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The Louisiana coastal ecosystem is experiencing increasing threats from human 

flood control construction, sea-level rise (SLR), and subsidence. Louisiana lost about 

4,833 km2 of coastal wetlands from 1932 to 2016, and concern exists whether remaining 

wetlands will persist while facing the highest rate of relative sea-level rise (RSLR) in the 

world. Restoration aimed at rehabilitating the ongoing and future disturbances is 

currently underway through the implementation of the Coastal Wetlands Planning 

Protection and Restoration Act of 1990 (CWPPRA). To effectively monitor the progress 

of projects in CWPPRA, the Coastwide Reference Monitoring System (CRMS) was 

established in 2006. To date, more than a decade of valuable coastal, environmental, and 

ground elevation data have been collected and archived. This dataset offers a unique 

opportunity to evaluate the wetland ground elevation dynamics by linking the Rod 

Surface Elevation Table (RSET) measurements with environmental variables like water 

salinity and biophysical variables like canopy coverage. This dissertation research 
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examined the effects of the environmental and biophysical variables on wetland terrain 

elevation by developing innovative machine learning based models to quantify the 

contribution of each factor using the CRMS collected dataset. Three modern machine 

learning algorithms, including Random Forest (RF), Support Vector Machine (SVM), 

and Artificial Neural Network (ANN), were assessed and cross-compared with the 

commonly used Multiple Linear Regression (MLR). The results showed that RF had the 

best performance in modeling ground elevation with Root Mean Square Error (RMSE) of 

10.8 cm and coefficient of coefficient (r) = 0.74. The top four factors contributing to 

ground elevation are the distance from monitoring station to closest water source, water 

salinity, water elevation, and dominant vegetation height.   

Collecting terrain elevation measurements using modern Light Detection and 

Ranging (LiDAR) remote sensing is challenging in wetlands with thick vegetation, and 

LiDAR derived Digital Elevation Models (DEM) in wetlands are often highly uncertain. 

This dissertation, for the first time, examined the potential of improving LiDAR DEM 

using RSET data at the regional scale by developing an object-based machine learning 

correction approach. A comparison of RF, SVM, ANN, and MLR algorithms revealed 

that RF was the best approach for LiDAR DEM correction with a correlation coefficient 

(r) of 0.83 and RMSE of 8 cm.  

Finally, the inundation of coastal Louisiana in 2050 was predicted by using the 

corrected 2017 LiDAR DEM and annually increased by ground elevation change to 2050. 

Both object-based and grid-based inundation maps were produced and compared, which 

revealed that, based on the current RSLR rate, 34% of the selected area would be 

inundated by 2050. 
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CHAPTER 1: INTRODUCTION 

1.1 Louisiana coastal wetland ecosystems and restoration  

The Louisiana coastal zone encompasses approximately 37,780 square kilometers, 

including the Mississippi Deltaic Plain to the east and the Chenier Plain to the west 

formed by dynamic interactions between the Mississippi River and the coast (Boesch et 

al., 1994). As glaciers retreated and meltwater inundated lands and periodic floodwater 

carried sedimentary material to the lower floodplains, forming a vast expanse of coastal 

wetlands (Fisk and McFarlan, 1955). Hydrology was keep dictating the vegetation 

distribution parallel to the coast, representing graduation from high salinity tolerated 

saltmarsh near the coast to brackish marshes, then to inland freshwater marshes and 

wooded swamps (Boesch et al., 1994).  

Coastal Louisiana wetlands are critical environments because they provide 

treasured ecosystem services, including improved water quality, food production, carbon 

sequestration, wildlife habitats, habitats for commercial fisheries, and storm-related 

disturbance regulation (Costanza et al., 2014). However, coastal Louisiana wetlands are 

also one of the most threatened environments, currently experiencing more significant 

land loss than all other states within the U.S. due to multiple compounding and 

interacting stressors (Couvillion et al., 2017). The highly dynamic coastal wetlands 

environment in Louisiana has dramatically grown and retreated depending on the wetland 

ground elevation and changes in sea level (Boesch et al., 1994). With the high rate of 
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subsidence associated with global rising sea levels, coastal wetlands in Louisiana are 

experiencing the highest relative sea-level rise (RSLR) in the world at 12 ± 8.3 mm per 

year (Jankowski et al., 2017). Increasingly rising sea levels have resulted in large areas of 

brackish and freshwater wetlands becoming progressively more saline, as saltwater has 

increasingly invaded the deteriorating coastal area of Louisiana (Boesch et al., 1994). 

Additionally, the decreased sediment supply by river leveeing and damming (Blum & 

Roberts, 2009) and dredging of navigation canals (Day et al., 2000) along the Mississippi 

River have eliminated freshwater and sediment input to coastal zones. These flood 

control structures have caused sediment deprivation and have contributed to reduced 

capacity for sediment accretion, thereby reducing the ability of wetlands to maintain 

ground elevation in response to RSLR (Couvillion et al., 2017). As a result, coastal 

Louisiana has lost about 4,833 square kilometers of land from 1932 to 2016 (Couvillion 

et al., 2017). 

Growing awareness of rapid coastal wetland loss has resulted in extensive studies 

(e.g., Kolker et al., 2011; Blum & Roberts, 2009; Syvitski, 2008; Day et al., 2007; Day et 

al., 2000), and state and federal statutes have been enacted that authorize and finance 

coastal restoration on a large regional scale. Several policies have been implemented in 

response to this massive land loss in coastal Louisiana. The Coastal Wetlands Planning, 

Protection and Restoration Act of 1990 (CWPPRA) was enacted to create, restore, 

enhance, and protect coastal wetlands in Louisiana. Subsequently, the Coastwide 

Reference Monitoring System (CRMS) was developed to collectively assess the 

effectiveness of restoration projects carried out under the CWPPRA, by providing an 

array of reference sites for a scientific evaluation network to achieve statistically valid 
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comparisons (Steyer et al., 2003). The 392 CRMS monitoring stations were randomly 

selected and allocated to major coastal wetland types, including fresh intermediate, 

brackish, saline, and swamp, and established between 2006 and 2008 (Figure 1.1) (Folse 

et al., 2018). At each CRMS monitoring station, sediment elevation, vertical accretion, 

hydrologic data, and vegetation data are collected through a partnership of the United 

States Geological Survey and Coastal Protection and Restoration Authority (CPRA).  

Sediment elevation is measured by the Rod Surface Elevation Table – Mark 

Horizon (RSET-MH) method (Cahoon et al., 2002), which provides a highly precise 

(with ±1.3 mm vertical accuracy) and repeatable approach used to collect relative 

cumulative sediment change data in 6-month intervals from 2007 to the present. The 

RSET produces the most precise and easily replicable measurements for local sediment 

elevation (Cahoon et al., 2002; Webb et al., 2013). While the RSET method is a 

nondestructive process that precisely measures sediment elevation in coastal wetlands, it 

is limited by high labor cost and accessibility of the site (Webb et al., 2013; Scott & 

Hensel, 2007) . Additionally, the limited number and low density of CRMS monitoring 

stations makes scaling up and mapping broader regional scale sediment elevation changes 

a challenge (Webb et al., 2013). In general, the field method for monitoring sediment 

elevation is costly and time-consuming; therefore, techniques that enhance confidence in 

assessing restoration status with higher spatial coverage across the entire coastal zone of 

Louisiana are in high demand for managers, especially as wetland restoration efforts 

increase to mitigate the impacts of the high rate of RSLR (Webb et al., 2013). 
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1.2 LiDAR remote sensing and its limitation for DEM generation in wetlands 

Unlike the field-based techniques for estimating sediment elevation, remote 

sensing has revolutionized the ability to map and model larger scale environments and 

has contributed greatly to generating high-density regional-scale ground elevation maps. 

Airborne Light Detection and Ranging (LiDAR) is an active remote sensing technology 

that can provide high-resolution topographic information by emitting infrared signals 

directed at the ground, which hit objects and are reflected back to a sensor on the aircraft. 

Figure 1.1 Location of the state of Louisiana, USA (a); location of the study area in 

coastal Louisiana (b); and distribution of CRMS monitoring stations (c). 
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The time elapsed between signal emission and the arrival of the reflection of that signal at 

the sensor allows the computation of elevation and height information (McClure et al., 

2016). Compared to low-density point scale field measuring sites along the coastal zone 

of Louisiana, LiDAR systems with a point density of 1 point per square meter are 

commonly available, and systems with 8 to 10 points per square meter are becoming the 

norm with technology advancements (Hladik and Alber, 2012). LiDAR technologies 

acquire 3-dimensional coordinates of objects and provide unprecedentedly detailed point-

cloud topography descriptions over large areas (Wang et al., 2009).  

Discrete LiDAR signal returns allow discrimination of multiple laser hits; the first 

return often originates from reflection off the top of the object, while the last returns are 

assumed to be from the ground (Hladik and Alber, 2012). LiDAR last returns have been 

recognized as a standard to generate high spatial resolution Digital Elevation Models 

(DEM) to represent bare earth elevation (Kulawardhana et al., 2014; Lefsky et al., 2002). 

The DEM is the collection of square pixels where the pixel value is the LiDAR last return 

elevation. Many studies have shown that the DEM accuracy depends on the land cover 

types, terrain characteristics, interpolation methods, LiDAR point density, and LiDAR 

filtering methods (e.g., Fisher and Tate, 2006; Li et al.,2005; Liu et al., 2008).  

Although LiDAR-derived DEM has shown great success in representing some 

environments (Montané and Torres, 2006), little progress has been reported in LiDAR 

applications for the characterization of relatively short and high-density herbaceous 

vegetation coastal wetlands. LiDAR is challenging for monitoring ground elevation in 

wetland environments for two main reasons. First, high-density vegetation leads to a 

relatively low chance for LiDAR lasers to penetrate through the vegetative canopy layer 
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and hit the ground (Marani et al., 2004). Instead of hitting the ground, laser signals might 

hit the vegetation surface then return to the LiDAR receiver as a “ground” return (Rosso 

et al., 2006). Moreover, the true laser ground returns are challenging to separate from the 

laser signals that hit the vegetation surface. Consequently, LiDAR tends to overestimate 

coastal wetland ground elevation (Montané and Torres, 2006; Rosso et al., 2006; Schmid 

et al., 2011). Second, the relatively short marsh vegetation is usually less than 2 m tall in 

coastal wetlands, which is similar to LiDAR pulse separation, which varies from 0.5 to 

10 ns apart and correlates to 0.1 to 1.5 m pulse length. The distance between laser returns 

from the vegetation and the ground can be less than the pulse length, which will 

challenge the LiDAR system to reconcile as separate returns (Hopkinson et al., 2005). 

Thus, even when a last return LiDAR signal is correctly identified, it may not have 

originated from the actual ground, instead coming off short vegetation (Göpfert et al., 

2006). As a result, the identified LiDAR last could not provide accurate information on 

the ground information and could not be used to directly determine the elevation of the 

ground (Wang et al., 2009).   

Due to high-density vegetation, only 2-3% of LiDAR lasers penetrate through the 

vegetation canopy to hit the ground, then return and record as ground elevation (Wang et 

al., 2009). The vertical error in LiDAR-derived DEM urban area ranges from 0.10 m to 

0.20 m, in high-density vegetation, the vertical error can be up to 0.31 m (Hladik and 

Alber, 2012; Montané and Torres, 2006; Hodgson et al., 2004). For local to regional scale 

RSLR inundation mapping, the National Oceanographic and Atmospheric Association 

(NOAA) recommends that the vertical error of a DEM should be at least twice as certain 

as the RSLR increment, which is difficult to achieve with available public LiDAR 
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(NOAA, 2010). Uncorrected DEM cannot meet the accuracy requirements to distinguish 

topographic changes in coastal wetlands at the resolution for RSLR inundation mapping 

(Hladik and Alber, 2012).  

There have been several approaches developed in recent years to improve 

accuracies of LiDAR-derived DEM, including minimum bin gridding, which assumes the 

lowest LiDAR point value in the grid is the ground elevation (Medeiros et al., 2015; 

Schmid et al., 2011; Wang et al., 2009; Töyrä et al., 2003). Additionally, since LiDAR 

DEM were shown to overestimate ground elevation, subtraction of vegetation species-

specific bias was applied for improving DEM accuracy (e.g., Hladik and Alber, 2012; 

Hladik et al., 2013; McClure et al., 2016). Finally, the fusion of airborne LiDAR with 

multi-spectral imagery using object-based correction has shown promise for increasing 

vertical accuracy of LiDAR-derived DEM (e.g., Cooper et al., 2019). I discuss these 

approaches in further detail in Section 3.1.2. 

1.3 Machine learning based models for ground elevation and correction in wetlands  

Artificial intelligence or machine learning has produced several powerful 

algorithms that have demonstrated immense potential in increasing understanding of 

environmental variables’ impact on ground elevation and correcting LiDAR derived 

DEM. Machine learning approaches are often preferred in remote sensing problems due 

to the complicated and relationships between dependent and independent variables in 

wetlands ecosystem (Roger et al., 2018). Unlike traditional statistical analysis that utilizes 

Multiple Linear Regression (MLR) techniques to make predictions of the variable 

outcome, nonparametric modeling does not require the data be normally distributed 

(Bourennane et al., 2014). There are numerous machine-learning algorithms available, 
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this study examined three machine learning algorithms for analyzing the relationship 

between environmental variables impact on ground elevation and LiDAR correction 

including Random Forest (RF), Support Vector Machine (SVM), and Artificial Neural 

Network (ANN) compete with MLR (Table 1.1).  

RF is a decision tree classifier with many single decision trees using a majority 

vote of all trees for a more accurate prediction (Breiman, 2001). RF model builds from 

randomly and recursively split the input data depending on an if-then threshold, which 

results in a wide variety of trees (Pal and Mather, 2003). It is robust to parameter settings, 

limited training samples, and uncertain data quality (Maxwell et al., 2018). Another 

benefit is that overfitting could be avoided by reducing the number of decision trees and 

reducing the number of variables for each node, which would reduce the accuracy in the 

training data but generally increase the accuracy of testing unknown data (Pal and 

Mather, 2003). SVM is a supervised non-parametric statistical learning technique that 

aims to find the optimal boundary to separate classes based on the training samples then 

to separate simulation data under the same configurations (Mountrakis et al., 2011). 

These optimal boundaries can be linear or using kernel functions for a higher dimension 

(Huang et al., 2002). Furthermore, SVM typically applies one-against-all, one-against-

others as workarounds for multi-class problems (Mountrakis et al., 2011). Thus, SVM-

based classification has been known to balance accuracy attained with a finite amount of 

training data and the ability to generalized apply on unseen data (Mountrakis et al., 

2011).  

On the other hand, ANN is a learning technique designed to simulate neuron 

networks of the human brain (Mas and Flores, 2008). Specifically, the ANN system is 
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formed from hundreds of processing elements as artificial neurons and is organized into 

layers, where all the neurons within a layer are connected to all the neurons in adjacent 

layers with relative weights (Agatonovic-Kustrin and Beresford, 2000). The weights are 

randomly guessed during training with iteratively adjusting and observing the effect on 

output nodes. The adjustments which improve the classification are kept and reinforced 

while adjustment that does not is discarded. Until the errors in the predictions are 

minimized, the inter-unit connections are optimized and ready for application on new 

data to predict the output (Agatonovic-Kustrin and Beresford, 2000). These three 

machine learning algorithms have shown good performance in analyzing non-linear 

regression in wetland ecosystems and show improvement over standard parametric 

methods (Zhang and Xie, 2014; Zhang et al., 2018; Zhang et al., 2019). 

1.4 Significance of this dissertation 

Coastal Louisiana has lost about 4,833 km2 of wetlands over the past century, and 

concern exists whether remaining land will persist while facing the highest rates of RSLR 

in the world (Jankowski et al., 2017). The resilience of coastal wetlands is influenced by 

several environment variables, and for wetlands to persist, ground elevation must be 

gained at a rate that equals or exceeds the rate of RSLR (Rogers et al., 2012). Increasing 

our knowledge of how environmental variables impact ground elevation is crucial for 

modeling the response of coastal wetlands to rising sea levels. However, previous studies 

on the relationship between environmental variables and sediment ground elevation have 

primarily focused either on qualitative analysis (e.g., Krauss et al., 2008) or linear 

modeling techniques (e.g., Rogers et al., 2012). Due to the complicated processes 

involved in sediment elevation in the wetland ecosystem, there is a potential for a 
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machine learning algorithm to analyze the non-linear relationship between ground 

elevation and environmental variables. 

Fusing high vertical accuracy in-situ ground elevation data with a remote sensing 

dataset provides an opportunity for higher spatial coverage to enhance the confidence in 

assessing restoration status in coastal wetlands. With the broader spatial distribution and 

high vertical accuracy of ground elevation measured by RSET, there is a potential for 

better enhancement of LiDAR-derived DEM performance in Louisiana coastal wetlands. 

Meanwhile, instead of LiDAR-derived DEM traditionally corrected at the pixel level, 

Object-based Image Analysis (OBIA) incorporates similar pixels into a homogeneous 

image object, which represents a more ecologically relevant landscape unit. This 

dissertation research is the first application using the fusion of field-based ground 

elevation data derived from RSET techniques to calibrate and supplement LiDAR-

acquired elevation data during DEM generation at an image object level. The restoration 

of coastal wetlands in Louisiana will benefit from the development of a robust 

methodology for mapping and assessing the potential impacts of future RSLR on a 

regional landscape scale.  

1.5 Research objectives 

The main objective of this dissertation research is to develop machine learning 

based models to quantify wetland ground elevation using relevant environmental 

variables and improve LiDAR-derived DEM using RSET-MH data, which will assist 

with wetland conservation, preservation, and restoration in the coastal Louisiana area. To 

achieve this overall goal, this dissertation was divided into three separate projects. The 

specific objectives of the three projects were:  
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1. Develop a time-series sediment surface elevation model to quantify the impact of 

environmental variables on wetland ground elevation dynamics.  

2. Explore a data fusion technique by combining RSET-MH data, LiDAR DEM 

data, and aerial photography to improve LiDAR DEM.  

3. Predict coastal inundation in 2050 due to RSLR using object-based RF corrected 

LiDAR-derived DEM and RSET-MH derived elevation change rate. 
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      Table 1.1 Linear regression and machine learning algorithms. 

Model Description Pros Cons References 

Multiple linear 

regression 

(MLR)  

MLR attempts to model the 

relationship between two or 

more explanatory variables and 

a response variable by fitting a 

linear equation to observed data  

Ability to determine the relative 

influence of one or more 

predictor variables to the criterion 

value and ability to identify 

outliers 

Limited by linear 

relationship and 

requirement of 

normally distributed 

data 

Eberly, 

(2007) 

Random forest 

(RF)  

RF is an ensemble of many 

decision trees that are not 

influenced by each other 

Ability to spot outliers/anomalies; 

discovering data patterns; 

identifying important predictors; 

predicting future outcomes. 

Produces somewhat 

more accurate 

classification 

models than 

regression 

Breiman, 

(2001) 

Support vector 

machines 

(SVM)  

 SVM finds a hyperplane to 

separate the dataset into a 

discrete predefined class 

consistent with the training 

samples  

Balance between accuracy 

obtained from small training data 

and the ability to generalize to 

unseen data and avoid overfitting 

Challenge to choose 

kernel function to 

provide optimal 

SVM configuration  

Mountrakis 

et al., 

(2011) 

Artificial neural 

network (ANN) 

ANN is a parameterized system 

designed to simulate how the 

human brain processes 

information  

Ability to learn and model non-

linear and complex relationships, 

with no restrictions on the input 

variables  

ANN requires large 

training sets and is 

complicated 

Agatonovic-

Kustrin & 

Beresford, 

(2000) 
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CHAPTER 2: MODELING COASTAL WETLAND GROUND ELEVATION USING 

ENVIRONMENTAL VARIABLES  

2.1 Introduction  

Coastal wetlands, including marshes and swamps in Louisiana, occur at the 

interface of land and ocean, and are covered by emergent vegetation and regularly 

flooded. Wetland ecosystems are ecologically crucial components of the coastal 

landscape since they perform many critical ecosystem functions, such as storm surge 

buffering and carbon sequestration, and provide essential habitats for wildlife (Barbier et 

al., 2011). The long-term survival of the wetlands depends on their ability to build 

vertically at rates higher than relative sea-level change or else migrate inland at a rate 

faster than erosion at their seaward boundary (Morris et al., 2002; Kirwan et al., 2016). In 

the vertical dimension, coastal wetlands maintain their elevation by mineral sediment 

deposition from tide or river (Leonard and Luther, 1995) and through organic matter 

accumulation from vegetation (Nyman et al., 2006). With low initial ground elevation 

and a relatively high subsidence rate, the ground elevation is crucial for coastal 

Louisiana.  

2.1.1 Environmental drivers impact the ground elevation 

External forces like sea level, storms, and variations in sediment supply by human 

activities can strongly affect evolution of the coastal wetlands and influence the coupling 

between sediment deposition and organic matter accumulation (Mariotti and Fagherazzi, 

2010). Modest stress from environmental drivers may spur trapping of sediment, plant 
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productivity (Morris et al., 2002), and organic matter accumulation (Fagherazzi et al., 

2012). However, with low initial ground elevation and relatively high subsidence rate in 

the coastal wetlands of Louisiana, the vertical accretion can be partially or entirely offset 

by stress from environmental drivers (Jankowski et al., 2017; Kirwan and Guntenspergen, 

2012). Ground elevation processes operate in response to a range of environmental 

drivers, including sea-level rise (SLR), storms, and the human factor, as shown in Figure 

2.1.  

Coastal wetlands are inextricably linked to sea level because flooding is the 

primary mechanism for sediment delivery to the wetland platform (Fagherazzi et al., 

2012). Tidal flooding promotes the transport of suspended sediments in tidal currents to 

the wetland platform, where they may be deposited. Explicitly, increased tidal frequency 

and inundation duration caused by SLR tends to increase mineral deposition rates (Cadol 

et al., 2014; Cahoon, 1995; Friedrichs and Perry, 2001; Leonard, 1997). Studies have 

found that wetlands that are inundated for long periods of time have a higher mineral 

deposition rate than wetlands that are periodically flooded (e.g., Bricker-Urso et al., 

1989; Cahoon, 1995). Therefore, mineral deposition rates are strongly correlated to SLR 

accompanied by extensive flooding duration and frequency. Additionally, sediment 

accumulation is generally regarded to be inversely proportional to the distance from the 

sediment source, including rivers and coastal lines (Rogers et al., 2015). Studies have 

shown the distance of the site from the nearest source of tidal water or river impacts 

vertical accretion (Chmura and Hung, 2004). At sites closer to the sediment source (main 

channel or shoreline), the higher suspended inorganic sediment can be loaded and 

deposited at especially high rates (Kirwan and Murray, 2007).  
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Similar to SLR, storms have long been recognized as strong geomorphological 

drivers for ground elevation. Large amounts of resuspended sediments deposited by 

storms contribute significantly to vertical accretion (Day et al., 2007). Massive storm 

energy provides the opportunity for sediments from the ocean bed to be raised, 

suspended, and transported across the coastal landscape, then stored as wave energy is 

reduced. Up to 68 g/cm2 of sediment were deposited on Louisiana coastal wetlands 

during Hurricane Katrina (Turner et al., 2006). Although storm surge can bring massive 

mineral and organic matter sediment deposits, colossal storm tides also lead to soil 

volume compaction, erosion, sediment redistribution, and seawater intrusion, resulting in 

overall ground elevation loss (Cahoon, 2006). In particular, Hurricane Katrina and Rita in 

2005 eroded 527 km2 of wetlands within the Louisiana coastal plain (Howes et al., 2010). 

In addition to SLR and storms as environmental drivers, the coastal wetlands in 

Louisiana have been extensively modified by humanmade engineering structures that 

alter the timing and amount of river flow, such as levee banks, floodgates, and canals 

(Day et al., 2007; Rogers et al., 2015). Flood mitigation construction results in declining 

river inputs and insufficient sediment deposition from rivers to the coast (Day et al., 

2000). For example, the sediment load of the Mississippi River has decreased 50% due to 

flood construction (Blum and Robbers, 2009). The success of ground elevation building 

depends on the balance between sediment supply and accommodation by SLR (Blum and 

Robbers). However, the modern sediment supply load is reduced, and sediment storage is 

insufficient for building ground elevation compared when factoring in increasing SLR, 

causing large-scale coastal wetland loss in the Mississippi Delta (Day et al., 2007).  
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Ground elevation change is positively correlated with vegetation biomass due to 

trapping of mineral and organic particles previously suspended in the water column (e.g., 

Nyman et al., 2006; Morris et al., 2002). Vegetation biomass includes vegetation, living 

roots, and rhizomes that exert significant friction on flowing water, attenuating the 

velocity of tidal flow and waves and enhancing the trapping and binding of mineral 

sediment and organic materials, promoting increased ground elevation (Mudd et al., 

2010; Rogers et al., 2015). Laboratory experiments from Palmer et al. (2004) determined 

that sediment particle capture is a function of the density and diameter of the stem, 

sediment diameter, water flow velocity, suspended sediment concentration, and flow 

depth. With sufficient sediment supply, plant rooting activities can consolidate the 

sedimented clays and silts to form a plateau (Fagherazzi et al., 2012). In addition to dense 

vegetation, the canopy enhances sediment deposition; organic matter accounts for more 

than 40% of the total vertical accretion rate in Louisiana (Nyman et al., 2006). Surface 

plant litter and dead vegetation remaining after decomposition contribute to soil volume 

and to building ground elevation in coastal wetlands (Rogers et al., 2015).  

Increased flood frequency and duration from SLR affect the colonization, 

production, and mortality of coastal wetland vegetation when water inundation surpasses 

the plant survival threshold. Coastal vegetation develops in intertidal zones when 

conditions allow for sufficient plant growth. However, water level increases make it 

difficult for new vegetation to establish on the tidal flat (Mariotti et al., 2010). Increased 

flooding frequency causes seedlings to fail to develop sufficient roots for anchoring to 

withstand the drag force from tide waves (Friess et al., 2012). Besides vegetation 

colonization, negative feedback between plant growth and increased flood depth caused 
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by SLR has been analyzed (e.g., Morris et al., 2002). Plants are most productive at an 

optimum elevation with the mean high tide. When wetland ground elevation is lower than 

the optimum elevation, and increased flooding depth during tide leads to a decrease in 

plant productivity, this results in a decrease in building ground elevation. Increased SLR 

leads to the drowning of coastal wetlands vegetation and the marsh may ultimately 

become too deep for plants to survive (Marani et al., 2007a). Eventually, when the sea 

level consistently exceeds the threshold of submergence duration for vegetation survival, 

it will gradually cause plant mortality as well as convert emergent vegetation into 

intertidal mudflats or open water. Large-scale vegetation absence leads to rapid loss of 

ground elevation, thus further precluding the vegetation return and causing wetland edge 

erosion, peat collapse (Fagherazzi et al., 2012; Temmerman et al., 2012). 

As a coastal buffer, wetlands vegetation reduces the height and erosion power of 

severe waves from storm surges propagating inland, which causes sediment erosion and 

reduces ground elevation on the coastal line (Gedan et al., 2011). The storm surge 

brought by Hurricanes Katrina and Rita eroded 527 km2 of wetlands in Louisiana plain 

(Howes et al., 2010). Coastal wetlands experience different types of damage from storm 

surge, including vegetation mortality high tide wrack, salt intrusion, and wetland edges 

erosion (Feagin et al., 2009), as well as the removal of bulk sediments from the 

vegetation mat (Howes et al., 2010). High and low salinity vegetation regimes present 

different erosion rates after storm surge. Impact studies of Hurricanes Katrina and Rita 

found that low salinity wetlands were preferentially eroded, while higher salinity 

wetlands were mainly unchanged (Howes et al., 2010). The extent of these damages 
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affected recovery time and the health of the coastal wetlands and may lead to permanent 

wetland loss (Day et al., 2007).  

In addition to SLR and storm environmental drivers, human activities have 

extensively modified and altered the structure and function of the ecosystem in the 

coastal wetlands of Louisiana. In particular, engineering construction, such as ditches and 

dikes, promote soil drainage to mitigate flooding and inundation for converting wetlands 

into agricultural land (Rogers and Woodroffe, 2015). As a result, sulphate-rich soils in 

coastal wetlands that oxidize as a result of drainage can cause significant soil 

acidification, and acid drainage can impact the health of vegetation. Moreover, altered 

inundation by ditches breaks anaerobic soil conditions and leads to air exposure, which 

causes organic-rich soil to be oxidized and results in significant soil compaction and loss 

of ground elevation (Rogers & Woodroffe, 2015).  

Figure 2.1 A conceptual diagram illustrating how environmental drivers and 

accretion processes influence coastal wetland ground elevation development. 

Adapted from Cahoon et al., 2009. 
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2.1.2 Significance of modeling ground elevation using environmental variables 

Models of ground elevation dynamics have been popularly used for monitoring 

and modeling coastal wetland vulnerability to SLR around the world (e.g. Morris et al., 

2002; Rogers et al., 2012; Stagg et al., 2013; Schile et al., 2014). Morris et al. (2002) 

developed a mechanistic numerical model: the Marsh Equilibrium Model (MEM) 

incorporates physical inputs (initial rate of sea level, sediment concentration, and starting 

marsh elevation) and biotic inputs (height of marshes, aboveground biomass, and 

biomass decay rate) to model ground elevation. In coastal Australia, Rogers et al. (2012) 

generated MLR empirical models of estuary wetland sediment accretion incorporating 

time, elevation, distance to the channel, 6-month average monthly maximum water level, 

and 6-month average monthly rainfall (Rogers et al., 2012). Subsequent efforts by Stagg 

et al. (2013) in coastal Louisiana integrated five years of Rod Surface Elevation Table 

(RSET) data with local relative water-level trends using simple linear regression to create 

a submergence vulnerability index (SVI), which assesses the vulnerability of each 

Coastwide Reference Monitoring System (CRMS) site to submergence. Based on 

projected ground elevation, projected SLR, and frequency of flooding, SVI scores were 

allocated to a site to indicate the vulnerability to submergence (Stagg et al., 2013).  

However, since coastal wetlands are located in intertidal environments, the 

process of quantifying ground elevation is a complicated function resulting from a range 

of continental and regional scale environmental variables (Cahoon, 2006). Additionally, 

the relationship between ground elevation and environmental drivers is often non-linear 

(Jankowski et al., 2017). Simply assuming a linear relationship between dependent 

variables (ground elevation) and independent variables (environmental drivers) in coastal 
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wetlands would result in high uncertainty during SLR vulnerability assessments. 

Moreover, a large-scale quantitative assessment of how environmental drivers impact 

ground elevation in coastal wetlands is needed. Specifically, the same process (e.g., 

sedimentation) impacted by a small-scale environmental driver may be governed by a 

different environmental variable at a large scale (Friess et al., 2012). 

Upstream flood control constructions, including levee and damming construction 

and river damming, have reduced terrestrial sediment input into the coastal zone in 

Louisiana (Coleman et al., 1998). Furthermore, with rising sea levels and subsidence 

causing vertical accretion deficits in coastal wetlands and widespread land loss 

throughout the modern delta region, a comprehensive landscape vulnerability analysis is 

necessary for coastal management and to provide a guideline for coastal wetlands 

scientists (DeLaune et al., 1989; Kesel, 1988). Ground elevation is crucial for coastal 

wetland survival. It is important to use an ecosystem-based model of a large area to study 

the spatial interactions and mechanisms among different environmental drivers that 

impact ground elevation. The data were derived from the public data source from CRMS 

over a decade network monitoring station. Therefore, the magnitude of regional-scale 

data size and density offers unprecedented opportunities for studying present coastal 

wetland ground elevation dynamics along with the spatial patterns and delicate interplay 

between the wetland ecosystem process and RSLR. Thus, a large-scale quantitative 

assessment of how environmental variables impact ground elevation in coastal wetlands 

is needed.  
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2.1.3 Objective  

Few efforts have been made to evaluate the nonlinear relationship between 

environmental drivers and ground elevation. This study aims to provide an approach for 

quantifying ground elevation in coastal wetlands under different environmental drivers. 

This chapter aims to develop a ground elevation dynamic model by considering ground 

elevation data from 2008 to 2018 as functions of environmental variables derived from 

the CRMS monitoring station network in Louisiana. Additionally, this study evaluates 

three machine learning algorithms, including Random Forest (RF), Support Vector 

Machine (SVM), and Artificial Neural Network (ANN), compared to the MLR model in 

order to analyze statistical relationships between observed ground elevation and 

environmental variables, including hydrologic variables, vegetation variables, and site-

specific variables.  

2.2 Study area and data 

2.2.1 Study area 

The study area covers the entire coast of Louisiana, including the Mississippi 

Deltaic Plain to the east and Chenier Plain to the west, and encompasses nine hydrologic 

basins separated largely by current or abandoned distributary channels (Reed, 1995). The 

Mississippi Deltaic Plain was formed by the active deltaic lobe, which is divided into six 

hydrologic basins, including Pontchartrain, Breton Sound, Mississippi Delta, Barataria, 

Terrebonne, and the Atchafalaya basin from east to west. On the other hand, Chenier 

Plain was formed by periods of westward down drift of sediments deposited on a series 

of beach ridges and mudflats and is comprised of the Teche/Vermilion, Mermentau, and 

Calcasieu/Sabine basins. There was an increase in wetland area in the active deltaic 
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lobes, including fresh, intermediate, brackish, saline, and swamp marsh types (Steyer et 

al., 2003). 390 CRMS monitoring station sites were initiated from fixed annual sampling 

design and cover the entire Louisiana coast (Figure 1.1).  

2.2.2 Data  

These study data provided through Louisiana’s CRMS comprise an open-source 

regionally contiguous dataset. At each of the 390 CRMS sites, the same suite of 

ecological variables is collected at intervals specific to each data type, including 

vegetation species composition and percent cover, hourly hydrologic information, surface 

elevation change, and vertical accretion. Site establishment and data collection 

methodology are described in Folse et al. (2018).  

2.2.2.1 Ground elevation measurement 

The ground elevation measured by RSET was implemented within the CRMS in 

2007. The RSET instrument consists of a benchmark rod driven through the soil profile 

to resistance, insertion of a collar for a movable horizontal arm connection, and fiberglass 

pins for measuring ground elevation (Lynch et al., 2015). After installing the RSET mark, 

the height of the pins is measured twice a year. This method has been used to generate 

ground elevation data since 2007 (Folse et al., 2018). RSET pin measurements are 

transformed into vertical NAVD 88 datum using Equation 2.1 (Lynch et al., 2015). 

𝐺𝑟𝑜𝑢𝑛𝑑 𝐸𝑙𝑒𝑣𝑎𝑡𝑖𝑜𝑛 = 𝐴 − 𝑅𝑇𝐶 + 𝐵 + 𝐶 − 𝐷                     Equation 2.1 



 

23 

 

As shown in Figure 2.2, “A” is the elevation of the top of the rod measured by 

real-time kinematics (RTK) using NAVD 88 datum surveyed in the fall of 2014. “RTC” 

is the rod to the collar, which is measured every time a sample is taken. The parameter 

"B" is the height between the horizontal table to the collar. “C” is the observed pin 

height; “D” is the length of the pin. The ground elevation in 2014 was used as the base 

elevation and adjusted with the elevation change from pin height data to generate ground 

elevation from 2008 to 2018.  

Figure 2.2 Diagram displaying steps involved in transferring RSET measurements to 

NAVD 88 datum. Adapted from Lynch et al., 2015. 
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2.2.2.2 Environmental Variables Data  

The various combinations of environmental drivers and processes controlling 

coastal wetland ground elevation. In order for quantifying analysis of environmental 

drivers’ impact on ground elevation, this study incorporates environmental variables to 

indicate and quantify the impact from the significant drivers on ground elevation. 

Environmental drivers were classified into environmental variables, including hydrologic 

variables, vegetation variables, and site-specific variables, such as distance to the main 

water source, for modeling ground elevation. Different environmental variables result in 

differences in sediment supply, primary production, decomposition, and auto-

compaction, causing variations in sediment elevation among coastal wetlands (Cahoon et 

al., 2006). Both hydrologic variable and vegetation variable data were derived from 

CRMS station monitoring data collected from 2008 to 2018 (Folse et al., 2018). Site-

specific variables were generated by measuring the distance between CRMS stations and 

the nearest water source in ArcGIS 10.7 using the State Water Bottoms dataset from the 

State of Louisiana Division of Administration (https://www.doa.la.gov/Pages/osl/GIS-

Data.aspx).  

Surface water temperature, salinity, and water level are considered hydrological 

variables in this study. Hydrographic data were measured concurrently with ground 

elevation since 2008. Surface water temperature, salinity, and water level are the 

indicators which contribute to above-ground biomass, productivity, and organic matter 

accumulation that impact ground elevation (Morris, 2006; Morris et al., 2002). Water 

temperatures were measured in degrees Celsius and salinity was measured in parts per 
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thousand as calculated from specific conductance. Finally, the water levels were 

measured in meters relative to the instrument sensor and converted to the NAVD 88. 

Vegetation variables include canopy cover percentage and average height of 

dominant vegetation in a sample size of 4 m2 (Folse et al., 2018). High vegetation 

variables could positively impact sediment deposition and consolidation to contribute to 

vertical accretion (Cahoon, 2006; McKee et al., 2007; Morris et al., 2002; Nyman et al., 

1993; Perry et al., 2009; Webster and Lemckert, 2002). Generally, vegetation variables 

indicate organic matter production, which would facilitate ground elevation in coastal 

wetlands (Perry and Mendelssohn, 2009). Finally, the site-specific variable contains the 

distance from the main water source for each CRMS monitoring station, generated in 

ArcGIS 10.7 using point to polygon. The distance to the main water source influences the 

suspended sediment loads for deposition.   

2.3 Methodology 

The ground elevation model is based on the statistical relationship between 

observed ground elevation and environmental variables using machine learning 

regression algorithms. The ground elevation measurements of coastal wetlands observed 

biannually from 2008 to 2018 are the response variable, and the hydrological variables, 

vegetation variables, and site-specific variable are potential explanatory variables. The 

entire dataset was split into training data and validation data. Data splitting involves 

partitioning the data into a training dataset used to generate the model and a validation 

dataset held aside and used to evaluate the performance of the model on unseen data. A 

calibration dataset which is 80% of the dataset generated for training for optimizing and 

training the models, and 20 % of data is the validation dataset to evaluate model 
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performance. The training dataset was tested with MLR and three machine learning 

regression algorithms, including RF, SVM, and ANN, using the caret package in the 

open-source statistical software tool RStudio (Kuhn et al., 2016). The performance of 

each model was evaluated based on quantitative measures such as the Mean Absolute 

Error (MAE), Root Mean Squared Error (RMSE), and correlation coefficient (r). The 

primary process includes a split-out validation dataset, evaluates and compares different 

algorithms to choose the best performance model, algorithm tuning to improve accuracy, 

and predictions on the validation dataset. A framework was designed for the ground 

elevation modeling as shown in Figure 2.3. 

Figure 2.3 Framework for evaluating machine learning algorithms (RF, SVM, and 

ANN) compared to MLR for analyzing the statistical relationship between ground 

elevation and environmental variables. 
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2.3.1 Generating ground elevation model and evaluation algorithms 

In the training dataset, the repeated k-fold cross-validation method was applied to 

estimate the accuracy of different machine learning regression algorithms. This study 

applied 10-fold cross-validation with three repeats to estimate the accuracy of different 

machine learning algorithms, which is a common standard configuration for comparing 

models. Each subset is held out while the model is trained on all other subsets, and this 

process is repeated three times until accuracy is determined for each instance in the 

dataset. The final model accuracy is taken as the mean from the number of repetitions. 

In order to generate the most accurate ground elevation model, this study 

evaluated diverse algorithms on the training dataset. Evaluation metrics provided by the 

caret package in the open-source statistical software tool RStudio were used for 

evaluating both the linear and nonlinear algorithms on regression training data. The linear 

algorithms make large assumptions about the form of the function with a higher bias but 

are faster in training the data. On the other hand, machine learning algorithms make 

fewer assumptions about the underlying function and have a higher variance and higher 

flexibility with higher accuracy compared to linear regression. Three machine learning 

algorithms were chosen for their diversity of representation and learning style, which are 

SVM, RF, and ANN. Each model used the same training scheme and contained the 

evaluation metrics for each fold and each repeat for each evaluated algorithm. MAE, 

RMSE, and r were used to evaluate the fitness of predictions to the observation. 

2.3.2 Model validation 

The accuracy of the model prediction on data unseen during training was used as 

an estimate for the accuracy of the finalized model. The 20% validation data were held 
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aside and used for evaluating the capability of the final model to predict ground 

elevation. The association between the model-predicted ground elevation (P) and 

observed ground elevation measured by RSET (O) was evaluated by several correlation, 

difference, and summary measures. The correlation of degree of association between P 

and O was expressed as Pearson’s correlation coefficient (r), equal to 0 for no-fit model 

and 1 for the perfect fit model. Additionally, MAE and RMSE were evaluated as the 

average error of prediction and observation.  

𝑟 =  
∑ (𝑃𝑖−𝑛

𝑖=1 𝑃�̅�)(𝑂𝑖−𝑂𝑖̅̅ ̅)

√∑ ((𝑃𝑖−𝑃�̅�)2𝑛
𝑖=1 √∑ ((𝑂𝑖−𝑂𝑖̅̅ ̅)2𝑛

𝑖=1

                                                 Equation 2.2 

𝑀𝐴𝐸 =  
∑ |𝑃𝑖−𝑂𝑖|𝑛

𝑖=1

𝑛
                                                                     Equation 2.3 

𝑅𝑀𝑆𝐸 =  √
∑ (𝑃𝑖−𝑂𝑖)2𝑛

𝑖=1

𝑛
                                                              Equation 2.4 

2.4 Results  

2.4.1 Model performance 

The training dataset has 730 samples with six predictors, including CRMS 

monitoring station distance to the main water source, average dominant plant height, 

percentage of plant cover, water elevation, water salinity, and water temperature, that 

were subjected to 10-fold cross-validation repeated three times. This study compared the 

estimated accuracy of different machine learning algorithms, including RF, SVM, and 

ANN, compared to MLR. In order to apply the optimal machine learning method to 

predict ground elevation, it was necessary to tune the specific parameters for each 

algorithm in RStudio. The caret package facilitated tuning, to reduce the likelihood of 

overfitting which compare the RMSE, MAE, and r for choosing the tuning parameters.  
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RF has two parameters for optimization, the number of trees set as 2501 and the 

number of variables for each node set as 10. The main parameter to tune for SVM is the 

cost set as 2 and sigma as 0.505, which determine the complexity of the decision 

boundary. Finally, for ANN, the optimal size parameter was 3 with a decay value of 0.2. 

The performances of these models in predicting ground elevation using environmental 

variables are shown in Table 2.1. RF regression achieved the best result with RMSE = 

10.8 cm, MAE = 8.4 cm, and r = 0.74. SVM model produced the next highest accuracy 

with RMSE = 13.8 cm, MAE = 11.4 cm, and r = 0.47. The MLR and ANN produced the 

lowest accuracy with r of 0.43 and 0.44, respectively. Based on these results, the RF 

algorithms were promising for ground elevation dynamic modeling with the highest r and 

lowest RMSE and MAE compared to other modeling algorithms. Therefore, the tuned RF 

model was applied for accuracy assessment on the validation dataset. 

Table 2.1 Model performance for ground elevation explained by environmental variables 

based on 10-fold cross-validation. The best result is in bold type. 

Models RMSE (cm) MAE (cm) r 

MLR 14.3 11.46 0.43 

RF 10.8 8.4 0.74 

SVM  13.8 11.4 0.47 

ANN 14.0 11.1 0.44 

 

2.4.2 Feature importance for ground elevation building  

The overall feature importance explains the impact of environmental variables on 

the ground elevation dynamic model. The RF algorithm every node is a condition of how 
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to split value in a single feature for similar dependent variable is able to end up in the 

same set after the split. In regression, this condition is based on the feature variance. 

Using “feature importance” analysis in RStudio provides how much each environmental 

variable contributes to decreasing the weighted impurity. Figure 2.4 shows the top four 

most important features, which are the distance from site to main water source, salinity, 

dominant vegetation height, and water elevation. The distance from site to main water 

source includes the closest river, lake, or ocean which directly impacts sediment 

deposition. The closer the station to the water source, the higher chance for sediment 

deposit at the area. In addition, water salinity and elevation contribute to above-ground 

biomass and plant productivity. Ground elevation is positively correlated with above-

ground biomass because it traps sediments suspended in water columns. The dominant 

vegetation height represents the health of the coastal wetlands and the ability to reduce 

the velocity of tidal flow and waves for sediment deposition, which promotes ground 

elevation. 

Figure 2.4 The overall feature importance of the environmental variables explaining 

the ground elevation dynamic model. 
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2.5 Discussion  

2.5.1 Machine learning regression for ground elevation modeling 

The results of this study show that the RF algorithm was better than a parametric 

method in ground elevation dynamic modeling. The RF, SVM, and ANN machine 

learning regression algorithms were compared to MLR. The modeling shows a diversity 

of performance primarily caused by differences of the algorithms. RF seeks optimal 

decision trees to group data, while SVM looks for an optimal hyperplane to minimize 

training errors and ANN models data as the structure of neurons and synapses of the 

human brain. The RF model achieved the best result with r = 0.74, RMSE = 10.8 cm, and 

MAE = 8.4 cm. SVM followed with r = 0.47. However, both ANN and MLR showed the 

lowest r. RF provides a promising method for explaining the non-linear statistical 

relationship between environmental variables and ground elevation dynamics.  

Figure 2.4 shows the overall feature importance of the environmental variables for 

building the ground elevation dynamic model. The top four most impactful features on 

ground elevation were distance from site to main water source, salinity, dominant 

vegetation height, and water elevation. The distance from monitoring station to the 

closest water source may have been most important because it impacts the suspended 

sediment loads available for inorganic matter deposit (Roger et al., 2012). Field studies 

have demonstrated that the closer the site to the sediment source, in this case the closest 

water source, the higher chance for sediment deposit and ground elevation building 

(Kirwan and Murray, 2007; Chmura and Hung, 2004;) In addition, both water salinity 

and water elevation impact plant survival and plant productivity. Higher water elevation 

and higher salinity will affect vegetation colonization and if the level continually exceeds 
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the threshold of submergence duration for vegetation survival, it will gradually cause 

plant mortality as well as convert emergent vegetation into intertidal mudflats or open 

water (Eleutherius et al., 2006). Finally, dominant vegetation height is an indicator of 

overall vegetation health in the coastal wetlands, which has a positive impact on ground 

elevation. Plants in coastal wetlands act to slow tidal flows and trap and bind deposited 

inorganic matter from close water sources and organic matter to promote vertical 

accretion (Roger et al., 2015).  

Although Figure 2.1 illustrated how many environmental drivers influence coastal 

wetland ground elevation development, this study did not incorporate SLR, storm, and 

human environmental drivers due to lack of data. A challenge still remains to quantify the 

various effects of these environmental drivers on ground elevation in this complex coastal 

wetland ecosystem. In particular, storms have long been recognized as events that can 

cause significant geomorphological changes to coastal wetlands (Roger et al., 2015). 

During storms, river run off generated by severe precipitation can introduce freshwater 

that reduces salinity and nutrients in coastal wetlands (Day et al., 2007). Hurricanes 

Katrina and Rita were the fourth and fifth most powerful storms to strike the Mississippi 

deltaic plain and deposited 5 to 10 cm of sediment (Turner et al., 2006). On the other 

hand, storms can cause soil volume compaction, erosion, and sediment redistribution, 

which negatively impact ground elevation (Cahoon, 2006). Although there is 

considerable lag in the availability of data to undertake highly sophisticated modeling to 

assess these environmental drivers, future studies may be able to address these limitations 

once data are available.   
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2.5.2 Implication for coastal wetland planning 

This study's objective was to apply machine learning algorithms to quantify the 

non-linear relationships between environmental variables and ground elevation, as the 

study has shown that the most important environmental variable is the distance from the 

monitoring station to the closest water source. The closer monitoring stations to the water 

source, including river, lake, and coastal, the more inorganic sediments could deposit and 

build up ground elevation. However, Louisiana has been extensively modified by 

humanmade constructions that alter the timing and amount of river flow to the coastal 

wetlands (Day et al., 2007). Since 1990, the rate of lost coastal wetlands in coastal 

Louisiana is as high as 100 km2 per year (Day et al., 2007). The main cause of coastal 

wetlands loss was the isolation of the river from Mississippi Deltaic Plain and river 

almost entirely leveed to preventing overbank flooding (Day et al., 2007). Moreover, the 

construction of flood control significantly reduced the sediment supply from both 

suspended and bedload transport to the coastal wetlands (Blum and Roberts, 2009). 

Coastal restoration will be more effective if it takes consideration of freshwater supply 

and sediment into the coastal wetlands. The coastal wetland restoration should work 

cooperatively with better management and restore the Upper Mississippi Rivers, the 

reconnection of wetlands, and flood plains (Hall et al., 2003). Furthermore, with 

accelerated SLR, precipitation patterns, and changes in frequency and intensity of the 

hurricane, the ground elevation dynamics in coastal wetlands are complex and require 

further analysis. 
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2.6 Conclusion 

The primary purpose of this study was to evaluate the statistical relationships 

between environmental drivers and ground elevation in coastal wetlands in Louisiana. 

The comprehensive monitoring data from 2008 to 2018 from CRMS provided more than 

ten years of empirical ground elevation measurements that incorporated all the 

mechanisms that influence ground elevation. This study designed a robust approach that 

evaluated one linear regression, MLR, and three machine learning regression models, 

including RF, SVM, and ANN. Machine learning techniques are effective at generating 

accurate ground elevation models from environment variables. The RF model achieved 

the best accuracy (r = 0.74 and RMSE = 10.8 cm). The outcome of this research provided 

a comprehensive understanding of how environmental variables impact ground elevation 

in coastal wetlands over time. Importantly, by analyzing ten years of statistical 

relationships between environmental variables and ground elevation, this study provided 

a robust method for predicting coastal wetlands restoration status and the response of 

coastal wetlands to SLR in the future. 
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CHAPTER 3: OBJECT-BASED LIDAR DEM CORRECTION USING RSET 

DATASET AND MACHINE LEARNING ALGORITHMS 

3.1 Introduction 

3.1.1 Significance of LiDAR derived DEM in Coastal Louisiana 

Coastal wetland vegetation communities include salt marshes, brackish marshes, 

fresh marshes, and mangroves that exist within a narrow range of ground elevation. 

Additionally, coastal areas are increasingly vulnerable to wetland loss due to the 

combination of global sea-level rise (SLR) and local subsidence in Louisiana (Rybczyk 

and Cahoon, 2002). The ability of tidal wetland plant communities to successfully 

maintain their position is tied with their ground elevation change rate compared to rising 

sea-level rates (Gesch, 2009; Kirwan et al., 2016). Restoration of coastal Louisiana 

wetlands requires high accuracy digital elevation models (DEM) to monitor ground 

elevation and identify local areas vulnerable to rising sea level.   

Airborne Light Detection and Ranging (LiDAR) is an active remote sensing 

technology that uses laser penetration and has been recognized as a standard method for 

generating high spatial resolution DEM (Kulawardhana et al., 2014). The DEM is a 

collection of square pixels where the pixel value is the value of LiDAR last return. 

However, research has demonstrated a decreased ability for the LiDAR laser pulse to 

penetrate through the vegetative layer in coastal wetlands, which are dominated by 

relatively low, dense, and heterogenous halophytic vegetation (Hladik and Alber, 2012). 

Currently, the vertical error of LiDAR systems generally ranges from 0.10 to 0.20 m 
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(Hodgson and Bresnahan, 2004), but the vertical error in LiDAR-derived DEM in high-

density vegetation can be up to 0.31 m (Hladik and Alber, 2012; Montané and Torres, 

2006). These uncertainties can potentially result in misuse of the LiDAR data and 

erroneous conclusions (Schmid et al., 2011). Uncorrected LiDAR-derived DEM cannot 

meet the accuracy requirements to distinguish topographic changes in coastal wetlands at 

the resolution for SLR inundation vulnerability analysis (Hladik and Alber, 2012). 

3.1.2 Current methods for correcting DEM 

Previous modeling techniques to calibrate LiDAR-derived DEM and increase the 

accuracy of estimating topography include: 1) minimum bin gridding method to filter and 

classify LiDAR last return signals in order to reduce bias based on canopy height, 

density, and above-ground biomass coverage (e.g., Medeiros et al., 2015; Schmid et al., 

2011;Wang et al., 2009; Töyrä et al., 2003); 2) subtraction of species-specific bias based 

on vegetation cover maps (e.g., Hladik and Alber, 2012; Hladik et al., 2013; McClure et 

al., 2016); 3) using full-waveform LiDAR data with nonparametric modeling techniques. 

In addition to these modeling techniques, more supplemental datasets have been used to 

calibrate LiDAR-derived DEM, including field-based ground elevation, real-time 

kinematic (RTK) and differential GPS (DGPS).  

Due to high-density vegetation, only 2-3% of LiDAR lasers can penetrate through 

the vegetation canopy to hit the ground, then return and record the true ground elevation 

during LiDAR sensor data collection (Wang et al., 2009). Many algorithms have been 

developed for the separation of ground and nonground laser hits (Streutker and Glenn, 

2006; Zhang and Whitman, 2005). The minimum bin gridding method assumes that 

ground elevation changes are relatively gradual; the lowest LiDAR elevation in a user-
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specified search window is identified as ground elevation and assigns that value to an 

appropriate DEM grid cell (Streutker and Glenn, 2006). The key step in this filtering 

method is to determine the size of the filter search window to remove the laser returns 

that have been reflected by the canopy rather than true ground and ultimately collect laser 

hits on the ground. The ideal size of the window is minimized to ensure a high spatial 

resolution, but is still large enough to contain enough LiDAR laser hits on the ground 

(Wang et al., 2009). Wang et al. (2009) used differential GPS (DGPS) as field ground 

reference elevation to match the ground-reflected LiDAR elevations. Each DGPS is the 

center point with an increasing radius from 0.5 to 6.5 m as a search window, comparing 

the elevation of each DGPS to the surrounding LiDAR points falling within the search 

window. As the radius increases, the probability of ground LiDAR returns increases, but 

the resolution will decrease. Thus, the optimal radius was assumed to be the smallest 

radius to give rise to the best attainable match between DGPS and the lowest LiDAR 

elevation. The overall Root Mean Square Error (RMSE) was computed for each DGPS 

and selected smallest LiDAR values in each radius to determine the ideal radius. The 

application of Wang et al. (2009) determined that a 3.5 m radius for the search window is 

the optimal radius for bare-earth LiDAR data filtering to improve the estimate of ground 

elevation in coastal wetlands.  

Compared to subtracting a global elevation bias from LiDAR-derived DEM, 

subtraction of species-specific bias based on vegetation cover can vastly improve DEM 

accuracy (e.g., Hladik and Alber, 2012; Hladik et al., 2013; McClure et al., 2016). In 

Hladik and Alber’s 2012 study, LiDAR system with higher pulse rate frequencies and 

evaluated accuracy with field-based elevations RTK developed species-specific offsets 
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for ten vegetation cover classes, which cover the entire marsh vertical range. Compared 

with RTK measured ground elevation, the mean vertical errors of uncorrected LiDAR-

derived DEM are from 0.03 to 0.25 for different vegetation covering (Hladik and Alber, 

2012). For each ground control point, LiDAR-derived elevation was derived from 

original LiDAR-derived DEM in grid cells as predicted elevation, and RTK measured 

elevation as true ground elevation. Subtracting the RTK measured ground elevation from 

LiDAR-derived elevation is the mean error for each ground control point. The mean error 

for each vegetation cover class comprised the species-specific correction factors. The 

mean error for each vegetation cover class comprised the species-specific correction 

factors. These correction factors were then applied in the subsequent DEM modification 

and have reduced the overall mean error from 0.10 ± 0.12 m to -0.01 ± 0.09 m and RMSE 

from 0.16 m to 0.1 m (Hladik and Alber, 2012).  

In addition to using RTK field data, more studies incorporate hyperspectral 

imagery in the wetland environment (Schmidt and Skidmore, 2003; Hladik et al., 2013). 

Analyzing the electromagnetic spectrum and plant spectral signatures classify the wetland 

vegetation species as a basis for applying the species-specific correction factors to 

improve LiDAR-derived DEM (Schmidt and Skidmore, 2003). For example, Hladik et al. 

(2013) used hyperspectral data for vegetation cover classification with LiDAR-derived 

DEM, and the modified DEM accuracy has been improved with RMSE decreasing from 

0.15 to 0.1 m. The result suggests that combine hyperspectral image in correcting 

LiDAR-derived DEM could effectively improve the vertical accuracy.  

In the study Rogers et al., 2018, the full-waveform LiDAR applied on the high-

density vegetation. Unlike traditional LiDAR, full-waveform LiDAR equipment records 
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a time series of backscattered energy with a digitizer and high-capacity storage to 

generate denser point clouds (Rogers et al., 2018). By applying full-waveform LiDAR 

feature-based metrics (waveform width and amplitude), vegetation characteristics (slope 

and rugosity), and distance from the shoreline as inputs to examine nonparametric 

modeling algorithms. The modeling methods included Stochastic Gradient Boosting of 

Trees (TreeNet), Multivariate Adaptive Regression Splines (MARS), generalized path 

seeker model, Random Forest (RF), Classification and Regression Tree (CART), and one 

parametric model which was stepwise least squares regression. The corrections were 

performed on a point-by-point basis to reduce systematic errors due to vegetation cover 

and effectively dropped RMSE from 0.33 to 0.07 m (Rogers et al., 2018). Additionally, 

applying nonparametric modeling on a location-specific, point-by-point basis 

successfully eliminated a majority of the vegetation-induced bias in LiDAR-derived 

DEM processes.   

The above studies are important contributions to calibrating LiDAR-derived DEM 

and increasing the accuracy of estimating topography in coastal wetlands. Current 

modeling techniques range from minimum bin gridding, subtracting species-specific 

correction factors, using full-waveform LiDAR data with nonparametric modeling, and 

using vegetation index from multispectral imagery (Buffington et al., 2016; Göpfert et al. 

2006; Hladik and Alber,2012; Hladik et al., 2013; Medeiros et al.,2015; Montané and 

Torres, 2006; Populus et al., 2001; Rogers et al., 2016; Rosso et al., 2006; Schmid et al., 

2011; Wang et al., 2009) (Table 3.1). However, some knowledge gaps still remain. 

Previous attempts to apply the minimum bin gridding method to extract lowest LiDAR 

elevation in an optimal search window were hindered by the dearth of true ground returns 
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from low ground vegetation and potential inaccuracies introduced by uncertainties during 

separating LiDAR ground and vegetation returns (Rogers et al., 2018). On the other hand, 

subtraction of species-specific correction factors based on vegetation cover would apply 

the appropriate amount of correction to improve DEM accuracy (e.g., Hladik and Alber, 

2012; Hladik et al., 2013; McClure et al., 2016). Unfortunately, the requirement of 

species distribution data from hyperspectral imagery or fieldwork vegetation surveys is 

typically unavailable or expensive to achieve (Rogers et al., 2018). Additionally, LiDAR 

uncertainty in wetlands environments is influenced by vegetation height, stem density, 

and biomass; a constant species correction factor could not meet the continuous 

distribution of elevation uncertainty (Rogers et al., 2016).  

Recently, using advanced full-waveform LiDAR features and vegetation 

characteristics as inputs to examine nonparametric modeling algorithms and correcting 

LiDAR data point-by-point effectively reduced the systematic errors due to vegetation 

cover. However, a broad collection of full-waveform LiDAR is still relatively rare and 

requires extensive processing skills (Buffington et al., 2016). This method also often fails 

to produce the desired level of elevation correction for SLR required accuracy (Rogers et 

al., 2018). More research is needed to improve LiDAR-derived DEM. Despite these 

needs, it is clear that data fusion with hyperspectral or multispectral imagery and field 

ground elevation reference through nonparametric modeling algorithms can greatly 

improve the accuracy of LiDAR-derived DEM in coastal wetlands. 
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        Table 3.1 Prior attempts in developing correction techniques for LiDAR-derived DEM. 

  

 

Method  Description Limitation Reference 

Minimum bin 

gridding methods  

Select the lowest LiDAR 

elevation in an optimal search 

window 

Hindered by the dearth of true ground 

returns from low, sense vegetations  

e.g., Medeiros et al., 

2015; Schmid et al. 

2011; Wang et al., 2009 

Subtraction of 

species-specific 

bias based on 

vegetation cover 

maps 

Apply the correction based on 

specific vegetation species 

Data unavailable & constant species 

correction factor could not meet the 

continuous distribution of elevation 

uncertainty  

e.g., Hladik and Alber, 

2012; Hladik et al., 

2013; McClure et al., 

2016 

Full-waveform 

LiDAR with 

nonparametric 

algorithms  

Full-waveform LiDAR features 

and vegetation characteristics as 

inputs to exam nonparametric 

modeling algorithms, and correct 

LiDAR data point-by-point  

Broad collection of full-waveform 

LiDAR is still relatively rare 
e.g., Rogers et al., 2018 
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3.1.3 Significance 

Traditionally, improving LiDAR-derived elevation models commonly used RTK 

field technology to enhance the integrity of LiDAR products and increase the accuracy of 

DEM in wetland environments (e.g., Hladik and Alber, 2012; McClure et al., 2016; 

Montané and Torres, 2006). RTK is a field-based ground elevation method capable of 

delivering vertical accuracy of approximately 0.02 to 0.12 m, and combining RTK and 

LiDAR data reduced the DEM mean error from 0.16 to 0.04 m (e.g., McClure et al., 

2016). However, the RTK method is limited by small local spatial distribution and 

expensive labor cost, which hinders the comparability of RTK corrected LiDAR data 

across a regional space (McClure et al., 2016). Additionally, annual rates of SLR and 

wetland ground elevation change operate on a millimeter scale; using RTK corrected 

LiDAR data will not meet the accuracy requirement for SLR vulnerability assessment. 

On the other hand, ground elevation data measured by the open-source Rod Surface 

Elevation Table - Mark Horizon (RSET-MH) method is collected along the entire coastal 

wetlands of Louisiana by the Coastwide Reference Monitoring System (CRMS). RSET 

technology has an accuracy of 0.13 mm for measuring sediment surface elevation in 

wetland environments, which is around 100 times more accurate than the current RTK 

system (Cahoon et al., 2002b). With the broader spatial distribution of CRMS monitoring 

stations and high vertical accuracy, it is expected that using RSET measured ground 

elevation data to correct LiDAR-derived DEM will perform better than RTK in reducing 

the vertical error of DEM in coastal wetlands. 

Researchers often correct LiDAR-derived DEM on the pixel level and extract the 

pixel-based independent variables for generating correction factors (e.g., Hladik et al., 
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2013; Hladik and Alber, 2012; McClure et al., 2016). Instead of improving DEM 

accuracy on individual pixels, it would be more efficient and robust to analyze an object, 

which is a configuration of many pixels that have similar characteristics, using Object-

based Image Analysis (OBIA) (Dronova, 2015). OBIA techniques are widely used in 

image classification to reduce misclassification in habitats with high spatial 

heterogeneity, like coastal wetlands (Blaschke, 2010). However, the application of 

improving DEM vertical accuracy at the object level is sparse. OBIA incorporates the 

similar spectral and spatial characteristics pixels and provides the opportunity to match 

the field ground elevation into a relatively homogeneous image object. It is necessary to 

apply the OBIA technique to improve DEM accuracy and potentially reduce the 

uncertainty of positional discrepancy between LiDAR measures and field ground 

elevation data. Finally, few efforts have been made to apply contemporary modeling 

techniques to correct LiDAR ground data for DEM improvement. Contemporary machine 

learning regression techniques, such as Random Forest (RF), Support Vector Machine 

(SVM), and Artificial Neural Network (ANN), have proven effective for modeling non-

parametric data in a variety of applications. It would be necessary to explore nonlinear 

relationships between LiDAR data and field-measured ground elevation data for 

improving DEM vertical accuracy.  

3.1.4 Objective 

Coastal Louisiana restoration efforts require accurate DEM to monitor and 

simulate SLR impact on ground elevation. There is a potential to apply ground elevation 

measured by RSET method and LiDAR data in an object-based area to reduce errors in 

LiDAR-derived DEM. In this study, the CRMS monitoring station with RSET measured 
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ground elevation (127 stations) was spatially matched to each image object. It is expected 

that matching image objects with the CRMS monitoring station with RSET measured 

ground elevation is more representative of a vegetation community than matching 

individual grid. This study aims to develop a machine learning approach to correct 

LiDAR ground point data object-based for DEM products in the Chenier Plain of coastal 

Louisiana using RSET field survey data. Additionally, this project aimed to evaluate the 

increased capability of a data fusion approach using LiDAR data, aerial photography, 

field ground elevation data, and machine learning algorithms to increase DEM's vertical 

accuracy in Coastal Louisiana.  

3.2 Study area and data 

This study, located along the Chenier Plain of southwestern coastal Louisiana, 

covered approximately 2942 square miles and included the Holocene Strand plain 

composed of wooded beach ridges and intervening mudflat grassy wetlands (Owen, 

2008). The Chenier Plain contains fresh marsh, intermediate marsh, brackish marsh, and 

salt marsh. The Calcasieu/Sabine, Mermentau, and Teche/Vermilion basins formed the 

Chenier Plain. The Chenier Plain began forming about 3,500 years ago when the 

Mississippi River established a westerly course, bringing large quantities of riverine 

sediments and depositions that resulted in the growth of the shoreline. Figure 3.1 shows 

LiDAR, National Agriculture Imagery Program (NAIP) 4-band Imagery, and CRMS 

monitoring stations distributed across the Chenier Plain. The model application area is 

around two square miles and located at the Teche/Vermilion basin with the majority of 

intermediate marshes. 



 

45 

 

Ground elevation measurements were carried out by the RSET method and 

overseen by the United States Geological Survey (USGS) and Coastal Protection and 

Restoration Authority (CPRA) (Folse et al., 2018). All survey data are vertically 

referenced to North American Vertical Datum of 1988 (NAVD 88) using Geoid 12 B. A 

total of 127 CRMS monitoring stations in Chenier Plain, Louisiana were used in data 

fusion object-based LiDAR point correction modeling. Remote sensing derived data 

sources used in this study include LiDAR and aerial imagery data. Topographic LiDAR 

data were collected by Aerial Services, Inc (ASI) and Woolpert in 2017 for assessing 

current elevation base conditions and providing a solid data platform for monitoring 

future episodic events. The National Oceanic and Atmospheric Administration (NOAA) 

LA Chenier Plain LiDAR 2017 B16 project provided the nominal pulse spacing of 0.7 m. 

The data developed were based on a horizontal projection of NAD 83, Universal 

Transverse Mercator (UTM) Zone 15N in meter, and vertical datum of NAVD 88. In 

order to meet ASPRS vertical accuracy guidelines, Woolpert established a total of 68 

ground control points for calibrating the vertical LiDAR accuracy. The horizontal 

positional accuracy meets 0.355 meters, and non-vegetated vertical accuracy is 0.122 

meters. On the other hand, the imagery data used in this dissertation were from NAIP, 

which is administered by USDA FSA for agricultural production monitoring. NAIP 

acquire and provide ortho imagery that has been collected during the agricultural growing 

season in the U.S. The imagery was collected using a Leica ADS-100 digital sensor and 

cameras, which are calibrated radiometrically and geometrically by the manufacturer and 

are all certified by the USGS. NAIP quarter quads are formatted to the UTM coordinate 
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system using the North American Datum of 1983 with five-meter resolution. NAIP 

imagery are 32-bit pixels with 4 band color including red, green, blue, and near infrared.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.3 Methodology  

Figure 3.2 shows the framework for object-based LiDAR derived DEM correction 

using ground elevation measured by RSET and machine learning in coastal Louisiana 

conducting object-based LiDAR correction and generating DEM. First, the ground 

elevation data derived from CRMS stations were spatially matched with aerial 

Figure 3.1 Index tiles of LiDAR and NAIP 4-band imagery with CRMS monitoring 

station distribution and model application area in Chenier Plain, Louisiana. 
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photography for image object generation by multi-resolution segmentation algorithm. 

The LiDAR ground point data then were spatially and temporally matched with the 

image objects. The matched samples, including field RSET ground elevation and LiDAR 

features that fall into the objects, were extracted to generate object-based data metrics and 

were randomly separated into training data for model calibration and testing data for 

model verification. RF, SVM, ANN, and Multiple Linear Regression (MLR) were 

applied to develop models using training data. Model performances were assessed with 

correlation coefficient (r), Mean Absolute Error (MAE), and RMSE. Finally, the most 

accurate model was applied to the study area to generate object-based DEM. Major steps 

in the study design included generating image objects from aerial photography data, 

assigning each image object its respective LiDAR statistics, matching CRMS monitoring 

station data with LiDAR features, LiDAR point data correction modeling, evaluating 

model performance, and application of model. These major steps are described in full 

detail in the following subsections.  
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Figure 3.2 Framework for generating object-based LiDAR correction model, accuracy assessment, and application for 

generating object-based corrected DEM. 
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3.3.1 Object-based image analysis  

CRMS monitoring stations were spatially matched with arial images for the 

generation of image objects around the station point. The object-based image analysis 

approach delineates segments of the homogeneous image area around the monitoring 

stations. The multi-resolution segmentation algorithm in eCognition Developer 9.3 

(Trimber, 2017) is a region-merging technique starting with one pixel then merging 

neighboring pixels into objects until the heterogeneity threshold is reached (Benz et al., 

2004). Throughout this pairwise clustering process, the scale, image layer weights, and 

composition of homogeneity criteria are the user-defined parameters determining the 

heterogeneity threshold (Benz et al., 2004). Among the parameters, the scale determines 

the maximum possible change of heterogeneity caused by fusing several objects. Thus, 

small scale value generates smaller homogeneous objects, and higher scale value 

produces larger heterogeneous objects. The optimal object is small enough for highly 

detailed object-based DEM generation, but large enough for adequate LiDAR ground 

points for statistical descriptions. Thus, for the optimal object scale, this study tested six 

segmentation scales, including 5, 10, 15, 20, 30, and 50. The image layer weights set all 

four layers (red, green, blue, and near-infrared) to 1,1,1,1 so that spectral information was 

weighted equally. Meanwhile, the parameter composition of the homogeneity criterion 

includes the shape parameter set as 0.1 and the compactness parameter set to 0.5. The 

final generated image objects for each monitoring station were then extracted as 

shapefiles for further matching with LiDAR ground points and tested as the possible 

independent variable for the object-based elevation models.  
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3.3.2 Matching LiDAR ground point data with image objects 

Ground elevation data from 127 CRMS monitoring stations were spatially 

matched with image object polygons generated from OBIA. The “LAS Point Statistic by 

Area” tool in ArcGIS version 10.7.1 by Esri (www.esri.com) was used for evaluating the 

statistics of LiDAR ground points that fall into the image object polygon. The LiDAR 

ground point value (Z) statistical metrics, including the lowest Z value, the average Z 

value, the highest Z value, and the total of LiDAR ground points fall into the image 

object and the SD of Z value. Additionally, LiDAR point density was calculated as the 

number of LiDAR points divided by the image object area. All LiDAR statistical 

information was used as independent variables for ground elevation modeling and 

mapping. Meanwhile, the 2017 RSET ground elevations from CRMS monitoring stations 

were used as dependent variables. 

3.3.3 Object-based LiDAR point data correction modeling  

The 127 matched samples with ground elevation data and LiDAR statistic metrics 

in image objects were split into two datasets: 80% of the data as a training dataset for 

optimizing and training the models, and 20% of the data as the validation dataset to test 

the model performance. The ground elevations in 2017 generated from RSET 

measurements were the response variable. Monitoring station longitude and latitude, 

LiDAR point statistic metrics (including minimum, mean, maximum), LiDAR point 

density fall in the object, and image object area (square meters) were the potential 

explanatory variables. For the training dataset, three nonparametric machine learning 

algorithms RF, SVM, and ANN and one parametric algorithm MLR were tested using 

WEKA version 3.8 (Hall et al., 2009).   
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3.3.4 Evaluation of model performance and application 

To choose the optimal models, the test data were used to produce a quantitative 

assessment of the final corrected LiDAR point in an image area to compare between 

models. The association between each corrected ground elevation (P) value and observed 

ground elevation measured by RSET (O) was evaluated using several correlation, 

difference, and summary measures. The correlation of the degree of association between 

P and O was expressed as Pearson’s coefficient of correlation (r) and the proportion of 

the variance explained by P was described as the coefficient of determination (R2). 

Additionally, two types of difference measures were calculated, which include the 

average error MAE and RMSE. Finally, the ideal modeling algorithm was applied in the 

application area. The statistical metrics of LiDAR ground point distribution in the OBIA 

object area were loaded into the WEKA supplement data for predicting ground elevation 

for each object. Then, each object polygon with predicted ground elevation was loaded 

into ArcGIS 10.6 and the “polygon to raster” feature was applied in order to generate a 

corrected object-based DEM.  

3.4 Results  

3.4.1 LiDAR point data at object level with multiple scales 

In order to identify any patterns in the difference between the minimal LiDAR 

ground returns and observed ground elevation measured by RSET, this study applied 

OBIA to correct LiDAR at the object level. The object-based approach provides an 

opportunity for spatial features within the 4-band imagery to reduce the positional 

discrepancy between the image and RSET measurements, since the image object 

generated by OBIA represents a vegetation patch better than a single grid (Cooper et al., 
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2019). Applying the OBIA method to correct LiDAR derived DEM reduced local noise 

in the heterogeneous wetland environments, and the threshold is determined by a user-

defined scale parameter (Dronova, 2015). Figure 3.3a shows an example of CRMS 

monitoring station 685 in different scales (5, 10, 15, 20, 30, and 50) of image objects. A 

smaller-scale value produces smaller homogeneous patches of image pixels, while a 

larger-scale parameter generates larger heterogenous patches. Figure 3.3b shows an 

example of CRMS monitoring station 685 LiDAR ground point distribution in each 

object with different scales of image objects. 

To help identify any patterns in the differences between the minimal LiDAR 

ground returns and ground elevations measured by the RSET method, choosing the 

optimal scale parameter for the heterogeneous threshold is necessary. The ideal size of 

the object has minimized size to ensure a high spatial resolution, while still being large 

enough to contain enough LiDAR laser hits on the ground (Wang et al., 2009). The 

average number of LiDAR ground points in 127 monitoring stations with scales 5, 10, 15, 

20, 30, and 50 was 40, 170, 344, 602, 1461, and 4638, respectively, as shown in Table 

3.2. With a larger image object, more LiDAR ground points fall into the area while SD is 

reduced. The average bias between the minimal value of LiDAR ground point and ground 

elevation measured by RSET in scale 5 objects was the highest at 0.15 m, and bias in 

scale 50 objects was the lowest at -0.055. Additionally, scales 5, 10, and 50 had relatively 

higher RMSE and MAE compared with scales 20 and 30. Finally, the difference 

measures (MAE, RMSE, and bias) help to determine better object-based scale. Scale 30 

datasets are preferred and have the relative lowest difference compared with the ground 

elevation measured by RSET. Thus, the scale 30 image object was used for evaluating the 
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machine learning algorithm in the object-based LiDAR correction model and final 

application for DEM generation. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.3 Example of CRMS monitoring station 685 in image objects with 

different image segmentation scales, (a); LiDAR ground point distribution in image 

objects with different image segmentation scale (b). 
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Table 3.2 Summary of ground LiDAR points and observed ground elevation measured by RSET in target objects. The table lists the 

average number of LiDAR ground points in each object with different segmentation scales (5, 15, 20, 30, and 50). n = average number 

of LiDAR points that fall into the image object, min = minimum, max = maximum, SD = standard deviation, bias = difference 

between the minimal LiDAR ground elevation and observed ground elevation measured by RSET, RMSE = the root mean square 

error between minimum LiDAR ground elevation and observed ground elevation by RSET, MAE = mean absolute error between 

minimal LiDAR ground elevation and observed ground elevation measured by RSET. The units are in meters except for n. 

Ground elevation by RSET 
  

LiDAR elevation in image object 
  Difference of LiDAR 

minimal elevation with 

ground elevation     

Total 

Point 
min  max mean    n min max mean SD  Bias RMSE MAE 

127 -0.12 0.58 0.2 

 Scale 5 40  -0.05 0.88 0.36 0.15  0.15 0.21 0.17 

 Scale 10 170 -0.24 0.65 0.29 0.15  0.09 0.19 0.15 

 Scale 15 344 -0.28 0.65 0.27 0.16  0.06 0.18 0.14 

 Scale 20 602 -0.28 0.65 0.24 0.17  0.03 0.19 0.14 

 Scale 30 1461 -0.29 0.65 0.2 0.17  -0.01 0.19 0.13 

  Scale 50 4386 -0.39 0.65 0.15 0.18   -0.06 0.22 0.15 
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3.4.2 Model performance for object-based DEM correction 

All of the machine learning algorithms, including RF, SVM, and ANN, and MLR 

were implemented and tuned in WEKA, a machine learning modeling software package 

(Hall et al., 2009). The machine learning algorithm model predictions and ground 

elevation measured by RSET (observations) in scale 30 image objects are displayed in 

Table 3.3. RF achieved the best result with r = 0.83, which was followed by SVM with r 

= 0.74. The MLR and ANN produced the worst results with 0.57 and 0.45, respectively. 

Based on the experimental results in Table 3.3, the object-based RF machine learning 

algorithm was promising for ground elevation modeling with the lowest RMSE = 0.08 m 

and lowest MAE = 0.07 m. To further evaluate the three machine learning algorithms and 

MLR, the scatter plots of the ground elevation measured by RSET and RF, SVM, ANN, 

and MLR estimations are displayed in Figure 3.4. RF achieved the highest R2 = 0.69 for 

the ground elevation estimation. Thus, for correcting LiDAR ground points for 

generating DEM, the RF algorithm was selected because it shows a significantly better 

prediction than other model methods. From the model results and statistical analysis, it 

was found that predictions from RF were ideal for correcting LiDAR ground points and 

DEM generated in the application area.  

Table 3.3 Model performance for object-based LiDAR correction. The best result is in 

bold. 

Models MAE (m) RMSE (m) r R2 

RF 0.07 0.08 0.83 0.69 

SVM 0.08 0.10 0.74 0.55 

ANN 0.15 0.2 0.45 0.21 

MLR 0.11 0.12 0.57 0.33 
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3.4.3 Application of object-based RF correction for final DEM generation 

These findings confirmed that object-based RF correction successfully increased 

vertical accuracy for LiDAR-derived DEM in coastal wetlands. The final DEM maps 

were derived from LiDAR ground point data in the modeling application area by 

applying a grid-based minimum binning method and applying the most accurate and 

precise models to the object-based RF corrected modeling. The DEM maps derived from 

the grid-based minimum binning interpolation method assume the minimum LiDAR 

Figure 3.4 Scatterplots of ground elevation measured by RSET versus MLR (a) and the 

machine learning algorithm predictions including RF (b), SVM (c), and ANN (d). The 

perfect prediction line is the same prediction as the observation plotted as b=1.0. 

 



 

57 

 

point value in the cell as the ground value (Figure 3.5a). On the other hand, the object-

based RF corrected DEM was generated from the LiDAR ground points dataset and 

aerial imagery. First, the image of the modeling application area was segmented into 

image objects with scale 30. The LiDAR ground points data were spatially matched with 

each image object and statistical information was extracted for RF correction modeling. 

By applying the optimal RF corrected model in WEKA, the corrected ground elevation in 

each object was generated for the final DEM (Figure 3.5b). In Figure 3.5, the red 

represents higher elevation above NAVD 88, and blue represents lower elevation below 

NAVD 88. Generally, the correction was successful in reducing the overestimation of 

terrain elevation throughout the test area and produced results with a higher accuracy 

DEM. As shown in Figure 3.5, the object-based RF corrected was able to reduce RMSE 

from 0.355 m to 0.08m while maintaining the general topographic pattern of the 

application area.  

Figure 3.5 Original DEM generated by using minimum bin on a grid-based level (a); 

corrected DEM by applying RF correction model on an object-based level (b). 
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3.5 Discussion 

3.5.1 Applying machine learning regression for LiDAR correcting  

The recent studies from Roger et al. (2018) and Copper et al. (2018) have 

demonstrated that nonparametric machine learning algorithms have immense potential in 

LiDAR-derived DEM correction. In this chapter, RF, SVM, and ANN were evaluated 

and compared with MLR to increase LiDAR-derived DEM vertical accuracy in the 

Coastal of Louisiana. The RF machine learning algorithm generated encouraging results 

in predicting the ground elevation area in objects using LiDAR ground point statistical 

metrics, with r = 0.83 with RMSE was reduced from 0.355 m to 0.08m. Although the 

location of the study area is not the same, these results are comparable with the study by 

Copper et al. (2018) and Roger et al. (2018) study where RF is the optimal model for 

correcting LiDAR-derived DEM with RMSE = 0.10 m and RMSE = 0.11cm, 

respectively. Based on this study and the study by Copper et al. (2018) and Roger et al. 

(2018), the RF modeling algorithm is robust for correcting LiDAR-derived DEM. This is 

likely due to the nature of the RF modeling algorithm in which ensembles of randomly 

trained decision trees tend to produce higher accuracy on previously unseen data 

(Criminisi et al., 2011). The decision trees are all randomly chosen and randomly 

different from others, which leads to decorrelation between the individual decision tree 

prediction results in improved generalization and robustness (Criminisi et al., 2011). 

The SVM produced an acceptable degree of association between the predicted 

and observed ground elevation where the r = 0.74. The SVM tends to find the optimal 

hyperplane to separate classes based on training samples (Huang et al., 2002). The 

hyperplanes can be linear or apply kernel functions for addressing the inseparability 
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problem to optimize the nonlinear correlation (Mountrakis et al., 2011). Besides choosing 

the kernel function, the cost is the main parameter to tune for SVM, which determining 

the hyperplane's complexity. On the other hand, the ANN model produced with the 

lowest coefficient of correlation (r = 0.45). Even though the ANN modeling algorithm is 

based on neuron networks and organized into layers, the relative weight connecting 

adjacent layers is a challenge to train the data (Maxwell et al., 2018). Generally, the 

nonparametric machine learning algorithms are powerful in correcting LiDAR-derived 

DEM. The object-based RF model achieved the best results with the r = 0.83, which is 

essential for applying in future DEM generation and monitor coastal restoration and SLR 

analysis.  

3.5.2 Applying object-based modeling for correcting LiDAR-derived DEM  

Past research in correcting LiDAR-derived DEM focused on pixel-based analysis. 

Pixels are an arbitrary unit of analysis of image classification as it may contain mixed 

signals from surrounding areas (Jensen, 2015). OBIA on the other hand considers the 

spectral and spatial characteristics of the surrounding pixels by collecting similar pixels 

into an image object. In this study, object-based LiDAR points corrected for predicting 

ground elevations provide an attractive alternative to the commonly used pixel-based 

LiDAR point correction. Unlike the pixel-based DEM correction, OBIA based on 

spectral value, shape texture, and context information, including spatial autocorrelation, 

has none of the salt-and-pepper phenomena and are well developed for image 

classification and regression (Blaschke, 2010; Maxwell et al., 2018).  

Additionally, the object-based approach provides the opportunity to match the 

CRMS monitoring station to an image object. The OBIA represent more ecologically 
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relevant spectral information in object and reduce the positional discrepancy. The scale 

parameter is recognized as one of the most significant variables for OBIA since it 

determines the relative size of the image object (Drăguţ et al., 2014). The ideal image 

object should match an image object that can well represent the plant structure and 

ground condition in the plot. Using a smaller value of the scale parameter will generate a 

more homogenous object than a higher scale value. However, it might result in the same 

problem as pixel-based modeling. On the other hand, using a higher scale parameter 

could cause fewer homogeneous objects and fail to present the ground condition. 

Choosing the appropriate image object scale parameter is a challenge. In this study, 

different image segmentation scale parameters, including 5, 10, 15, 20, 30, and 50, were 

tested. The optimal image object scale is that in which LiDAR ground points are closest 

to the ground elevation measured by RSET with the lowest MAE and RMSE. Applying 

LiDAR ground points that fell in the image object to modeling and predicting the ground 

elevation has a higher probability of generating higher accuracy DEM. 

3.6 Conclusion 

The primary aim of this study was to develop an object-based approach for 

modeling and correcting LiDAR point data for an improved DEM product in a wetland 

environment by combining OBIA and machine learning algorithms. Testing results 

suggested this approach was promising for generating high vertical accuracy of DEM 

compared with the minimal bias and pixel-level modeling techniques. This study draws 

the following conclusions: 1) Nonparametric machine learning modeling techniques are 

powerful for ground elevation estimation. This study evaluated three machine learning 

regression algorithms, including RF, SVM, and ANN, compared to MLR. The results 
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show that the RF model achieved the best result with r = 0.83 for ground elevation 

estimation and was used for the application area. 2) The object-based machine learning 

model correcting LiDAR generated DEM has the potential to assist other researchers. 

With the high vertical accuracy of 0.08 m and horizontal accuracy of 0.355 m, this model 

provides the baseline to monitor restoration efforts under the challenge of SLR.   
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CHAPTER 4: RELATIVE SEA-LEVEL RISE INUNDATAION ANALYSIS USING 

CORRECTED LIDAR DEM AND RSET-MH DATASETS  

4.1 Introduction 

4.1.1 Relative sea-level rise impacts wetlands in coastal Louisiana 

Coastal wetlands are facing the imminent loss of land and ecosystem services due 

to detrimental environmental stress from global sea-level rise (GSLR) (Kirwan et al., 

2016). With thermal expansion and ice melt, sea levels are expected to accelerate 

significantly over the next century (Nicholls and Cazenave, 2010; Rahmstorf, 2010). 

Land changes and high sea-level rise (SLR) rates are exposing the lowland coastal zone 

to more frequent and longer lasting saltwater submerges, rapidly eroding the shoreline, 

and magnifying the adverse effects of storms (Kirwan and Megonigal, 2013). 

Moreover, due to geographic variation in glacial isostatic adjustment and non-

uniform changes in ocean thermal expansion and land subsidence, regional trends in sea-

level are not equal to GSLR (Nicholls and Cazenave, 2010). GSLR presents only one 

component to consider when anticipating future SLR. The SLR rate prediction in the 

specific coastal zone is a combination of GSLR and local processes, including natural 

astronomical, oceanic, and atmospheric cycles, glacial isostatic adjustment, subsidence, 

accretion, and erosion from shorelines (Jankowski et al., 2017). This is especially true in 

coastal Louisiana with the highest subsidence rate, which includes shallow and deep 

subsidence. At least 60% of the total subsidence rate is shallow subsidence that occurs 
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within the uppermost five to ten meters (Jankowski et al., 2017). Shallow subsidence is 

primarily controlled by shallow sediment compaction when new materials are either 

deposited or organic matter is compacted onto the less consolidated marsh ground, 

causing reduced thickness and ground elevation in a relatively short time (Cahoon et al., 

1995). Deep subsidence happens below 20 m underground in the compressible Holocene 

sediments and above the Pleistocene surface where rates are comparatively stable 

(Jankowski et al., 2017).  

Importantly, coastal Louisiana, with a low initial elevation, has lost about 5,000 

km2 of land area from 1932 to 2016 (Couvillion et al., 2016), and remaining wetlands 

need to compete with the highest rate of relative sea-level rise (RSLR) in the world 

(Jankowski et al., 2017). The extent of this threat to coastal Louisiana is poorly 

understood due to the lack of geographically comprehensive impact assessments. 

Generating high horizontal and vertical accuracy Digital Elevation Models (DEM) of 

coastal Louisiana for RSLR inundation mapping is crucial.   

4.1.2 Existing models for assessing coastal wetlands vulnerability to SLR  

Numerous modeling approaches have addressed the vulnerability of coastal 

wetlands under SLR impacts (e.g., Fagherazzi et at., 2006; Marani et al., 2007; Mariotti 

and Fagherazzi, et al., 2010). The most basic landscape models assess coastal wetlands 

vulnerability by applying projected SLR onto a static topographic representation of the 

coast, like filling water in a bathtub (Moeslund et al., 2011). The land area below the 

water level indicates the low-lying area, which is inevitably drowning over time (Gesch, 

2009). A critical shortcoming of these bathtub style models is that they do not simulate 

the dynamic ecogeomorphic feedbacks that allow the coastal wetlands to adapt to SLR by 
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accelerating rates of ground elevation change. This shortcoming results in assuming that 

the landscape remains constant over time (Rogers et al., 2012). A more advanced model 

is the Sea Level Affecting Marshes Model (SLAMM), which assumes a topographic 

landscape that evolves at a constant rate of ground elevation change resulting from site-

specific historical accretion rates. In particular, SLAMM has been widely used by the US 

Fish and Wildlife Service to identify SLR threats and improve land management and land 

acquisition decision making. 

That coastal wetlands are vulnerable to the imminent loss of ecosystem services is 

a feared consequence of faster SLR rates. Current Airborne Light Detection and Ranging 

(LiDAR) derived DEM and analyses based on ground accretion may overestimate the 

resilience of coastal wetlands to SLR, since uncorrected LiDAR-derived DEM normally 

overestimate ground elevation (Want et al., 2009). Additionally, due to the high rate of 

subsidence in coastal Louisiana, an accurate estimate of the current rate of subsidence 

would be necessary to provide a context for the planning of wetland restoration and 

predictions of RSLR flooding. Until recent models, numerical models of wetlands SLR 

generally featured a static topography that does not typically incorporate the ground 

elevation change that allows wetlands to adapt to SLR (Rogers et al., 2012; Schile et al., 

2014; Stralberg et al., 2011; Swanson et al., 2014). Meanwhile, the bathtub style model 

was developed without making the site-specific predictions that are necessary to inform 

management decisions. It is necessary to build an effective site-specific historical rate of 

ground elevation change to predict coastal wetlands change more accurately. 
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4.1.3 Objective  

The main objective of this study was to provide a high vertical accuracy relative 

sea-level inundation map using machine learning corrected object-based DEM as the base 

map, a site-specific RSLR water model, and a ground elevation model. The specific 

objectives of this study were: 1) To apply the object-based algorithm to LiDAR-derived 

DEM for generating high vertical accuracy DEM in 2017. To achieve this objective, the 

2017 LiDAR ground points, National Agriculture Imagery Program (NAIP) aerial 

imagery, and ground elevation measured by Rod Surface Elevation Table-Mark Horizon 

(RSET-MH) were applied to the Random Forest (RF) correcting model from Chapter 3 to 

generate a 2017 object-based DEM as the base map for RSLR inundation mapping. 2) To 

apply monitoring to a site-specific ground elevation change model and site-specific 

RSLR water model on the 2017 DEM map. This was achieved by analysis of 

unprecedented ground elevation rates measured over ten years at 127 monitoring stations 

around coastal Louisiana, with annual increments to 2050 applied to the 2017 DEM base 

map. Meanwhile, instead of the RSLR rate generated from tide gauges, this study applied 

site-specific total subsidence rate, including shallow subsidence and deep subsidence, 

combined with GSLR rate as RSLR and annual increments to 2050 were applied to the 

2017 DEM base map. 3) Generate and compare the predicted 2050 RSLR inundation map 

by applying 2050 RSLR on predicted grid-based minimal binning corrected DEM and 

predicted object-based RF corrected DEM.  

4.2 Study area and data 

This study area is located along the Chenier Plain of southwestern coastal 

Louisiana, which covers approximately 2942 square miles and includes the Holocene 
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Strand plain composed of wooded beach ridges and intervening mudflat grassy wetlands 

(Owen, 2008). The Chenier Palin contains fresh marsh, intermediate marsh, brackish 

marsh, and salt marsh. The Chenier Plain is comprised of the Calcasieu/Sabine, 

Mermentau, and Teche/Vermilion basins. Figure 4.1 shows LiDAR index tiles, NAIP 4-

band imagery, and Coastwide Reference Monitoring System (CRMS) stations distributed 

across the Chenier Plain. 

This study evaluated 127 records derived from RSET-MH measurements 

provided through Louisiana’s CRMS (Folse et al., 2018). The CRMS monitoring network 

is on an order of magnitude of regionally contiguous data monitoring coastal wetland 

change since 2007, for the study of present-day and projecting future coastal wetland 

dynamics along with its uncertainties, spatial patterns, and the delicate interplay between 

ground elevation change and RSLR. Meanwhile, LiDAR ground point data received from 

2017 USGS LiDAR shows the Upper Delta Plain, LA with 4802 single 1500 m by 1500 

m tiles covering approximately 3843 square miles. The LiDAR data were collected in 

early 2017, with no snow present and when rivers were at or below normal levels. 

Meanwhile, the LiDAR data were collected at an aggregate nominal pulse space of 0.7 m 

with the horizontal projection of NAD 83 (2011) Universal Transverse Mercator (UTM) 

(zone 15 N) and vertical datum of NAVD 88 (GEOID 12B) in meters. Finally, the ortho 

imagery data generated by the NAIP were used for image segmentation. The images 

collected in 2017 were formatted to the UTM coordinate system using the North 

American Datum of 1983 with 32-bit pixels with four band colors with red, green, blue, 

and near-infrared.  
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4.3 Methodology 

Mapping predicted relative sea-level inundation in the Chenier Plain in coastal 

Louisiana required three significant steps. First, grid-based and object-based machine 

learning corrected DEM using LiDAR ground points were generated. Second, ground 

elevation change rate was generated from field observed ground elevation data for each 

CRMS monitoring point from 2007 to 2019. Then, ground elevation change rates and 

relative sea-level change rates were applied on both the grid-based DEM and object-

based machine learning corrected DEM. Third, the annual incremental ground elevation 

change rate and RSLR rate to 2050 were applied to compare differences in RSLR 

inundation between minimum binning grid-based DEM and object-based machine 

learning corrected DEM. The major steps are presented in Figure 4.2.  

Figure 4.1 Index tiles of LiDAR and NAIP 4-band imagery with CRMS monitoring 

station distribution in coastal Louisiana. 
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4.3.1 Grid-based DEM and object-based RF corrected landscape model  

The grid-based DEM was generated from utilizing the minimum binning 

interpolation technique to assign the minimal LiDAR point value to the grid as the 

ground elevation using the “LAS dataset to raster” tool in ArcGIS version 10.7.1 

(https://www.esri.com/) toolbox, along with a void fill method to determine the value of 

cells that do not contain any LiDAR points. For further correction, the object-based RF 

corrected DEM was generated from the grid-based DEM raster data and aerial imagery. 

First, the image of 2017 Chenier Plain, Louisiana was segmented into image objects with 

scale 30. The “multiresolution segmentation algorithm” with scale 30 in eCognition 

Developer 9 was utilized to generate image objects based on spectral properties from the 

Figure 4.2 Framework for generating and comparing minimal binning and object-

based RF DEM for a 2050 inundation map of coastal Louisiana. 
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NAIP NOAA 2017 4-band imagery. The grid-based minimum binning generated DEM 

raster data were spatially matched with each image object and statistical information was 

extracted by applying the “zonal statistics as table” tool to generate the statistics on each 

object for RF correction modeling. The information from each object included object 

square meters, center point longitude and latitude, the highest ground value, the average 

of the ground values, the lowest ground value, and the standard deviation of ground 

elevation. By applying the optimal RF corrected model in WEKA version 3.8 (Hall et al., 

2009), the corrected ground elevation in each object polygon was generated and 

converted to the raster data in ArcGIS version 10.7.1 for the final DEM. For both the 

grid-based minimum binning generated DEM and the object-based RF corrected DEM, 

the 2017 base map was used to generate predicted 2050 DEM. 

4.3.2 Ground elevation change model and RSLR inundation mapping 

Unlike the traditional bathtub model that assumes the ground elevation remains 

the same over time, this study incorporates ground elevation change rates from 2007 to 

2019 to predict the ground elevation in 2050. A time-series ground elevation model was 

utilized to forecast ground elevation to 2050 for a geographic position consistent with the 

CRMS monitoring sites in coastal Louisiana. Figure 4.3 shows the relationships between 

the multiple variables, including Ground Elevation Change (GEC), Surface Elevation 

Change (SEC), Vertical Accretion (VA), Shallow Subsidence (SS), Deep Subsidence 

(DS), Total Subsidence (TS), Global Sea Level Rise (GSLR), and RSLR. The VA, TS, 

SS, and DS define as downward positive; GSLR and RSLR define as upward positive. As 

shown in Figure 4.3, RSET-MH simultaneously can provide information on below-

ground processes that influence ground elevation change. The difference between the 
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rates of VA measured and SEC measured by RSET pin height can be attributed to 

processes occurring below the feldspar layer and above the bottom of the RSET rod as 

the SS (Equation 4.1) (Cahoon et al., 2002). On the other hand, the DS rate was estimated 

by solving the linear model equation as a function of the latitude of the CRMS 

monitoring site (Jankowski et al., 2017; Karegar et al., 2015). The sum of the SS rate and 

DS rate yielded the TS for each CRMS monitoring site (Equation 4.2). The ground 

elevation change results from interaction with total subsidence and vertical accretion, as 

shown in Equation 4.3.  

Additionally, the change in RSLR results from the interaction with the change in 

the absolute elevation of the earth’s ocean, as GSLR rate in the Gulf of Mexico is from 

1992-2011 satellite altimetry data (2.4 mm per year) and local change (uplift or 

subsidence) with respect to the land surface (Jankowski et al., 2017). On the coast of 

Louisiana, the rate of RSLR was calculated for each CRMS monitoring station site by 

adding the present-day rate of GSLR in the Gulf of Mexico with ground elevation 

change, as shown in Equation 4.4. The predicted 2050 DEM could be represented by 

Equation 4.5, which uses DEM 2017 as a base map with 33 years (2017 to 2050) ground 

elevation change. Finally, the inundation area in 2050 is defined as Equation 4.6. Any 

predicted 2050 area that is not higher than the 33-year SLR is assumed to be inundated by 

2050. Since this study uses the DEM 2017 as the base map, it assumes the DEM 2017 is 

not affected by RSLR. 

𝑆ℎ𝑎𝑙𝑙𝑜𝑤 𝑠𝑢𝑏𝑠𝑖𝑑𝑒𝑛𝑐𝑒 = 𝑉𝑒𝑟𝑡𝑖𝑐𝑎𝑙 𝑎𝑐𝑐𝑟𝑒𝑡𝑖𝑜𝑛 − 𝑆𝑢𝑟𝑓𝑎𝑐𝑒 𝑒𝑙𝑒𝑣𝑎𝑡𝑖𝑜𝑛 𝑐ℎ𝑎𝑛𝑔𝑒 

Equation 4.1 

𝑇𝑜𝑡𝑎𝑙 𝑠𝑢𝑏𝑠𝑖𝑑𝑒𝑛𝑐𝑒 = 𝑆ℎ𝑎𝑙𝑙𝑜𝑤 𝑠𝑢𝑏𝑠𝑖𝑑𝑒𝑛𝑐𝑒 + 𝐷𝑒𝑒𝑝 𝑠𝑢𝑏𝑠𝑖𝑑𝑒𝑛𝑐𝑒 

Equation 4.2 
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𝐺𝑟𝑜𝑢𝑛𝑑 𝑒𝑙𝑒𝑣𝑎𝑡𝑖𝑜𝑛 𝑐ℎ𝑎𝑛𝑔𝑒 =           

 𝑉𝐴 − 𝑇𝑆 = 𝑉𝐴 − (𝑆𝑆 + 𝐷𝑆) = 𝑉𝐴 − (𝑉𝐴 − 𝑆𝐸𝐶) + 𝐷𝑆 = 𝑆𝐸𝐶 + 𝐷𝑆       

Equation 4.3 

𝑅𝑆𝐿𝑅 = 𝐺𝑆𝐿𝑅 − 𝐺𝐸𝐶                                       Equation 4.4 

𝐷𝐸𝑀 2050 = 𝐷𝐸𝑀 2017 + 33 ∗ 𝐺𝐸𝐶                            Equation 4.5 

𝐼𝑛𝑢𝑛𝑑𝑎𝑡𝑖𝑜𝑛 𝑖𝑛 2050 = 𝐷𝐸𝑀 2050 − 𝑆𝐿 2050 = 𝐷𝐸𝑀 2050 − 33 ∗ 𝐺𝑆𝐿𝑅 

Equation 4.6 

Figure 4.3 Relationship between SEC, VA, SS, DS, TS, SLR, and RSLR. Figure is not 

to scale. Modified from Jankowski et al., 2017. 
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4.4 Results 

4.4.1 Ground elevation change rate  

In order to predict the ground elevation in 2050, this study used simple linear 

regression of the association between the number of years and ground elevation measured 

by RSET from 2008 to 2018. The response variable is the ground elevation at each 

CRMS monitoring station, which was measured twice a year using the RSET technique, 

and the number of years (the initial year is 0) is the explanatory variable to account for 

predicting variation in the ground elevation change. Additionally, the number of years 

and ground elevation change scatterplots supplemented with a regression line were used 

to examine and gain insights for both the direction and strength of association and to best 

replicate modeling the relationship between time and ground elevation. The slope of the 

regression line is the regression coefficient, which is the absolute change of the line in the 

Y direction associated with an increase of one year in the X direction, and this number 

reveals how the ground elevation changes annually. For example, in Figure 4.4a, CRMS 

station 570 with a positive regression coefficient indicates that for each increasing year, 

the ground elevation increases by 0.017m. In Figure 4.4b, CRMS station 694 with a 

negative regression coefficient indicates that for each increasing year, the ground 

elevation decreases by 0.024 m. The slope provides an idea of showing how much of the 

points are positive increase as the time goes by, and how many of them are negative 

change as time goes by. As shown in Equation 4.3, the final ground elevation change 

incorporates the deep subsidence rate though the monitoring years.  

A histogram showing ground elevation regression coefficients for all 127 CRMS 

monitoring stations is shown in Figure 4.5a; interpolation of ground elevation change 
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rates on the Chenier Plain, LA using Inverse Distance Weighted (IDW) methods in 

ArcGIS version 10.7.1 is shown in Figure 4.5b. The IDW is a commonly used 

interpolation method that determines cell value using a linearly weighted combination of 

a set of nearby point values and assumes the ground elevation change influence decreases 

with distance increase. The blue area in Figure 4.5b represents the ground elevation rate 

with a negative value, indicating the area is annually losing ground elevation. The largest 

decrease in ground elevation is around 16.23 mm per year (Figure 4.5a). More than 60% 

of ground elevation change rate is around 0 to 9 mm per year, shown as green and yellow 

color in Figure 4.5b, while the highest ground elevation change is around 9 to 23 mm per 

year, shown as red. 
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Figure 4.4 Example of relationship between ground elevation change and number of 

years: (a) a strong positive relationship; (b) a strong negative relationship. 
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Figure 4.5 Histogram showing distribution of ground elevation change rates (a); 

Interpolated rate of ground elevation change in Chenier Plain, Louisiana (b). 
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4.4.2 Predicting 2050 grid-based DEM and object-based corrected DEM 

The DEM based on LiDAR point elevation data collected in 2017 was used as the 

base map for the landscape modeling in 2050 and mapping inundation area due to RSLR. 

Figure 4.6a presents 2017 grid-based DEM generated with minimum binning 

interpolation technique. For further correction, Figure 4.6b shows 2017 object-based RF 

corrected DEM. Blue color in Figure 4.6 represents the ground elevation below the 

NAVD 88 vertical datum, while green represents ground elevation above ground under 

0.37 m. Yellow and orange colors represent wetland ground elevation from 0.37 to 0.77 

m, while pink to dark red represent ground elevation 0.77 to 25.32 m above NAVD 

vertical datum. Grid-based minimum binning DEM generally show a relatively higher 

ground elevation compared to object-based RF corrected DEM. Both 2017 grid-based 

DEM and object-based RF corrected DEM are used for the 2017 landscape base map.  

The predicted 2050 DEM were generated by applying ground elevation change 

rate raster on both the grid-based 2017 DEM base map and the object-based RF corrected 

2017 DEM base map using Equation 4.5. Figure 4.7a shows the predicted 2050 grid-

based DEM and Figure 4.7b shows the object-based RF corrected DEM on the Chenier 

Plain, Louisiana. Blue color in Figure 4.7 represents the ground elevation below the 

NAVD 88 vertical datum, while green, yellow, and red represent ground elevation above 

ground. 



 

77 

 

 

 

 

 

Figure 4.6 2017 DEM: (a) grid-based minimal binning DEM; (b) object-based RF 

corrected DEM. 
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Figure 4.7 Predicted DEM in 2050: (a) grid-based predicted DEM; (b) object-based 

RF corrected predicted DEM. 
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4.4.3 Mapping RSLR inundation in 2050  

In order to model 2050 inundation area due to RSLR in Chenier Plain, Louisiana, 

any areas that are below the SLR change are assumed to be flooded in 2050 in this study. 

The predicted 2050 grid-based minimum binning DEM and object-based RF corrected 

DEM were applied as the predicted DEM to quantify inundation area with GSLR change 

by Equation 4.6. In ArcGIS 10.7.1, both grid-based minimal binning and object-based RF 

corrected predicted 2050 DEM raster data subtract the GSLR change from 2017 to 2050. 

If the area is not as high as the GSLR, the result shows a negative value and assumes that 

the area will be underwater by the year 2050. The area which will be underwater is 

shown by red color in Figure 4.8.  

There is a significant difference between predicted inundation on grid-based 

minimum binning generated DEM and object-based RF corrected DEM. Figure 4.8a 

shows the inundation area with 2050 grid-based minimum binning predicted DEM as 

1567 km2, which is 20% of the area of the entire Chenier Plain, Louisiana. On the other 

hand, Figure 4.8b shows the inundation area due to RSLR as 2620 km2, 34% of the entire 

Chenier Plain, Louisiana. The results show that the applied object-based RF corrected 

DEM has great promise in remote sensing applications. Grids in grid-based DEM are 

arbitrary units and can contain mixed signals from surrounding areas. For coastal wetland 

ecosystems, the high heterogeneity of land cover and spectral similarity of plant species 

often leads to “salt and pepper” effects. On the other hand, applying object-based 

corrected DEM merge pixels into objects and correct LiDAR-derived DEM at the object 

level to optimize within-pixel homogeneity and without-pixel heterogeneity. 
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Figure 4.8 Predicted inundation area in 2050 in Chenier Plain, Louisiana: (a) 2050 

inundation area with grid-based minimum binning predicted DEM; (b) 2050 

inundation area with object-based RF corrected predicted DEM. 
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4.5 Discussion  

4.5.1 Relative sea-level rise modeling 

Typically, SLR inundation analysis uses tide gauges. However, tide gauge data 

are inherently measuring SLR relative to the anchor point, which in coastal Louisiana 

might be a few tens of meters below the land surface (Jankowski et al., 2017). 

Considering the high shallow subsidence in coastal Louisiana, tide gauges in this region 

are not able to capture precise RSLR. This study applied the method from Jankowski et 

al. (2017) to calculate the RSLR concerning the land surface for each individual site by 

adding an estimate of the deep subsidence rate and observed shallow subsidence on top of 

the GSLR. This provides an essential improvement for meaningful understanding of the 

response of coastal wetlands in Louisiana to RSLR. The deep subsidence rates are 

generated from solving the linear model equation as a function of latitude from the study 

of Karegar et al. (2015). Meanwhile, the shallow subsidence rate was calculated from 

field data as the difference between vertical accretion minus the ground elevation change. 

The sum of shallow subsidence and deep subsidence yielded the total subsidence for each 

CRMS monitoring station. Finally, the mean rate of SLR (2.0 ± 0.4 mm per year) in the 

Gulf of Mexico from 1992 to 2011 was calculated from satellite altimetry data in a 

previous study (Letetrel et al., 2015). Thus, this study calculated the rate of RSLR for 

each CRMS monitoring station to predict water levels in 2050.  

The results of this study show that 34% of the entire Chenier Plain, Louisiana will 

be impacted by RSLR by 2050, which is different from the results of Jankowski et al. 

(2017) who showed that 58% of the CRMS sites in the Chenier Plain could not keep pace 

with RSLR. The difference between these studies may be due to two main reasons. First, 
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the results from this study were generated from 2017 corrected DEM that applied the 

ground elevation change annually increased to 2050 DEM. On the other hand, the study 

from Jankowski et al. (2017) compared the ground elevation change rate with the RSLR 

rate, so any site where the RSLR rate exceeds the rate of SEC is considered vulnerable to 

the RSLR. However, the study from Kirwan et al., 2008 shows that some marshes are 

vulnerable to SLR and get submerged even their vertical accretion rates are higher than 

the rates of the RSLR. Since identifying RSLR as the primary driver of wetland loss is a 

complicated process. If the initial wetland ground elevation is relatively low, this area 

will experience more frequently inundated and have more sediment deposited, which 

results in a relatively high vertical accretion rate (Fagherazzi et al., 2012). On the other 

hand, if the wetland ground elevation is relatively high, the inundation from the tide is 

relatively low, the accretion is slow (Fagherazzi et al., 2012). Second, the study from 

Jankowski et al. (2017) analyzes the vertical accretion rate and RSLR rate on a point 

based on CRMS monitoring station. This study examines the wetland inundation on a 

regional scale with applied object-based LiDAR-derived DEM as a regional scale 3D 

terrain surface model.  

4.5.2 Uncertainty of future RSLR and ground elevation change 

In this study, the ground elevation change rate has generated from a time-series 

model and utilized to forecast ground elevation to 2050 at each CRMS monitoring 

station, by using simple linear regression using the ground elevation from 2008 to 2018 

measured by RSET as a function of the number of years. The slop of the regression line 

was used to examine the direction and ground elevation changes annually. Some 

monitoring station ground elevation changes are highly related to the number of years. 
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For example, monitoring station number 489 and 694 with R2 over 0.8 in Figure 4.4. 

However, there are some monitoring stations the ground elevation change is not highly 

related to the number of years. As the result showing in chapter 2, the ground elevation 

change is a complex process and is related to various environmental variables. For 

forecasting the DEM in 2050, this study simplified the impact of environmental variables 

on ground elevation and applied the regression coefficient from ground elevation change 

with the number of years from 2008 to 2018 as the ground elevation change rate. 

Although this model included a vital feedback mechanism between RSLR and 

vertical ground elevation change, this study did not consider other climate change that 

may further enhance the adaptability of coastal wetlands to RSLR. The developed RSLR 

inundation model projected no net loss in wetland extent under the RSLR by 2050, but 

there are still uncertainties in future years about the capacity of natural ecosystems to 

self-regulate to perturbations. Additionally, ground elevation change in coastal wetlands 

is a complex procedure impacted by numerous environmental drivers. For example, 

although SLR can increasing flooding frequency and duration, which triggers vegetation 

mortality and soil collapse, studies have shown higher frequency and longer flooding 

duration have positive impacts on sediment accumulation and several plant productivity 

(Kirwan et al., 2012; Morris et al., 2002). Additionally, Tonelli et al. (2010) found that 

when the marsh is flooded, the wave effect from hurricanes on wetlands boundaries is 

less. Moreover, Mariotti et al. (2010) demonstrated that a low rate of SLR increases wave 

dissipation and sediment deposition.  

Human impact on coastal wetlands ecosystems, especially the increased 

atmospheric carbon dioxide concentrations by global warming enhanced photosynthesis 
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and plant productivity of wetland species will impact accumulation of plant organic 

matter, which is a primary process controlling wetland vertical development (Rogers et 

al., 2015). Additionally, warmer temperatures improve coastal wetland vegetation 

productivity, which has been experimentally demonstrated to further ground elevation 

change; for example, Kirwan et al. (2009) estimated that an increase of 4°C could boost 

productivity by up to 40%. Together, these ecogeomorphic interactions allow marshes to 

adapt to SLR (Baustian et al., 2012; Morris et al., 2002). Even the most robust vertical 

accretion models may underestimate the potential for coastal wetlands to adapt to SLR, 

and that makes prediction of future sustainability difficult (Langley et al., 2009)  

4.6 Conclusion 

The main aim of this study was to provide a high vertical accuracy relative sea-

level inundation map of coastal Louisiana. By achieving this goal, this study developed a 

robust approach to modeling and mapping RSLR inundation by combining LiDAR point 

data and RF corrected models with high accuracy DEM products. This study draws the 

following conclusions:  

1) Instead of traditionally applying the SLR rate on DEM, this study chose RSLR 

by combining the mean rate of SLR in the Gulf of Mexico from 1992 to 2011 satellite 

altimetry data (2.0 ± 0.4 mm per year) with site-specific subsidence rates (including 

shallow subsidence and deep subsidence). Compared with most previous studies that 

have relied on SLR measured by tide gauges, the RSLR in coastal Louisiana used in this 

study better captures the full amount of RSLR.  

2) The object-based RF corrected DEM is an attractive alternative to the 

traditional grid-based minimum binning generated DEM. By incorporating multispectral 
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aerial imagery and applying the OBIA technique correcting the LiDAR ground elevation 

on object-based with RF correct model, which significantly approved the vertical 

accuracy of LiDAR-derived DEM. 

3) By predicting the RSLR inundation by 2050, consider the ground elevation 

change by applied ground elevation change rate generated from over ten years of RSET 

ground elevation observation. The results show that the grid-based minimum binning 

corrected DEM was overestimating the capability on RSLR impact compared with the 

object-based RF corrected DEM.
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CHAPTER 5: SUMMARY AND CONCLUSION

This dissertation identified and quantified environmental variables that 

characterize coastal wetland ground elevation, improved LiDAR terrain measurements, 

and analyzed inundation by linking terrain changes with RSLR using the ten-year RSET 

field measurements large-scale LiDAR data. Forecasting the impact of RSLR on wetland 

environments generally involves dynamic models that account for ongoing processes 

such as vertical migration and sediment accretion. In addition, the RSLR impact model 

requires high-resolution DEM with the vertical error should be at least twice as certain as 

the SLR increment (NOAA, 2010), which is difficult to achieve with most open-source 

LiDAR data. The result of this study provides a robust model for LiDAR correction 

approach using high accuracy RSET and consider the ground elevation change (vertical 

accretion and subsidence) while predicting the inundation by RSLR offers an opportunity 

to assist with wetlands conservation, preservation, and restoration in coastal Louisiana.  

The long-term survival of the coastal wetlands depended on if their ground 

elevation change rate is equally or higher than the rising sea level rate (Morris et al., 

2002). Several external forces, like wetland vegetation, hydrology, and distance to the 

sediment source, have a substantial impact on vertically building ground elevation 

(Mariotti and Fagherazzi, 2010). In 2006, the CRMS established a network station for 

effectively monitoring the progress of restoration projects in coastal Louisiana. More than 

a decade of hydrology, vegetation, and ground elevation data measured by RSET 

techniques have been simultaneously collected to date. The size and density of this data 
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provide an unprecedented opportunity for studying coastal wetland ground elevation 

dynamics along with how different environmental variables shape the terrain in coastal 

Louisiana. Although RSET techniques have been popularly used for monitoring and 

modeling in coastal wetlands, the previous studies have focused on the qualitative 

analysis of how environmental variables impact ground elevation (Krauss et al., 2008). 

Limited and scarce quantitative analysis exists, e.g., Roger et al. (2012) explored linear 

modeling techniques to quantify the contribution of climatic, hydrological, and site-

specific factors to ground elevation dynamics. However, due to the complicated 

processes involved in sediment elevation change, the linear regression cannot adequately 

explain the relationship. Therefore, more quantitative analysis based on testing nonlinear 

relationship interplay between ground elevation and environment variables is necessary.  

The chapter 2 examined three machine learning algorithms (RF, SVM, and ANN) 

and MLR for evaluating the statistical relationship between ground elevation change and 

environmental variables. This study presents a broad overview of quantifying the 

formation and evolution of coastal wetlands under different environmental variables. In 

particular, this study focused on applying machine learning algorithms to quantify 

nonlinear feedback between environmental variables and ground elevation from 2008 to 

2018 across the entire coastal Louisiana wetlands, and shed light on the long-term 

evolution and resilience of coastal wetland systems. A ground elevation dynamic model 

considering ground elevation data from 2008 to 2018 as functions of environmental 

variables incorporates all the mechanisms that influence ground elevation, including 

hydrological variables, vegetation variables, and site-specific variables derived from the 

CRMS network in Louisiana. This study designed a robust approach that evaluated MLR 
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and three machine learning regression models, including RF, SVM, and ANN. Machine 

learning techniques are effective at generating accurate ground elevation models from 

environment variables. The RF model achieved the best accuracy (r = 0.74 and RMSE = 

10.8 cm). Since the wetland ecosystem is the manifestation of complex ecological and 

physical interactions, the numerical model provides an opportunity to capture the 

nonlinear between environmental variables and the ground elevation change process and 

shed light on the long-term wetland evolution and resilience the SLR.  

The primary input for SLR impact models requires a high-resolution DEM, 

typically produced using LiDAR data. However, high vegetation density wetlands require 

inputs of a higher vertical accuracy DEM in order to meet NOAA recommended that the 

vertical error of a DEM should be at least twice as certain as the SLR increment (NOAA, 

2010). Previous studies of increasing accuracy of LiDAR-derived DEM have primarily 

focused on using field technology real-time kinematic (RTK) to enhance the integrity of 

LiDAR products in the wetland environments (e.g., Hladik et al., 2012; McClure et al., 

2016; Montané et al., 2006). Although RTK has vertical accuracy approximately 0.02 to 

0.12 m (Renschler et al., 2002), the limited spatial distribution still hinders the 

comparability from using RTK correcting LiDAR data across a regional space (McClure 

et al., 2016). Although the study has shown that combining RTK and LiDAR data 

reduced the DEM mean error from 0.16 meter to 0.04 meter, annual rates of SLR and 

wetlands sediment surface elevation operate on a millimeter scale, using RTK is 

correcting LiDAR data will exceed the accuracy requirement for SLR vulnerability 

assessment (McClure et al., 2016). Moreover, SLR affects coastal-wide landscaped 

wetlands; the limited spatial distribution RTK in a relatively small area hinders the 
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comparability from using RTK correcting LiDAR data across a regional space (McClure 

et al., 2016). On the other hand, there are approximately 390 site monitoring stations 

(Fig.1.1) that use RSET techniques to measure ground elevation in a large scale covering 

entire coastal Louisiana with a higher vertical accuracy of 0.0010 to 0.0015 m (Cahoon et 

al., 2002). With the broader spatial distribution of RSET and high vertical accuracy, it is 

expected that RSET will have a better performance than RTK in reducing the vertical 

error of LiDAR-derived DEM in Louisiana coastal wetlands.  

There have been several technological advancements recently to improve LiDAR-

derived elevations including minimum bin gridding method to filter and classify LiDAR 

last return signals (e.g., Medeiros et al., 2015; Schmid et al., 2011; Wang et al., 2009; 

Töyrä et al., 2003); subtraction of species-specific bias based on vegetation cover maps 

(e.g., Hladik and Alber, 2012; Hladik et al., 2013; McClure et al., 2016); and using full-

waveform LiDAR data with nonparametric modeling techniques. Little effort has been 

put for correcting LiDAR data at objects based on machine learning algorithms. Several 

studies have confirmed that OBIA in conjunction with machine learning techniques can 

produce higher accuracies for mapping and modeling the coastal wetland ecosystem 

(Zhang and Xie, 2012; Zhang et al., 2013; Zhang and Xie, 2014; Zhang et al., 2016; 

Zhang et al., 2018a; Zhang et al., 2018b). Thus, this study developed an object-based 

correction approach for high vertical accuracy DEM by integrating LiDAR point data, 

aerial imagery, and RSET.  OBIA considers the spectral and spatial characteristics of 

surrounding pixels and incorporates similar pixels into a homogeneous image object 

instead of the grid-based methods used in previous studies that may mix signals from 

surrounding areas. This study has confirmed that OBIA, in conjunction with machine 
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learning techniques, can produce high accuracy for correcting LiDAR-derived DEM in 

coastal wetlands ecosystems. Overall, this study combined data fusions of LiDAR point 

data, field measured RSET, and aerial imagery with robust machine learning algorithms 

for improving vertical accuracy of LiDAR-derived DEM from RMSE 0.355 to 0.008 m 

and achieved the best result with the r = 0.83 for ground elevation estimation for coastal 

wetlands in Louisiana. The data fusion approach using 2017 LiDAR point data, aerial 

photography, field ground elevation data measured by RSET, and machine learning 

algorithms was promising for generating a high vertical accuracy DEM. Although the 

study areas' location is different, these results are comparable with the study by Copper et 

al., (2018) and Roger et al. (2018) that nonparametric machine learning modeling 

techniques are powerful for ground elevation estimation, especially the RF model. 

Studies of the long-term observation of coastal wetlands stability and 

maintenances conclude that wetland ground elevation must have the ability to adjust to 

changes in rates of SLR (Friedrichs and Perry, 2001). The simplest SLR impact model, 

referred to as the bathtub model, is an elevation-based model that assumes land area 

adjacent to the sea and below a given water elevation is inundated (Gesch, 2009). This 

model only requires a DEM and water level as input and can be used to rapidly determine 

the area at risk (Roger et al., 2012). However, the current bathtub model solely takes 

rising water into account, without considering the changing of the ground elevation 

change. Forecasting the impact of SLR on wetland environmental generally involves 

more dynamic models that account for ongoing processes such as vertical accretion, 

shallow, and deep subsidence. This study applied the corrected DEM and considered the 

ground elevation change and subsidence which not only provided ways to increase the 
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integrity of SLR inundation assessments but also presented the results in a way that is 

easily communicated to the general public. To assess the ground elevation change, over 

ten years ground elevation generated from CRMS monitoring station using RSET 

technique was analyzed for generating the ground elevation change rate. The ground 

elevation rate and RSLR rate were applied to both the 2017 grid-based minimum binning 

DEM and the object-based RF corrected DEM and annually increased to 2050. There is a 

significant difference between the 2050 RSLR inundation area between grid-based 

minimum binning DEM and object-based RF corrected DEM. The inundation area with 

2050 grid-based minimum binning predicted DEM as 1567 km2, which is 20% of the 

entire Chenier Plain, Louisiana. On the other hand, the inundation area due to RSLR with 

2050 using object-based RF corrected predicted DEM as 2620 km2 which is 34% of the 

whole Chenier Plain, Louisiana. The results show the grid-based has overestimated the 

capability on RSLR impact compare with the object-based RF corrected DEM.  

With large amounts of coastal wetlands being converted to open water in 

Louisiana, the remaining land concerns will persist while facing the highest rates of 

RSLR in the world (Jankowski et al., 2017). The study of how environmental variables 

impact ground elevation change is crucial for analyzing and modeling the response of the 

rising sea level impact on wetland ecosystem. Additionally, fusing remote sensing data 

with RSET field data in object-based analysis provides the unique opportunity to enhance 

confidence for assessment of coastal wetland conservation, preservation, and restoration. 

Finally, the higher spatial coverage is in high demand for managers, especially as wetland 

restoration efforts increase to mitigate the impacts of the high rate of RSLR.
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