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Abstract

Coastal wetland responses to sea-level rise are greatly influenced by biogeomorphic pro-

cesses that affect wetland surface elevation. Small changes in elevation relative to sea level

can lead to comparatively large changes in ecosystem structure, function, and stability. The

surface elevation table-marker horizon (SET-MH) approach is being used globally to quan-

tify the relative contributions of processes affecting wetland elevation change. Historically,

SET-MH measurements have been obtained at local scales to address site-specific

research questions. However, in the face of accelerated sea-level rise, there is an increas-

ing need for elevation change network data that can be incorporated into regional ecological

models and vulnerability assessments. In particular, there is a need for long-term, high-tem-

poral resolution data that are strategically distributed across ecologically-relevant abiotic
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gradients. Here, we quantify the distribution of SET-MH stations along the northern Gulf of

Mexico coast (USA) across political boundaries (states), wetland habitats, and ecologically-

relevant abiotic gradients (i.e., gradients in temperature, precipitation, elevation, and relative

sea-level rise). Our analyses identify areas with high SET-MH station densities as well as

areas with notable gaps. Salt marshes, intermediate elevations, and colder areas with high

rainfall have a high number of stations, while salt flat ecosystems, certain elevation zones,

the mangrove-marsh ecotone, and hypersaline coastal areas with low rainfall have fewer

stations. Due to rapid rates of wetland loss and relative sea-level rise, the state of Louisiana

has the most extensive SET-MH station network in the region, and we provide several

recent examples where data from Louisiana’s network have been used to assess and com-

pare wetland vulnerability to sea-level rise. Our findings represent the first attempt to exam-

ine spatial gaps in SET-MH coverage across abiotic gradients. Our analyses can be used to

transform a broadly disseminated and unplanned collection of SET-MH stations into a coor-

dinated and strategic regional network. This regional network would provide data for predict-

ing and preparing for the responses of coastal wetlands to accelerated sea-level rise and

other aspects of global change.

Introduction

Due to their position at the land-sea interface, coastal wetlands are highly vulnerable to climate

and land use change. Accelerated sea-level rise, coastal development, and other aspects of

global change are expected to have a tremendous impact on coastal wetlands in the coming

century [1–5]. In addition to providing fish and wildlife habitat, coastal wetlands protect coast-

lines, supply seafood, filter contaminants, store carbon, improve water quality, and provide

recreational opportunities [6–9]. To protect these ecosystem goods and services, coastal scien-

tists and environmental managers are increasingly challenged to better anticipate and prepare

for the ecological effects of future change on coastal wetlands.

Coastal wetland responses to climate change, land use change, and accelerated sea-level rise

will be modulated by biogeomorphic processes that affect wetland surface elevation [10–16].

Inundation and salinity regimes are tremendously important abiotic drivers that greatly influ-

ence the structure and function of coastal wetlands [17–19]. Small changes in wetland surface

elevation relative to sea level can alter these important abiotic regimes, modify biogeomorphic

processes, prompt ecological regime shifts, and, in the most extreme cases, lead to wetland loss

via submergence and conversion to open water. Thus, an increasing need exists for long-term

and high-temporal resolution surface elevation change data that can be incorporated into

future-focused regional coastal wetland vulnerability assessments and predictive ecological

models [11–13, 16, 20–23].

The surface elevation table (SET)-marker horizon (MH) approach (SET-MH, together) is a

method for quantifying net wetland surface elevation change while accounting for various bio-

logical, geological, and hydrological processes that can occur within different segments of the

soil profile (e.g., deep, shallow subsurface, and surface soil depths) [11, 20, 24–28]. Along with

elevation change, sediment accretion, shallow subsidence (i.e., autocompaction), biotic contri-

butions to root zone expansion, soil shrink-swell, bioturbation, and disturbance-induced peat

collapse are all processes that have been measured using SET-MH methods, often in coordina-

tion with complementary process-focused measurements [12, 29–37]. Following up on the
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foundational work of Schoot and de Jong [38], van Eerdt [39], and Boumans and Day [40], the

modern design, infrastructure, and terminology associated with the SET-MH approach was

introduced by Cahoon et al. [24, 26, 31] and permits examination of the relative contributions

of the various processes regulating surface elevation [11, 20, 25, 28].

The SET portion of the SET-MH approach entails the use of a portable lightweight mechan-

ical leveling device (the SET) with movable fiberglass or metal pins that are lowered to the

ground and used for high precision measurements of wetland surface elevation relative to a

fixed benchmark. The SET is attached to benchmarks that represent different sections of the

soil profile. Deep benchmarks are driven to refusal and capture elevation change across the

entire depth of the soil profile [28]. In contrast, shallow benchmarks may be installed to the

bottom of the active root zone to represent changes in elevation caused by root zone expansion

or contraction. The confidence interval for elevation measurements made with SET [±1.3

mm; 24] is typically better than for other surface elevation measurement methods [20]. The

MH portion of the SET-MH approach refers to the use of marker horizons to measure vertical

accretion. An artificial marker horizon (e.g., a layer of feldspar or sand) is placed upon the soil

surface, and material accumulation (composed of organic matter and mineral sediment)

above this marker horizon is measured by taking soil cores. Both the SET and MH measure-

ments can be measured repeatedly to track changes in elevation over time, and when exam-

ined together, they permit quantification of the relative contributions of different processes

(e.g., shallow subsidence, surface accretion, root zone expansion) to net surface elevation

change.

SET-MH technology has been shared globally so that data from different locations can be

compared. The method has been adopted and used by scientists working in coastal wetlands

in 32 countries across the world [11, 13, 16, 20–22, 25, 41]. However, high-vertical resolution

surface elevation change measurements with SET-MH have historically been concentrated in

certain regions and have often been employed at local scales to address specific research ques-

tions. Within the context of climate change, and accelerated sea-level rise in particular, there

is an increasing need for elevation change networks that can inform regional coastal wetland

vulnerability assessments [11, 12, 20–23]. From a modeling and monitoring perspective,

there is an additional need for SET-MH stations that contain long-term data and are strategi-

cally distributed across ecologically-relevant abiotic gradients at both local and regional

scales [13, 16]. Adequate distribution of SET-MH stations across ecologically-relevant abiotic

gradients (e.g., gradients in relative sea-level rise, elevation, temperature, and precipitation)

and time scales of change would provide critical data to improve model predictions of wet-

land vulnerability to sea-level rise. SET-MH stations have occasionally been installed across

local abiotic gradients within an individual wetland complex; however, regional abiotic gradi-

ents have historically not been a primary consideration due in part to a lack of coordination

between scientists and the absence of information regarding the actual distribution of SET-

MH stations.

In this study, we investigated the following questions for the U.S. Gulf of Mexico region:

(1) What is the distribution of wetland surface elevation monitoring infrastructure consisting

of SET-MH stations?; (2) Within each of the five U.S. gulf coast states (i.e., Florida, Alabama,

Mississippi, Louisiana, and Texas), when have SET-MH stations been installed and how com-

prehensive are the elevation records?; (3) What is the distribution of SET-MH stations within

the dominant coastal wetland ecosystems (i.e., freshwater marsh, freshwater forest, salt marsh,

mangrove forest, tidal flat, and subtidal ecosystems)?; and (4) What is the distribution of

SET-MH stations across ecologically-relevant abiotic gradients (e.g., gradients in relative sea-

level rise, elevation, temperature, and precipitation)?
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Materials and methods

Study area and inventory of SET-MH stations

The study area included the coasts of all five U.S. states along the northern Gulf of Mexico (i.e.,

Florida, Alabama, Mississippi, Louisiana, and Texas) (Fig 1). We contacted federal, state, and

Fig 1. Maps of the distribution of coastal wetland surface elevation change infrastructure. Maps show the distribution of surface

elevation table-marker horizon (SET-MH) stations along the U.S. Gulf of Mexico coast across: (A) wetland types, (B) minimum air

temperature, (C) mean annual precipitation, (D) elevation, (E) elevation relative to mean higher high water (MHHW), and (F) rate of relative

sea-level rise.

https://doi.org/10.1371/journal.pone.0183431.g001
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university-affiliated scientists working with SET-MH data within this area to obtain the geo-

graphic coordinates and the installation year for each SET-MH station. See Lynch et al. [28]

for a definition of an SET-MH station as well as a discussion of the distinctions between sam-

ple spaces, sample sites, and sample stations. Please note that while our inventory is extensive

and includes most of the SET-MH stations in the region, our inventory is not fully exhaustive;

in other words, it is possible that some stations in the region are not contained within this

inventory. We used the SET-MH coordinates in combination with geospatial data to develop a

dataset that included coastal wetland type, climate, elevation, tidal datum, and relative sea-

level rise information for each SET-MH station. The SET-MH stations in our dataset include

original SET, deep rod SET (RSET), and shallow RSET benchmarks [24, 26].

Coastal wetland type data

The coastal wetland classification data associated with each SET-MH station location was

obtained from the U.S. Fish and Wildlife Service (USFWS) National Wetland Inventory

(NWI) [42]. Each SET-MH station was assigned one of the following wetland habitat types

(NWI codes are in parentheses), as defined by NWI: salt marsh (E2EM), mangrove forest

(E2FO or E2SS), tidal flat (E2US), subtidal habitat (codes that begin with E1), freshwater

marsh (PEM), freshwater forested/scrub-shrub (hereafter referred to as freshwater forested)

wetland (PFO or PSS), or other habitat (all other codes).

Climate data

For each SET-MH station, we obtained 2.5-arcminute resolution climate data from the PRISM

Climate Group (Oregon State University; http://prism.oregonstate.edu) [43]. These climate

data include spatially-explicit estimates for mean annual precipitation and minimum air tem-

perature (i.e., the absolute coldest temperature recorded) from 1981 to 2010. See Osland et al.

[44–47] for descriptions of the importance of these climatic variables.

Elevation, tidal datum, and relative sea-level rise data

We estimated the surface-level elevation relative to an orthometric datum (North American

Vertical Datum 1988; NAVD88) for each SET-MH station using digital elevation models

(DEM) developed from airborne light detection and ranging (lidar) data. We would have pre-

ferred to have in-situ elevation observations via global navigation satellite system and real-

time kinematic methods for each SET-MH station, as lidar elevation uncertainty in densely

vegetated areas such as marsh can be high [48–51]; however, such data were not consistently

available. Nevertheless, these lidar-derived data are useful for providing an initial region-scale

evaluation of the distribution of SET-MH stations across elevation gradients. For Florida, we

used a 15-m horizontal resolution bare-earth DEM created by the University of Florida Geo-

Plan Center. For Louisiana, we used a 15-m resolution DEM developed from the USGS 3D

Elevation Program Coastal National Elevation Dataset topobathymetric model of the northern

Gulf of Mexico. For Mississippi and Texas, we utilized 10-m resolution DEMs created by the

National Oceanic and Atmospheric Administration (NOAA) [52]. For Alabama, we used 5-m

resolution DEMs created by NOAA [52]. In addition to the orthometric datum, we also esti-

mated the vertical position of each SET-MH station relative to a local tidal datum elevation

[mean higher high water (MHHW)] [3], using VDatum 3.1 [53]. We would have preferred to

use tidal datum data derived from local gages adjacent to each SET-MH station; however, such

data were not readily available. VDatum transformation estimates are modeled and also con-

tribute to vertical uncertainty [54]. For the VDatum regions in this study, the mean VDatum-

associated uncertainty is about 9.8 cm with a standard deviation of 4.4 cm. We used data from
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the USGS Coastal Vulnerability Index [55] to coarsely deduce relative sea-level rise rates for

each SET-MH station.

In addition to the region-wide assessment of the distribution of SET-MH stations across

elevation gradients, we also evaluated the elevation-based distribution of SET-MH stations

within each of the following nine tidal datum regions defined in VDatum: (1) FLsouth (south

Florida); (2) FLwest (central Florida); (3) FLapalach (north Florida); (4) FLpensac (Pensacola,

Florida); (5) ALmobile (Alabama); (6) LAmobile (east Louisiana and Mississippi); (7) LATX-

west (west Louisiana and east Texas; (8) TXlaggal (central Texas); and (9) TXlagmat (south

Texas). The descriptive region names in parentheses following each VDatum region names are

used hereafter.

Data analyses and presentation

We used the year of installation to determine the number of SET-MH stations installed within

each state by year. For data presentation purposes, we determined the number of SET-MH

stations within categorical bins defined for each parameter of interest. We present vertical

position in 0.25-m elevation bins. Relative sea-level rise rate data are presented within the fol-

lowing five categories used in Thieler and Hammer-Klose (55): greater than 3.4, 3.0 to 3.4, 2.5

to 3.0, 1.8 to 2.5, and less than 1.8 mm/yr. Minimum air temperature and mean annual precip-

itation data were categorized into 3˚C and 200 mm bins, respectively. Maps and geospatial

datasets were created using Esri ArcGIS 10.3.1 (Environmental Systems Research Institute,

Inc., Redlands, CA, USA). All other figures were created using Sigma Plot Version 12.0 (Systat

Software, Inc., San Jose, CA, USA).

Results

We identified 1116 SET-MH stations in the region managed by various federal, state, and uni-

versity-affiliated scientists. The State of Louisiana had the greatest number of stations (611,

55% of the total) followed by Florida (318, 28% of the total), Texas (130, 12% of the total), Mis-

sissippi (41, 4% of the total), and Alabama (16, 1% of the total) (Figs 1 and 2). The SET-MH

Fig 2. The temporal distribution of SET-MH station installations in U.S. Gulf of Mexico states.

https://doi.org/10.1371/journal.pone.0183431.g002
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approach was developed in Louisiana in the 1990s [24, 31], and some SET-MH stations in Lou-

isiana, Florida, and Texas were installed in the 1990s. However, the majority of stations in Lou-

isiana were installed between 2006 and 2010 (Fig 2). Stations in Mississippi and Alabama have

been installed since 2010.

The majority of the SET-MH stations in the region are located in salt marshes (550, 49% of

the total), followed by mangrove forests (180, 16% of the total), freshwater forested wetlands

(128, 11% of the total), freshwater marshes (78, 7% of the total), subtidal habitats (73, 7% of the

total), and tidal flats (34, 3% of the total) (Figs 1A and 3). Other types of habitat (i.e., riverine

and lacustrine wetlands and other unclassified habitats) contain 73 stations (7% of the total).

With regards to air temperature regimes, the majority of the SET-MH stations (862, 78% of

the total) are installed in wetlands that are cold enough to support salt marshes and freeze-tol-

erant vegetation; fewer stations (245, 23% of the total) are installed in areas with winter air

temperature regimes that are warm enough to support freeze-sensitive mangrove forests (Figs

1B and 4A). With respect to precipitation regimes, the majority of the SET-MH stations (1092,

98% of the total) are installed in areas that are wet enough to support lower salinities and a

high coverage of wetland plants; fewer stations (24, 2% of the total) are installed in low-rainfall

areas that are dry and salty enough to support a low coverage of wetland plants (i.e., areas

where hypersaline conditions lead to expansive salt flats) (Figs 1C and 4B). To aid with the

interpretation of SET-MH distribution relative to climate, we present established sigmoidal

relationships between: (1) minimum temperature and the abundance of mangrove forests [44]

Fig 3. The distribution of SET-MH stations within coastal wetland types and states.

https://doi.org/10.1371/journal.pone.0183431.g003
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(line in Fig 4A); and (2) mean annual precipitation and the coverage of wetland plants [45]

(line in Fig 4B).

Lidar-derived elevation category assignments show that the majority of the SET-MH sta-

tions (1053, 94% of the total) are located between -0.25 and 1.00 m NAVD88, with the highest

number (327, 29% of the total) located between 0.25 and 0.50 m NAVD88 (Figs 1D and 5A).

Tidal datum-derived elevation data indicate that a majority of stations (1048, 94% of the total)

Fig 4. The distribution of SET-MH stations across ecologically-relevant climatic gradients. (A)

minimum air temperature and (B) mean annual precipitation. SET-MH stations are shown via the vertical solid

gray bars and left y axis. For interpretation within the context of coastal wetland transition zones, we also

present established sigmoidal relationships between: (1) minimum temperature and the abundance of

mangrove forests (solid black line and right y axis in A) [44]; and (2) mean annual precipitation and the

coverage of wetland plants (solid black line and right y axis in B) [45]. Temperature and precipitation threshold

zones are illustrated by the rectangles with light gray diagonal hatch lines in A and B, respectively.

https://doi.org/10.1371/journal.pone.0183431.g004
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Fig 5. The distribution of SET-MH stations across elevation and inundation gradients. (A) elevation,

(B) elevation relative to mean higher high water (MHHW), and (C) rate of relative sea-level rise.

https://doi.org/10.1371/journal.pone.0183431.g005

Assessing coastal wetland vulnerability to sea-level rise

PLOS ONE | https://doi.org/10.1371/journal.pone.0183431 September 13, 2017 9 / 23

https://doi.org/10.1371/journal.pone.0183431.g005
https://doi.org/10.1371/journal.pone.0183431


are located between -0.50 and 0.50 m elevation relative to MHHW, with the highest number

(359, 32% of the total) installed between 0.00 and 0.25 m elevation relative to MHHW (Figs 1E

and 5B). According to the relative sea-level rise grouping data contained within the USGS

Coastal Vulnerability Index, the majority of SET-MH stations (782; 70% of the total) are

installed in areas with relative sea-level rise rates greater than 3.4 mm/yr (Figs 1F and 5C).

Evaluation of station distribution within tidal datum regions revealed that the east Louisi-

ana and Mississippi VDatum region has the highest number of SET-MH stations (583, 52% of

the total; Fig 6). The south Florida and the west Louisiana/east Texas VDatum regions have

the second and third highest number of stations (182 and 151 stations, 16 and 14% of the total,

respectively). Station distribution in these three VDatum regions resembles a bell-shaped

curve with a peak at the intertidal elevations where tidal saline wetlands are most abundant

(Fig 6). The central Florida and north Florida VDatum regions have 72 and 64 stations, respec-

tively (6 and 6% of the total, respectively). The number of SET-MH stations in the remaining

VDatum regions are low (Fig 6), with one of the nine VDatum regions (Pensacola, Florida)

containing no stations.

Discussion

Climate change, accelerated sea-level rise, and growing human populations are expected to

transform coastal landscapes across the globe in the coming century. As the stability and fate

of coastal wetlands becomes more uncertain, there is a pressing need for information regard-

ing coastal wetland surface elevation change relative to sea level. Such information is needed

to assess vulnerability and inform management decisions. Here, we present the results of a

regional inventory of SET-MH stations for the northern Gulf of Mexico (USA). We character-

ize the spatial and temporal distribution of SET-MH stations with an emphasis on the distribu-

tion across ecologically-relevant abiotic gradients. While our analyses highlight areas with

high densities of SET-MH stations, they also reveal critical data gaps.

Distribution of SET-MH stations across abiotic gradients and wetland

types

Coastal wetland surface elevation change and responses to sea-level rise are greatly influenced

by abiotic factors (e.g., inundation, salinity), which affect plant survival and growth [10, 16, 17,

56]. For example, Morris et al. [10] showed that salt marsh plant productivity varies across ele-

vation gradients and that coastal wetland stability in the face of sea-level rise is dependent

upon feedbacks between inundation, plant performance, and sedimentation (see also: [16, 57,

58–60]). The elevation-productivity relationship identified by Morris et al. [10] stemmed from

productivity measurements that spanned an inundation gradient (see also: [61]), and these

measurements contributed to the development of a seminal model of coastal wetland response

to sea-level rise. Although many other examples exist, we highlight this single example to illus-

trate the tremendous value of strategic measurements made across ecologically-relevant abiotic

gradients.

From a modeling and monitoring perspective, there is a need for temporally relevant

surface elevation change data that span important abiotic gradients [10, 16, 57, 58]. Biogeo-

morphic feedbacks and nonlinear relationships are common in coastal wetlands; hence, our

understanding of coastal wetland responses to sea-level rise can be improved by models that

are developed from data that fully span critical abiotic gradients and relevant time scales. By

original design, SET-MH stations have historically been installed by scientists seeking data

to address specific research questions, often via comparison of categorical treatments (e.g.,

wetland type differences) at local scales. As a result, SET-MH stations typically are not
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Fig 6. The distribution of SET-MH stations across elevation gradients within eight tidal datum regions. The

Pensacola, Florida tidal datum region is not shown because it does not have any SET-MH stations.

https://doi.org/10.1371/journal.pone.0183431.g006
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systematically distributed across abiotic gradients, and temporal records can be disjunct. Loui-

siana is an exceptional case with numerous SET-MH stations spanning broad elevation, inun-

dation, and salinity gradients [21, 23, 62]. For most coastal regions in the northern Gulf of

Mexico (i.e., all other VDatum regions in Fig 6), SET-MH stations do not fully or adequately

span elevation gradients. From a modeling and monitoring perspective, there is a need in

many coastal areas for long-term records from additional SET-MH stations that are systemati-

cally and strategically installed across elevation, salinity, inundation, tidal range, sediment sup-

ply, subsidence, relative sea-level rise, wetland type, and landscape position gradients. The

resultant data would allow scientists to better calibrate and validate models of future coastal

wetland change, including their response to sea-level rise. In addition to a need for data that

span estuary-scale gradients (e.g., salinity, landscape position), there is also much potential to

take advantage of local gradients within a single wetland. For example, SET-MH measure-

ments collected across ecologically-important elevation gradients within a single wetland

could be used to better characterize local linkages between elevation, inundation regime, sedi-

mentation, and net surface elevation change.

In addition to gradients in elevation and inundation, one of our goals was to assess the dis-

tribution of SET-MH stations across coastal wetland types and ecologically-relevant air tem-

perature gradients. Along the Gulf of Mexico coast, the distribution of mangrove forests

relative to salt marshes is largely controlled by winter air temperature regimes. Freezing tem-

peratures can lead to mangrove damage or mortality [63–66]; hence, mangrove forests are

restricted to tropical and subtropical climates [47, 67]. In contrast, salt marsh graminoids (i.e.,

grasses, sedges, and rushes) are freeze-tolerant and dominate coastal wetlands located in the

colder and more northern coastal reaches of the Gulf of Mexico [2, 44, 46]. Here, we evaluated

the distribution of SET-MH stations across the air temperature gradient that governs the rela-

tive dominance of mangrove forests versus salt marshes. In the southeastern USA, there is a

positive sigmoidal relationship between minimum air temperatures and mangrove dominance

relative to salt marshes [44]. Our analyses show that whereas there are a large number of

SET-MH stations installed in the colder salt marsh-dominated coastal reaches, there are fewer

stations located in the warmer mangrove-dominated coastal areas. Even more importantly,

very few SET-MH stations are installed within or near the temperature-based threshold zone

that separates mangrove forests from salt marshes (i.e., near the temperature threshold in Fig

4A; -7.6 to -6.3˚C). In this threshold zone, small changes in temperature can lead to abrupt

changes in wetland ecosystem structure and function (i.e., mangrove forest expansion at the

expense of salt marsh) [44, 46]. This zone is expected to shift northward due to climate change

[44, 66]. Given the potential for climate change-induced mangrove expansion in parts of Flor-

ida, Louisiana, and Texas [2, 44, 68], there is a pressing need to better understand the implica-

tions of mangrove encroachment for wetland elevation change and the ability of coastal

wetlands to keep pace with rising sea levels. Additional long-term data from SET-MH stations

within the mangrove-to-marsh transition zone would provide scientists with critical informa-

tion needed to better advance understanding of this issue.

We also assessed the distribution of SET-MH stations across ecologically-relevant precipita-

tion gradients. In coastal wetlands, low precipitation and high evaporation can concentrate

oceanic salts and produce hypersaline conditions [69], which are inhospitable to many coastal

wetland plants. Along the Gulf of Mexico and elsewhere, precipitation and other freshwater

inputs greatly influence the coverage of coastal wetland plants [47, 70–73]. Low rainfall, hyper-

saline conditions, and large expanses of unvegetated tidal saline wetlands are common in

south Texas, particularly within the Laguna Madre Estuary [2, 69]. Within the northwestern

portion of the Gulf of Mexico, there is a sigmoidal relationship between mean annual precipi-

tation and the coverage of foundation plant species in tidal saline wetlands [45]. As part of this
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inventory, we sought to characterize the distribution of SET-MH stations across that precipita-

tion-plant coverage gradient. We found that very few SET-MH stations are installed in the

drier sections of the Gulf of Mexico; most stations are installed in coastal zones that have suffi-

cient rainfall to prompt dominance of salt marshes or mangrove forests (Fig 4B). Near the pre-

cipitation-based threshold zone, small changes in precipitation, freshwater availability, and/or

sea level are expected to alter salinity regimes and lead to abrupt and large changes in the abun-

dance of coastal wetland plants [2, 45–47, 72, 74–78]. Coastal wetland plant performance

greatly influences surface elevation change and the ability of coastal wetlands to keep pace with

sea-level rise. Within this context, there is a pressing need to better understand the implica-

tions of salinity-induced changes in plant performance on the capacity of coastal wetlands to

adjust to rising sea levels. Our inventory highlights the need for SET-MH stations and data in

the drier portions of the study area (i.e., south and central Texas). Our wetland-type analyses

also support this conclusion; there are very few SET-MH stations installed in salt flats com-

pared to salt marshes and mangrove forests.

Gulf of Mexico wetlands are diverse

Most models of coastal wetland response to sea-level rise in the USA have historically focused

on marshes dominated by Spartina alterniflora [10, 56, 57]. However, the diversity of plant

communities in coastal wetlands along the Gulf of Mexico coast is high, and S. alterniflora is

just one of many common wetland foundation plant species. Tidal salt marshes in the region

can be dominated by succulent plant species [79] or other graminoid species (e.g., Juncus roe-
merianus or S. patens) [59, 80]. Moreover, three different mangrove species are common in the

region [81], and unvegetated salt flats covered by algal mats are abundant in areas with low

rainfall and hypersaline conditions [2, 69]. Given the diversity of wetland plant communities

in the region, there is a need to explicitly consider the impact of these different plant species

and functional groups upon surface elevation change and coastal wetland response to rising

sea levels. Differences in landscape setting also merit additional attention [82]; in recent

reviews, Krauss et al. [14] and Woodroffe et al. [15] highlight the importance of considering

differences in biogeomorphic processes in different landscape settings. Hydrologic regimes,

sediment supply, and subsidence rates vary greatly in the region and warrant more attention

[23]. In our analyses, we focused only on a handful of categories (e.g., wetland types) and abi-

otic gradients (e.g., elevation, temperature, precipitation, relative sea-level rise) that could be

easily assessed using geospatial data. However, coastal wetland biogeomorphic and plant com-

munity zonation patterns across the Gulf of Mexico are diverse [2, 46, 81–84] and not ade-

quately covered by currently available geospatial data. There are many more categories and

gradients that are important to include within the context of elevation change in coastal wet-

lands. The strategic development of a regional SET-MH network could help incorporate and

address the importance of such gradients.

Wetland loss and SET-MH stations in Louisiana

Coastal wetland loss has been very high in the Mississippi River Deltaic Plain (MRDP) of

coastal Louisiana due to a combination of natural and anthropogenic factors [85–87]. The rate

of relative sea-level rise in parts of the MRDP can exceed 2 cm/year, due in part to high rates of

subsidence and low rates of accretion [23]. Since 1932, Louisiana has lost more than ~4,900

km2 of land [88]. In many ways, the rapid pace of coastal wetland loss in Louisiana is what

prompted the development, refinement, and widespread adoption of the SET [24, 26, 40] and,

subsequently, the SET-MH approach [25, 27, 31]. The urgency to measure wetland surface ele-

vation change using the SET-MH methodology is much greater in Louisiana compared to
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other coastal regions because of high rates of relative sea-level rise, high rates of wetland loss

via submergence and conversion to open water, and high variability in SET-MH measure-

ments [21, 23]. The high rate of wetland submergence underscores the need to initiate and sus-

tain measurements now to develop longer-term records before more wetlands are lost. Our

relative sea-level rise analyses support this statement; as expected, the number of SET-MH sta-

tions is highest in coastal regions with high rates of relative sea-level rise (i.e., Louisiana; Fig

5C). In this regard and given the tremendous amount of data available, Louisiana serves as a

natural laboratory for investigating the effects of accelerated sea-level rise on coastal wetlands

[23, 89].

SET and SET-MH-based research in Louisiana began with individual scientists who

needed high-resolution surface elevation change measurements to address specific research

questions related to coastal wetland degradation and loss. However, the number of SET-MH

stations greatly increased with the creation of the Coastwide Reference Monitoring System

(CRMS) [62]. CRMS was designed as a network of sites, within the Louisiana coastal zone,

for monitoring the performance of coastal wetland restoration efforts implemented under

the Coastal Wetlands Planning, Protection, and Restoration Act (CWPPRA) of 1990. Fund-

ing for CRMS was authorized by the CWPPRA Task Force in 2003, which led to the installa-

tion of most of the CRMS affiliated SET-MH stations in 2006. Of the 611 SET-MH stations

in Louisiana, 332 (54%) are associated with CRMS monitoring stations. Due primarily to

CRMS, we suspect that Louisiana has the highest SET-MH station density over a broad geo-

graphical scale of any SET-MH network in the world [20, 21]. As a result, the distribution of

SET-MH stations across wetland types and ecologically-relevant abiotic gradients is much

higher in Louisiana than in other parts of the northern Gulf of Mexico. Much of the SET-MH

data from CRMS is now 10 years old and these SET-MH data are used to assess and model

coastal wetland vulnerability. For example, Stagg et al. [21] developed a Submergence Vul-

nerability Index for CRMS sites, which uses hydrologic and SET-MH data to determine the

vulnerability of Louisiana’s coastal wetlands based on their ability to adjust to sea-level rise.

Jankowski et al. [23] used CRMS SET-MH data from 274 sites to compare vertical accretion

rates with relative sea-level rise rates within wetlands in Louisiana’s Mississippi Delta and

Chenier Plain; their analyses show that many of Louisiana’s wetlands in Louisiana are not

keeping pace with current rates of relative sea-level rise (i.e., 35 and 42% of wetlands in the

Mississippi Delta and Chenier Plain, respectively, are not keeping pace). The CRMS data

have also been incorporated into models of wetland biogeomorphic responses to various res-

toration alternatives under Louisiana’s Comprehensive Master Plan for a Sustainable Coast

[90]. The Louisiana CRMS network serves as a valuable example of how a coordinated and

extensive SET-MH network can inform wetland science, restoration, and management

needs.

SET-MH stations in Florida, Texas, Alabama, and Mississippi

The number of SET-MH stations in south Florida is also relatively high due to research efforts

aimed at quantifying elevation change in wetlands within and near the Everglades [12, 30, 33,

91–93]. Some of the south Florida SET-MH stations were installed in the 1990s. As a result,

multiple SET types are still in use [i.e., the original SET, deep RSET, and shallow RSET], and

some sites have an impressive ~20-year record of SET-MH data [30, 91, 94]. Other SET-MH

stations in Florida are concentrated near the Faka Union Canal, Blackwater River, Rookery

Bay National Estuarine Research Reserve [12, 92], Ten Thousand Islands National Wildlife

Refuge [33], J.N. Ding Darling National Wildlife Refuge, Florida Keys, Tampa Bay, St. Marks

National Wildlife Refuge, and the Apalachicola National Estuarine Research Reserve.
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In Texas, most of the SET-MH stations are installed along the northern and central coasts.

Stations are concentrated within several National Wildlife Refuges and the Mission-Aransas

National Estuarine Research Reserve. To our knowledge, there are no SET-MH stations

installed in south Texas in the Laguna Madre estuary. In Mississippi and Alabama, the Grand

Bay and Weeks Bay National Estuarine Research Reserves have developed long-term SET-MH

monitoring stations. The number of SET-MH stations in Alabama and Mississippi are rela-

tively low, and many stations were installed within approximately the last five years. However,

please note that the coastlines of Alabama and Mississippi are comparatively smaller than the

coastlines of Texas, Louisiana, and Florida.

Beyond just the SET-MH method: Limitations and integration with other

approaches

In this communication, our intent is not to imply that the SET-MH method is the only method

for assessing coastal wetland vulnerability to sea-level rise. There are many different

approaches for assessing coastal wetland vulnerability to sea-level rise, and each approach has

strengths and weaknesses. Multiple approaches could be integrated into a regional network for

the Gulf of Mexico. For example, marsh organs [95, 96] could be used to quantify relationships

between inundation and productivity of different plant species (e.g., succulents, graminoids,

mangroves, and microbial mats) [97–100], which can be incorporated into models of wetland

response to sea-level rise [59, 101]. Similarly, larger-scale in situ manipulations via weirs could

be used to elucidate biogeomorphic responses to inundation [102]. There are also opportuni-

ties to develop novel experimental designs at restoration sites to improve our understanding of

ecological responses to inundation, sedimentation, and saltwater intrusion [33, 35, 103, 104].

Despite the many benefits of the SET-MH approach, the method does have several limita-

tions that should be considered. In addition to the spatial data gaps identified in this inventory,

temporal data gaps exist for SET-MH stations if the local historical and geological contexts are

unknown. Radiometrically-dated soil cores can help bridge the gap, and have been used to

quantify accretion rates over decadal to millennial timescales in marsh and mangrove wetlands

in the northern Gulf of Mexico (e.g., [105, 106–110]). However, rates of elevation change and

radiometric accretion are often different (e.g., [92]), as are accretion rates measured using dif-

ferent radiometric methods or timescales [111–113]. Interpreting the reasons for these differ-

ences can be enhanced by using analytical tracers (e.g., organic matter or mineral content,

sediment grain size, stable isotopes, elemental ratios, and other sedimentary biomarkers) to

provide insights into the biogeochemical processes that contribute to soil formation, loss, and

surface elevation change. A regional-scale analysis of the distribution of radiometrically-dated

soil core records could inform questions related to where the greatest differences or similarities

exist between methods and timescales in different wetland habitats or across abiotic gradients.

Soil core bulk density and organic matter data can also be incorporated into vertical accretion

models. For example, Morris et al. [114] recently used data from 5075 soil samples collected

from coastal wetlands across the contiguous United States to develop a mixing model that can

be used to evaluate maximum steady state vertical accretion rates as well as the potential con-

tributions of organic and inorganic matter.

The requirement for long-term data (e.g., at least 5–10 years) is another potential limitation

of the SET-MH approach. Many stations in the network were established with short-term

funds to address a specific research question, not to serve as a long-term monitoring platform.

The strategic collection of short-term, high temporal resolution SET-MH data can be valuable

and help elucidate the effects of seasonal processes and extreme events (e.g., hydrologic fluctu-

ations and hurricanes) [30, 91]. However, the collection of long-term data records requires
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considerable time, resources, and organizational stability. Unfortunately, data collection at

some SET-MH stations was discontinued when initial project funds ran out, or scientists

retired, transitioned to new positions, or adjusted research priorities. Some of the SET-MH

stations included in our analyses are currently inactive for these reasons. Although certain

stagnant SET-MH stations could be reactivated, some of the older SET-MH stations may no

longer be functional or available for incorporation into a regional network. Hence, the devel-

opment and maintenance of a regional SET-MH network would require additional resources

and organizational capacity to maintain and coordinate the currently-available SET-MH sta-

tions as well as incorporate new SET-MH stations. While additional sites must be added in cer-

tain areas, the first priority of a regional network should be to evaluate existing sites and make

sure that they are well maintained and continuously recorded.

Another limitation of the SET-MH approach is that the high vertical resolution data pro-

duced may only be representative of a relatively small spatial area. There are several comple-

mentary approaches that can be integrated with SET-MH data to expand the area of inference.

For example, technological advancements [e.g., Real-Time Kinematic Global Navigation Satel-

lite Systems (RTK-GNSS), Continuously Operating Reference Station (CORS) networks, air-

borne and terrestrial lidar] continue to improve and diversify options for measuring wetland

elevations. Although other approaches do not match the high vertical resolution provided by

SET-MH measurements [20], there are many reasons, including increased spatial coverage,

for incorporating these complementary approaches into SET-MH network protocols and

products. To make full use of the mm-level accuracy provided by SET-MH elevation change

measurements, site-specific hydrologic contexts and rates of relative sea-level rise should be

carefully considered and quantified to the same level of accuracy [23, 27]. See Cahoon [27] for

a valuable discussion of the importance of co-locating tide gage and SET-MH stations and cal-

culating wetland-specific relative sea-level rise rates using SET-derived elevation trends and

tide gage-derived relative sea-level rise.

The general objectives for developing a regional SET-MH monitoring network could

include the multi-scale assessment of wetland submergence potential under sea-level rise as

well as the improved characterization of biogeomorphic processes that affect wetland eleva-

tions. Specific monitoring objectives should be identified by local and regional coastal resource

managers and planners in coordination with coastal scientists to address specific environmen-

tal concerns (e.g., the CRMS network in Louisiana). Establishing a regional monitoring net-

work capable of meeting these objectives will require: (1) careful screening of the existing

SET-MH stations to ensure that appropriate comparisons can be made among stations;

(2) strategic addition of SET-MH stations to complement the existing network where gaps are

noted; (3) careful coordination of sampling protocols to optimize the long-term and robust

collection of data that can be used to meet the stated goals of the network; and (4) the coordi-

nation and integration of SET-MH data collection efforts with other approaches for investigat-

ing coastal wetland vulnerability to sea-level rise.

In terms of organizational capacity and precedent, there are various potential models for

how a regional monitoring network could be supported and maintained. While the potential

funding mechanism and organizational structure for a regional network would need to be

carefully considered, the following long-term monitoring programs could serve as examples to

learn and build from: (1) CRMS in Louisiana; (2) USGS stream-gage network; (3) NOAA

Water Level Observation Network (NWLON); (4) NSF Long-term Ecological Research

(LTER) Program; and (5) National Ecological Observatory Network (NEON). A valuable next

step would be to cultivate the resources and organizational capacity needed to plan, establish,

and maintain a coordinated elevation change network for the Gulf of Mexico region.
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Conclusions

In the face of accelerated sea-level rise, there is an increasing need for elevation change net-

works that can contribute data required for regional ecological models and vulnerability

assessments [13, 20, 23]. For modeling and monitoring purposes, there is a need for long-term

data (e.g., greater than 10 years) from SET-MH stations that are strategically distributed across

ecologically-relevant abiotic gradients at both local and regional scales. Collectively, our analy-

ses provide the basis for the development of a coordinated and strategic regional elevation

change network from the current unplanned collection of SET-MH stations. The regional net-

work would provide data for predicting and preparing for the responses of coastal wetlands in

the Gulf of Mexico region to accelerated sea-level rise and other aspects of global change.
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