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The recovery of natural energy flow in food webs is an important indication that a restoration project has been a
success, yet is typically considered a challenging component of post-restoration monitoring protocols. Advance-
ments in remote sensing and SIA offer unique opportunities to build and test newmetrics that more easily mea-
sure foodweb recovery following restoration. Here, we combine fine-scale remotely sensed datawith SIAmixing
model outputs to demonstrate a method for creating energetic landscape maps, or E-scapes, that assess the en-
ergetic quality of a multi-year marsh restoration effort for white shrimp (Litopenaeus setiferus). These maps ex-
plicitly link spatial features with the resources used by a consumer to allow managers to visualize and quantify
how a restored landscape is producing energy for a target species. Our results support many known restoration
paradigms concerning the relationship between habitat cover and use, highlighting its potential usefulness for
monitoring purposes. With further testing and development, these products could also be used in the design
of restoration projects and increase their potential for success.

© 2020 Elsevier Inc. All rights reserved.
1. Introduction

The primary goal of nearly all restoration efforts is to recover ecolog-
ical function that has been lost due to some natural or anthropogenic
disturbance (Higgs, 1997;Wortley et al., 2013). Ecological theory is cen-
tral to restoration success and can help predict outcomes and track de-
velopment over time (Zedler and Kercher, 2005). Restoration science is
underpinned by several conceptual sub-disciplines of ecology; for ex-
ample, community assembly theory suggests that initial restoration
success and vegetation establishment can depend on the order of vege-
tation arrival and thus be guided by structured planting routines
(Palmer et al., 1997). Succession is also a key component because a
greater understanding of shifting biological communities following res-
toration actions informs timelines of site maturity (Prach et al., 2001).

Although diverse in design and implementation,most restoration ef-
forts attempt to re-establish critical habitat(s) that support the desired
suite of ecological or ecosystem functions (Suding, 2011; Wortley
et al., 2013). Ecological restoration practitioners aim to create the envi-
ronment necessary for recovery so the plants, animals, andmicroorgan-
isms can conduct much of the recovery and create a more balanced
iversity of Louisiana Lafayette,
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system. Typical metrics of restoration success are often measured in
some increase in the amount of desired habitat or an associated re-
sponse in faunal presence in comparison to some reference location
deemed to exhibit the desired functions (James et al., 2019; Neckles
et al., 2002; Wortley et al., 2013). However, it has become clear that
form does not always equal function when it comes to restoration suc-
cess; areas deemed “restored” based on habitatmetrics do not necessar-
ily function as intended (Abelson et al., 2015). This is particularly true
for the restoration of food web function; energy flowing from primary
producers to upper trophic level consumers over multiple pathways
does not always track with the typical restoration metrics of presence/
absence or abundance (James et al., 2019; Moore and de Ruiter, 2012).

Food webs are inherently complex, understanding how energy flow
responds to restoration is difficult and costly (Ehrenfeld and Toth, 1997;
Neckles et al., 2002). In the relatively few examples of in-depth food
web analysis following restoration, stable isotope analysis (SIA) is the
most commonly used tool to compare energy flow between restored
and reference habitats (Howe and Simenstad, 2007; James et al., 2019;
Rezek et al., 2017b). The most common stable isotopes used in restora-
tion studies are carbon (13C) and nitrogen (15N). However, the use of
additional stable isotopes, such as sulfur (34S) and hydrogen (D),
could improve most assessments (Layman et al., 2012). Stable isotopes
are particularly attractive as a tool to monitor restoration success be-
cause they can provide a time-integrated assessment of the flow of

http://crossmark.crossref.org/dialog/?doi=10.1016/j.fooweb.2020.e00179&domain=pdf
https://doi.org/10.1016/j.fooweb.2020.e00179
mailto:nelson@louisiana.edu
https://doi.org/10.1016/j.fooweb.2020.e00179
http://www.sciencedirect.com/science/journal/
www.journals.elsevier.com/food-webs


J.A. Nelson, J.M. Harris, J.S. Lesser et al. Food Webs 25 (2020) e00179
energy in the food web. The isotope values can be used to identify and
trace the production that contributes to the food web and ultimately
compare the primary energy sources used by the restored and reference
foodwebs. Mostmodern approaches use Bayesianmixingmodels to as-
sign foodweb contributions from sources in restored and reference hab-
itats (Parnell et al., 2013; Phillips et al., 2014). The primary benefit of
these models is the incorporation of natural variation in isotope value
between sites which then provides better estimations of source contri-
butions (Parnell et al., 2013; Stock et al., 2018). Although few, studies
that use SIA and mixing models suggest that habitat complexes, the
physical composition of the habitats, is one of themost important com-
ponents controlling food web recovery (James et al., 2019). This sug-
gests that linking the physical dynamics of habitats beyond the
presence or absence of a specific species or habitat class may be critical
to understanding food web recovery.

Remotely-sensed landscape metrics are useful tools for quantifying
large areas of habitat structure and understanding restoration develop-
ment and trajectory. However, it is not always straightforwardwhat the
results of these metrics mean in terms of the ecology of a site (Kelly
et al., 2011). Landscape ecology is based on the understanding of spatial
arrangements within habitat mosaics and its influence on ecological
phenomena (Wiens et al., 1993). Advancements in sensors and soft-
ware have led to increased use of landscape metrics for assessing wet-
land configuration, fragmentation, and response to disturbance (Liu
and Cameron, 2001; Stagg et al., 2019; Suir et al., 2013). Applying this
type of study to restoration benefits developmental analysis by
informing local and regional habitat structure, providing guidance for
selection of reference sites, and improving knowledge of habitat config-
uration and variation based on scale (Taddeo et al., 2019). Drones or un-
manned aircraft systems (UASs) offer a unique data stream that can
help restoration practitioners understand the current state and future
trajectory of a site. The technology has witnessed a rapid increase in
ecological applications and a decrease in costs (Harris et al., 2019;
Pajares, 2015). The resolution and variety of products that can be cre-
ated from one drone survey have powerful implications for short and
long-term site assessments. Fine-scale site maps can help address gaps
in monitoring and provide a more ecological approach for essential
principles like landscape context and position, comparisons to natural
habitats, and responses to disturbance.

These advancements in remote sensing and SIA offer a unique op-
portunity to build and test newmetrics of functional recovery following
restoration.We combine fine-scale, remotely-sensed data from amulti-
year marsh restoration effort with SIA mixing model outputs to create
energetic landscape maps, or E-scapes (James et al., 2020; Harris et al.,
2020). We use this method to predict which types of restoration design
produces the most energetically-beneficial landscape for white shrimp
(Litopenaeus setiferus). E-scapes are species- or guild-specific landscape
maps that classify discrete areas on the landscape based on their ener-
getic benefit to the consumer(s) being considered. We hope this new
type of analysis will be used to inform the design of future restoration
efforts to improve outcomes for restoring food web function.

2. Materials and methods

2.1. Site description

The Lake Sabine National Wildlife Refuge (SNWR) is the largest
coastal marsh refuge on the gulf coast. Located in southwestern Louisi-
ana within the Calcasieu-Sabine Basin of the Chenier Plain, the refuge
encompasses 125,000 acres (about 500 km2) of coastal wetlands.
From 1956 to 2006 this region lost over 900 km2 of wetland, much of
that within the SNWR (Barras et al., 2008). In 2001, the Louisiana
Coastal Protection and Restoration Authority designated nearly 6000
acres in the SNWR for restoration due to the substantial marsh loss
from canal-building and altered hydrology, saltwater intrusion, and
hurricanes. Four separate dredge-and-fill restorations (known as Cycles
2

1–5) were completed between 2001 and 2015, restoring 1120 acres of
saltmarsh and shallow water habitat (Sharp, 2011) (Figs. 1 & 2). The
project phases were completed out of name order with Cycle 1 finished
in 2002, Cycle 3 in 2007, Cycle 2 in 2010, and Cycle 5 in 2015. Cycle 4 is
currently under construction and is not included in the analysis. The fill
material for each cycle was dredged from the Calcasieu Ship Channel by
the Army Corps of Engineers to maintain navigation access and then
pumped into containment areas to increase elevations and create new
marsh. The dredge material slurry from the shipping channel was to
be pumped into each of the containment dikes to a maximum height
of 70–140 cm and expected to settle to a height of 8–70 cm elevation
after five years. While the general parameters for each cycle were con-
sistent, the construction techniques and final formations varied, making
them useful for comparisons of how different construction techniques
alter the functional outcomes for food web recovery.

We chose two reference natural marshes on the western boundary of
the restoration areas for comparisons. We chose these sites because they
have been previously monitored by the Sabine National Wildlife Refuge
and they are the largest “intact”marsh systems near the area where the
restoration occurred. Reference North is a 50-ha natural Spartina patens-
dominated marsh system with fringes of Spartina alterniflora along a
tidal creek channel that splits the site evenly north to south. Reference
South is a 66-hanaturalmarsh also dominatedby Spartina patens anddot-
ted with small patches of water scattered evenly throughout the site.

Cycle 1 had an original containment of 86.6 ha andwas completed in
February of 2002. It is the oldest restoration site in this study (18 years).
Sedimentwas pumped to an elevation between 55 cmand66 cm (Sharp,
2011), it settled average elevation of 14 cm after 7 years (April 2009),
and has been accreting at a rate of 0.4 cm/yr since 2010 (Basin, 2019).
The most recent average elevation reading was 18 cm (Basin, 2019).
The site was built in the northeast corner of the refuge, bounded by
existing retention dikes on two sides, using approximately 765,000
cubicmeters of sediment pumped via a temporary pipeline from the Cal-
casieu Ship Channel. Cycle 1 was the only site that was planted, with
thirty-six thousand smooth cordgrass (Spartina alterniflora) plants
established along the edges of the perimeter and the interior man-
made trenasses (small channels) manually dug during construction
(Basin, 2019).

Cycle 3 was initially 93 ha and completed in May of 2007 (Fig. 2). It
was pumped to an elevation of 12 cm to 60.6 cm using 633,637 cubic
meters of dredge sediment. Sediment was incorrectly pumped into
the containment area, causing the site to be higher in the south and
lower in the north with a wide range of surface elevations. The contain-
ment levees were breached every 150m on the northwest side to allow
for the “spillover” delta formation component using sediment outflow;
however, the technique did not work, and no additional marsh was
gained. The site was surveyed in 2013 and had an elevation range of
−62 cm to 25 cm, lower than the desired goal. By 2018 the site had ac-
creted to an average elevation of 9 cm after 11 years. Aerial imagery,
which was collected in 2009 and 2015, showed the area was 4.5% vege-
tated after 2 years and 97.8% vegetated cover after 8 years and domi-
nated by S. alterniflora (Basin, 2019).

Cycle 2 had a containment area of 93 ha, was completed in May
2010, and has less construction and historical monitoring data than
other cycles because it was converted to a state of Louisiana-only pro-
ject. Unlike other sites the desired “spillover” creation from breaching
the containment levees was successful, creating an additional 40 ha of
marsh outside of the levee (Cycle 2 overflow). Limited field surveys re-
ported the site to be an S. alterniflora monoculture and aerial imagery
calculated it to be 77% land in 2015 (Suir et al., 2020; Beck et al., 2019).

Cycle 5 is 94 habuilt with 565,000 cubicmeters of dredge fill, but ini-
tial elevation measurements were not taken at the time of construction
(Pontiff andWhite, 2017). Three years after completion (2018) the ele-
vation was reported to be between −11.8 and 26 cm (Miller, 2014).
Vegetation expanded rapidly post-construction and the site was 64%
vegetated land within 9 months based on aerial imagery analysis from



Fig. 1. Satellite image of the reference and restoration sites in Sabine, LA.
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December 2015. S. alterniflora is the dominant species with nominal
percentages of other plants throughout the site.
2.2. Habitat mapping & estimation

2.2.1. Unmanned Aircraft System (UAS) and flight parameters
All flights were conducted using a multi-rotor platform (Yuneec

H520) designed for commercial purposes and chosen for this study be-
cause of high wind resistance, stability, and a long flight time (28 min).
The flights occurred in the summer of 2019 from late June to mid-July
between approximately 9:30 am–1:30 pmCDT. The flight area, time, al-
titude, and duration were configured using the internal autopilot flight
planning software DataPilot. The internal Global Positioning System
(GPS) module geotagged all images with an initial accuracy of 5 hori-
zontal and 8mvertical. The hover accuracy of the aircraftwas 1.5mhor-
izontal and 0.5 m vertical. The typical flight times ranged from 15 to
23 min.

We used a Yuneec E90 RGB camera equipped with a 23 mm lens
with a diagonal field of view of 91° to capture all images used in the
analysis. The photo resolution was 3:2 (5472 × 3648) and effective
pixels were 20 MP. All photographs were stored as geotagged JPEG
files on a micro SD directly inserted into the camera. The file size for
each image was approximately 10–12 MB. Flight plans were developed
using Yuneec DataPilot desktop mission planning software and
uploaded to the ST16s remote controller before flight days. All flights
were conducted at 68 m altitude above ground level using consecutive
transects to cover the survey areas with an image overlap of 80%
3

(frontlap and sidelap). This altitude was chosen to maximize field of
view while achieving <2.5 cm ground sample distance (GSD) or pixel
resolution in the final maps for a precise analysis of vegetation classes
and to minimize possible blurred portions (Broussard III et al., 2018).

We systematically chose ground control points (GCPs) around each
site with at least one close to the center, in addition to randomly
installed checkpoints throughout the study area. The x, y, and z coordi-
nates of 69 points were taken with a Trimble R10 integrated GNSS sys-
tem with an average error of 1.2 cm horizontal and 2.1 cm vertical. In
total, 46 targets were used as control points for georeferencing the im-
agery, and 23 targets were reserved as horizontal and vertical check-
points to help assess the accuracy of the data. In general, 6 GCPs and 3
checkpointswere used at each site based on softwaremanufacturer rec-
ommendations (Pix4D Mapper) and previous studies (Manfreda et al.,
2019; Oniga et al., 2018).
2.2.2. Field surveys
To verify the remotely sensed data and compare the sites using tra-

ditionalmonitoringmethodswe used 3 replicate 2 × 2mquadrats sam-
pled along a transect from the edge of each site moving toward the
center at 1, 100, and 200 m for a total of nine quadrats per site. We re-
corded the species composition, plant height, and percent cover of the
vegetated and unvegetated surfaces. This methodology was chosen
based on the Braun-Blanquet cover scale (Kent, 2011) used by the
USGS Coastwide Reference Monitoring System (Steyer, 2010) and
CPRA protocols that have been used to monitor these sites in the past
(Folse et al., 2012; Miller, 2014).
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2.2.3. Imagery processing and analysis
The flights produced several thousand images per site that were

post-processed using structure from motion (SfM) photogrammetry
software Pix4D Mapper to create orthomosaics and digital surface
models (DSMs). Orthomosaics are detailed, scaled, georeferenced
photo representations of the area constructed from multiple images
andDSMsare representations of the surface elevation and the tallest ob-
jects like vegetation or structures (Figs. 2 and 3). We uploaded the GCP
measurements with x, y, and z coordinates and horizontal and vertical
precision error values, and the targets were manually clicked to verify
the individual pixel center of targets using the ray cloud editor. Manual
tie points (MTPs) were also added in the ray cloud to improve recon-
struction accuracy and clarity in the final orthomosaic. We conducted
all the image processing on a Dell Precision Tower 5810 desktop with
32 GB of RAM, an Intel Xeon CPU E5–1603 v3 @ 2.80GHz, and an
NVIDIA Quadro M2000 GPU. Processing times ranged from 36 to 72 h
per site. A total of 20,515 raw images were processed to create 1694
acres of mapped area with an average GSD (pixel size) of ~2.2 cm (ex-
cluding Cycle 4, which is still under construction).

2.2.4. Classification
Two products were created by combining the orthomosaics and

DSMs: (1) land/water maps and (2) habitat classifications. Land and
water classes were delineated based on rules developed by Cowardin
et al. (1979) where land was considered all vegetation including
marsh, scrub/shrub, emergent vegetation, and exposed bare ground
on the containment dikes (which is higher elevation and does not
Fig. 2. Land and water classifications from UAS imagery overlaid on

4

flood). Water was considered open water, non-vegetated mudflats,
floating aquatics (which were minimal), and submerged aquatic vege-
tation. To compare the construction techniques between restoration cy-
cles, the habitats in each site were characterized as water, edge, or
marsh. Each of the restoration sites contained small areas of construc-
tion artifacts that created anomalous landscape features often occupied
by nonstandard marsh plants; we classified these areas as “other” and
excluded them from the analysis.

An object-based image analysis (Laliberte and Rango, 2011, 2009)
was used to conduct vegetation mapping with the software eCognition
Developer (v. 9.5, Trimble Germany GmbH, Munich, Germany). The
orthomosaics and digital surface models provided four layers to use in
image analysis (red, green, blue, andDSM). Each sitewas analyzed inde-
pendently and separate “rulesets” were developed, using similar ap-
proaches and parameters, to assign classes to cover types. The rulesets
are a step by step process of segmentation (grouping pixels into mean-
ingful shapes, e.g., water bodies or trees) to create objects and classifica-
tion of those objects based on attributes, or “features” in eCognition,
unique to the target class. Cycles 3 and 5 and Reference South were
completely automated using ruleset development which included a su-
pervised classification as the last step and no manual editing needed.
Cycle 1, Cycle 2, and Reference North were classified using one round
of segmentation, basic rules to separate bare ground, marsh vegetation,
water, and additionalmanual editing. Initial features used to define clas-
ses were mean brightness, mean red band, mean DSM, roundness, area,
and position values for individual objects.Misclassified areaswere iden-
tified and reclassified through additional thresholding of other
satellite imagery to show the geographic location of each site.



Fig. 3. a) Cycle 1UAS classified imagery and calculated E-scapemap, b) Cycle 2UAS classified imagery and calculatedE-scapemap, c) Reference SouthUAS classified imagery and calculated
E-scape map. Eachmap is made to show the energetic landscape for white shrimp (Litopenaeus setiferus). Each cell in the E-scapemaps is 400 m × 400m and the maps are clipped to the
restoration site. Areas in red indicate habitats cells that have higher energetic values and areas in blue are less energetically favorable for shrimp foraging.
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parameters or manually edited into the appropriate cover type. We
exported the vector layers with the area (m2) and border length
(m) included in the attribute table and transferred to ArcGIS (ArcMap
10.4.1) for further spatial analysis and final cartography. The attribute
tables were exported as spreadsheets and aggregated and analyzed
using the R package ‘tidyverse’. We conducted accuracy assessments
using stratified random sampling methods with 525 test points per
site (QGIS). The number of points per class was weighted based on
the percent cover within the site however we required each class had
a minimum of 25 points.
2.3. Structural analysis

Remotely sensed class areas, percentage of landscape, number of
patches, patch density, edge density, and aggregation index (AI) were
calculated based on usage in previous studies (Broussard III et al.,
2018). Patch AI has become a widely used metric for evaluating land-
scape structure and is a percentage calculated from the ratio of the ob-
served number of patch type adjacencies (McGarigal 2015; Couvillion
et al. 2017). Edge habitat in this study was considered the marsh-to-
water border. Since the sites were cropped to the marsh edge and no
water was classified outside the boundaries, the border length of the
water class was used as a proxy for interior edge habitat. Exterior edge
habitat was simply the total length of the land class minus the amount
of interior. Portions, where continuous habitat was cut off due to flight
coverage, were measured and subtracted from total edge calculations.
Removing the water also ensures the sites are only classified using the
water within the borders of the restoration and it is not confounded
by water or edge ratio around the perimeter. All landscape configura-
tion metrics were calculated using R package Landscape Metrics that
was developed from the program FRAGSTATS. The shapefiles created
in eCognition were turned into raster format using the R package
‘fasterize’ so that spatial metrics could be analyzed.Table 1 Summary
of study site landscape metrics. Vector files were rasterized to the
5

original resolution of themosaics used to conduct classifications. Corre-
lations of these metrics were analyzed with ground survey data to de-
termine any relevant trends for understanding marsh creation
development in addition to restored vs reference comparisons.

2.4. Stable isotope analysis

For our analysis, we used white shrimp (Litopenaeus setiferus) as a
model species to demonstrate howwe canmeasure the ability of resto-
ration landscapes to produce energy for the foodweb. The stable isotope
analysis and mixing model methods and results used for this analysis
are published in Nelson et al. (2019). Nekton were collected in August
2016 using a 1 m2 drop sampler (Zimmerman et al., 1984, Nelson
et al., 2019), dried for 48 h at 60 °C, ground into a fine powder, and
shipped to the Washington State University Stable Isotope Core Facility
for C, N, and S content and stable isotope analysis. The mixing model
used particulate organic matter to represent water column production,
Spartina alterniflora leaves to represent marsh production, Avicennia
germinans leaves to represent mangrove production, and benthic epi-
phytes to represent benthic algal production.

The relative contribution of each organic matter source to white
shrimp was derived using a Bayesian mixing model. All stable isotope
data were analyzed in R (v 4.0.0, R Development Core Team) using the
package ‘mixSIAR’ (v 3.1.7, Stock et al., 2018). The mixing model
showed that mangrove production accounts for less than 1% of produc-
tion and was excluded from this analysis because there are no man-
grove habitats on these sites (Nelson et al., 2019).

2.5. Energetic landscape maps

We applied the mixing model results for white shrimp to each of the
drone-based habitat assessments. A detailed description of the energetic
landscape construction with an in-depth description and test of the un-
derlying assumptions can be found in James et al. (2020). The habitat
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cover estimates developed from the UAS imagery were combined with
consumer resource use from the mixing models to calculate an index of
energetic importance (IEI) for each basal resource and habitat type com-
bination. Each IEI was calculated with the following formula:

IEIi ¼
f sourcei
f habitati

where fsource i
is the fraction of the contribution of source i to the total

source use based on the results of the mixing model and fhabitati is the
fraction of habitat i that produces source i to the overall area within
the movement range of the consumer. An example of resource/habitat
combination is the amount of S. alterniflora derived production and
the coverage area of S. alternifloramarshhabitat. The IEI provides a value
for the amount of a resource that a consumer uses relative to the
amount of that habitat in the foraging area where that consumer was
captured. An IEI of one indicates the consumer is using a resource
(fsourcei) in the same proportion it occurs in the area where it forages. If
the IEI is greater than one, that resource is being used more than ex-
pected based on its distribution in the foraging area. IEI values were
combined with habitat cover areas to calculate the habitat resource in-
dex (HRI). HRI was calculated with the following formula:

HRI ¼
Xn
i¼1

fIEIi � f habitati

where fIEIi fIEIi is themedian of the IEI for the source/habitat combination
i and fhabitati is the fraction of habitat i to the overall area within the
movement range of the consumer. HRI is an index that represents a rel-
ative measurement of the quality of the habitats for producing the col-
lection resources used by the consumer based on stable isotope
analysis. AnHRI value of onemeans that the area is producing resources
proportional to the mean contribution of each production source used
by the consumer as determined with the mixing model.

Each restoration cycle was divided into 400m× 400m (16 ha) hab-
itat blocks to calculate the HRI for white shrimp. This value was chosen
based on typical movement ranges of white shrimp in the field (Nelson
et al., 2019; Rozas and Minello, 1997; Webb and Kneib, 2004). Sensitiv-
ity analysis in James et al. (2020) showed a significant relationship be-
tween shrimp biomass and HRI from 50 m2 to 1000 m2 scales.

3. Results

3.1. Habitat assessment results

The proportion of land at each site varied from 73.2% to 95.5% with
the youngest cycle (Cycle 5) having the lowest proportion of land and
Table 1
Summary of study site landscape metrics.

Site Class Class area
(ha)

Percentage of
landscape

Patch
density

Aggregation
index

Cycle 5 Land 67.6 73.2 718 99.9
Cycle 5 Water 24.7 26.8 880 99.7
Cycle 2 Land 119.3 86.5 529 99.8
Cycle 2 Water 18.7 13.5 3199 99.1
Cycle 3 Land 80.9 86.4 6212 99.9
Cycle 3 Water 12.7 13.6 773 99.2
Cycle 1 Land 102.9 95.5 168 99.9
Cycle 1 Water 4.9 4.5 435 98.8
Reference
North

Land 44.8 91 1339 99.9

Reference
North

Water 4.5 9 1327 98.8

Reference
South

Land 61.0 91.8 1957 99.9

Reference
South

Water 5.4 8.2 515 98.8
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the oldest site (Cycle 1) the highest. Both reference sites were approxi-
mately 91% land (Table 1). All of the sites had aggregation indexes higher
than 98% indicating the patches identified by the software were highly
clumped and easily discernable from adjacent classes (Table 1).

The drone-based habitat assessments indicate the restoration sites
were 74–90% covered by marsh vegetation. The youngest site, Cycle 5
(4 years old), was 90 ha and had the lowest proportion of marsh
cover (74%) with the remaining 26% covered by water. The oldest site,
Cycle 1 (18 years old), was 108 ha and had the highest amount of
marsh cover (90%). It also had the highest percentage of shrubs and
P. australis (“other” class) at 6%. The other two restoration sites, Cycles
2 and 3, were 84–85% marsh-covered. Cycle 2 (9 years old) was
138 ha and Cycle 3 (12 years old) was 93 ha. Cycle 2 was the largest
site and contained the most marsh (117 ha) because of the successful
sediment overflow technique. The reference sites were both 88%
marsh, 8–9% water, and 3–4% “other.” Reference North was 50 ha and
Reference South was 66 ha.

3.2. Mixing model results

Benthic algae supported 49.2% (±3.7%) of white shrimp biomass.
Water column production (38.1% ± 6.8%) was the second most impor-
tant component supporting shrimp biomass, followed by Spartina detri-
tus (12.5% ± 3.6%). Mangrove production was not included in this
analysis as the mixing model determined mangroves contributed less
than 1% to shrimp biomass and there is nomangrove habitat on the res-
toration sites (Nelson et al., 2019).

3.3. Energetic landscape results

IEI values for edge and water were around 5 at most sites and were
much higher than marsh, which had IEI values <1 at all sites (Fig. 4).
Each site contained areas of higher and lower energetic quality depend-
ing on the physical parameters in that cell of the E-scape (Fig. 3). The
median HRI value for the E-scape sampling unit across all sites was
1.11 with an interquartile range of 0.38–1.99. HRI values displayed a
negative relationship with the proportion of total land and the propor-
tion of marsh habitat within the E-scape sampling unit (Fig. 5,
Supplemental Figure 1). There was a positive relationship between
HRI and the proportion of landscape edge habitatwith the E-scape sam-
pling unit (Fig. 5).

4. Discussion

For habitat restorations, the recovery of natural energy flowpatterns
is an important ecosystem function that may indicate a restoration
Fig. 4. Index of Energetic importance values for 20 random points sampled in each site.
Higher values for a habitat type indicate greater energetic importance for white shrimp
at that site.
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project has been a success. However, post-restoration monitoring ef-
forts have focused little on understanding energy flow and trophic dy-
namics (Ehrenfeld and Toth, 1997; Neckles et al., 2002), as food webs
are complex and their structure is hard to monitor (Vander Zanden
et al., 2006). By combining stable isotope information on energy flow
with remotely-sensed landscapemetrics, ourmethod provides a clearer
and deeper inferential method of assessing whether a project has re-
stored food web function. Further, we feel our results demonstrate the
Fig. 5. A) Regression of land cover, B) Marsh Cover, C) Edge habitat indicating that marsh
edge and the interface between land andwater are themost important factors to consider
for food web restoration.

7

utility of our method in evaluating how different construction methods
would impact foodweb recovery. Our results indicate the importance of
geomorphology or habitat form and support many known restoration
paradigms concerning the relationship between habitat cover and spe-
cies use, highlighting its usefulness for monitoring purposes.

Edge habitat has been well-established as an important driver of con-
sumer biomass and abundance in saltmarshes (Minello et al., 1994;Webb
and Kneib, 2002). Our E-scapes demonstrate the importance of this edge
habitat to energy flow through white shrimp in these restored habitats
(Fig. 3). Edge habitat had high index of energetic importance (IEI) values
at all sites because of the outsized reliance on the resource it produces
(benthic algae) (Litvin et al., 2018) relative to the amount of edge area
that exists at each site.While benthic algal production likely occurs across
much of the marsh surface, the shallow edge habitat where light pene-
trates to the bottomhas the highest concentration of benthic algal produc-
tion and has been shown to be an important area for marsh consumers
(Kneib, 2003). Therefore, areaswithmore edgeare energy-rich for shrimp,
leading to a positive relationship between edge area and HRI values.

Cycles 1 and 2weremost similar to the energetic values of the refer-
ence habitats (Fig. 3). Both of these sites have greater water-to-edge
ratio due to the construction techniques used to create them. In Cycle
1 the areas with the trenasses have much higher HRI values than
areas of the site that were not trenched (Fig. 3A). Cycle 2 is the site
where the “spillover” technique was successful and the spillover area
has some of the highest HRI values of any of the study sites due to the
highly reticulated habitat structure and high edge ratio (Fig. 2B). Con-
versely, marsh habitat has consistently low energetic importance at all
sites. Cordgrass productivity is typically incorporated into the food
web through the detritus pathway (Nelson et al., 2019), and white
shrimp do not rely on this pathway heavily (Nelson et al., 2019). Thus,
restoration through the creation of cordgrass habitat (and land overall)
does not directly promote the provision of energy for the food web as a
function of total areas (Figs. 4 and 5). This observation demonstrates a
critical consideration for restoring food web function, the structure cre-
ated by themacrophyte is critical to creating the areas that generate the
most energetically-valuable areas of the habitat. Frequently the success
of restoration efforts, particularly in Louisiana, are measured in new
land created and amount of habitat restored. However, the geomor-
phology and structure of the habitat is a key feature to consider when
designing a restoration to promote recovery of food web function.

Managers can use this tool duringmonitoring to assess the energetic
health and progress of establishing food webs in their restored site
without major changes to their established data collection programs.
Post-restoration food web analysis is already typically done via stable
isotope analysis (James et al., 2019; Rezek et al., 2017b, 2017a). Remote
sensing (via drone/UAVs or satellite imagery) is a tool widely employed
to monitor the establishment, progression, and recovery of areas to ref-
erence levels of habitat cover (Klemas, 2013). E-scapes combine these
sets of data to produce a visual product that imparts new information
about the progress of the pattern of energy flow at a restoration site.
E-scapes can be tailored for target species to assess the success of a re-
stored landscape in producing the collection of energy channels that
support consumers that meet specific restoration goals (Harris et al.,
2020). E-scapes can also be used to visualize variability in energy pro-
duction across different parts of the restored landscape, leading to bet-
ter design and construction of restoration habitats planned to restore
natural energy flow patterns and trophic dynamics.

When combinedwith ecological models or indices, remotely-sensed
data have much promise as a scientific monitoring tool. For this study,
the use of UAS imagery in conjunctionwith the IEI, for thequantification
andmonitoring ofwetland ecosystemgoods and services, demonstrates
the increased value for evaluating the performance of wetland restora-
tion on food web function and energy flow. With near-term technolog-
ical improvements (e.g., fusing of UAS-collected hyperspectral imagery
and LiDAR data), UAS applications will become increasingly critical for
environmental monitoring and research.
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With advances in the spatial and spectral resolution of remotely
sensed data from UAS, aircraft, and satellite technology, high-
resolution maps and fine-scaled indices are possible that resolve the
smallest ponds and pockets of the marsh landscape. Access to these
products is now available through off-the-shelf drone technology and
automated software workflows. Traditional tools and methods for
quantifying energy flow through these newly resolved models will
need to be adapted and scaled up.

5. Limitations and future considerations

As with any new methodology, there are several assumptions and
methods that can be improved in later iterations to better capture how
energy is flowing in the system. For example, in our calculation of HRI
and IEI values, the fraction of habitat (fhabitati) is based on the area of hab-
itat cover. This means that all habitat of that type will produce energy
equally and in two dimensions. For aquatic habitats this can be problem-
atic given the patchy nature of certain types of production, or how depth
and light penetration modulate productivity when considering water
column production. In addition, our habitat classifications are simplistic
with a patch receiving a single classification. In the real-world multiple
production sources could occur on the samepatch (e.g. benthic algal pro-
duction between cordgrass stems). Scale is also a critical assumption in
our approach. In this example we use shrimp home range information
to determine the scale atwhich the consumer uses resources to generate
ourmetrics. For organisms thatmove atmuch larger scales how the hab-
itat cover types are classified and aggregated becomes more complex as
increasing numbers of sources and habitat types are incorporated. Our
methods can easily be adapted to consider these factors by adjusting
habitat productivity by depth or with data, such as chlorophyll concen-
tration, over time. Movement and diet information could be used to
identify the proper scales and identify habitats used for foraging. Al-
though these types of data do not currently exist for our study area, tech-
nological advances in remote sensing, videography, and animal tracking
make attaining this information more feasible than ever.

Stable isotope analysis has been shown to be a powerful tool to un-
derstand how foodwebs respond to change.With the recent technolog-
ical advancements in fine-scale remote sensing technology, we feel the
time is right to begin to combine these two powerful tools to illuminate
spatial patterns in energy flow that had been previously unattainable.
While our initial efforts may be limited is some ways, they provide a
framework to build toward a potentially powerful tool for assessing
and planning coastal zone restoration projects.

Supplementary data to this article can be found online at https://doi.
org/10.1016/j.fooweb.2020.e00179.
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