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We mapped oil presence in the marshes of Barataria Bay, Louisiana following the Deepwater Horizon oil spill
using Airborne Visible InfraRed Imaging Spectrometer (AVIRIS) data. Oil and non-photosynthetic vegetation
(NPV) have very similar spectra, differing only in two narrow hydrocarbon absorption regions around 1700
and 2300 nm. Confusion between NPV and oil is expressed as an increase in oil fraction error with increasing
NPV, as shown by Multiple Endmember Spectral Mixture Analysis (MESMA) applied to synthetic spectra
generated with known endmember fractions. Significantly, the magnitude of error varied depending upon the
type of NPV in the mixture. To reduce error, we used stable zone unmixing to identify a nine band subset that
emphasized the hydrocarbon absorption regions, allowing for more accurate detection of oil presence using
MESMA. When this band subset was applied to post-spill AVIRIS data acquired over Barataria Bay on several
dates following the 2010 oil spill, accuracies ranged from 87.5% to 93.3%. Oil presence extended 10.5 m into
the marsh for oiled shorelines, showing a reduced oil fraction with increasing distance from the shoreline.

© 2014 Elsevier Inc. All rights reserved.
1. Introduction

The Mississippi River delta and associated marshes accumulated
land area for 7000 years (~30,000 km2: Roberts, 1997), until about
1930. Since then, approximately 5000 km2 of coastal wetlands have
disappeared (Barras et al., 2003). Levees built throughout the 1900s
have sharply reduced overbank flow into the delta, which stresses the
vegetation because river water contributes sediment for marsh plants
to grow on, nutrients to enhance productivity and health, and fresh
water to reduce salinity stress from Gulf water (Day et al., 2000).
Stressed vegetation that later dies leads to wetland loss, as the roots
no longer have the ability to consolidate soil (Mendelssohn et al., 2012).

Periodic small-scale oil spills have been common in Louisiana salt
marshes, and the effect of oil on them is well studied, though with
differing conclusions, owing to different levels and timing of oiling,
and even intraspecific variability in response to oil (Pezeshki, Hester,
Lin, & Nyman, 2000; Webb, 1994). Oil affects salt marsh vegetation in
a number of ways. When oil comes in direct contact with foliage it can
block stomata, which 1) reduces transpiration and thus increases
temperature stress; 2) reduces photosynthesis by restricting CO2;
and 3) reduces oxygen transport to the roots, which is critical for
wetland plants (studies reviewed in Pezeshki et al., 2000). When
unweathered oil is mixed with water and covers the soil it can reduce
photosynthesis and plant stem density during the current growing
season, and kill plants in the following growing season at fairly low con-
centrations (Lin & Mendelssohn, 1996). Preliminary results seven
months after the Deepwater Horizon (DWH) oil spill demonstrate that
aboveground live biomass was comparable for Spartina alternifolia
(SPAL) in areas of moderate oiling, but sharply reduced for Juncus
romerianus (JURO), relative to control plots; in areas of heavy oiling
there was minimal live biomass for either species (Lin & Mendelssohn,
2012). In addition, Lin andMendelssohn (2012) performed a laboratory
experiment using artificially weathered DWH oil, applying different
levels of oil to foliage, and also oil to the soil. After 3 weeks the foliage
showed less photosynthesis, proportional to the amount of oiling,
while plants whose soil was oiled showed no decrease. After seven
months, SPAL plants that had foliage (but not soil) oiled had largely
recovered, whereas the plants that had their soil oiled showed 60%
less photosynthesis than the control. In general, plants whose foliage
is oiled often recover, but plants whose roots become exposed to oil
often die (Mendelssohn et al., 2012). Ironically, post-spill cleanup can
be as damaging to the marshes as the oil itself (Lin & Mendelssohn,
1998), thus 73% of the beaches that were oiled by the DWH oil spill
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were authorized to be cleaned but only 9% of the oiled marshes were so
authorized (Michel et al., 2013).

The DWH oil rig began to leak on April 20, 2010, and was not closed
until July 15. Over the course of the spill 4.4 million barrels of oil leaked
into the Gulf of Mexico (Crone & Tolstoy, 2010). The northern Barataria
Bay region experienced the majority of the oiling (Kokaly et al., 2013;
Lin & Mendelssohn, 2012), with shoreline oiling occurring between
May and September (Michel et al., 2013). Predicting the effect of the
spill on the marshes of southern Louisiana begins with identifying the
areas affected by oil. In this instance, oil was manually mapped using
Shoreline Cleanup Assessment Technique (SCAT) protocols. Some
31,000 km of shoreline were surveyed (7058 unique km) by 18 teams
over 7000 SCAT team-days in order to map oil presence/absence in
Louisiana, Mississippi, Alabama, and northern Florida. A common argu-
ment for the use of remote sensing is that it is more efficient than field
work when studying larger areas. If remote sensing can generate a map
of oil approaching the accuracy of a SCATmap it would be an invaluable
time saver. Additionally, SCAT teams only examined shorelines, remote
sensing allows for the quantification of depth of oil penetration, laterally
into the marsh from shore.

Hyperspectral remote sensing is an ideal tool to study oil spills
because the spectral resolution allows for the detection of oil absorption
features (Cloutis, 1989; Kokaly et al., 2013). Extensive Airborne Visible
InfraRed Imaging Spectrometer (AVIRIS) flights occurred in the area
following the oil spill, primarily from May to October 2010 and from
May to October 2011 (data available at http://aviris.jpl.nasa.gov/alt_
locator/). The many compounds in hydrocarbons result in 2 major
absorption features: between 1650 and 1750 nm and between 2200
and 2600 nm, with the feature beginning at 2200 nm being particularly
prominent (Cloutis, 1989). Thin oil films on water do not exhibit these
features because of the low reflectance of water beyond 1100 nm
(Clark et al., 2010;Wettle, Daniel, Logan, & Thankappan, 2009), howev-
er once an oil spill reaches land it becomes readily detectable (Kokaly
et al., 2013). It should be noted that Horig, Kuhn, Oschutz, and
Lehmann (2001) found the 1700 nm absorption feature to be stronger
than the 2300 nm feature, and hence developed the Hydrocarbon
Index solely using the 1700 nm feature (Kuhn, Oppermann, & Horig,
2004), however they used radiance data, not reflectance data, and
reflected radiance is low at 2300 nm, reducing the prominence of that
feature. Kokaly et al. (2013) used both features for oil detection, with
the 2300 nm feature weighted 75% and the 1700 nm feature 25%.

Spectral Mixture Analysis (SMA) is a technique that transforms the
digital number or reflectance values of a pixel into percentages of scene
components, called endmembers (EMs). A typical vegetated area would
be comprised of a mixture of three to four EMs: green vegetation (GV),
non-photosynthetic vegetation (NPV), shadows/shade, and perhaps soil
(Roberts, Smith, & Adams, 1993). The ability to discriminate different
materials improves with greater spectral sampling, resulting in improve-
ments in accuracy and the ability to discriminate materials using AVIRIS
that cannot be readily discriminated by a broad band sensor, such as
separating soils from NPV (Goetz & Boardman, 1989; Roberts et al.,
1993). However, the high degree of similarity between oil and NPV
spectra may confound SMA, prompting the following questions:

1) Is there a detection threshold for oil, or an amount of NPV presence
where the level of certainty of oil fractions diminishes?

2) Is there a spectral band subset that can overcome the NPV/oil
similarity issue?

Thefinal goal of this research is to producemaps of oiledmarshhaving
the highest possible accuracy.

2. Background

EM fractions aremost accuratewhen the correct number and type of
EMs are used to model each pixel (Sabol, Gillespie, Adams, Smith, &
Tucker, 2002). For instance, the marshes of southern Louisiana include
woody areas that are a mix of mangrove GV, stem bark NPV, and
shade; and salt marshes that are a mix of grass GV or grass NPV
(depending on the season), and shade. Multiple EM SMA or MESMA
allows both the number and type of EMs to vary on a per-pixel basis
across the scene. MESMA can be performed on multispectral data
(e.g. Peterson & Stow, 2003) but is most commonly performed on
hyperspectral data (e.g. Roberts et al., 1998).

Recent research has focused on the use of band subsets when using
SMA/MESMA with hyperspectral data (e.g. Asner & Lobell, 2000;
Somers et al., 2010). Using a subset of hyperspectral bands was pro-
posed by Sabol, Adams, and Smith (1992) and Roberts et al. (1993),
and fully implemented by Asner and Lobell (2000). The objective is
not to simply reduce the number of bands by convolving hyperspectral
data tomimic Landsat bands, but rather, to choose specific wavelengths
to target specific absorption features, and utilize those bands that max-
imize interclass separability and minimize intraclass variability. For
instance, when looking at the Gulf oil spill, naturally senesced NPV
and oil-coated vegetation have remarkably similar spectra, differing
only in the oil absorption regions of 1700 and 2300 nm (Kokaly et al.,
2013). AVIRIS data consist of 224 bands, of which we used 172 due to
the removal of bands sensitive to water vapor absorption and bands
with low signal-to-noise ratios. The two oil features are each on the
order of 10 bands wide. Hence, when using 172 bands, only 10% of the
bands are sensitive to oil. If the number of bands is reduced, particularly
inwavelengths less than 1700 nm, the likelihood of identifying oil if it is
present could be enhanced.

Asner and Lobell (2000) used the Short-wave-infrared (SWIR2:
2000–2500 nm) for unmixing as that spectral regionmaximized separa-
bility between NPV and soil for their semi-arid study area. They further
reduced EMspectral variability through brightness normalizing the EMs
by subtracting the reflectance at the first band in the SWIR2 from all
other bands, for each spectrum. Hence, differences in spectral shape are
emphasized over differences in average brightness. The technique was
later updated, adding visible and NIR (near-infrared: 690–740 nm)
regions so that it would work in more landscapes (Somers, Asner, Tits,
& Coppin, 2011). A number of statistical band selection techniques
have been proposed, reviewed in Somers et al. (2011), though none
have achieved widespread usage to date. Stable zone unmixing (SZU;
Somers et al., 2010) identifies which bands to use in SMA using an insta-
bility index (ISI), which is calculated as the ratio between within-class
and between-class EM variability. For two EMmixing, ISI at wavelength
i is calculated as:

ISIi ¼ 1:96 σ1;i þ σ2;i

� �
= ρmean;1;i–ρmean;2;i

�� �� ð1Þ

where σ1,i and σ2,i are the standard deviations at wavelength i for EM
classes 1 (e.g. oil) and 2 (e.g. NPV), and ρmean,1,i and ρmean,2,i aremean re-
flectances for classes 1 and 2 atwavelength i. ISI is calculated for all of the
bands, the values are sorted, and the difference between adjacent ISI
values (dISI,i) is calculated. Bands with the lowest ISIi are removed first,
and bands continue to be removed as long as accuracy increases.
Somers et al. (2010) tested the ability of the SZU algorithm to unmix syn-
thetic mixtures of EMs for six datasets. For three datasets, R2 was near
0.9 when all bands were used, and increased slightly when a subset
was used; for the remaining datasets R2 increased from 0.41 to 0.68,
0.13 to 0.69, and 0.48 to 0.8, respectively. Testing an algorithm on syn-
thetic mixtures is ideal because the exact fractions used to create the
mixtures are known, and hence the ability to reproduce those fractions
can be tested. Knowing exact EM percentages in real world imagery is
uncommon.

The purpose of this research was to utilize the ISI statistic proposed
by Somers et al. (2010) for band subset selection to identify andmap oil,
GV, and NPV using MESMA applied to AVIRIS data of the Barataria Bay
region of Louisiana following the 2010 Gulf oil spill. One improvement
to the Somers et al. (2010) method was brightness normalization of
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EM spectra so that ISI was solely dependent on spectral shape. The
equation for brightness normalizing is as follows:

ρni¼ρi=average brightness � scale factor ð2Þ

where

average brightness ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
XN
i¼1

ρ2i

vuut

where ρni is the normalized reflectance, ρi is the original reflectance,
and scale factor is 55% for GV, 80% for NPV, and 25% for oil; the values
of the scale factors were chosen so as to re-scale the average brightness
normalized spectra back to near their original reflectance values for
each EM type (Fig. 1).

3. Material and methods

3.1. Study area

The Barataria Bay region of southern Louisiana was the focus of this
study because of the extent of Deepwater Horizon oil reaching the
Wavelength (nm)
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Fig. 1.Original (left) and brightness normalized (right) endmember (EM) spectra for green veg
constant so that spectral features can be more easily discerned. Reflectance between 0 and 100
shoreline (Kokaly et al., 2013; Lin & Mendelssohn, 2012). The region is
comprised of approximately 5720 km2 of open salt waterwithwetlands
attached to the mainland and also occurring on islands in the bay. The
wetland vegetation is dominated by SPAL, with JURO and Distichlis
spicata (DISP) intermixed (Kokaly et al., 2013).

3.2. AVIRIS data reflectance and geometric processing

AVIRIS data were collected for Barataria Bay on May 6, July 31, and
August 24, 2010, and August 15, 2011 from the NASA ER-2 aircraft at
altitudes of 19.7 (May) and 9.1 km (July and August), respectively.
AVIRIS was also deployed on the Twin Otter on September 14, and
October 4, 2010, andMay 4 and October 15, 2011 at aircraft altitudes
of 4.1, 4.1, 3.9, and 4.0 km, respectively. AVIRIS radiance data were
atmospherically corrected andprocessed to apparent surface reflectance
using mode 1.5 of the Atmospheric Correction Now (ACORN) radiative
transfer program (ImSpec LLC, Palmdale, CA). Reflectance spectra of a
calibration site, an airport tarmac, were acquired using an ASD Field
Spec Pro (Analytical Spectral Devices, Boulder, CO) on June 27, 2010.
These field-measured data were used to remove residual atmospheric
features in the apparent surface reflectance data using ACORN mode
2 (Clark et al., 2002). Some bands remained unusable due to atmospheric
Wavelength (nm)

etation (GV), non-photosynthetic vegetation (NPV) and oil (top to bottom). Y-axes are not
% is scaled 0 to 20,000 on the y-axis.



Table 1
The 17 bands that were identified through ISI as being important for differ-
entiating among GV, NPV, and oil. Using the nine bands in bold led to the
highest accuracy in predicting oil amount.

Wavelength, nm Spectral region

570 Visible — green
685 Visible — red
715 Near infrared
899 Near infrared
1111 Near infrared
1263 Near infrared
1512 Short wave infrared 1
1622 Short wave infrared 1
1732 Short wave infrared 1
1772 Short wave infrared 1
2038 Short wave infrared 2
2117 Short wave infrared 2
2208 Short wave infrared 2
2238 Short wave infrared 2
2278 Short wave infrared 2
2327 Short wave infrared 2
2377 Short wave infrared 2
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water vapor or poor signal-to-noise ratio, the following bands were
removed: 1–7, 59–64, 82–86, 107–117, 152–170, and 221–224.

Flight lines were delivered with a preliminary geometric correction
(Boardman, 1999) and georeferenced to a mosaic of National Agricul-
ture Imagery Program (NAIP) air photos from2010 thatwere resampled
to 6 m. Approximately 30 to 40 ground control points were generated
between each flightline and the NAIP base map, and flightlines were
warped with an average accuracy of 1–2 pixels. The September and Oc-
tober imagerywere acquired such that there is a data gap between flight
lines in the central-east portion of Barataria Bay (see Kokaly et al., 2013).

3.3. Synthetic mixture modeling

A spectral library containing GV, NPV, and oil EMs was generated in
order to perform the synthetic mixture modeling. For GV, we used 23
SPAL image-derived EMs from both May 6 and September 14, 2010
AVIRIS imagery. Polygons of SPAL were identified by the Coastwide
Reference Monitoring System (CRMS) program, all of the pixels were
extracted from each polygon, and unique spectra were identified
using iterative EM selection (IES: Roth, Dennison, & Roberts, 2012).
Because oiling was limited to the immediate coastal regions, only SPAL
spectra were used in this analysis. For NPV, we used 13 ASD reflectance
spectra acquired on July 8 and August 13 and 14, 2010. For oil we used
the Hydrocarbon Index (Kuhn et al., 2004) to identify candidate EMs in
September 14, 2010AVIRIS imagery, then selected eight image EMs that
evidencedmoderate to deep oil absorption features. Lastly, photometric
shade of 0% reflectance was used. The EM spectra were brightness
normalized to emphasize spectral shape and remove the importance
of differences in average brightness (Fig. 1). For instance, if a non-
normalized dark EM was best modeled by a non-normalized bright
EM plus shade, the synthetic andmodeled EM fractionswould be differ-
ent even though the root mean squared error (RMSE) was low, errone-
ously suggesting that the best set of modeled EM fractions was off of the
1:1 line.

Syntheticmixtureswere generated using GV fractions of 50, 40, 30, 20
and 10% and NPV and oil fractions of 24, 18, 12, 6 and 0%. These values
were empirically determined as they are roughly representative of actual
EM fractions in the landscape. Thenumber of levelswas chosen to balance
representativeness and computational efficiency. Gaussian noise (1%)
was added to the mixtures so that variability was not entirely removed.

For each synthetic mixture all possible EMs (minus the actual
EMs used to generate the mixed spectrum) were evaluated and the
best model (based on RMSE) and its associated EM fractions was
returned. We report the average modeled EM fractions from the
2392 (i.e., 23 × 8 × 13) model runs with each fraction combination
(e.g., 0.50 GV, 0.24 NPV, 0.24 oil).

3.4. Ideal band subset identification

Model selection in SMA/MESMA,whichuses RMSE as a goodness-of-
fitmeasure,may produce erroneous EM fractionswhen using thewhole
spectrum (172 bands) for materials that are spectrally similar because
each band is equally weighted, diluting the enhanced separability that
may be present only in narrow spectral regions (Sabol et al., 1992). To
address this issue, we targeted spectral regions of interest for separating
GV/NPV/oil.We calculated ISI values for NPV/oil, NPV/GV, and oil/GV for
all 172 bands. We searched for local maxima in ISI values for NPV/oil
and the sum of the three ISIs, seeking to maximize both NPV/oil and
overall separability. This led to the identification of 17 bands that
showed peaks in ISI values (Table 1). We performed a full synthetic
mixture analysis using 17 bands, then iteratively removed one band at
a time (backward stepwise analysis) until we identified a subset that
maximized the R2 between synthetic and modeled oil EM spectra
using themaximumNPV fraction (0.24) in order tomaximize separabil-
ity between oil and NPV.
3.5. Oil mapping

Following the identification of a good band subset through synthetic
mixture modeling, MESMA was applied to all Barataria Bay flight lines
in 2010 (7/31, 8/24, 9/14, 10/4) and 2011 (5/4, 8/15, 10/15). All two,
three, and four EM models were run (GV/shade, NPV/shade, oil/shade;
GV/NPV/shade, GV/oil/shade, NPV/oil/shade; GV/NPV/oil/shade). Then,
on a pixel by pixel basis the best two and three EMmodel combinations
were identified and the best two, three and four EMmodelsweremerged
using an empirically derived threshold of 0.007 improvement in RMSE to
choose a higher order model (i.e. more endmembers used to model a
pixel; Roberts, Quattrochi, Hulley, Hook, & Green, 2012). The threshold
is necessary because adding an additional variable (an EM in this case)
will always improve model fit to some extent, regardless of whether the
improvement ismeaningful. The EM library thatwas used in the synthetic
mixing experiment was modified slightly for the MESMA analysis. Addi-
tional GV EMs (four each from July 31 and August 24, and eight from
October 4) were added so that there were SPAL spectra from each date
to account for phenological variability (Dennison & Roberts, 2003). NPV
and oil EMs remained the same for all images. The final EM fraction
images for each date were resampled to a common pixel size of 3.5 m
using nearest neighbor resampling, and resized to a common spatial
extent for comparison purposes.
3.6. Map accuracy assessment

Shoreline surveys were conducted in July and August of 2010, identi-
fying 32 oiled and 16 un-oiled shoreline sites (Kokaly et al., 2011). Field
survey points where oil coated vegetation and oil-damaged vegetation
canopies were present were considered oiled, while sites that either
showed no oil or in which the oil was only present on stems but did not
affect plant healthwere considered un-oiled (Kokaly et al., 2013;mapped
in Fig. 7, therein). The presence of clouds and data gaps reduced the sam-
ple size slightly for the July, September, and October image dates for the
reference data set; the number of validation points is 45, 48, 41, and 43,
respectively for the four 2010 images. Identifying ground control points
in the changing and relatively feature-less marsh was difficult, so
geolocation errors exist in the AVIRIS data, and GPS readings for site
location have ~5 m of uncertainty. Hence, we used a 3 × 3 pixel window
about each oiled shoreline site, if oil occurred anywherewith thewindow
the site was considered to have oil. Additionally, where systematic
errors were clear, i.e. if the GPS point for the site fell either in the
marsh interior or offshore of the shoreline, the point was moved to
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the shoreline. Additionally, of the 32 oiled sites, 25 also reported the
depth of penetration of oil into the marsh.

3.7. Endmember trajectories for distance from shoreline

In order to summarize and interpret the EM fraction maps, EM frac-
tions were averaged in terms of distance from the shoreline for oiled/
oil-free shoreline (as per Khanna et al., 2013). The September 2010
image was used as it had the highest native pixel resolution and amount
of oil detected. Land pixels were empirically identified as having a GV or
oil EM fraction above 0.05 or NPV above 0.2. A 5% error threshold is
common when performing MESMA (Roberts et al., 1998); a higher
threshold was needed for NPV owing to the presence of small amounts
of NPV where sun glint on water was present. The land raster was con-
verted to a polygon coverage, and Euclidean distance and direction from
the boundary between land and water were calculated for each pixel
using ArcMap 10.2. Twelve 3.5 m zones from the shoreline are reported
as values converged at that point. Oiled shoreline pixels were identified
by having an oil EM fraction greater than 0.05 and being within zone 1.
Oil-free shoreline pixels were identified as having an oil EM fraction less
than 0.05, being within zone 1, within 100 m of an oiled pixel, and also
being on a generally southerly facing shoreline (between 70 and 290°).
The 100 m and southerly constraints assure that environmental condi-
tions are similar between oiled and oil-free pixels. Euclidean distances
were calculated for the oiled/oil-free shoreline pixels to all other pixels
and land pixels in zones 2–12 were assigned to the oiled or oil-free class
based on minimum distance.

4. Results

4.1. Brightness normalized spectra

The spectra in the rightmost column of Fig. 1 havemuch less variabil-
ity in brightness than the original spectra. This reduces EM variability due
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fraction increases. Results for six of the eleven NPV EMs used in this study, numbered 0, 1, 4, 6
solely to brightness and not spectral shape. It also reveals interesting pat-
terns in the oil spectra. The original spectra show a range in values in NIR
from ~1500 to ~5000 (reflectance scaled 1–10,000 for 1–100%). The
normalized spectra show that the slopes from 600 nm to 1200 nm are
actually quite similar, and that the primary difference in the spectra lies
in SWIR 2 (2000–2400 nm). The different depths in the oil absorption
feature around 2300 nm are due to different degrees of oiling.

4.2. Synthetic mixture modeling

Plots from the model runs show oil fractions used to generate the
mixture (x axis) plotted against modeled oil fractions (y axis) (Figs. 2
and 3). In almost all cases, an increase in NPV fraction led to an increase
in error inmodeled oil, either leading to a greater over estimate (Fig. 2b,
c, e) or greater underestimate (Fig. 2a, d, f), i.e. there is a clear progres-
sion of estimated oil fractions away from the 1:1 line as NPV fraction
increases in Fig. 2. The error varied depending upon both the NPV spec-
trum used in the synthetic mixture and the amount of NPV used. For
instance, model results plotted in Fig. 2a and c, showed errors of less
than 4% when comparing the 0% and 24% NPV cases. By contrast, the
NPV spectrum used in model e generated an overestimate as large as
16%, and in model f an underestimate of similar magnitude. These
results suggest that detection limits will depend on the type of NPV
present in the mixture. For example, given a 4% over estimate, an oil
fraction of 4% or more would be detectable. Given an overestimate of
16% (as shown in Fig. 2e), close to 20% oil would need to be present to
detect it with confidence.

The averaged regression results for predicting oil fractions with a
0.24 fixed NPV fraction and different band subsets are presented in
Table 2. Intercepts are all positive and close to 0, indicating a small
over prediction of oil when the true oil fractionwas 0%. The slopes devi-
ate froma1:1 line, being shallower,meaning that estimated oil fractions
are lower than actual oil fractions for high values and/or higher than
actual values at low oil values (see also Fig. 3). The slope and R2 when
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Fig. 3.Modeled (y axis) vs. true (x axis) oil EM fractions when NPV fraction was set to 0.24, which had the greatest effect on oil fraction accuracy. Themagenta data series are oil fractions
generated byMESMAoperating on the 172 good bands, the navy blue data series are oil fractions generated byMESMAoperating on 9 bands targeted towards specific reflectance features
of GV, NPV, and oil. Variability and false positives/negatives in oil fraction decrease notably under the reduced bands scenario. Plots are for NPV EMs numbered 0, 1, 4, 6, 10, and 11.
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using all bands to estimate oil fractionwere 0.817 and 0.953, respective-
ly. When systematically reducing bands by choosing every nth band,
slopes became steeper, but still did not approach 1:1. The slope and R2

values when using the 17 ISI identified bands were 0.859 and 0.956;
the slope was improved over the full 172 band MESMA fractions, but
R2 showed little change. The final nine band subset (Table 1) showed
marked improvement; the intercept dropped from 0.023 to 0.011, the
slope increased to 0.972, markedly closer to the 1:1 line than for any
of the other scenarios, and scatter was reduced with an R2 of 0.979.
Fig. 3 presents synthetic vs. modeled oil fractions for six of the eleven
NPV EMs that were used to generate the synthetic mixtures. In this fig-
ure, magenta points show results using all 172 wavelengths, and blue
Table 2
Averaged regression results for oil endmember fraction from unmixing synthetic
endmember spectra for a number of different combinations of AVIRIS bands. Using
the nine band subset led to predicted oil fractions being closest to the oil fraction
values used to generate the synthetic spectra.

Intercept Slope RSQ Band combination

0.023 0.817 0.953 All 172
0.022 0.834 0.957 172/2
0.022 0.809 0.953 172/3
0.022 0.857 0.95 172/4
0.027 0.849 0.965 172/5
0.019 0.862 0.97 172/6
0.02 0.845 0.97 172/7
0.026 0.871 0.952 172/8
0.017 0.827 0.954 172/9
0.042 0.819 0.963 172/10
0.022 0.859 0.956 Best 17
0.011 0.972 0.979 Best 9
points those using the subset. In all cases the distance to the 1:1 line is
smaller, and for most cases modeled oil fraction variability is reduced.
This serves to reduce the impact of variability in the NPV EM used. It
should be noted that the backward stepwise elimination did not locate
a clearwinner; a number of nine and ten band subsets had similar inter-
cepts, slopes, and R2 values. We chose the band combination that also
produced the best maps.
4.3. Oil mapping

To evaluate oil detection over time, the best wavelength subset was
applied using MESMA to map oil for four dates in 2010 and three dates
in 2011 for three areas in Barataria Bay (Figs. 4, 5, 6). Only the first 2011
date is shown in the figures due to lack of oil. Oiled shoreline was iden-
tified as areas having an estimated oil fraction greater than 5%. For the
most part, where oil is present in 2010 it is present in all four image-
dates of 2010, and there is much less oil in 2011 (e.g., Fig. 4). Accuracies
for the four 2010 image dates ranged from 87.5% to 93.3%, with no false
positives for oil detection (Table 3).

We illustrate three areas that show dynamic oil presence (Figs. 4, 5,
6). In the Bay Jimmy island area, there is a notable progression of oil
moving down the northwest coast of the island and filling in the west
coast through 2010; oil is much reduced by 2011, with only a slight
amount of oil remaining on the northwest coast, where it had been
widest in 2010 (Fig. 4). In contrast, on the west side of Barataria Bay,
the maximum amount of oil was found in the July 31, 2010 image,
with a steady reduction thereafter (Fig. 5). The subset from the central
part of Barataria Bay shows approximately equal oiling throughout
2010 and minimal oil in May 2011, again in areas where it had been
most common in 2010 (Fig. 6).



Fig. 4.Oil EM fraction Bay Jimmy area: a) 7/31, b) 8/24, c) NIR color composite 9/14 2010, d) 9/14, e) 10/4 2010, and f) 5/4 2011. You can see the progression of oil presence down the NW
shore of the island thru 2010. Oil is less present in May 2011, and is largely gone in August and October 2011 (not shown).
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Distance of oil penetration into the marsh is a more robust check on
accuracy as it goes beyond presence/absence to a quantitative measure.
Binary classification accuracy for the September 14 data was very good
(92.7%); predictions of oil penetration distance into the marsh for the
September 14 data are still quite good (Fig. 7). The R2 between actual
and estimated penetration depth was 0.49, p-value 0.00039.

4.4. Endmember trajectories

Endmember trajectories from the September 14th data show that oil
effectswere largely limited to zones 1–4, orwithin 14m from the shore-
line (Fig. 8). Oil-free pixels were largely comprised of GV and shade,
with lower GV fractions in zone 1 nearest to the shore, indicating amix-
ture of vegetation and water there; NPV fractions were low, indicating
that the marsh vegetation had not started senescing yet in September.
Oiled pixels consisted of a mix of GV, oil, NPV, and shade. The higher
values for NPV in zones 1–4 were likely due to oil stressing and killing
the vegetation; the oil came ashore approximately three months prior
Fig. 5. Oil EM fraction in the far western Barataria Bay area: a) 7/31, b) 8/24, c) NIR color com
steadily decreasing the remaining 3 dates in 2010, and has largely disappeared in May 2011.
to the September image acquisition. Oil fraction decreases linearly with
distance from shoreline; however, pixel counts of oiled pixels within
each zone (998, 968, 879, 270, 36, 1, 1 respectively for zones 1 through
7) show a different pattern. This suggests that where shorelines were
oiled, the oil extends 3 pixels into the marsh in most cases, though by
zone 3 there begins to be less oil and more remaining living vegetation.
Only 27% of oiled shoreline pixels had an oil zone extending 4 pixels
into the marsh. There were minor amounts of oil in zones five to seven.

5. Discussion

The use of a subset of hyperspectral bands to better discriminate
among and between EM types is a developing field of research and
has been used in landscapes as diverse as semi arid rangelands, fruit
orchards, and tropical rainforests (Asner & Lobell, 2000; Somers &
Asner, 2013; Somers et al., 2010). Somers et al. (2010) found that R2

was near 0.9 for half of their data sets when all bands were used to
evaluate canopy cover in fruit orchards, increasingly slightly for a subset
posite 9/14 2010, d) 9/14, e) 10/4 2010, and f) 5/4 2011. Oil is most present in July 2010,

Image of Fig. 4


Table 3
Oil detection accuracy when MESMA was applied to four dates of AVIRIS data in 2010,
using the nine band subset.

AVIRIS image
date

Remote sensing
class

Reference class User's
accuracy

Overall
accuracy

Oil Non-oil

July 31, 2010 Oil 26 0 100.0% 93.3%
Non-oil 3 16 84.2%
Producer's accuracy 89.7% 100.0%

August 24, 2010 Oil 26 0 100.0% 87.5%
Non-oil 6 16 72.7%
Producer's accuracy 81.3% 100.0%

September 14, 2010 Oil 24 0 100.0% 92.7%
Non-oil 3 14 82.4%
Producer's accuracy 88.9% 100.0%

October 4, 2010 Oil 26 0 100.0% 93.0%
Non-oil 3 14 82.4%
Producer's accuracy 89.7% 100.0%

Fig. 6.Oil EM fraction in the central Barataria Bay area: a) 7/31, b) 8/24, c) NIR color composite 9/14 2010, d) 9/14, e) 10/4 2010, and f) 5/4 2011. Oiling is approximately equal throughout
2010, and has a much reduced extent in May 2011.
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of bands selected by SZU. In the other half of their data, the R2 showed a
much more substantial increase, equal to 0.38 on average. In our study,
we also observed only modest increases in R2, from 0.953 to 0.979,
when the targeted bands were used as opposed to all 172. However,
more importantly we also evaluated the effect of using a reduced num-
ber of bands on the slope and intercept of the regression for predicting
oil fraction. Slope and intercept became much closer to the 1:1 line
when fewer, targeted bands were used; 0.972 and 0.011 versus 0.817
and 0.023 for all bands, indicating a sharp reduction in systematic
prediction errors. This is likely because in the full 172 band image,
20 bands were sensitive to oil absorption features, whereas in our
final nine band image, six of the ninewere sensitive to the oil absorption
features.

We used the bands identified in the synthetic mixing step tomap oil
usingMESMA in Barataria Bay, Louisiana. Oil map accuracy was slightly
better than that found in Kokaly et al. (2013), with one to three addi-
tional sites being correctly classified on each image date. Examining
the causes of misclassification is interesting. For the September 14th
data, two of the three misclassified oiled sites showed oil two to three
pixels from the survey point, which is beyond the 3 × 3 pixel window
threshold we used but within range of the residual georeferencing
errors in the AVIRIS imagery and GPS. For the July 31 and October 4th
data, georeferencing errors may explain one of the incorrectly classified
sites. The remaining undetected oiled sites for July 31, September 14,
and October 4 were described as having a small (1 m2) oil patch or a
narrow (1–3 m) fringe of shoreline oiling (Kokaly et al., 2011). This
narrow oilingmay have broken down in the 40 days between field sam-
pling and image acquisition, or could have been undetected. Accuracy
was lowest for the 24August AVIRIS data, the datewhich had the largest
native pixel resolution (7.7 m). Additional incorrectly identified oiled
sites in the August data with respect to the other dates were described
as having narrow (less than a 7.7 m pixel) fringes of oil (Kokaly et al.,
2011), so MESMA for oil detection can break down when pixel size
becomes much larger than patch size.

We had four dates of AVIRIS imagery in 2010, so we were able to
identify temporal patterns in oiling (Figs. 4, 5, and 6). The field survey
teams that led to the SCAT map visited shorelines in Barataria Bay two
to five times in 2010. However, the vectors in their map are quite
large, so it is difficult to identify temporal changes in oiling. For instance,
the SCAT map showed uniform oiling on the northwest and west coast
of the island in Fig. 4 in 2010 while the AVIRIS-based maps showed a
definite progression in oiling. Another benefit of having multiple
image dates is it can be seen that only those areas that were oiled in
all four dates retained some oil in 2011. This information is important
because persistent oiling is more toxic, affecting the long-term recovery
of the marsh (Lin & Mendelssohn, 2012).

The tidal range in Barataria Bay is minimal (30–40 cm), which led to
shallow penetration of oil into the marsh vegetation (in the absence of
storm events), given the nature of the oil spill. In the September 14th
imagery, where oil occurred it tended to penetrate three zones (10.5 m)
into the marsh (998 pixels in zone 1, 968 in zone 2, 879 in zone 3). Pen-
etration into zone 4 was sharply reduced, only 27% of oiled shoreline
pixels extended to zone 4 (14 m), and less than 1% extended farther.
These values correspond well with values from a field survey of 34 oiled
points: mean oil penetration was 6.7 m with a standard deviation of
4.5m, and amaximumof 19m (Kokaly et al., 2011). Similarly, the regres-
sion of measured and modeled oil penetration showed good agreement
(Fig. 7, R2 of 0.49), especially given that some scatter is expected given
the temporal disconnect between field sampling (July, August) and
image acquisition (September), georeferencing errors in the AVIRIS
imagery and GPS, and the fact that EM fractions reveal the percent of a
pixel covered by the EM but not the spatial arrangement of the EM in
the pixel.

Image of Fig. 6
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Fig. 7. Fieldmeasured oil penetration depth versus oil penetration depth in the 14 September
AVIRIS imagery in pixels perpendicular to the shoreline, converted tometers. Oil penetration
was measured for 20 of the 27 sites that appear in Table 3 for September 14 data, including
two of the sites where oil was incorrectly not found in the imagery.
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6. Conclusion

We demonstrated that there is an improvement in endmember
fraction accuracy when using fewer bands to perform MESMA. We
utilized the ISI statistic from Somers et al. (2010), replacing some
of the automation in their SZU method with expert knowledge to
target AVIRIS bands that have known absorption and transmission
features for the endmembers of interest.
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Fig. 8. Average endmember fraction values from the September 2010 imagery within twelve 3.
the 17.5m from the shore. NPV fractions in the first 14mwere higher than the ambient NPV fr
since oil began impacting Barataria Bay.
Wemapped oil in coastal Louisiana following the DWH oil spill using
AVIRIS imagery acquired in four dates in 2010 andonedate in 2011.Many
areas were heavily oiled in all four dates in 2010 as there was adequate
time between the beginning of the spill (April 20) and the first image
date (July 31) for oil to spread. Based on the time series, oil appeared to
first come ashore in thewestern portion of Barataria Bay and then spread
to the east. There was a sharp reduction in oil in the 2011 imagery.

Oiled shorelines in September 2010 were comprised of relatively
equal proportions of living and senesced vegetation and oil. Oil fraction
decreased linearly with distance from shoreline. GV fraction increased
with distance from shoreline due both to the reduction of salt water
and reduction in oil and NPV. Oil-killed vegetation was found in the
same zones as oil, though the range in values was reduced with respect
to oil. EM fractions showed minimal oiling effects at distances greater
than 14 m from the shoreline.

Future research will determine how vegetation recovery and/or
vegetation loss and shoreline retreat relate to three axes of oiling: oil
EM fraction, depth of penetration into the marsh, and persistence in
oiling through time.
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