from the introduction of cube satellites, faster computation speeds, 

and increased digital sensor sizes. NASA’s Landsat is the longest-serving high-resolution 

EOS; with a temporal return of 16 days (shortened to 8 days when two or more Landsats are 

in operation) (Figure 3.2).  
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Figure 3.2: Time series of available EOS data for our study area with Sentinel-2 (S2), 

PlanetScope 4 Band (PS4BSR), and Landsat 8 Collection (LC08). The study period is 

selected from 2017 onwards to make sure available data covers the entirety of the study 

period. 

 

Landsat 8 carries the most advanced spectrometers to date, the Operational Land 

Imager (OLI) and Thermal Infrared Sensor (TIRS). Each Landsat mission has a 16-day 

interval, with the two current instruments (7 and 8) in an eight-day offset. Since 2003, 

Landsat 7 results in only partial coverage due to the failure of the scan line corrector 

(Markham et al., 2004; Scaramuzza and Barsi, 2005). With the addition of the Copernicus 

program from ESA, free and open earth observation leaped forward with a spatial resolution 

of 10m and temporal resolution of 5 days. With an array of over 170 current high resolution 

and multispectral CubeSats, and with the daily repeat cycle Planet’s constellation, we can 
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create one of the most densely populated temporal data stack in work with near-daily global 

coverage in RGB and NIR band and at ~3m resolution. (Figure 3.3). 

Figure 3.3: EOS dates of availability (years), temporal resolution (days), red and near-

infrared spectral bands λ in nanometers (nm) used for NDVI, and spatial resolution in meters 

(m) for EOS platform data on Google Earth Engine. 

With the deployment of Sentinel 2B and additional PlanetScope satellites, the 

temporal resolution of both these datasets has improved while Landsat 8 has kept a near 

consistent period. Satellite constellations and CubeSats are emerging and serving as essential 

and novel earth observation platforms. Large-scale patterns that were once lost by short 

temporal periods and granularity of imagery could now be analyzed, and historical and 

archival imagery could be included for analysis over an area of interest.  

3.2.3 Imagery  

We used the Landsat ecosystem disturbance adaptive processing system (LEDAPS) 

(Home et al., 2013; Ju et al., 2012; Schmidt et al., 2013) for Landsat 7 Surface Reflectance 

(SR)  and the Landsat Surface Reflectance Code (LaSRC) (USGS 2016) SR product for the 

Landsat 8. For Sentinel-2, we use the Level-1C data with quality assurance (QA) bit bands 

present and available. Both Landsat 8 SR and Sentinel-2 L1C imagery are available for use 

GEE (Gorelick et al., 2017; Shelestov et al., 2017), making this the ideal development and 

analysis environment. For PlanetScope, we use a 4 Band analytic surface reflectance product 
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(Table 3.1) which is produced in combination with near simultaneous MODIS imagery for 

atmospheric correction (Wilson et al., 2017)  

 

Table 3.1: Landsat 7 USGS LEDAPS Surface Reflectance, Landsat 8 USGS LaSRC Surface 

Reflectance, Sentinel-2, Cross calibrated PlanetScope SR and 4Band analytic for Grids 

Platform Spatial (m) Temporal Dates Total Scenes 

Landsat 7 & 8 30 16 days 01/01/2017-30/10/2018 1072 

Sentinel-2 10  5 days 01/01/2017-30/10/2018 1665 

PlanetScope 3 1-3 01/01/2017-30/10/2018 12353 

3.2.4 Image Ingestion and Preprocessing  

PlanetScope 4 Band SR imagery was downloaded using a command line interface 

(CLI) created by the author and released as an open source tool (Roy S., 2018) and later 

imported to GEE (Supplemental Materials). Only images with less than 75% cloud cover 

were used. Landsat 8 SR and Sentinel-2 data are already available in the data catalog within 

GEE and processed to make sure they are available at regular frequencies. To preprocess the 

Landsat data and Sentinel-2, we used QA bit cloud masking to remove obscured pixels. At 

the time of our analysis, a cloud mask product was not available for PlanetScope data; 

however, we did utilize the unusable data mask (UDM), which removed most clouds and 

saturated pixels. Since both Landsat 7 and Landsat 8 were used, a harmonization (Roy et al., 

2016) was applied apart from the cloud masking before combining them into a single image 

collection. Once these techniques were applied, the datasets were normalized for consistency 

between multiple sensor and platform types, allowing us to use them for further analysis 

(Figure 3.4). For all three data sources, we created bimonthly composites and classified land-

water boundaries using binary algorithms based on the Normalized Differential Water Index 
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(NDWI) (Gao, 1996), spectral unmixing (Keshava, 2003; Keshava and Mustard, 2002), 

statistical measures of monotonicity and variance using Mann Kendall statistics (Abdi, 2007; 

Hamed, 2008).  

Overall all three sensors were compared for land loss and land gain detection. Landsat 

is the coarsest resolution among our three candidate sensors, with a spatial resolution of 30 m 

and a temporal resolution of about 16 days. While our use of Landsat-7 and Landsat 8 

increased the temporal resolution to about 8 days, the SLC failure in Landsat 7 meant that 

there were large stripes in the data with missing pixels and as such the improvement in 

temporal resolution only went so far to improve the overall coverage and towards a cloud-

free bi-monthly composite.  

Sentinel-2A and 2B, on the other hand, had a varied spatial resolution ranging 

between 10 and 20 m spatial resolution for our bands of interest and a relatively higher 

temporal resolution of 5 days. However, this temporal resolution was inconsistent over 

different parts of the world as applied to global coverage. Similarly, while, PlanetScope 

constellation provided 3 m resolution, owing to smaller image footprints these images were 

also limited by the number of ground control points available for georectification. These 

conditions were further constrained by cloud masking across all sensors. While cloud 

masking was used to create cloud free composites for Landsat and Sentinel-2, it was possible 

that the masked composites resulted in large portions of the grid with missing pixels. 

Similarly, PlanetScope images with smaller image footprints sometimes do not get provide 

complete coverage of the grid as well. 
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Figure 3.4: The overall methodology, Step 1) Landsat 7 & 8 ETM Surface Reflectance, 

Sentinel-2A & 2B Top of Atmosphere Reflectance (TOAR) and PlanetScope Constellation 

Surface Reflectance datasets were filtered and selected. Step 2) Cloud masking was applied 

to Landsat and Sentinel-2 datasets & UDM masking for PlanetScope Step 3) Bi-Monthly 

composites were created keeping in account the minimum time needed to develop effective 

cloud free composites. 4) Normalized Difference Water Index (NDWI) and constrained 

spectral unmixing was applied to Landsat, Sentinel-2 and PlanetScope constellation, and 
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Otsu’s thresholding was used to both Index and unmixed data for creating binaries 5) Mann 

Kendall’s Tau and Z Score were calculated for each pixel. 6) The temporal difference was 

calculated from each binary t1-t2 pair 

To avoid issues with comparing composites with varying coverages, only those which 

met 100% coverage were used for the overall analysis. The QA band in S2 was utilized to get 

rid of large cloud, but the method retains cloud and haze which effects the stratified sampling 

if cloud artifacts are not removed in the bimonthly composites. Landsat7 and Landsat 8 

harmonization we used (Roy et al., 2016) further cross-calibrated for the effect of large 

variations in-swath and removed issues of non-normalized pixels when creating composites. 

All three sensors produced mostly cloud free composites and areas with a large number of 

pixels missing owing to cloud removal were removed from observation and analysis. At the 

time of writing this paper, sen2cor based Sentinel-2 Surface reflectance was not available 

within GEE that would allow for better cloud masking. Bi-monthly temporal composites 

were created using three different methodologies and GEE reducers. Specifically, we used the 

median composite, percentile composite, and medoid composite for composite creation 

(Azzari and Lobell, 2017; Newingham et al., 2018; Sagar et al., 2018; White et al., 2014). 

Medoid composites perform better for datasets where the temporal stack or number of images 

is low, for example, Landsat (Flood, 2013; Petitjean et al., 2011). Median and percentile 

composites, on the other hand, performed better for Sentinel-2 and PlanetScope constellation 

images (Donchyts et al., 2016a, 2016b; Kovalskyy and Roy, 2013; Roy et al., 2016, 2010; 

Tuanmu and Jetz, 2015). Bi-monthly temporal composites were created for all image scenes. 

This composite allowed us to explore the interannual spatial and temporal variations of each 

dataset.  

3.2.5 Google Earth Engine CyberGIS 
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GEE provides cloud-based EOS image processing across a vast array of satellites and 

sensors (Gorelick et al., 2017; Patel et al., 2015; Shelestov et al., 2017). The GEE 

environment rehosts many petabytes of freely released earth observation data. The GEE 

allows users to write their JavaScript algorithms, and analyze the data of any spatial extent or 

resolution. Before the advent of volumetric data analysis and high temporal resolution 

datasets, analyzing areas with large volumes of temporal data was nearly impossible with 

conventional methods. GEE frees the user from the burden of data movement and analysis on 

their computing infrastructure, which allows for repeatable and scalable scientific studies 

(Dong et al., 2016; Hansen et al., 2013; Kennedy et al., 2018). GEE is also unique because it 

allows the user to bring in their datasets apart from interacting with existing datasets using 

scripts. For this study, we ingested 15,829 PlanetScope images into GEE. The application of 

these tools for handling temporal, spatial, and spectral aspects of the analysis made was ideal 

for our study of land loss and fragmentation. 

3.2.6 Image Classification and soft classification techniques 

Detecting water in remotely sensed images is complicated because pixels contain 

atmospheric ‘noise,’ and may have temporally and spatially variable spectral properties 

caused by the underlying or overlaying materials that interact with the observed water 

surface. For example, subsurface vegetation, algal growth, and soil plumes, which change in 

time and are caused by both natural and anthropogenic reasons modify pixels spectral 

response. Classifying water with index-based approaches, such as the Normalized Difference 

Water Index (NDWI) [Eq 1] (Gao, 1996):  

        𝑁𝑁𝑁𝑁𝑊𝑊𝑊𝑊 = (𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌−𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌)
(𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌+𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌)                                         [Eq 1] (Gao 1996) 

requires interclass thresholding and, as such, determining water among other classes is 

challenging. To circumvent issues with pixel classification thresholding, soft classification 

techniques such as Spectral unmixing (Keshava, 2003; Keshava and Mustard, 2002; Zhang et 
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al., 2013) are useful because they estimate the percentage probability of what a pixel is rather 

than an absolute classification of a pixel as land or water. While this method provides a 

probability density function for multiple classes, it is still dependent on the endmember 

signatures used for training. As such an ensemble of methods was utilized to get at the 

classification of water followed by classification of land and vegetation. Soft classification 

provides us with a continuous value probability distribution for multiple classes representing 

temporal variation in percentage endmember for each pixel. This allowed us to trace the 

temporal trajectory of a pixel in terms of percentage probability of a class which can then be 

combined with binarization tools such as Otsu’s method based binarization (Otsu, 1979).  

For the PlanetScope imagery, which is at a spatial resolution of 3m but only has four 

spectral bands, endmember analysis using Spectral unmixing still allows for class segregation 

and discrimination among land water and vegetation. For our classification schema into the 

two classes (land and water), spectral unmixing was applied to the normalized and 

preprocessed composites for PlanetScope constellation, Landsat 8 Surface Reflectance 

Composites and Sentinel-2 TOAR composites. Index based classification (NDWI) and soft 

classification using spectral unmixing were then converted into binaries using Otsu method 

(Otsu, 1979) which could be utilized as binary threshold masks (for example vegetation/non-

vegetation mask using Otsu applied to NDVI) or water mask as applied to NDWI to further 

improve on the overall land classification result. Otsu’s thresholding does not relate to actual 

values of the index but rather chooses the threshold to maximize the interclass variance 

between the two classes.  

3.2.7 Spectral Unmixing based Image Classification and Binarization 

We used spectral unmixing to determine the proportion of land, water, and vegetation 

in each pixel. Soft classification techniques, such as spectral unmixing, allow for subpixel 

fractional abundance values of land or water classes for each pixel (Lu and Weng, 2007; Nath 
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et al., 2014). To capture suitable land and water, persistent areas were used from high-

resolution imagery in the area and earlier global models (Donchyts et al., 2016b; Pekel et al., 

2016). Stratified sampling is designed to separate the populations into classes or strata for 

sampling (Imbens and Lancaster, 1996; Stehman, 2012; Tipton et al., 2014; Trost, 1986). In 

remote sensing, strata can refer to land cover classes (Brink and Eva, 2009; Congalton, 1991; 

Gallego, 2004; McRoberts and Tomppo, 2007) and in our paper, it refers to the stratification 

of water and not water. Spectral endmembers have to be collected from each image in the 

absence of a standard spectral signature (Sousa and Small, 2018, 2017) for “water” and “not 

water” class in a large spatial area. This is because local signatures vary based on various 

factors that control a pure pixel’s spectral signature. Hence, stratified sampling per image 

composite allowed us to use image specific endmember signatures for spectral unmixing. The 

stratified sampling approach was applied within GEE while creating 100 points for water and 

nonwater classes. These two classes used for choosing the sample locations were based on 

the JRC annual water classification datasets (Pekel et al., 2016), which classified water and 

non-water binaries. This dataset was generated using over 3 million Landsat scenes and 

classified into water and not water using an expert classification system with an overall 

validation accuracy of over 95% based on over 40,124 ground control validation points. This 

permanent water and not water mask from the JRC dataset served as bounding area for 

restricting the random stratified sampling points to be generated in each of these classes 

separately without spatial overlaps. These were then exported as GEE assets to be used as 

sampling points for endmember calculation per temporal composite. 

3.2.8 Constrained Spectral Unmixing and Otsu’s Thresholding 

Once the sampling points were generated within GEE, these points were then used to 

sample and create the endmember matrix array across each band and each sensor (Table 3.2). 

This was then further integrated into a python code to iteratively run for each grid and each 
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sensor type. The benefit of a stratified random sampling strategy with a large number of 

points is that it decreases the probability of a null endmember matrix owing to missing data. 

This allowed us to use the detected endmembers for performing constrained spectral 

unmixing. Constrained spectral unmixing was used to make sure that the fraction summed to 

one. We can describe spectral unmixing using the linear mixing model (LMM) where we 

have M endmembers. 

𝑥𝑥 = �𝑎𝑎𝑖𝑖𝑠𝑠𝑖𝑖 + 𝑤𝑤 = 𝑆𝑆𝑆𝑆 + 𝑤𝑤
𝑀𝑀

𝑖𝑖=1

 

Where x  is the L by 1 received spectrum vector, and S is the L by M matrix formed by the L 

by M matrix, a is the fractional abundance (M by 1 matrix), and w is the L by additive 

observation noise vector (Keshava and Mustard, 2002). Spectral unmixing provides fractional 

composition per pixel, and the water class was selected, and Otsu’s thresholding based 

binarization was performed on fractional probability value for each pixel to generate land-

water binaries. The overall method was tested overall all sensors across all temporal 

composites and spread through the spatial grids a total of 66 grids for each sensor which is 11 

temporal grids times six grids and a total of 66 times three sensors or 198. The classified and 

binarized imagery were exported similar to our earlier results along with the unmixed 

composites for each spatio-temporal and sensor-based composite. Image scenes were 

exported from GEE using a python script. 

 

3.2.9 Mann Kendall Time Series Analysis 

Trend analysis of NDWI as an index as well as percentage class per pixel by 

unmixing, allows us to understand sudden abrupt changes (using a step trend method) or a 

monotonic and consistent directional change such as using a monotonic trend analysis 

(including linear trend analysis). Mann Kendall trend test is a test of monotonicity and tests 

the overall increase or decreases of a variable over time and is a non-parametric method for 
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trend regression of monotonicity. The null hypothesis in a trend analysis is that there is no 

trend present in the data. The Mann Kendall test looks at the nonparametric form for 

increasing and decreasing monotonic trend regression. It analyzes the sign of the difference 

between t+1 and t-1 timed values of a data, with t representing the current period value of the 

dataset. This represents a total of n(n-1)/2 possible pair wise comparison of the datasets 

where n is the total number of observations. In our case, we have 11 observation periods from 

January 2017 to October 2018. The test is also considered as a robust nonparametric test 

because it allows for the data to be transformed (Helsel and Hirsch, 1992) and remains 

invariant to such a transformation (such as logs, etc.). Any pair of observations (yi, yj ) where 

i<j then we calculate the difference yj-yi then we get either a positive difference (concordant 

pair) or a negative difference (discordant pair) or no difference (Equation 3).  

𝑆𝑆 = ∑ ∑ 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑦𝑦𝑗𝑗 − 𝑦𝑦𝑖𝑖)𝑛𝑛
𝑗𝑗=𝑖𝑖+1

𝑛𝑛−1
𝑖𝑖=1            [Eq-3] 

Then the test statistics 𝜏𝜏can be calculated as  

𝜏𝜏 = 𝑆𝑆
𝑛𝑛(𝑛𝑛−1)/2

                              [Eq 4] 

Simply put the Kendall 𝜏𝜏 coefficient is defined as 

𝜏𝜏 = (𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑜𝑜𝑜𝑜 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝)−(𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑜𝑜𝑜𝑜 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝)
𝑛𝑛(𝑛𝑛−1)/2

                                    Eq 4  

We calculate statistical significance and Z-score using the formula, 

𝑧𝑧 = 3∗𝑇𝑇�𝑁𝑁(𝑁𝑁−1)
�2(2𝑁𝑁+5)

                                     Eq 5  

 

We calculate the Mann Kendall tau and Z-Score from the NDWI time series from Landsat, 

Sentinel-2 composites and PlanetScope composites and export it for each sensor and each 

grid based on the bimonthly composites. We further calculated Mann Kendall Tau and Z 

scores from the spectrally unmixing based water band. This gives a fractional percentage of 

water class for each pixel across all sensors and temporally. The Mann Kendall reducer was 



64 
 

included in the GEE library, and a Z Score function was written to get to a measure of 

significance. The corresponding p-value is then calculated to look at areas of statistical 

significance (p<0.05) and allows for interpreting overall swaths of areas with monotonic 

trends of NDWI index score or fractional abundance of water derived from spectral unmixing 

which can be directly linked to the probability of the pixel being water and not land. This 

includes both monotonic increases and decreases, in the probability of the pixel being 

identified or remaining as water increases or decreases.  

3.2.10 Version Control and Data Management 

Data-intensive scientific discovery requires the research methodology to be repeatable 

(Hampton et al., 2015; Hettne et al., 2014; Hey et al., 2009). For this paper, all tools and 

scripts are configured in GEE toolboxes, with a detailed ‘README’ files, released with an 

open MIT license. Since GEE itself holds an internal GIT version control, all JavaScript-

based code is available under both the internal GIT control from GEE, as well as uploaded to 

a public GitHub repository for release (github.com/samapriya/fragmentation-analysis). The 

tool and the datasets themselves have a Zenodo DOI (Roy, 2019) for ease of use and 

permanence. We follow an open-science principle and make available all derivative products, 

codes, and analysis for ease of reproducibility using the FAIR data principles (Wilkinson et 

al., 2016). 

JavaScript and R codes are hosted GEE user profile /samapriya/ and permalink in a 

GitHub repository along with creating a project DOI in zenodo for maintaining consistent and 

citable coding practices. This allows for repeatability with our code and datasets were 

maintained, and derivatives were shared for ease of use. Python codes are created as 

functions that can be imported and extended by the end user and is created as both Python 2 

and Python 3 compatible modules. Since frequent commits are made to the repo, commit logs 

are maintained, and change logs were added to the overall readme.  To make research 



65 
 

reproducible, GEE allows the user to create unique links which can then be shared to 

reproduce setup and run conditions. Reproducible and sustainability is at the core of our 

paper’s design and methodology; as a result, we have created a data management table (Table 

3.3) including diving them into segments namely Primary Datasets, Derived Datasets, Code, 

Location of Primary Dataset, Location of Derivative, Location of Code. 

 Table 3.3: Data management and distribution plan 

Data Data Type Data Location Code 
Location 

Landsat 7 & 8 SR Primary GEE GitHub Repo 
link 
GEE link 

Sentinel-2 A & B Primary GEE 
PlanetScope SR Primary Not Shared based on End-

user license 

Processing NDWI & Otsu 
thresholding 

Code & 
Secondary 

GEE and GitHub GitHub Repo 
link 
GEE link 

Processing and Stratified 
Sampling 

Code & 
Secondary 

GEE and GitHub GitHub Repo 
link 
GEE link 

Spectral Unmixing & Otsu 
thresholding 

Code & 
Secondary 

GEE and GitHub GitHub Repo 
link 
GEE link 

 

All noncommercial datasets are included in the code, and for Planet data, the code structure 

serves as the template and steps are included for the user to change source path for analysis. 

Datasets were packaged into a single release to generate DOI. These include JavaScript codes 

for GEE, Python modules for interacting with GEE, and preliminary and supplemental 

results. 

 

3.3 Results and Discussions 
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The compiled dataset compares over 15,090 total images spread across Landsat, Sentinel-2, 

and PlanetScope sensors, with a total of 180 bi-monthly composites. We used 100 points per 

training class for the six 20 by 20 km grids with a total of 1200 points for endmember 

selection using stratified random sampling. To our knowledge, this is the first comparison of 

multiple sensors and using CubeSat based images, over deltaic environments to understand 

delta fragmentation. 

In general, across our six different sample grids, Landsat and PlanetScope were highly 

correlated across time than either the correlations between LS and S2 or S2 and PS (Table 

3.4, Figure 3.6, and 3.7). For example, Pearson’s correlation statistics for almost all LS and 

PS was between X (0.59) and X1(0.97) for spectral unmixing and between X (0.37) and 

X1(0.97) for NDWI.  

Table 3.4: Land Loss correlation analysis for each grid between Landsat (LS), Sentinel-2 

(S2) and PlanetScope (PS) for both spectral unmixing and NDWI derived land loss estimates. 

Color codes indicate the strength of the correlation, with green indicating a strong 

correlation, yellow indicated moderate correlation and red indicates a weak correlation. 

 Grid 1 Grid 2 Grid 3 
Spectral   LS S2 PS   LS S2 PS   LS S2 PS 

Unmixing LS 1   LS 1   LS 1   
 S2 0.43 1  S2 -0.25 1  S2 0.66 1  
 PS 0.97 0.31 1 PS 0.08 0.70 1 PS 0.70 0.79 1 

 Grid 4 Grid 5 Grid 6 
   LS S2 PS   LS S2 PS   LS S2 PS 
 LS 1   LS 1   LS 1   

 S2 0.71 1  S2 0.18 1  S2 0.18 1  
 PS 0.71 0.95 1 PS 0.81 0.21 1 PS 0.61 -0.12 1 

             
NDWI Grid 1 Grid 2 Grid 3 

   LS S2 PS   LS S2 PS   LS S2 PS 
 LS 1   LS 1   LS 1   

 S2 0.55 1  S2 0.31 1  S2 0.77 1  
 PS 0.59 0.88 1 PS 0.79 0.22 1 PS 0.97 0.62 1 

 Grid 4 Grid 5 Grid 6 
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   LS S2 PS   LS S2 PS   LS S2 PS 
 LS 1   LS 1   LS 1   

 S2 0.87 1  S2 0.72 1  S2 -0.08 1  
 PS 0.86 0.87 1 PS 0.37 -0.19 1 PS 0.76 -0.21 1 

 

Across the six grids, Sentinel-2 tended to differ most from the other two satellites in estimates 

of land loss and gain (Figures 5 & 6). This was particularly apparent in Grids 1 and Grid 5. 

Grids G3 and G4 behave consistently across Sentinel-2, PlanetScope and Landsat sensors.  

 

Figure 3.5: Land gain (upper panels) and loss (lower panels) estimates over time for three 

different sensors using NDWI. Horizontal panels represent land area estimates across six 

different 20x20 km2 grids in the LMRD. Starting date for bimonthly series is depicted along 

the x-axis. The y-axis is shown on a log scale. LS = Landsat, S2 = Sentinel-2 and PS = 

PlanetScope Constellation.   
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Figure 3.6: Land gain (upper panels) and loss (lower panels) estimates over time for three 

different sensors using constrained spectral unmixing. Horizontal panels represent land area 

estimates across six different 20x20 km2 grids in the LMRD. Starting date for bimonthly 

series is depicted along the x-axis. The y-axis is shown on a log scale. LS = Landsat, S2 = 

Sentinel-2 and PS = PlanetScope Constellation.  

Grid 1 and Grid 5, located in Terrebonne and Barataria, respectively are among the most 

fragmented grids within our study design. Large scale fragmentation increases the overall 

edges or land-water boundaries where these two classes interact. The edge effect or land and 

water interactions are amplified by landscape fragmentation and in turn, also amplifies the 

effect of wind and tidal effects which travel more inland. Coupled with episodic events such 

as cyclones and periodic events such as precipitation induced sediment plumes can cause 

higher rates of accretion (Barras, 2007; Day et al., 2007) and temporarily reduce overall land 

loss. Overall estimates of land loss and land gain across the six grids and three satellite 

sensors were consistently higher for the spectral unmixing method compared to the NDWI 

method (Figure 3.5 & 3.6). Spectral unmixing also seemed to consistently perform better in 

the classification of land and water area and in maintaining harmony between the results from 



69 
 

different sensors. Our hypothesis was tied to the sensor agnostic nature of index-based 

approach (NDWI) which uses the same band for all sensors, where high spectral resolution 

used in spectral unmixing provides more feature space and hence should provide higher 

accuracy in sensors with higher spectral resolution. However true classification and 

separation of land and water classes is dependent on more than just spectral resolution but 

also things like fragmentation of the landscape, the sampling strategy used to collect land and 

water signature (Stehman, 2012; Tipton et al., 2014; Trost, 1986), and spatial resolution of 

the image to account for mixed pixel issue encountered during soft classification and hard 

classification approaches (Atkinson, 2005; Zhang et al., 2013).  

 Grid 1 and Grid 5 seem to be the most affected which are also the ones that have the 

largest open water area and most fragmented, these can affect the stratified sampling applied 

to the imagery with the possibility of capturing mixed end member signatures. This yields an 

interesting methodological choice where a user-defined area of endmember selection with 

low count maybe more useful and significant that maintaining statistically unbiased 

endmember selection. Earlier studies (Stehman, 2012; Tipton et al., 2014; Trost, 1986) have 

shown the importance of sample size selection for stratified sampling and finding optimal 

sample size is difficult keeping in mind the variability of the end product. Sentinel-2, albeit 

its high spectral resolution, does not match to Landsat and PlanetScope results for both index-

based and spectral unmixing. We also consistently find Landsat and PlanetScope to behave in 

harmony and have medium to strong correlation across all grids and through the temporal 

distribution (Table 3.4).  

Of the two methods used to identify land and water, NDWI, which is an index based 

method, uses the same bands across all sensors meaning it does not benefit from the spectral 

resolution of one sensor compared to the other. Thus NDWI is inherently sensor agnostic. 

Spectral unmixing, on the other hand, relies on spectral resolution (or the number of bands) 
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for separation of class into land and water categories. As such a constrained comparison is 

better seen with the index based approach using NDWI, however since the classification of 

land and water edges is dependent on more than just the spectral resolution our results show 

varying degree of success of each methodology which is spatially and spectrally variant. 

3.3.1 Interpretations and research implications 

The differences in the behavior of one sensor compare to the other, along with possible 

reasons that might contribute to such variations have been discussed in the following 

sections. The authors would like to clarify that these interpretations are based on established 

literature as well as inference of observed results from the analysis. 

3.3.2 Effect of Top of Atmosphere and Surface Reflectance 

We used Landsat 8 and PlanetScope surface reflectance data for our study. At the time of 

preparation of the article Sentinel-2 surface reflectance product was not available within the 

Earth Engine environment. Planetscope sensors are calibrated to meet with the spectral 

response function of Landsat surface reflectance. That being said, the process automatically 

scales the data and applies an atmospheric correction to both of these data sources. Sentinel-2 

dataset, on the other hand, does not scale and not atmospherically corrected. This also meant 

that combined with the available cloud masking methodology being used for Sentinel-2 data, 

it is more sensitive to atmospheric effects and hence behaves relatively differently along with 

integrating atmospheric effects and not removing them from the base imagery. This 

difference in the data type  

3.3.3 Effect of Cloud Masking 

While the Landsat surface reflectance imagery has a well-developed cloud mask (Foga et al., 

2017; Ju and Roy, 2008; Martinuzzi et al., 2007), the Sentinel-2A L1C cloud mask product is 

not currently reliable and has been discussed in other works that compare Landsat and 

Sentinel-2 cloud masking algorithms and outcomes (Claverie et al., 2018; Helder et al., 2018; 
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Storey et al., 2016; Zhang et al., 2018). Similarly, at the time of writing this paper, cloud 

masks were not available for PlanetScope data, and as a result, the bimonthly composited 

depended on the temporal depth of the image stack. This was used as a discriminant whereby 

since cloudy pixels would not occur over the same region through the entire time stack, a 

composite function would discriminate and remove the cloud value and choose a pixel value 

from the stack. This method works quite well for our area of interest, and all generated 

composites are visually checked for cloud visibility. This variability in the availability and 

performance of cloud masking algorithms allows the sensors to have different degrees of 

clouds free composites. As a result of the poor performance of the Sentinel-2 cloud masks, 

we hypothesize that the over or underestimation of land or water pixels may be a result of 

areas with existing cloud which are aggregated into the NDWI threshold by Otsu’s 

thresholding. We see this behavior of S2 estimates to be much better using spectral unmixing 

whereby the contributing class of the imagery determines the class percentage per pixel. Here 

stratified sampling throughout the grid allows for a better representation of the spectral 

signature of the class, rather than choosing fixed larger areas which might be obscured in the 

bimonthly composites. 

3.3.4 Effect of temporal windows  

The bimonthly composites produced by different sensors are dependent on more than just the 

spatial location of the grid itself, but the temporal resolution and the start and end dates that 

capture or miss such events (Figure 3.7). We find this to be consistent with spikes in the land 

loss as well as temporal lags, which are an effect of varying sensors capturing or missing an 

event. This points to the importance of interannual variability as a means to understand 

changes in the landscape and also to the importance of temporal resolution while making long 

term assessments of such dynamic landscapes. While studies in the past have tried to 

eliminate temporal stochasticity (also called temporal biases) (Méndez-Barroso et al., 2009; 
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Xu and Wu, 2006) by long term assessment, these changes result in changes in the landscape 

that are observable over longer time scales. 

 

Figure 3.7: Distribution of Start and End Dates of images within the Bi-Monthly distribution 

of images for all sensors. Dark ticks represent individual images in the collection for all six 

grids for each sensor type. 

The process of creating inter-annual temporal composites across multiple sensors 

introduces the concept of temporal lag that may be attributed to the variation in start and end 

dates of images used for each temporal window. This lag can result in land loss that might be 

visible in a high temporal resolution satellite may only become apparent in the next 

composite (Figure 3.6) for a different sensor owing to the temporal resolution of the sensor. 

Thus, apart from choices in the temporal windows, the start and end dates and the number of 

images used in the adjusted time periods determine captures landscape loss. In our study 

though the date filters for all image collections throughout two years 2016-2018 were the 

same, the start and end dates of the images used for each sensor varied (table included in 

supplemental) owing to the difference in temporal frequency (Gašparović et al., 2018, p. 2; Li 

and Roy, 2017). We posit that this variation in the composite start and end dates in our 

composites contributed to a difference in the compared land loss across each sensor.  

Temporally coarser images also have a limited number of images that could go into 

the composite creation pipeline, further limiting the resultant composites. As a result, certain 
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events which may be missed in one time period by a temporally coarse sensor or limited by 

the number of images that may become prominently visible in the next time period.  

3.3.5 Effect of Monotonicity and trajectory of Land Loss 

Unmixing as well as NDWI classifies a pixel as land and water by calculating either 

fractional percentage composition per pixel or simply the index based measure of water based 

on NDWI. It is then classified as water during the binarization process. The Mann Kendall 

statistics provides a temporal analysis of the trajectory of pixels as it either converts to a 

water pixel, or land pixel or keeps changing between the two classes over and over again. In 

our study, positive monotonicity represents areas where the pixel probability of being 

classified as water increase. The result is a tendency toward land loss. Grid 3, represented in 

Figure 3.8, shows a delta area with sediment flow and accretion, the mixed effects of land 

loss are colored by their standard deviation from the mean. Low or zero standard deviation 

(greens) represent areas which are close to the mean and have little or no monotonicity.  

 

Figure 3.8: Mann-Kendall Z scores as estimates of monotonicity. As an example, applied to 

Grid-3 for the spectral unmixing derived land and water boundaries. 

Landsat (Fig 8, left panel) showed smaller patches areas beyond two standard deviation 

(95%) of land loss and land gain (note: banding is due to the Landsat 7 ETM+ scan line 

corrector). Sentinel (Fig. 8, center panel) reveals more negative monotonicity with patches of 
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accretion along the edges of the delta. PlanetScope (Fig. 8, right panel) which was 

harmonized to Landsat (resulting in scan line corrector banding) shows similar patches of 

areas with land loss; with increased positive monotonicity in the same areas as Landsat, 

showing areas with ephemeral land gain. These analyses were performed for all grids, for all 

sensors (see Supplemental Materials). 

Choice of the sensor is paramount to understanding land loss and is a function of the overall 

effect being observed, the type of methodology being used, and the end result we expect from 

such analysis. As derivatives from source imagery such as Sentinel-2 Surface Reflectance 

imagery, along with cloud masking data as well as Planet’s udm2 cloud mask data become 

available, our methodologies will change and evolve. Though the composites will get better 

and relative difference in estimates should decrease, high frequency of interannual variability 

still requires a deeper time stack to avoid issues with missing data and holes in our observation. 

Depending on the rate of change of the observed processes in the landscape sensor 

characteristics including but not limited to spatial, temporal, and spectral characteristics are 

important for landscape studies. Rapid land loss or deterioration in our study area requires near-

daily imagery and a constant coastal watch that logs loss and gain in areas and compares them 

robustly across multiple sensors for cross-validation. As methods in remote sensing and 

machine learning become more available and the overall study of coastal areas at such smaller 

time scale might become possible, validation would be challenging and would require reported 

datasets to be integrated into formats that could be used for field calibration and validation. 

 

3.4 Summary 

Land water boundary delineation is critical in getting accurate estimates of the amount of 

land loss and also to make sure that pixel resolution does not have a detrimental effect during 

overall area estimates. Land loss is a function of space and time, and stochastic events are 
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often hard to capture depending on the frequency of the events and the duration. PlanetScope 

multiple returns allow us to isolate these episodic events and utilize them for fine grain edge 

detection of land loss and or land gain. Our estimates are not a direct measure of land-loss. 

However, the study gives a fine-grained understanding of the issues with image compositing 

and comparison across multiple sensors, interpretation of land edges effected by water color 

remote sensing remains an open-ended question.  

We hope future studies will leverage computational High-performance Cluster 

Computing (HPCC) and cloud environments such as NSF funded CyVerse (Devisetty et al., 

2016; Goff et al., 2011; Merchant, 2017; Merchant et al., 2016), for resolving issues with 

software dependencies by creating pre-built images (containers) consisting of all tools used in 

analyses. Future work will involve the concept of sensor fusion and trying to utilize the fine 

grain resolution of Sentinel-2 and PlanetScope sensors to create a mixed fused product which 

would have high spatial and spectral granularity. 
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Abstract 

Deltas are among some of the most vulnerable areas in the world: facing constant threats 

from flooding, degradation, and land loss. With an annual population growth rate of 1.59%, 

exceeding the world growth rate of 1.11%, deltas also house some of the most vulnerable 

populations in the world. We here introduce a spatial measure of urban residents vulnerability 

to flooding, an adjusted vulnerability index (AVI) that builds upon a vulnerability index 

previously published in Regional Environmental Change (Mansur et al. 2017). The AVI 

includes indicators related to flood exposure, socioeconomic sensitivity, and infrastructure. 

This vulnerability index was used to analyze flood risk and urban flood vulnerability in 

Belém across 1,265 census sectors and 52 neighborhoods (also called Bairros). We wanted to 

understand the effect of spatial interactions and networks on vulnerability across these census 

sectors and neighborhoods. This paper 1) introduces a novel method to couple spatial and 

mailto:roysam@iu.edu
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temporal vulnerability indices based on vulnerability indicator variables and 2) incorporates 

this with higher resolution indicators of urban vulnerability. The spatially adjusted 

vulnerability index uses a multilayer network analysis tied with a local indicator of spatial 

autocorrelation to look at spatial dispersion and aggregation. We find that 51% of census 

sectors have a high or very high vulnerability. We also analyzed vulnerability within and 

outside the areas considered ‘subnormal agglomeration’ with unplanned settlements by the 

Brazilian Institute of Geography and Statistics (IBGE) and proxy variables that are critical to 

understanding flood risks. Areas with unplanned settlements seem to be most affected by 

urban flooding and face increasing urbanization and housing unit density. We found that 

channelization across the city, along with failing infrastructure, has further led to an overall 

increase in flood exposure experienced by people living in Belém. Finally, our analyses 

further calculated a mean vulnerability index at the level of neighborhoods or bairros to 

analyze the effect of spatial aggregations. Our results show that spatial vulnerability is 

spatially clustered and mostly effected by both biophysical and socio-economic factors and 

planned and unplanned settlements experience varying nature of emergent vulnerability. Our 

analyses may serve as a template for spatial and temporal integration of vulnerability 

measures in urban deltaic environments and urban areas at large. 

Keywords: Delta, Vulnerability, Network analysis, Multilayer, Urban flooding 

 

4.1 Introduction 

It is estimated that over half a billion people depend directly or indirectly on delta 

environments worldwide (Syvitski et al. 2009; Renaud and Kuenzer 2012). During the past 

decade, 85% of the world’s deltas experienced severe flooding (Syvitski et al. 2009), which is 

likely to increase in severity and frequency within this century owing to sea level rise and 

climate change (Syvitski et al. 2009; Newton et al. 2012; Renaud and Kuenzer 2012). Deltas 
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are among the most productive, dynamic, and fragile ecosystems, but account for less than 

3% of land globally. Human population densities in deltas are 12 times higher than the global 

average, and growth rates in deltas (1.59%) also currently outpace the global average 

(1.11%). In the Global South, fast-growing urban areas in deltaic regions are confronting the 

compounding impacts of environmental change and sea-level-rise, deficient infrastructure, 

and unequal socioeconomic conditions, which together place large sectors of the population 

in vulnerable settings. As such, deltas social-ecological systems are considered not only 

sentinels of change but emblematic of the complex interactions of accelerated environmental 

and social change (Brondizio et al. 2016). Despite the importance of urban spatial structure 

on residents’ vulnerability to flooding, few studies on vulnerability have incorporated spatial 

analysis into their models. Given these trends, this study will examine how accounting for 

biophysical, socioeconomic, and infrastructural factors, jointly shape urban vulnerability and 

highlight the underlying implications of an urban population subjected to flooding.  

Vulnerability, as measured in urban environments such as cities found along deltas, is 

a function of the spatial structure of cities (e.g., housing patterns and conditions, available 

infrastructure and its maintenance), socioeconomic conditions across different spatial units 

(e.g., city block, census sector, neighborhoods, city level, etc), local topography and 

hydrology, and other interacting factors, which have a crucial role in mediating or enhancing 

the effect of hazards. In this study, we analyze the vulnerability to flooding of residents in 

Belém, Brazil, the largest city of the Brazilian Amazon. The city of Belem and the Belem 

Metropolitan Region accounts for 50% and 67 %, respectively, of the total population of the 

Amazon Delta Estuary (ADE) region, which includes other 49 cities, mostly small.  Belem’s 

life is intertwined with the marked pulses of semi-diurnal tides. Belem is characterized by a 

large low-income population, living in unplanned urban settlements created through phases of 

accelerated expansion (often along streams), unequal distribution or absence of drainage 
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infrastructure, and subjected to increasingly recurrent flooding. These conditions and the 

availability of data make it a microcosm for measuring and testing effects of spatial 

dependence and networks on overall flood vulnerability models.  

Cities in the global south present a unique perspective on urban growth and are often 

overlooked in their particularities and challenges (Nagendra et al. 2018). Belém is also an 

interesting case study as it encapsulates the amalgamation of poorly planned urban 

infrastructure, high population density, and marked economic disparities.  Urban population 

in the ADE region as a whole has grown “by around 300%, particularly between 1970 and 

2010”, in most cases in urban areas without the means to manage and provide services to 

such rate of growth (Brondizio et al. 2016). The case of Belem offers an opportunity to 

incorporate the analysis on the possible role of urban spatial structure in levels of 

vulnerability to flooding.  

In a prior study (Mansur et al. 2016), we applied vulnerability modeling by 

introducing the Analytic Hierarchy Process (AHP) (Saaty 1987, 2008, 2013; Vargas 1990) to 

41 urban areas of various population sizes across the ADE. Our analyses introduced a 

multiscale model for looking at vulnerability indicator variables and also integrated multiple 

vulnerability types into a single combined vulnerability index. While the approach used in 

(Mansur et al. 2016) is novel in weighting vulnerability contributions, the overall analysis did 

not take into account spatial effects, dependencies, or dispersions. Therefore, we here 

introduce a multilayer network analysis (hereafter ‘multilayer analysis’) to account for spatial 

distribution and dependence while also calculating vulnerability indices. We model spatial 

dependence using Local Indicator of Spatial Autocorrelation (LISA), which was applied to 

each indicator variable (Cliff and Ord 1970; Anselin 1995; Cheng et al. 2012), and each 

network formed by an indicator variable then forms the multilayer network. By using land 

use and land cover datasets along with building rooftop data and drainage channel length, this 
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paper advances the analysis of vulnerability risks from the level of census sectors (smallest 

publically available unit of analysis), neighborhoods, and the entire city, including areas 

designated as ‘subnormal agglomerations’, which corresponds to 40% of the city area with 

over 38% of the overall population. 

Building upon Mansur et al. (2017), the AHP approach used in this analysis allows us 

to integrate spatial network and dependencies using network analysis (Saaty 1987, 2008, 

2013; Vargas 1990). Through this approach, we investigate the following three questions: i) 

How do changes in urban growth and infrastructure affect the spatial distribution of 

vulnerability? ii) Does overall vulnerability vary spatially across census sectors and 

neighborhoods (bairros)? iii) How do proxy indicators of flood vulnerability inform the 

combined vulnerability index?  

 

4.1.1 Conceptual models of vulnerability 

Vulnerability is broadly defined as the risk populations face and/or their inability of to cope 

with hazards (Mitchell and Mitchell 1996; Mitchell 1999), where hazards are socio-

ecological forces capable of causing physical as well as psychological and emotional harm 

(Kelly and Adger 2000; White et al. 2001; Brooks 2003; Hurst 2008; Adger and Kelly 2012). 

Vulnerability is comprised of biophysical exposure and socioeconomic susceptibility (also 

known as ‘sensitivity’ in the vulnerability literature) to a natural hazard (Brooks 2003; Turner 

et al. 2003). For example, low-lying areas are highly exposed to flooding, but residents in 

these areas can have vastly different levels of susceptibility to flooding based on whether 

their municipality has fortified the shoreline with a high seawall or not, or whether they have 

socioeconomic conditions and/or an extensive network of family or friends to provide 

support, such as lodging, subsistence, and empathy.  
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Though many previous models of quantitative vulnerability used estimates of hazards, many 

neglected to incorporate spatial weighting into their overall assignment of vulnerability. 

(Balica et al. 2009, 2012; Overeem and Brakenridge 2009; Adger and Kelly 2012) A-spatial 

measures of vulnerability do not take into consideration local spatial clustering. The role of 

the spatial structure of these systems is likely understated in these spatially agnostic models. 

Models, such as the Delta Socio-Ecological System (SES) framework (Sebesvari et al. 2016), 

take into account system robustness and measures susceptibility of a system. Such models 

include susceptibility to risks both inside and outside an SES and further proposes hazards 

and impacts of these hazards at different social scales within the SES.  However, spatial setup 

and interaction among these spatial and social units are not explicit in the SES Framework 

but remains critical to urban systems. While there is extensive literature on vulnerability, the 

process of integrating spatial morphology and structure and its use in vulnerability models are 

still developing (Kelly and Adger 2000; Brouwer et al. 2007; Adger and Kelly 2012).  

While place-based vulnerability models, such as the one proposed by (Cutter 1996; 

Rashed et al. 2007; O’Brien and Wolf 2010), incorporate geographic context, they do not 

account for the spatial configuration of the system, and, in turn, how such configuration may 

effect, enhancing or mitigating, different socio-economic-environmental contexts.  

Incorporating spatial components in hazard sensitivity analysis and vulnerability models is 

particularly important, given the singularities of urban socio-spatial configurations around the 

world. This notion of hazard mitigation is also informed opportunities and challenges for 

collective, adaptive social capacity in spatial networks amongst different sectors and 

neighborhoods in urban areas (Cardona 2011, 2013; Nishat and Mukherjee 2013). For 

example, during times of frequent urban flooding, people often stay or live with friends and 

families to avoid dealing with short-term weather uncertainty (Lima 2001; Costa and 

Brondízio 2011; Pegado et al. 2012b; Mansur et al. 2018). Earlier research by others in the 
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field has further pointed to how collective mitigation in spatial units, such as neighborhoods, 

increases an individual’s ability to cope with hazards (Swift 1989; Burton 1997; Adger and 

Kelly 1999, 2012).  

4.1.2 Natural and Anthropogenic Drivers of Flooding in Belem 

Belém is located in the northern Brazilian state of Pará. The city is positioned in the 

floodplain of the southern branch of the ADE, specifically on the edge of the Guajará Bay 

and the Guamá river mouth, in the Para River Estuary (Figure 4.1). Topographically, about 

40% of the city is below sea level (Pegado et al. 2012a). Semi-diurnal tides and seasonal 

floods influence the floodplain, the latter influenced by rain regimes in the region and 

elsewhere in the basin (Guedes et al. 2009; Costa and Brondízio 2011; Pegado et al. 2012a). 

Also, the majority of the river channels in Belém are degraded and its riverbanks disorderly 

occupied, aggravating the severity of floods in the city (Gilbert 1998; Perz 2000; Pegado et 

al. 2012a). 

Consequently, projected sea-level rise and enhanced human pressures in the city are 

likely to continue to exacerbate flood impacts in this region (Newton et al. 2012; Pegado et 

al. 2012a; Tessler et al. 2015). The city has a substantial portion of unplanned housing 

developments or informal settlements, many in low-lying areas called ‘baixadas.’ However, 

recent evidence from a case study of Belém shows that rainfall and high tides do not need to 

coincide for floods and inundation to happen, even though tidal level still influences these 

events (Santos and Rocha 2014:44). This pattern stems, at least partially, from the fact that 

the majority of the river channels in Belém are degraded, with a high degree of 

sedimentation, and many choked with garbage, aggravating the severity of floods in the city 

(Gilbert 1998; Perz 2000; Pegado et al. 2012a).  

Following the urbanization policies from the beginning of the twentieth century, 

Belém’s policy-makers have attempted to rectified and controlled the streams in the city 
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connected to the Guajará Bay, such as when implementing the channel system to drain water 

and sanitary waste (Dias and Dias 2007; Brondizio et al. 2016; Soares et al. 2018). Urban 

expansion in Belem started during the early 1970s along with changes promoted in the 

Amazon region as a whole by centralized development programs. As a significant part of 

urban expansion in Belem has been marked predominantly by low-income residents, 

occupation occurred in available and less regulated low-lying spaces, which provided access 

to water and resources. As such, at least in part, urban expansion of floodplain and upland 

areas occurred along with socioeconomic differences. Progressively, Belem has expanded 

away from its main water-front, as expressed by locals, “Belém has turned its back to the 

river” (Dias and Dias 2007; Ponte 2015).  

The population of Belém increased to nearly 1.5 million, and its metropolitan area to 

2.5 million in 2010 (IBGE 2010). Most of this growth has been fueled by unplanned growth 

in informal settlements. In 2002, the overall unplanned settlement reached 40% of the 

municipality of Belém and accounted for over 38% of the overall population (Pegado et al. 

2012a). By 2010, unplanned settlements comprised over 50 percent of Belém’s population. 

Furthermore, 90 percent of the city’s households are not connected to the sewage system 

(Lima 2001; Mansur et al. 2016, 2017). Belém encapsulates the idea of the Amazon as an 

“urbanized forest,” with urban problems that are common to many cities throughout the 

global south (Padoch et al. 2008, 2014; Pinedo-Vasquez and Padoch 2009).  

At the same time, Belem has received significant investments in urban drainage 

infrastructure. Over 300 million USD has been invested in micro- and macro-drainage 

projects since the 1980s, which have created new spaces for the city to grow, but with mixed 

results that stem from the poor implementation, site suitability, and maintenance of these 

infrastructure projects (Mansur et al. 2017). These drainage projects today crisscrossing the 

city, but continue to be poorly maintained, and in parts are unfinished. These channels 
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thereby contribute to flooding, often unpredictably, and increasingly independently from tidal 

influence (Pegado et al. 2012a, b; Mansur et al. 2017). This pattern of urban growth has also 

increased overall impervious areas, which in turn are contributing to worsened flooding in the 

city (Ponte and Brandao; Pegado et al. 2012a; Mansur et al. 2016).  

The impact of sea-level rise in Belem’s is still unknown, but evidence suggests that it is 

already affecting tidal levels, salinity, and potentially already exacerbating urban and rural 

flooding levels (Vogt et al. 2016). Over 40% of the area is below the sea level during high 

tide (mean high tidal heights of over 3.72 m). Belém is prone to the tidal movement of water 

in and out of the city through these drainage channels discussed earlier. Increasing amounts 

of impervious surfaces in Belem compound the flood risks created by rising sea levels 

(Barnett 2003; Barnett and Adger 2007). Since a large portion of the city is below the sea 

level, drainage channels and the rivers retain and cause rapid urban flooding. Low lying areas 

with higher population densities and with unplanned settlements such as houses on stilts are 

further prone to flood damage, including the combined impacts of flooding and sewage spills. 

Tidal backflows and reduction in channel capacity over the years have further lead to 

increased flooding (Tucci 2002; Fewtrell et al. 2008; Pegado et al. 2012b; Filizola et al. 

2014). Over time, these drainage channels which crosscut the entire city act as river flood 

zones submerging more area rather than acting as conduits to allow for free passage of water 

out of the city. 

 

4.2 Materials and Methods 

We use the census sector as our spatial unit of analysis because it is the finest level at which 

population data were publicly available. Though finer level datasets are available, most of 

them are restricted by access and restricted for publication. The Brazilian Institute of 

Geography and Statistics (IBGE) tracks ‘unplanned settlements’ (categorized as “subnormal 
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agglomerations”) in both census sectors and larger neighborhoods, called Bairros, which 

often consist of multiple census sectors. These unplanned settlements reflect economically 

vulnerable populations and poorly constructed dwelling, both of which are likely to increase 

resident’s susceptibility to hazards. Our study areas consist of 1,265 census sectors, out of 

which 679 of them were classified as unplanned settlements, and these 1,265 sectors lie with 

52 total Bairros (Figure 4.1). It is important to note that Bairros do not have any 

administrative boundary and legal powers regarding territorial functions. However, 

community ties and relationships among census sectors are often formed within these 

neighborhoods, and public services are often planned at the neighborhood level. 

 

Figure 4.1: Spatial units set up within Belém, Brazil 
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For our study, though the analysis was performed at the level of census sectors, the results 

were further subdivided into census sectors that are planned and unplanned. To get at the 

aggregated values of vulnerability for Bairros, the vulnerability index value of these 

neighborhoods was calculated as a mean value for the census sectors that lie within each of 

these bairros.   

We divide our datasets into 1) core data for measuring overall vulnerability (Mansur 

et al. 2016) and 2) data focused on spatial configurations and flooding. For generating the 

Adjusted Vulnerability Index (AVI), we create a spatial network for which we take a subset 

of the core variables that are historically relevant towards establishing urban flooding and 

associated vulnerability (Pegado et al. 2012b; Mansur et al. 2016). We treat each census 

sector as a node, meaning we have a fixed number of nodes (n=1,265) for every attribute. The 

introduced model measures the network model measures the spatial interaction between fixed 

actors (census sectors) and the overall interaction among sectors. 

4.2.1 Datasets and Derivatives 

The study consists of a range of datasets that are made available from our earlier work (Table 

4.1; (Mansur et al. 2016), Brazilian government agencies, sensor-based platforms 

documenting urban growth and tidal dynamics, and fieldwork.  

Table 4.1: Indicator variables adapted from Mansur et al. 2016, these are also used for the 

development of the adjusted vulnerability index 

Dimension Indicator group Indicators 

Exposure Flood risk exposure Population under risk of flooding 

  
The area under risk of flooding 

Socio-economic sensitivity Household income No income and income less than one minimum wage 

 Population age groups 
Income less than five and more than one minimum wage 

Children (<10 years old) and elderly (>65 years old) 

 
Location Population living in unplanned settlements 

Infrastructure Sanitation services Households with public water supply 
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Households served by solid waste collection 

  

Households with domestic effluent piped to a sewer 

system 

 
Housing conditions Households without a drainage system 

  

Households with accumulating solid waste in front of 

the house 

  
Households with an incidence of open-air sewage 

    The area considered unplanned settlement 

 

Additional datasets were either generated or collected from multiple sources and are reported 

below. Each derivative dataset was shared as supplementary material for the analysis. 

Additional data sets were gathered from national and local government agencies (Table 4.2), 

including the high resolution 200-by-200 m grid of urban areas with a count of the number of 

households from IBGE, rooftop count provided by COHAB (i.e., the Popular Housing 

Company), additional datasets (Table 4.2) and in-situ field measurements (collected by the 

third author) of channel’s width, length, and slope based. In sum, we have all the elements to 

measure flow capacity of these channels. Thus, using the in-situ field data, we add another 

layer to the overall assessment of vulnerability.  

The third author and a geography-major undergraduate research assistant (RA) are 

both from Belém, carried out fieldwork in different parts of the city, and extensively 

discussed which sample of channels could furnish reliable, though approximate, indicators 

about the situation of the drainage capacity in the city. Field interviews conducted by authors 

(Figure 4.2) were used to establish flooding timeline and recurrence (supplemental 

interview). They also met with the co-author of a recent case study of Belém who adopted a 

similar approach to obtaining his measures to talk about these plans (dos Santos and da 

Rocha 2014). No concerns were expressed in regards to our methodological choice. Thus, we 

selected the Canal das Docas and Canal da Tamandaré to conduct in-situ measurements, 
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which are two channels in relatively good conditions regarding their flow capacity for 

comparison with poorly maintained channels in the city. (These channels are also located in 

neighborhoods where income is above the average, which should arguably garner more 

attention from, and maintenance by, public officials than poorer parts of the city.) 

 

Figure 4.2 Locations of canals chosen for an interview and actual interview locations for field 

work  

These datasets were coupled with additional datasets such as elevation map to ascertain low 

lying areas and certain points with high flood frequencies to be overlaid with the inundation 

risk mask provided by COSANPA. On this point, the researcher with whom the third author 
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and the RA spoke explained that he was not certain about the methodology that COSANPA 

used to calculate and then validate its inundation risk indicators, but he was familiar with 

these shapefiles. 

Since this scholar was focusing on a case study within Belém to validate other 

measures used in his article (dos Santos and da Rocha 2014) and not the entire city, he 

decided to collect his data on inundation, an analysis on which we expand using 

COSANPA’s files that extend to Belém’s territory. 

 

Table 4.2: Datasets and institutional dataset providers 

Dataset Institutional Provider 

Census 2010 IBGE (Brazilian Institute of Geography and Statistics - Instituto 

Brasileiro de Geografia e Estatística in Portuguese) 

Rooftop data COHAB (Popular Housing Company - Companhia para Habitação 

Popular in Portuguese) 

Permeability layer COSANPA (Company of Sewage of Pará - Companhia de 

Saneamento do Pará in Portuguese) 

Inundation risk 

layer 

COSANPA (Company of Sewage of Pará - Companhia de 

Saneamento do Pará in Portuguese) 

Contour Data CODEM (Company for the Development and Management of the 

Metropolitan Area of Belém - Companhia de Desenvolvimento e 

Administração da Área Metropolitana de Belém in Portuguese) 

River Network COHAB (Popular Housing Company - Companhia para Habitação 

Popular in Portuguese) 

Land Use and Land 

Cover 

Derived using Landsat and High Res IKONOS, WV2 data 

Tidal Height, 

Temperature and 

Precipitation 

XTIDE and CHIRPS (Climate Hazards Group Infrared Precipitation 

with Station Data) 

Digital Elevation 

Model 

Contour lines used to derive elevation surface with a 10m resolution 
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4.2.2 Land use and Land Cover Change Analysis 

We used Landsat 5, 7, and 8 datasets to generate land use and land cover over Belém, using 

the Normalized Difference Built Index (NDBI) and the Normalized Difference Vegetation 

Index (NDVI). These indices were produced for both planned and unplanned settlements over 

time to compare the overall growth in the city to the growth in the unplanned settlements. 

High-resolution satellite imagery about 2-3 m was also utilized to get at the classification of 

land use and land cover looking at finer details such as overall growth in the impervious area. 

The analysis was performed in Google Earth Engine (Gorelick et al. 2017; Shelestov et al. 

2017), and the results were included in the supplementary materials. Land use and land cover 

analysis were performed on Landsat imagery with every 5-year collections from 1990 

onwards. A total of 565 Landsat images were used to create 5-year composites and a 

Normalized Difference Built Index (NDBI) was used in conjunction with Normalized 

Difference Vegetation Index (NDVI) and Normalized Difference Water Index (NDWI) to act 

as overlaying masks (Otsu 1979; Gao 1996; Zha et al. 2003; Roberts et al. 2017). NDBI 

highlight urban areas where there is higher reflectance in the shortwave infrared band 

compared to the near infrared band.  

𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 =
𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 − 𝑁𝑁𝑁𝑁𝑁𝑁
𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 + 𝑁𝑁𝑁𝑁𝑁𝑁

     𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 =
𝑁𝑁𝑁𝑁𝑁𝑁 − 𝑅𝑅𝑅𝑅𝑅𝑅
𝑁𝑁𝑁𝑁𝑁𝑁 + 𝑅𝑅𝑅𝑅𝑅𝑅

    𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 =
𝑁𝑁𝑁𝑁𝑁𝑁 − 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆
𝑁𝑁𝑁𝑁𝑁𝑁 + 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆

 

NDBI is used in conjunction with NDVI, which highlights vegetation, and NDWI, which 

highlights water. NDVI and NDWI are used as masks to exclude areas with vegetation and 

water and focus on urban and built areas using the NDBI. 

Once the NDBI image was generated, we used Otsu’s thresholding method (Otsu 

1979) to binarize each pixel in the image as urban and non-urban areas. Otsu’s analysis looks 

at thresholding value to minimize within class variance and generates a single threshold value 

for each single band NDBI image. This was applied to each NDBI generated from the 

imagery composites over six, 5-yr periods, with the last period extending from 2015-present., 
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High-resolution multispectral images (IKONOS, WV-1, and WV-2) were acquired from 

Digital Globe (2.5m resolution) from three different periods (i.e., 2011, 2013, and 2015) to 

estimate urban built area. These images, however, had swath widths that were usually smaller 

than the overall area of interest and as a result, the reported results were only included for 

those census sectors which had complete coverage (581 out of the 679 census sectors that 

constitute the unplanned settlements). The endmembers were collected for the high-resolution 

imagery and constrained spectral un-mixing was applied to the imagery to get the urban built 

class, along with water, road, and vegetation. This subpixel classification allowed for the 

calculation of percentage urban area along with vegetation and water class for the multiband 

imageries (Keshava and Mustard 2002; Keshava 2003). Our spectral unmixing from the 

linear mixing model (LMM) where we have M endmembers: 

𝑥𝑥 = �𝑎𝑎𝑖𝑖𝑠𝑠𝑖𝑖 + 𝑤𝑤 = 𝑆𝑆𝑆𝑆 + 𝑤𝑤
𝑀𝑀

𝑖𝑖=1

 

Where x  is the L by 1 received spectrum vector, and S is the L by M matrix formed by 

the L by M matrix, a is the fractional abundance (M by 1 matrix), and w is the L by additive 

observation noise vector (Keshava and Mustard 2002). However, since we are interested in 

the urban built environment apart from the overall urban area, this band with percentage 

probability per pixel was extracted and was coupled with interclass clustering using Otsu’s 

method similar to that applied to NDBI in Landsat imagery, and the results were reported. 

The analysis was made for the unplanned settlements since they had nearly complete overlap 

over our classified area for the high-resolution imagery. 

4.2.3 Tidal and Precipitation Data 

Tidal data was collected from a tide gauge at 1.4333° S, 48.5000° W, and also generated 

from tide tables and XTide (Flater 1996, 1998). To get yearly tidal high and low tide heights, 

we used a Python program to scrape and parse tabular daily data from 2000-2018. This 

dataset had a daily resolution with 3 data points each day for 18 years and had been included 
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in the supplement for use in assessing sudden peaks in daily tidal height data. Highest 

observed high tide values were about 3.94 m observed in August 2012 and again in August 

2016 and these were also coupled with the highest observed low tide values of 1.37 to 1.34 m 

observed in 2012 and 2016 respectively. Rainfall data were reported from earlier literature 

(Pegado et al. 2012b; Mansur et al. 2016) and were verified using CHIRPS (Climate Hazards 

Group Infrared Precipitation with Station Data), which provides quasi-global precipitation 

data from 1981 onwards (López-Carr et al. 2014; Funk et al. 2015; Katsanos et al. 2016). The 

average value of over 2000 mm and nearly 3000 mm was verified for 2000-2018 as well, and 

an average precipitation value was derived for each year. The highest values were 3200 mm 

approximately in 2011 and with a high peak of about 3112 mm in 2017. Highest temperature 

data similarly followed suit with over 33 C temperature recorded in 2011 and 2016.  

4.2.4 Rooftop, Contour and Elevation Data 

Contour Data was provided using a land-based contour survey. These points were converted 

into contour lines, and a Triangular Irregular Network (TIN) was then used to create a DEM 

surface interpolated to 10m resolution. Zonal statistics were calculated for each census sector 

to get mean elevation and this was used as an underlying layer for analysis of the inundation 

maps and points of historic flooding. 

Rooftops were vectorized and provided as a vector file, this included edits and check 

from Open Street Map. Rooftop counts are an indicator of the number of houses and serve as 

a proxy to urbanization as a process. However, differentiating rooftops are harder to delineate 

in areas with unplanned growth owing to connected rooftop structures and building rooftop 

material making count and delineation harder. Nevertheless, they serve as direct indicators of 

urbanization and indirect indicators of population and urban growth. 

4.2.5 Spatial Multilayer Network setup 
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For our study, we divided the problem into two main components i) Building a single spatial 

network consisting of multiple layers where each vulnerability variable is a layer in the 

multilayer spatial network and ii) Collapsing the multilayer network into a single layer multi-

attribute network. The methodology (Figure 4.4) consists of the following steps i) An 

analytical hierarchical process (AHP) was coupled with Shannon’s entropy (Shannon 1948; 

Lin 1991; Martı́n and Rey 2000) to create a combined entropy metric (CEM). ii) Our method 

established a hierarchy between different variables or attributes in the multilayer network 

which explains overall vulnerability to flooding.  

 

Figure 4.4: Overall Methodology for Calculating Multilayer System Vulnerability 

 

Since the network is spatially situated within the spatial morphology of the city, a Local 

Indicator of Spatial Autocorrelation (LISA) was applied (Anselin 1995; Fluet-Chouinard et 

al. 2015), and a network Eigenvalue centrality was then calculated and combined with CEM 

to generate adjusted vulnerability index (AVI). Additional analysis and data models are 

integrated into this to help assess urban flooding and change in the spatial configuration of 

the city both spatially and temporally. Our methodology is described further in the following 

Choose census sectors as nodes for network analysis (n=1265 census sectors) 
each indicator variable as single layer of multilayer network (N= 9 variables) 

Step-1 

Combined Entropy Metric(CEM) using Analytic Hierarhcy Process (AHP) and 
Shannon’s Entropy (SE) for each layer  

Step-2 

Local Indicator of Spatial Autocorrelation (LISA) derived  
Node Connectivity INdex 

Step-3 

Step-4 Eigenvalue Centrality combined with Combined Entropy Metric to get Adjusted 
Vulnerability Index (AVI) for each census sector (n=1265 census sectors) 

Aggregated Adjusted Vulnerability Index (AVI) 
for Bairros (neighborhoods) (n=52 bairros) 

Step-4 
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subsections. Reassessing vulnerability with the help of a network analysis allows for a new 

dimension at looking at how vulnerabilities interact spatially. The Analytic Hierarchical 

Process (AHP) used to generate weights is limited by the fact that the pairwise comparisons 

used in AHP do not consider spatial dispersion and effects. In this paper, these spatial effects 

are utilized and applied using the network analysis to yield a spatially adjusted vulnerability 

index (AVI). 

 

4.2.6 AHP Based Pairwise Comparison 

AHP is a decision-making tool that allows the user to perform a pairwise comparison and 

reduce a multidimensional hierarchy between the variables to a single decision  (Saaty 1987, 

2008, 2013; Vargas 1990). In the process, AHP established a list of priorities for each 

variable, which then affects the overall outcome. The pairwise comparison between each 

variable was transferred to a matrix in the form (Figure 4.4 & 4.5). We used the analytic 

hierarchical processing (Zahedi 1986; Saaty 1987, 2008) method to generate priority 

eigenvector among the variables that were analyzed for analysis of urban flood vulnerability. 

The AHP analysis was applied to the same subset of indicator variable groups (Figure 

4.3) which was adopted from the earlier paper (Mansur et al. 2016). The final goal was to 

establish a net hierarchy between indicator groups and variables, and grouped into three 

different categories: i) exposure indicator variables; ii) socio-economic sensitivity indicators, 

and iii) infrastructure indicator variables. A matrix and pairwise comparison was set up using 

the correlation coefficient for each variable and was then converted using Saaty’s Scale 

(Saaty 1987, 2008, 2013; Vargas 1990). The overall hierarchy is useful for establishing the 

importance of each variable among the multiple layers of the Multilayer networks. 
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Figure 4.5: Modified from Mansur et al. 2016 

The weights depend on the size of the matrix (n by n). A consistency ratio (CR) was 

calculated to make sure that the matrix values and established hierarchies are close to being 

consistent. While randomness index was fixed depending on the number of variables (n), so 

we calculate CR as the ratio of consistency index by randomness index. The eigenvector was 

then finally calculated, and the consistency ratio using the randomness index and this 

establishes an overall hierarchy among layers in the multi-layer network. Since the number of 

census sectors is the same for each variable, our methodology allowed us to establish a 

varying level of hierarchy measure among different layers. In this case, the vulnerability 

weight was used as a measure that is coupled with spatial heterogeneity.  

4.2.7 Spatial Constraints to Hierarchical Network Data 

Shannon’s Entropy (SE) (Shannon 1948; Hill 1973; Martı́n and Rey 2000) was applied 

(Equation 1) to address the spatial heterogeneity of each variable. Where Hn is SE value, 

𝐻𝐻𝑛𝑛 = −�𝑃𝑃𝑖𝑖𝑙𝑙𝑙𝑙𝑙𝑙𝑒𝑒(𝑃𝑃𝑖𝑖) 

Where, 

Pi = proportion of variable in the zone/sector 

n = Total number of zones 

In this case, zone/sector refers to the census sector, which is used instead of nodes. A python 

program was written (Supplementary Code) to calculate SE for each variable. SE measures 
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the spatial dispersion of indicator variables. The higher the SE, the higher the overall spatial 

heterogeneity of the values between indicator variables. Of the proportion of value in the 

zone/sector, SE has been used in earlier studies to get at spatial distribution and heterogeneity 

(Krstanovic and Singh 1992a, b; Bhatta et al. 2010) among use cases in urban processes. 

While AHP produced among variable hierarchy or measure of weight between among two or 

more indicator variables, SE provides within-group distribution or variability of the variable 

values. Combining AHP and SE allows us to utilize both within- and between-group ranking 

and variability measures across the Multilayer network and as such, combines spatial effects 

to weight wise hierarchy. This is the Combined Entropy Metric, as discussed in the 

succeeding sections.   

4.2.8 Combined Entropy Metric 

While AHP is a robust method to generate an overall hierarchy between indicator variable, 

Shannon's entropy (SE) established the spatial spread and dispersion measured by the entropy 

value. As such the combined entropy metric (CEM) is the normalized value or the product of 

AHP and SE per variable and was calculated for all variables after confirming that they are 

consistent using the value of Consistency Ratio (CR) we calculated earlier. Since the value of 

Shannon’s entropy can range from 0 to infinity, the normalization approach used to calculate 

CEM also allows us to make sure that we maintain the overall sum of CEM equals one. These 

values were then used as a weight for the directed network graph in the multilayer network 

(Table 4.3). This step allows us to attach spatial dispersion and distribution characteristics to 

the existing AHP metric.  

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀(𝐶𝐶𝐶𝐶𝐶𝐶) =
𝐴𝐴𝐴𝐴𝐴𝐴 𝑥𝑥 𝑆𝑆𝑆𝑆
∑𝐴𝐴𝐴𝐴𝐴𝐴 𝑥𝑥 𝑆𝑆𝑆𝑆

 

Where, 

AHP= Eigenvector value from the AHP (for variable i) and SE= Shannon’s Entropy value 

(for variable i).  
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Table 4.3. The table shows AHP, spatial entropy, and combined entropy metric 

Indicator Variable AHP SE CEM 
Percentage Population at risk 0.25 10.25 0.29 
Income less than recommended 0.20 10.30 0.23 
No Income 0.18 10.30 0.21 
Open Air Sewage 0.11 4.55 0.07 
Household without Drainage 0.07 7.76 0.07 
Accumulated Solid Wastes 0.06 8.66 0.06 
Access to Sewers 0.05 4.08 0.04 
Solid Waste 0.03 10.10 0.02 
Water Supply 0.01 9.69 0.02 

 

The normalized CEM was used as a weight which could be applied to the setup of the overall 

multilayer network. Since Shannon’s entropy is a combined measure of dispersion, this is a 

single measure for each indicator variable, however, to get at the spatial dynamics and 

interactions of the census sectors a spatial autocorrelation measure such as the Local 

Indicator of Spatial Autocorrelation (LISA) becomes necessary.  

4.2.9 LISA and the Node Connectivity Index 

Local Indicator of Spatial Autocorrelation (LISA) has been effectively used to measure the 

impact of neighborhood processes and spatial pattern on each other and to capture if spatial 

clustering is a sign of spatial dependencies. Spatial Autocorrelation broadly examines the 

spatial dependency of data where observations closer to each other are more similar to each 

other (positive autocorrelation) or dissimilar (negative autocorrelation). It is, therefore, a 

measure of the spatial distance between the observation and the similarity between them in 

values. However global measures of spatial autocorrelation like Moran’s I have problems 

with generating only a single measure of autocorrelation for the whole system because it 

relies on an assumption of spatial stationarity (i.e., that system-wide phenomena are 

consistent everywhere). Spatial stationarity principles have been challenged, and local 

variations, such as geographically weighted regression, have been suggested as preferable to 

handle issues with spatial stationarity (Fotheringham et al. 1998; Fotheringham 2009). Local 
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models, such as Local Indicator of Spatial Autocorrelation (LISA), measures spatial 

clustering and establishes a spatial autocorrelation index value and a cluster for each variable 

relation (positive, negative and non-significant autocorrelation). The sum of LISAs for the 

entire landscape is proportional to the Global Moran’s I, which allows for cross-checking 

between local and global autocorrelation indices. We used Local Indicator of Spatial 

Autocorrelation(LISA) instead of Global Moran’s I for our analysis to overcome the 

problems of structural homogeneity and to better understand local interactions at the relevant 

scale of the spatial processes. 

   

Here zi is the original variable (SI in this paper) in standardized or deviation from, wij is the 

spatial weight, with the summation being across row i of the spatial weights matrix. The 

analysis generates cluster types or outlier types which represent the behavior of each pixel to 

its neighbors (Cliff and Ord 1970; Anselin 1995; Ord and Getis 1995, 2001; Wulder and 

Boots 1998; Fluet-Chouinard et al. 2015). The analysis generates cluster types or outlier 

types that represent the behavior of each node in the network about their neighbors. Within 

each single attribute layer, we use LISA to divide nodes into five different classes (High-

High, High-Low, Low-High, and Low-Low autocorrelated nodes, and Non-Significant nodes, 

which can be treated as isolated. The total number of nodes of a single class equaled the total 

number of possible connections that a node could make, however, each class can only be 

connected to spatially contiguous neighborhoods and hence geospatially constrained. This 

ratio of actual connections that each node has to the maximum possible number of 

connections possible was constructed as Node Connectivity Index (NCi)   

𝑁𝑁𝑁𝑁𝑖𝑖 =
𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑜𝑜𝑜𝑜 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑖𝑖𝑖𝑖 𝑒𝑒𝑒𝑒𝑒𝑒ℎ 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑜𝑜𝑜𝑜 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑜𝑜𝑜𝑜 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
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This allowed us to develop a multiclass multilayer directed network, which was then 

analyzed for network metrics and more specifically, Eigenvalue centrality measures. Local 

Indicator of Spatial Autocorrelation allows the user to generate five classes of node types to 

be used in the network analysis. These are the clustering types denoting positive, negative, 

and statistically insignificant autocorrelation. Both positive and negative autocorrelations 

were used to maintain a consistent number of nodes and connectivity in the urban area; this 

includes keeping non-significant sectors as isolated nodes.  

4.2.10 Network Metrics: Eigenvalue Centrality 

Eigenvalue centrality is a measure of network centrality, keeping in consideration the 

importance of node connectivity and looks at global connectivity within network 

communities and is a better representative of spatial connectivity. There is evidence to show 

that Eigenvalue centrality works better than other measures such as indegree and closeness 

centrality (Ruhnau 2000; Bonacich 2007). Our network is further constrained spatially, and 

hence, connectivity of nodes are spatially dependent. For our centrality measures, the 

centrality is proportional to the sum of centralities of vertices which are connected. In our 

case λ being the largest eigenvalue of A (where A is the adjacency matrix) and n is the 

number of vertices: 

𝐴𝐴𝐴𝐴 = 𝜆𝜆𝜆𝜆, 𝜆𝜆𝑥𝑥𝑖𝑖 = �𝑎𝑎𝑖𝑖𝑖𝑖𝑥𝑥𝑗𝑗 , 𝑖𝑖 = 1, … … .𝑛𝑛
𝑛𝑛

𝑗𝑗=1

 

Once there Eigenvector Centralities (EVC) have been calculated we multiple EVC with the 

Combined entropy metric (CEM) to gauge the spatial distribution, connectivity, as well as 

heterogeneity, using both Shannon’s entropy and Analytic Hierarchical Process. This yields 

the spatially adjusted vulnerability index.  
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4.3 Results 

We examine combined spatial vulnerability to flooding by using multi-layer network 

analysis. We look at the clustering of vulnerability scores, the density of housing in planned 

and unplanned settlements, changes in urbanization and its consequences for impervious 

surfaces, and how vulnerability maps onto historically flood-prone areas. This approach 

allows us to identify how social, biophysical, and infrastructural factors function in 

combination to generate higher or lower vulnerability scores. While vulnerability is strongly 

influenced by infrastructure, urban expansion and socioeconomic conditions create emergent 

vulnerability conditions. Our study shows mutually that both infrastructure based biophysical 

vulnerability and socio-economic vulnerability largely influence the overall vulnerability 

measurement. Unplanned settlements seem to be growing at rates eight times greater than in 

planned areas, even with poor urban infrastructure. The increase in impermeable areas in 

planned settlements and increase in sediment flow to channels in unplanned settlements 

create a positive feedback loop which increases overall flow while subsequently reducing 

channel capacity affecting overall flooding. While each census sector experiences their 

measure of vulnerability and unique combination of variables that cause said vulnerability, 

vulnerability seems to be clustered in spatial units larger than the census sectors themselves. 

Such spatial effects such as the value of the same variables in neighboring census sectors is 

measured using spatial autocorrelation measures. Over 51% of census sectors have high or 

very high vulnerability, 26% of census sectors have medium vulnerability and 23% of the 

sectors have low vulnerability.  

4.3.1 Distribution of LISA Autocorrelation of Vulnerability 

We find that more than 50% of census sectors are positively clustered with either high or low 

vulnerability scores. Our methodology allowed this spatial clustering to be considered in the 

calculation AVI. Two-hundred and forty-six (246) census sectors are categorized as High-
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High (HH) vulnerability class, encompassing a population of 283206 or 21.17% in 2010; 415 

census sectors are categorized in Low-Low (LL) vulnerability classes, encompassing a 

population of 405836 or 30.34 % in 2010. The Low-High (LH) and High-Low (HL) classes 

make up 25 and 17 census sectors, respectively, with negative autocorrelation, while the 

remaining the census sectors (562) do not have any significant spatial autocorrelation. Within 

the LISA classes, the highest vulnerability value was 0.95, and the lowest was at 0.05, with a 

mean distribution of 0.39. Of the 679 total census sectors that are unplanned settlements, 186 

of them, or 27%, can also be classified as an HH class. By contrast, only 112 census sectors 

that are unplanned settlements lie within the LL class or 16%. Thus, positively autocorrelated 

vulnerability index values constitute 43% of all census sectors within the areas with 

unplanned settlements.  

 

Figure 4.6: Left: Modified from Mansur et al 2018 and Right: Adjusted Vulnerability Index 
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While there are modest changes in terms of area covered under high and very high 

vulnerability, the Adjusted Vulnerability Index proposed in this paper reduces the overall 

percentage of population under very high risk (Figure 4.6, Figure 4.7, Table 4.4). 

 

Table 4.4: Overall vulnerability index and the adjusted vulnerability index. The adjusted 

vulnerability index has nearly equally proportional vulnerability across gradients of 

vulnerability. This is indicative of the model, taking into account network relationships and 

spatial clustering effects to adjust for overall vulnerability.  

Mansur et al 2016 Population % Population AVI Population % Population 
Very High 507106 38 Very High 364355 27 

High 327596 24 High 342383 25 
Medium 306736 23 Medium 334484 25 

Low 206969 15 Low 307185 23 
 

By analyzing spatial clustering and network based relationships in the current paper, the 

authors hope to explore community model of inherent resilience in groups. The top 25% of 

the most vulnerable census sectors have a vulnerability index value of 0.48 or higher and the 

top 10% of the most vulnerable census sectors have a vulnerability index value of 0.60 or 

higher.  For the census sectors that are unplanned settlements, 263 are over the 75th 

percentile of which 100 of them are over the 90th percentile at value 0.6 and higher. For 

planned census sectors, only 77 of them are over the 75th percentile of which only 30 are 

over the 90th percentile for the AVI. 
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Figure 4.7: Left: Adjusted Vulnerability Index (AVI) across bairros (neighborhoods) and 

Right: AVI across census sectors 

4.3.2 Land Use and Land Cover (Decadal Change) 

Land cover considered as urban. i.e., densely populated and with a high proportion of 

impervious surfaces, has been increasing overall in this area with a net increase from 101 km2 

to 116 km2 from 1990 to 2018. For the census sectors in unplanned settlements, the increase 

was from 43 km2 to about 53 km2 (23.31% ), and from 58 km2 to 63 km2 (9.27%) for the 

remaining census sectors. The most vulnerable census sectors (top 25%) have the rate of 

urban land cover increase at 27.51%; this overlaps closely to the 23.31% rate experienced in 

unplanned settlements. This unplanned infrastructure growth is thereby closely tied to overall 

vulnerability to flooding. While the Landsat classification supported the analysis of overall 

urban expansion (Figure 4.8), we used high-resolution land cover classification for the subset 

of census sectors categorized as unplanned settlements (581 out of 679) to examine the built 
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area over time, which changed from 14.79 km2 in 2011, 15.51 km2 in 2013 and 15.54 km2 in 

2015.  

Within the census sectors characterized as unplanned settlements, the number of 

rooftops has a range of about a single rooftop intersecting with a census sector and a high of 

about 500 houses per sector, and within the rest of the city, the range is between a single 

rooftop to about 658 rooftops. In terms of rooftops per square kilometer the range lies 

between 3 to 13,000 rooftops/km2 for unplanned settlements with a mean rooftop density of 

4,164 rooftops/km2. A density of 13,000 roof tops/km2 represents a specific census sector 

(geocode 150140255000015), which has over 266 houses in an area of 0.019 km2. For the 

rest of the city census sectors that are not part of unplanned settlements have a housing 

density, ranging from 3 to 6,768 rooftops/km2 with a mean density of about 2,670 

rooftops/km2.  

The number of housing units in an urban sector incorporates not only horizontal built 

growth but also vertical growth. Therefore, we obtained the number of housing units per 

census sector from the 2010 census to get total household units per square kilometer. For the 

census sectors in unplanned settlements, housing units ranged from 57 to 45,372 housing 

units/km2, with a mean of about 5,314 housing units/km2. The highest total number of 

housing units was 218 housing units in 0.004 km2. For census sectors that do not lie in within 

unplanned settlements, the highest housing unit density is 33,344 housing units per km2 and 

the lowest at about 1 housing unit per km2. The mean value is at 4,175 housing units/km2. 
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Figure 4.8: NDBI and OTSU method derived urban extent Left: from 1990-1995 composite 

and Right: 2015-2018 composite 

Increasing urbanization and count of building footprint indicates an increase in the 

overall impermeability which further leading to increase in overland flow and associated 

flooding. The impermeability layer was used to assess that out of a total of 174 census sectors 

out of the 1265 total sectors in our AOI (i.e., 14%) have at least one or more permeable areas 

within them. Of these permeable sectors, 79 lie in unplanned settlements, while the remaining 

95 lie outside subnormal areas. The remaining census sectors in our AOI, 1091 (86%) are 

impermeable. 

4.3.3 Elevation and historic inundation 

From the contour derived elevation data (Digital Elevation Model), mean elevation was 

calculated for each census sector. Of the 679 sectors that are defined as SN, the range in 

elevation is 3-19m, with an average of 8m. The highest overall mean elevation in a single 

sector was 20m, while for the lowest areas the average per-sector elevation was 3m. Of the 
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156 census sectors that can be defined as low lying elevation (i.e., elevation less than 4m), 

139 of them lie within unplanned settlements.  

 

Figure 4.9: Left contour survey derived digital elevation model and Right: historic flood 

inundation risk along with rivers, channels, and drainages. (Source: CONSAMPA) 

We find that 75% of historically flooded areas are census sectors have higher physical 

risks but lower social risks. Only 25% of historical flooding has occurred in unplanned 

settlements (Figure 4.9). This is consistent with our finding that overall vulnerability 

assessments point to other areas where the census sector may experience heightened risks due 

to higher social risks, without necessarily having similarly high physical risks. Based on the 

inundation risk map (Figure 4.9), we find that inundation risk perfectly overlays with the 
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contour derived DEM that we created earlier and depict areas near lower elevation where 

flood water may try to exit out via the channels or accumulate as a result of the natural 

topography. 

These inundated areas, despite being served by failing macro and micro drainage channels, 

are susceptible to flooding by two methods i) the water from tidal and backflow into the 

channels makes the channels behave as flood banks and the areas they are serving are the 

ones that are highest at risk. ii) the combination of topography, total urban area coverage, 

living density, and impermeable area that increases the overall flow of water in the surface, 

causing flooding again.  

 

4.4 Discussion 

Our findings point to several important challenges and insights for reducing vulnerability in 

Belem and other increasingly populated deltaic urban areas. First, our spatial analysis of 

planned and unplanned settlements reveals that socioeconomic factors shape residents’ 

susceptibility to hazards more substantially than biophysical exposure. Second, while it is 

unsurprising that housing density is greater in unplanned settlements, we show that it is eight 

times greater than in planned areas. Unplanned settlements having mutually reinforcing 

drivers of high vulnerability, where limited financial options for dwelling construction 

facilitate more stress on existing flood control with an area of already constrained economic 

resources. Third, we show that vulnerability itself is clustered representing spatial 

dependence and interactions amongst census sectors and bairros. Spatial clustering of 

vulnerability points towards underlying interactions and areas of the cities facing similar 

distribution and contribution to variables that constitute the overall vulnerability.  

Our spatial analysis demonstrates the impact of urban infrastructure on people’s 

vulnerability. While we would anticipate that clustering of HH and LL vulnerability would be 
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strongly correlated with elevation and proximity to water, by incorporating a wider range of 

spatially explicit social and biophysical variables, we show that increasing urbanization (and 

the impervious surface is directly connected to increasing high-frequency and high-volume 

flooding. Increasing urbanization over the last couple of decades drastically increased the 

amount of impermeable area (Ponte and Brandao; Gilbert 1998; Perz 2000; Lima 2001). Most 

of the macro and micro drainage projects were designed to align with the local topography. 

However, the canals that were built were not always lined with concrete. Instead, unlined 

stream banks erode and add more sediments into the channel, which reduces channel 

capacity. These increased in the urban built environment and urban density means that there 

is a larger number of housing units living in the same vulnerable area and as a result, though 

urban footprint for certain buildings has remained the same, vertical growth in building 

height has allowed even more people to be effected by the spatial vulnerability. 

Our cluster analysis revealed that unplanned settlements are located together and act 

as pockets of high socioeconomic susceptibility to floods. Also, we found that areas with low 

vulnerability to flooding also appeared clustered. Both dynamics indicate that socioeconomic 

susceptibility can be the primary driver of vulnerability to flooding, even with low or high 

values of biophysical exposure. While a mean vulnerability index for all census sectors in 

bairros allowed for determining the spread of vulnerability in its constituent census sectors it 

also allowed for comparison across neighborhoods. The vulnerability itself is tied to and is 

most influenced by infrastructure-based indicator variables while the study also shows that 

income is nearly equally important, these were based on the spatial adjustment and acted as 

adjustment weights to calculated AVI. 

Finally, our study provides several methodological contributions to the literature. We 

introduced several long-term datasets that were derived from both sensor-based datasets such 

as tidal, land use and land cover, precipitation along with field survey which gave us a 
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gradient of channels allowing us to build upon our understanding of vulnerability and overlay 

it with other proxies that act as flood indicators. Additional data were also collected from 

multiple agencies such as CONSANPA, CODEM, IBGE, and COHAB. These indicators 

included ground derived contour points and lines which were utilized to create a high-

resolution look at the urban topography. We posit that the city’s channelization through past 

drainage projects counterproductively increased flooding into the city rather than providing 

drainage during heavy rainfall events. This effect of channelization with open surface 

channels have been discussed in earlier works in similar setups (Tucci 2002; Fewtrell et al. 

2008; Peixoto et al. 2009).   

While some census sectors will benefit from topography gradients and urban 

infrastructure including auxiliary channels to help ease transient flooding, most census 

sectors are likely to face increased flood frequency and volume for large unplanned 

settlements. Unplanned and unstructured settlements with limited economic means give rise 

to more temporary growth in the urban area. Since the flood control channels in these areas 

are not paved and neither the roadways means they are prone towards more sediment flow to 

accumulate from these areas into the channels. This further leads to narrowing of channels as 

has been reported by field interviews conducted by the authors.   

Vulnerability, as established throughout the paper, is a complex amalgamation of 

multiple factors that creates risk, which then translates to vulnerability. Vulnerability though 

felt at the level of the individual is also spatially linked process not just spatially but also 

owing to social dynamic and community resilience that might exist in groups of people living 

in such areas. The vulnerability model proposed in this paper establishes a robust method to 

gauge parametric vulnerability across space and takes into account spatial relationships that 

are often not found in aspatial models. The model can be used across time, and new 

parameters can be added, and the model will adjust to additional layers in the multilayer 



120 
 

based vulnerability index. Across census sectors, proxy datasets such as building density, 

climatic variability and inundation maps of the region point to proxy indicators that could 

enrich such models and expand our understanding of how the models themselves should 

evolve. 

  

4.5 Conclusion 

Our paper provides a novel methodology and creates an adjusted vulnerability index, 

which combines spatial configuration and reassesses indicator variables that determine the 

overall vulnerability that Belem faces to urban flooding. Spatial dispersion and connectivity 

allow us to explore relationships between factors affecting vulnerability as well as the 

collective spatial vulnerability that might exist in neighborhoods and unplanned settlements 

or subnormal agglomerations as they are called and classified by the government. The study 

further includes proxies that serve as vulnerability indicators and allow us to understand how 

growth in population combines with urban infrastructure in a positive feedback loop. The 

core methodology of this paper serves as a contribution to understanding spatial and social 

interactions at a macroscopic scale within neighborhoods or bairros as well over the larger 

city. In the future studies, we hope to include additional datasets, including risk area 

determination based on the Brazilian Institute of Geography and Statistics (IBGE’s) recent 

classification of risk and risk areas. The authors hope to utilize the 2020 census data for a 

temporal study of the same region to assess the temporal performance of these models. The 

2020 census will also allow for longitudinal comparison of key changes in infrastructure and 

indicator values to the method we developed designed to handle both spatial as well as 

temporal relationships.  

Density of population and the experience of these people living across the canal is 

captured in the narrative of the field interviews across people living in areas where canals 
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have helped reduce flooding and in few where they have been linked to increased frequency 

of flood, One cannot help but notice how the canals often functionally overlay the same 

boundaries as that which separates the unplanned settlements from the planned ones. Apart 

from standard models on flood vulnerability and social vulnerability models such as Flood 

Risk Index (Kiem et al. 2003; Hirabayashi et al. 2013), Social Vulnerability Index (Cutter et 

al. 2003; Bjarnadottir et al. 2011) and Socio-Economic Vulnerability Index (McLaughlin et 

al. 2002; Brouwer et al. 2007, p.), models of vulnerability will benefit from accounting for 

spatial effects.  The issue of richer and more real-time data on flood events and the extent and 

scale of flooding would be extremely valuable to improve such models, along with estimates 

of carrying capacity of existing infrastructure. With changing climate extreme events in large 

portions of the world are only supposed to intensify, we are no longer living in an area where 

proximity to river channels could be used for simple flood plain modeling, we must change 

our definitions of flood plains keeping in consideration anthropogenic changes and channel 

infrastructures. Such models evolve and can serve as important indicators of coevolving 

systems where social and spatial changes influence each other, and it allows us to study the 

city as a living organism in interaction with its overall population. 
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Chapter 5: Conclusion and Summary 

The main focus of my dissertation has been twofold: i) to analyze the spatial and 

temporal patterns of land loss across the Lower Mississipi River Delta (LMRD) in Louisiana 

and ii) to study the impact of urbanization and anthropogenic feedbacks on urban flood 

vulnerability in Belem, Brazil.  

A fundamental goal of landscape science is to connect landscape patterns to their 

underlying processes across different spatial and temporal scales (Liding et al., 2008; Turner, 

1989; Turner et al., 2001). The driving processes of landscape patterns can be either 

anthropogenic, environmental, or some combination of the two. For example, in urban 

landscapes, anthropogenic activities such as urbanization, and consequent building of flood 

control infrastructure have altered the underlying hydrology leading to an increased tendency 

for flood events. On the other hand, the environmental processes of sediment flow, 

deforestation, channelization, and subsidence, which in and of themselves are indirectly 

attributed to human activities, can increase landscape fragmentation and overall land loss.  

My dissertation assesses land loss as a measure of spatial and temporal stability of 

land pixels and evaluates the morphology of land loss. Anthropogenic activities often modify 

deltaic systems, and these modifications coupled with changing climate across urban deltas 

can increase flood vulnerability. To evaluate the impact of understanding land loss and flood 

vulnerability we investigated three different topics; i) Land loss and fragmentation in the 

Mississippi river basin ii) Comparison of landscape fragmentation using multiple sensors 

within the Mississippi river basin and iii) Flood vulnerability assessment using network 

analysis within Belem, Brazil. The overall dissertation juxtaposes two spatially-variant 

landscapes that have both been extensively modified by human influences. The key points 

and takeaways are summarized in the following paragraphs. 
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Chapter 2: 

The use of temporal metrics land loss to describe landscape fragmentation in deltaic 

systems is still rare (Britsch and Dunbar, 1993, 1993; Couvillion et al., 2011; Penland et al., 

2000). Thus, most previous analyses have focused only on permanent land loss and not 

considered loss events that first oscillate between land and water (Britsch and Dunbar, 1993, 

1993; Couvillion et al., 2011; Penland et al., 2000). In recent years, the analytical methods 

used to detect and decipher the spatial patterns of land loss have evolved significantly, with 

significant improvements in cloud computing as well as the ability to analyze deep time 

stacks of imagery (Donchyts et al., 2016a, 2016b; Gorelick et al., 2017). In my work, a novel 

stability index approach was developed to understand the temporal probability of each land 

pixel to convert to water and become lost permanently. The main contribution of this paper is 

to question the long-held assumption in land loss models that all loss is permanent and to 

incorporate our stability index (SI) to understand the dynamic nature of land-to-water 

transitions over time. This paper further examines if these losses are clustered in space and 

time by using Local Indicator of Spatial Autocorrelation (LISA) (Anselin, 1995; 

Fotheringham, 2009). Using these LISA classes, I then analyzed the positively-autocorrelated 

clusters (i.e., low-low autocorrelation and high-high autocorrelation) for landscape 

morphology using metrics such as patch density and shape (Cushman et al., 2008; Lang et al., 

2008), demonstrating that both positively autocorrelated LISA clusters are directly correlated 

to patch density and shape. 

• We showed that land loss is a mix of single and multiple transitions between land 

and water classification and point to multiple process regimes that act on land 

surfaces. 
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• We showed that while a spatial analysis is relevant to create an overall trajectory, 

the Stability index that we created provides a temporal provenance of loss over 

time. 

• We further demonstrated that there is a relationship between land loss and the 

landscape metrics of overall fragmentation and shape of land loss. These 

relationships created by the spatial autocorrelations are indicative of process 

regimes acting on different parts of the landscape. 

Chapter 3: 

My second paper (Chapter-3) revisits the LMRD and highlights the use of different 

remote sensing platforms and earth observation datasets to estimate delta land loss (Bernier et 

al., 2006; Britsch and Dunbar, 1993; Edmonds et al., 2017; Overeem and Brakenridge, 2009; 

Syvitski et al., 2009). In this chapter, I performed a comparative analysis of multiple sensors 

that vary in their spatial, temporal and spectral resolution. We examined the improvement of 

finer spatial and temporal resolution Earth Observation Systems (EOS) by comparing data 

from legacy Landsat series imagery, along with Sentinel-2 and the PlanetScope CubeSat 

constellation imagery (Gašparović et al., 2018; Li and Roy, 2017; Reiche et al., 2018). I also 

created an automated, stratified-sampling approach (Imbens and Lancaster, 1996; Nassiuma, 

2000; Neyman, 1934; Trost, 1986) for sampling end-member signatures. I applied this 

method to two different land loss estimation metrics, including spectral unmixing (Heylen 

and Scheunders, 2011; Keshava, 2003; Keshava and Mustard, 2002) and the index-based 

approaches: Modified Normalized Difference Water Index and Normalized Difference Water 

Index (Donchyts et al., 2016b; Gao, 1996; Han-Qiu, 2005). To improve repeatability of such 

analyses for other researchers working in different systems, all analyses were performed on 

Google Earth Engine (GEE), Google’s cloud computing system and the codes were published 

online for all users. Trend detection was further carried out using Mann-Kendall trend 
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analysis (Abdi, 2007; Hamed, 2008; Neeti and Eastman, 2011) to assess overall loss and gain 

dynamics at a pixel level. Overall, this paper contributes to better identification of at-risk 

areas and populations and could be used to help protect vulnerable populations, providing 

indirect savings to local governments through improved mitigation strategies. 

• Spatial and temporal windows of observations are variant across multiple sensors 

and the observed classification outcomes are sensitive to the spatial and spectral 

resolution of observations. 

• We introduced a stratified sampling approach and combined it with Mann-Kendall 

statistics to analyze monotonicity over the temporal timeframe of the analyses. 

• Spectral and spatial variability are key in identifying land-water boundaries 

effectively. While finer spatial resolution allows for better edge detection, spectral 

resolution improves end-member separation through the use of multiple bands. 

Chapter 4: 

In urban deltas with large human populations, flood vulnerability tends to increase 

over time. My third paper (Chapter-4) looks at Belem, Brazil, which is an urban area within 

the Amazon River Delta. This chapter harnesses both physical and socio-economic datasets 

to create a spatially distributed dataset. The main contribution of this paper is the creation of 

an adjusted vulnerability index that is derived from i) spatial dispersion measures founded in 

Shannon’s entropy (Martı́n and Rey, 2000, 2000; Shannon, 1948) ii) a multilayer network 

analysis and iii) local indicators of spatial autocorrelation (LISA). This methodology allows 

us to look at spatial dispersion and aggregation of vulnerability indicator variables in 

determining the overall vulnerability in the region. My work analyzes vulnerability at varying 

spatial scales relevant to human interaction, with census sector being the finest spatial 

resolution. These spatial units are clustered in groups such as planned and unplanned 

settlements as categorized by the Brazilian Institute of Geography and Statistics (IBGE) and 
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aggregated to bairros which are neighborhoods comprised of census sectors. Furthermore, I 

introduced a methodology that analyzes indicator variables along with proxy climate and 

infrastructure variables in diagnosing flood risks in the context of a city that has introduced 

channelization, but where failing infrastructure has exacerbated overall flood vulnerability. 

• We created a novel spatially-adjusted vulnerability index to assess flood 

vulnerability in an urban delta using Physical and socioeconomic indicator 

variables, proxy climate and infrastructure variables and a multilayer network 

analysis model.  

• We determined that vulnerability seemed to be clustered and there are observable 

differences in vulnerability between planned and unplanned settlements. 

• We confirmed that physical indicators coupled with socio-economic indicators 

and proxy variables, such as building density and infrastructure metrics, serve as 

useful proxies of the overall variability in flooding vulnerability.  

 

In this dissertation, I focused on landscape ecology pattern-process relationships. I 

further analyzed social relationships to spatial data and incorporated spatial network analysis 

in deltaic systems. My research contributes to several novel methodologies to the study of 

these vulnerable ecosystems, including the Stability Index and the Adjusted Vulnerability 

Index. The dissertation further focuses on the repeatability of analysis throughout all 

chapters. In summary, through my thesis I attempted to connect pixel-level analyses to 

underlying physical process and social relationships at the landscape scale. 
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