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Abstract 

 

The onset of airborne light detection and ranging (lidar) has resulted in expansive, precise 

digital elevation models (DEMs). DEMs are essential for modeling complex systems, such as the 

coastal land margin of Louisiana. They are used for many applications (e.g. tide, storm surge, 

and ecological modeling) and by diverse groups (e.g. state and federal agencies, NGOs, and 

academia).  However, in a marsh environment, it is difficult for airborne lidar to produce 

accurate bare-earth measurements and even accurate elevations are rarely verified by ground 

truth data. The accuracy of lidar in marshes is limited by the sensor’s resolution and by the 

laser’s ability to penetrate dense vegetation. The first objective of this work is to measure 

elevation using Real Time Kinematic (RTK) instruments and compare them to elevations from 

lidar-derived DEMs. This error evaluation (elevationDEM – elevationRTK = error) will be 

performed in a variety of marsh types with differing vegetation. This evaluation shows that the 

surveyed marshes produce minimal DEM error in relation to other published work but are still 

likely to result in misleading hydrodynamic and wetland modeling outcomes. The second 

objective is to correct lidar-derived DEMs by applying and improving upon previously published 

methods. The techniques will be improved through the use of additional remote sensing inputs 

and by understanding the ecological factors that influence the spatial and temporal distribution, 

composition and productivity of marsh plant species.     
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1. Introduction 

 

1.1. Overview and Motivation 

 

Due to anthropogenically-derived greenhouse emissions, the level of atmospheric carbon 

dioxide has not been beyond the level of the mid-20th and 21st centuries (post 400,00 years ago) 

and is considered the most significant source of rapid climate change (Wuebbles, Fahey, & 

Hibbard, 2017).  The evidence of this change is compelling: global temperature rise, warming 

oceans, shrinking ice sheets, glacial retreat, ocean acidification, decreased snow cover and sea 

level rise. This associated sea level rise has commenced a variety of worldwide coastal landscape 

responses that will continue throughout the 21st century (Mengel, Nauels, Rogelj, & Schleussner, 

2018). In low-gradient coastal landscapes, major changes include: the increased inundation of 

wetlands, increased shoreline erosion, and increased flooding during storm events (Passeri et al., 

2015). In fact, the Louisiana coastline undergoes the highest rates of relative sea level rise (i.e. 

subsidence plus sea level rise) and land loss in North America (Couvillion et al., 2011; Penland 

& Ramsey, 1990). Major landscape changes threaten the fisheries, coastal communities and 

industry and have caused engineers and ecologists to find solutions. In the last 30 years, 

geomorphologic, hydrodynamic, storm surge and ecological models have been developed to 

efficiently investigate and mitigate coastal changes.  

Arguably the most critical input for these models is the bare earth elevation. Relative 

elevation controls the abiotic features of marshes such as: accretion rates (Butzeck et al., 2015; 

Morris et al., 2016), soil characteristics (Cahoon & Reed, 1995), pore water salinity and oxygen 

availability (Hackney et al., 1996). From a hydrodynamic point of view, coastal landforms 

influence water circulation patterns, sediment transport, the size of tidal prisms, and the 
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propagation and attenuation of storm surge and wind driven waves (Passeri et al., 2015). All of 

these factors determine the evolution and sustainability of marshes and affect the magnitude of 

ecosystem services certain coastal systems can provide. In this sense, the interrelationships 

between physics and biology are what shape the coastal landscape, generate intrinsic value, and 

decide if engineering solutions are cost effective (Zedler & Kercher, 2005). Therefore, the spatial 

distribution of relative elevation is an essential component that will dictate the outcomes of 

coastal evolution during this new age of climate change.  

The importance of elevation is not exclusive to sea level rise or coastal modeling but has 

historically impacted many other areas of study.  The most commonly used forms of elevation 

data are digital elevation models (DEMs). DEMs are currently used in variety of different fields 

and a suite of applications, ranging from precision farming and archaeology to flight simulation 

and terrain analysis. One of the most common uses of DEMs is the modeling of water flow for 

hydrology and hydrodynamics. Due to improvements in computation efficiencies, robust, high 

resolution models can be achieved for expansive areas, creating a powerful tool. In the last two 

decades, light detecting and ranging (lidar) has become the main source of DEM generation. The 

benefit of this technology is it can provide sub-meter resolution of large areas with relative ease, 

at vertical accuracies of less than 0.05 m in opportune circumstances.  However, in coastal 

marshes, the accuracy of bare earth elevations is challenged leading to inaccurate DEMs. It has 

been shown that a mean positive bias exists between lidar-derived DEMs and ground surfaces, 

and multiple methods have been proposed and implemented to increase the accuracy of lidar-

derived DEMs. Considering nearly 1,500,000 hectares of marsh covers the Louisiana coast (C. 

Sasser, Visser, Mouton, Linscombe, & Hartley, 2014), expansive modeling errors are likely.  
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Previous work shows that systematic error in the DEM can and must be reduced to achieve 

accurate modeling results. 

1.2. Research Objectives 

 

The goal of this research is to assess and correct lidar-derived DEMs of the coastal 

marshes of Louisiana. This goal has been accomplished by determining the DEM error in a 

variety of marsh types, identifying correlations between DEM error and remote sensing 

parameters, and applying three correction techniques: minimum binning, described in section 

3.2; lidar elevation adjustment with normalized difference vegetative index (NDVI) or (LEAN), 

described in section 3.5; and a random forest model consisting of imagery and lidar metrics, 

described in section 6.3. Specifically the following research questions are addressed: 

 What is the error in lidar-derived DEMs of coastal marshes in Louisiana? 

 What is the optimal minimum binning resolution for each marsh type? 

 Can the LEAN method reduce error in all marsh types? 

 Can the LEAN method in concert with a National Agriculture Imagery Program 

(NAIP) image classification scheme further reduce error in an intermediate and 

saline marsh? 

 Will the use of lidar-derived metrics help reduce the error in an intermediate 

marsh? 

 How does a random forest correction model perform compared to a linear 

regression correction model? 

 What are the limitations of previously published corrections in the marshes of 

Louisiana? 
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  This thesis contains eight chapters. Chapter 1 provides a general overview of the research 

motivation and objectives. Chapter 2 presents a literature review of the technology and 

associated accuracies of relevant elevation measurements. Chapter 3 gives a review of the 

previously published correction techniques. Chapter 4 describes the methodology of the study 

and details regarding the independent data used for correction. Results from the Real Time 

Kinematic Global Positioning System (RTK-GPS) survey and associated DEM errors, as well as 

the relationships between the survey data and independent parameters, are presented in Chapter 

5. Chapter 6 includes the three DEM correction techniques and the associated improvements of 

the DEM.  Chapter 7 interprets the sources and patterns of error, justifies correction model 

results and details the significance of the correction. Chapter 8 highlights the knowledge gained 

from this work and discusses possible future work. 
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2. Review of Elevation Measurements 

 

This project relies on the relative accuracy of elevation measurements performed by both 

RTK-GPS and airborne lidar. It is important that the data produced by these two methods are 

comparable. This chapter will give an overview of these methods and their associated accuracies 

and will show that these two types of measurements are closely linked.   

2.1. Global Positioning System and Real Time Kinematic 

 

The marshes of Louisiana are usually a remote, harsh environment that disfavors typical 

surveying methods.  Methods, such as leveling, are time consuming, and the equipment is not 

particularly mobile.  Favorably, the invention of RTK-GPS devices has made surveying more 

efficient and precise; accurate elevation data can be captured with less effort. In this work, 

Trimble R8 receivers are used in conjunction with the Continuously Operating Reference 

Stations (CORS) to calculate position with centimeter-level accuracy in the coastal marshes of 

Louisiana via Real Time Kinematic (RTK). This procedure is described in 4.2.1.    

2.1.1. Global Positioning System 

 

Global Positioning Systems (GPS) or more broadly Global Navigation Satellite System 

(GNSS) started in the 1960’s as a military instrument and has become an indispensable tool in 

the civilian world (Ogaja, 2011). Present day GPS technology has advanced resulting in higher 

accuracies, but it is still based on the same simple principles. In theory, using satellites to 

determine position requires four things: an accurate time piece, a sensor to detect incoming 

signals, a map showing the locations of communicating satellites, and the knowledge of the 

speed of a signal (Kaplan & Hegarty, 2005). This concept is known as Time of Arrival (TOA). 

By knowing the location of multiple emitters and the propagation time of an emitted signal, a 
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receiver location can be found by the mathematical process of trilateration (Ogaja, 2011). While 

this calculation is simple, errors arise due to the uncertainty of these four required variables. The 

next sections will discuss the basic process of three-dimensional position location via the 

intersection of multiple spheres, the errors, and improvements used to reduce this uncertainty.  

2.1.1.1. Determining Location 

 

Using the concept of TOA, three dimensional position can be found with the use of 

satellite ranging signals. The ranging signals are controlled by an internal clock that are ideally in 

synchronization with the other satellites in the constellation. This is known as GPS system time.  

Timing information is embedded within the ranging signals, which allows a receiver to calculate 

the moment in time the signal left the satellite. Time elapsed is calculated from the differential in 

time (received minus emitted). Using the speed of the signal, which is an electromagnetic wave, 

 

Figure 2.1. A schematic demonstrating the intersection of spheres. The gray represents the 

plane of intersection for two spheres. Two black dots are the solutions when a third sphere is 

introduced. (Kaplan & Hegarty, 2005) 
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a range can be determined. However, one satellite does not shed enough information to 

determine an exact location but only produces a sphere in which the receiver location may be 

(Figure 2.1).  At least four satellites must be used to determine a three dimensional position. 

Using two spheres a three-dimensional area is the solution (gray shaded area in Figure 2.1).  

When a third sphere is introduced, the solution goes from being a three-dimensional space to two 

discrete points.  Without additional knowledge, the incorrect location may be assumed. 

Introducing a fourth sphere eliminates the additional solution yielding the exact location.  

In the previous explanation, the calculated range is exact, and a level was of uncertainty 

is not included in the ranging calculation. In actuality each independent measurement is 

subjected to some type of error. Instead of having a calculated position located on the edge of 

sphere, an extra radii of uncertainty is added; this means each sphere is not completely defined. 

When combining all four measurements and performing the trilateration calculation, a three-

dimensional zone is produced in which a receiver position could be. This ranging uncertainty has 

been reduced with advancements in technology and using clever methods to estimate error in the 

ranging (section 2.1.1.2).  

2.1.1.2. GPS with a base station 

 

There are a number of sources that lead to error in GPS measurements: satellite clock 

error, ephemeris error, relativistic effects, receiver noise, multipath effects and hardware bias. 

Most of which obscure the range calculation used for position. According to (Datta-Barua, 

Doherty, Delay, Dehel, & Klobuchar, 2003), the largest source error is from ionospheric delays 

which can be up to 5 meters. Introduction of carrier phase signals, such as L1C and L2C, have 

been used to mitigate these errors (Coco, Coker, Dahlke, & Clynch, 1991). Another clever 

technique to reduce error is the use of a base station. These are advantageous for adjusting the 
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tropospheric delay (Vollath, Buecherl, Landau, Pagels, & Wagner, 2000). The troposphere 

consists of the atmosphere that is closest to the Earth and tends to bend the signal due to its high 

refraction index (Kursinski, Hajj, Schofield, Linfield, & Hardy, 1997). These atmospheric 

conditions are very similar locally; therefore, the base station and the differential GPS receiver 

are experiencing very similar delays. The base station provides the offset it is experiencing to the 

GPS device. However, corrections are less accurate with increasing distance from the base 

station (Kim Sun & Gibbings, 2005). 

The introduction of base station networks such as the Continuously Operating Reference 

Stations (CORS) can provide an even higher levels of accuracy. Trimble developed a method of 

RTK surveying called Virtual Reference Station (VRS). This concept utilizes a network of 

correction information and calculates corrections as if a base station is located near the RTK 

device (Ogaja, 2011). Since the accuracy of corrections are not as limited by the distance to the 

real base station, expansive areas can be surveyed with high accuracy as long as the surveyor 

remains in the network. 

One of the main advantages of RTK from a surveying perspective is the ease in which the 

user can locate a predefined point. Unlike typical GPS, that uses post processed information to 

correct the measurement, RTK offers and even more efficient form. The correction can be 

applied in real time, and therefore, predefined points can be navigated to with high accuracy. For 

example, the accuracy of the Trimble R8 using the RTK network is plus or minus 1.5 cm 

vertically and plus or minus 0.8 cm horizontally at the 68th percent confidence level (Trimble, 

2013). Fortunately, the Louisiana coastline is populated by CORS, which creates an extensive 

coverage of correction data for determining positions even in remote marshes. However, clear 

communications with the correction server is not always possible due to the lack of internet 
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coverage. Radio waves and microwaves have been known to reflect off the marsh canopy 

resulting in multipath errors. Also, the humidity usually present in coastal areas can cause delays 

in the radio signal that the base stations are not experiencing, producing another level of 

uncertainty.  

2.2. Light detecting and ranging 

 

 Light detecting and ranging (lidar), is an active remote sensing method that uses 

intense focused beams of light to produce three dimensional characterizations of a surface 

(Carter et al., 2012). Using infrared pulses to collect high density ranging data, lidar can be used 

as source data in the creation of digital elevation models (DEMs). In recent years, this has 

become the standard for DEM generation and is used for a suite of applications: inundation, 

storm surge, hydrodynamic and morphologic modeling (Liu, 2008). However,  unfavorable 

issues arrise when using airborne lidar for DEM generation in the coastal enviroment. In 

principle, lidar is a system that uses TOA to determine ranging information of a targeted surface. 

The fundamental measurement is the amount of time elapsed from the emittance of a laser pulse 

to the time of return of the same pulse (Lefsky, Cohen, Parker, & Harding, 2002). Using this 

timing and multiplying by the speed of light, a round trip distance can be determined. Dividing 

this number by two produces a distance to a targeted surface.  Lidar instruments can perform 

these measurments at rates of 150,000 pules per second, generating a dense network of precise 

georeferenced elevation data known as a point cloud (Carter et al., 2012).   Even though this 

process may appear straighforward, it is complicated by both the mode of the altimetry 

measurement and the surface of the intended target area.  

2.2.1. Airborne light detecting and ranging 
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 Airborne lidar is a system that uses a laser scanner unit, a Global Positioning System 

(GPS) and an Inertial Measuring Unit (IMU)  to measure three-dimensional positions of surfaces 

from an elevated, dynamic point of view. Many different types of airborne laser scanners exist 

inlcuding: single pulse, multi pulse, full waveform, multispectral and single photon scanners. 

The common ones used for DEM generation and vegetative studies are discrete, waveform and 

mutlispectal lidar (Lohani & Ghosh, 2017).  Pulse laser scanners emit an amplified pulse of light 

at wavelengths of 0.8 to 1.6 µm. Topographic lidar uses wavlengths in the near infrared spectrum 

(~1045 nm) which are reflected by terrestrial objects, and bathymetic lidar applies wavelengths 

in the green spectrum due to its ability to penetrate water (Campbell, 1996). Most laser scanner 

units use a mirror to direct and redirect the laser pulses beneath the aircraft creating an image 

swath. The field of view (FOV) depends on the scan angle and altitude of the airplane. A typcial 

cross-track scanning view can be seen in Figure 2.2 but others are commonly used, such as linear 

scanner (sinusoidal patterns),  rotatating polygon mirrors (curved parrellel lines), palmer scanner 

and a fiber scanners. For all scanner types, due to beam divulgence from the laser to the intended 

 

Figure 2.2. The cross-track scan view of typical lidar scanners. The footprint of the lidar 

beam can also be seen as it impacts the ground. (Shan & Toth, 2018) 
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surface, the footprint of the beam at a flying height of 1000 m can be the size of 30-50 cm. (Shan 

& Toth, 2018). 

2.2.1.1. Discrete Returns 

 

Unlike other lidar methods, discrete return identifies specifc peaks in the power of the 

pulse return (Shan & Toth, 2018). On reflection of the laser pulse various amounts of energy 

make it to the sensor at different times. Once an energy peak is identified, a constant fraction 

dicriminator (typically around 50%) is used to determine the return time of the pulse. This 

location is usually defined as the leading edge of the full-width at the half  maximum (FWHM), 

as seen in Figure 2.3. If the waveform is highly seperable, multiple returns can be recorded. The 

pulsewidth for most discrete lidar during the 2000s was approximatley 7 ns.  

 

 

Figure 2.3. Plot of the return pulses by power and time. The first, second and last return of 

discrete lidar can be seen in the last column. (Shan & Toth, 2018) 
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2.2.1.2. Accuracy Improvements 

 

The positional accuracy of airborne lidar depends on three components: the IMU, GPS 

and the lidar sensor. Before 2007, most of the inaccuracy of airborne lidar was due to the GPS, 

which independently produced an accuracy of 5 cm horizontally and 10 cm vertically (Liu, 

2008). At that time, the inertial measuring unit (IMU), which meaures the attitude, roll, pitch and 

heading of the platform, had an accuracy of a few centimeters (Webster & Dias, 2006) and the 

lidar sensor was as accurate as 2-3 cm (Lemmens, 2007). Combining all of these components 

airborne lidar can yield accuracies of 15 cm root mean square error (RSME) vertically and 20 cm 

RMSE horizontally (CARMS, 2006). However, in the last 10 years lidar technology has seen a 

noticeable increase in these accuracies. 2017 USGS lidar (Riegl LMS-Q680i laser via polygonal 

mirror) has provided vertical accuracies with RMSE and fundamental vertical accuracy (FVA) 

values of 4.9 cm and 9.7 cm respectivley. Since 2011, vertical accurcies have improved by 30%, 

and horizontal accurcies have improved by 71%, comparing 2011 and 2017 USGS lidar 

metatdata. This improvement is in part due to lower flying altitudes (smaller footprint size), 

increasing the density of the pulse fequencies (nominal point spacing) and increases in GPS 

accuracies, which can now be less than 2 cm (Lohani & Ghosh, 2017). The errors in the laser 

scanning can come from individual sensor calibration (~50 mm), lack of synchronization, and 

misalingment between the sensors (Shan & Toth, 2018).  Miscalibrations such as bore-site offset, 

bore-sighting anglar bias and laser beam angular bias cause errors to increase with increased 

elevation and increased look angle. This means the relative accuracy of lidar can be spatially 

dependent and improves with decreases in flying altitude (Figure 2.4). The graph shows that 

single pulse is overall more accurate than multi pulse and that lower altitudes produce better lidar 
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accuracies. The spatial variability of accuracies in the vegetative realm are further discussed in 

section 2.2.1.3 and 2.2.1.3.1. 

 

Another important aspect of lidar is the vertical discrimination, which refers to the ability 

to separate vertical features of individual pulse peaks for multiple returns. The pulse width of 

many discrete-return lidar systems is approximately 7 ns (Shan & Toth, 2018) which corresponds 

to a distance of 2.12 m. Therefore, it is difficult for most lidar scanners to distinguish returns less 

than 2.12 meters apart (Schmid, Hadley, & Wijekoon, 2011). Referring to Optech’s ALTM 

1020, 1210, and 1225 models manufactured from 1993 to 1998, these scanners only had the 

ability to capture two returns. From 2004 to 2006 Optech introduced the ALTM 3100 and 

Gemini which could capture four intensity values and four range returns. These newer generation 

scanners could discriminate returns in the range of 1.5-2.2 m. In 2012 Optech designed the 

ALTM-Orion which could discrminate vertical features at a smaller scale, approximatley 0.8 m 

 

Figure 2.4. Plot of estimated vertical (z) and horizontal (xy) accuracy at one standard 

deviation with respect to flying height for multi pulse in air (MPiA) and single pulse in air 

(SPiA) for the Leica ALS70 airborne lidar scanner. Nadir represents a scan angle of 0 degrees 

and field of view (FOV) edge refers to highest viewing angle. Based on a nominal GNSS 

error of 5 cm (Geosystems, 2011). 
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(Ussyshkin & Theriault, 2011). To put this into perspective, the Leica ALS50 (2003), ALS60 

(2008), and ALS70 (2011) have have vertical discriminations of approximatley 3.5 m. The 

Optech Galaxy leads the industy for minimum target seperation of less than 0.7 m with up to 8 

returns per pulse. The only other way to achieve finer resolution is to record the full waveform.  

2.2.1.3. Accuracy Assessments 

 

 Ground control points (GCPs) usually measured with RTK-GPS  are used to test the 

accuracy of the lidar elevations for a variety of ground cover types. This includes: bare earth, 

forest, shrub, urban and weeds or crops (Carter et al., 2012). Due to the horizontal uncertainty of 

lidar, a triangulated irregular network (TIN) is usually generated using the bare earth point cloud. 

In this case, the interpolated surface of the three lidar points best represents the elevation and is 

tested against the GCPs. The vertical error is calculated as: 

𝑉𝑒𝑟𝑡𝑖𝑐𝑎𝑙 𝐸𝑟𝑟𝑜𝑟 = 𝑍𝑑𝑎𝑡𝑎(𝑖) − 𝑍𝑐ℎ𝑒𝑐𝑘(𝑖)                                                     Eq. 2.1 

where 𝑍𝑑𝑎𝑡𝑎(𝑖) is the vertical coordinate of it the 𝑖𝑡ℎ  checkpoint in the dataset; 𝑍𝑐ℎ𝑒𝑐𝑘(𝑖)  is the 

vertical coordinate of the 𝑖𝑡ℎ  checkpoint in the independent source of higher accuracy; and 𝑖 is an 

integer from 1 to 𝑛:  𝑛 = the number of points being checked (Commitee, 2004).  

According to the American Society for Photogrammetry and Remote Sensing (ASPRS), 

there are three types of errors associated with lidar measurements: blunders, systematic error and 

random error.  Random errors are produced by no known source and cannot be corrected by use 

of standardized adjustments. This type of error is typically normally distributed. On the other 

hand, systematic error follows some sort of pattern and in theory is predictable and can be 

eliminated or reduced. Generally, random error is associated with open terrain, and systematic 

error is generated by the laser’s inability to penetrate vegetation, miscalibrations of equipment or 
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other misinterpretations of terrain surfaces. Blunders are considered an error of huge proportions. 

Statistically, any error greater than three times the standard deviation of the RMSE is considered 

a blunder and should be further analyzed and possibly removed from the dataset.   

When reporting accuracies of lidar datasets, the fundamental vertical accuracy (FVA),  or 

non-vegetated accuracies (NVA), and supplemental accurcies are both assessed. FVA represents 

the error in open terrains with clean surfaces, where there is a high probability that returns have 

hit the ground. This means FVA and NVA are comparable to other datasets. The other acccuracy 

assessment is supplemental, or consolidated, vertical accuracies. They represent error in a variety 

of ground cover types. The supplemental accuracy assessment is highly variable and is not 

comparable to other datasets due to local variations in ground cover. However in the event that 

the FVA test cannot be completed due to the lack of open terrain, a supplemental accuracy report 

must be completed. Both the FVA and supplemental accuracy assessment follow the 95th 

percentile method. This method evaluates RMSE at the 95th percentile, meaning 95 percent of 

the error will less than the calculated value and 5 percent above the specified amount (Flood, 

2004). It is calculated as follows: 

Compute the RMSE: 

 𝑅𝑀𝑆𝐸𝑧 = √
∑(𝑍𝑑𝑎𝑡𝑎(𝑖)−𝑍𝑐ℎ𝑒𝑐𝑘(𝑖))2

𝑛
       Eq. 2.2 

Compute the 95th percentile of accuracy: 

 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦(𝑧) = 1.9600 ∗ 𝑅𝑀𝑆𝐸(𝑧)       Eq. 2.3 

For this equation to be true, it is expected that the NVA and FVA error assesments are normally 

distributed because this error should be random. However, the vegetated accuracy (VA) or 
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supplemental accruacy is less likely to be normally distributed, and Equation 2 may not represent 

the expected error at the 95th percentile. 

2.2.1.3.1. Accuracy in intertidal marshes 

 

Many times lidar DEMs of tidal marsh platforms are mischaracterized as being above the 

mean high water (MHW), which is infeasible for these systems (Kidwell, Dietrich, Hagen, & 

Medeiros, 2017).  According to (C. Wang et al., 2009), there are three main challenges for the 

effective use of lidar in the tidal enviroment: 

1) Marsh areas are covered by dense vegetation, leading of a relatively low chance of 

laser penetration through the canopy to the ground. 

2) The relatively few ground returns cannot be easily separated from vegetation returns 

by sampling the return waveform or by using first and last returns because of the low 

height of the vegetation. As a consequence, the first and last returns of lidar data are 

practically identical (Figure 2.5c). 

3) The inaccuracy introduced by uncertain separation of ground and vegetation returns 

plus the intrinsic instrument inaccuracies may lead to unacceptably large estimation 

errors compared with the typically small topographic relief of intertidal marshes. 
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 A summary of documented marsh error can be seen in Table 2.1. Juncus roemerianus 

and tall Spartina alterniflora had some of the highest errors. It’s hard to justify error trends based 

on sensor type, flying altitude and point spacing because the vegetation structures and lidar 

acquisition attributes vary across the studies.  The Optech Gemini, the newest lidar system of the 

group, had some of the lower error values (Hladik 2012). 

 

Figure 2.5. Schematic waveforms depicting returns from (a) highly reflective flat ground, (b) 

less reflective flat ground, (c) flat ground with low vegetation cover such as tall grass, and (d) 

flat ground with a low but distinct vegetation layer such as a forest under-story. The detection 

threshold is dotted, leading edge timing for the ground peak using 50% constant fraction 

discrimination is dashed, and arrows mark the height of upward biased returns for the 

vegetated areas. (Shan & Toth, 2018) 
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Table 2.1. Summary of lidar error in coastal marshes by author, location, and lidar acquisition details.  

Schmid et al. 2011 RMSE (cm) Location Sensor Altitude (m) Pt. Spacing (m) 

 Open Terrain 9.3 South Carolina ALS50 1400 1.4 

 Navy Base 21.6     

 Folly Beach 4.2     

 Palmetto Island 25.7     

 Sullivan's Island 14.8     

 Belle Hall 45.3     

 OVERALL 23.2     

 Species      

 S. alterniflora 15.6     

 Juncus roemerianus 36.6     

 Borrichia frustescens 14.8     

 Salicornia virginica 11.5     

        
Fernandez et al. 2017 RMSE (cm) Location Sensor Altitude (m) Pt. Spacing (m) 

 Open Terrain 4 Odiel-Tinto Marsh ALS 50 II  1450 1 

 Low Marsh 2 Gulf of Cadiz, SW Multi pulse  

 Mid Marsh 8 Spain 

 High Marsh 15     

 Spartina Marsh 29     

 Overall Site 1 7     

 Overall Site 2 24     
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(table cont’d.) 

 

Hladik et al. 2012 RMSE (cm) Location Sensor Altitude (m) Pt. Spacing (m) 

Open Terrain 10 

Sapelo Island, 

Georgia 

Optech 

Gemini 800 1 

Tall S. alterniflora 31     

Medium S. alternifora 11     

Short S. alterniflora 5     

S. virginica 7     

D. spicata 6     

B. maritima 5     

Salt Pan 4     

J. roemerianus 13     

B. frutescens 15     

Overall 16     

      

NOAA 2011 RMSE (cm) Location Sensor Altitude (m) Pt. Spacing (m) 

Open Terrain 9.21     

Marsh 23.3     
 

 

 

 

 

Hladik et al. 2012 RMSE (cm) Location Sensor Altitude (m) Pt. Spacing (m) 

Open Terrain 10 

Sapelo Island, 

Georgia 

Optech 

Gemini 800 1 

Tall S. alterniflora 31     
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(table cont’d.)

 

Medieros 2015 RMSE (cm) Location Sensor Altitude (m) Pt. Spacing (m)  

Open Terrain   

Apalachicola 

River Marsh     

Marsh 5-m min  65      

        

Buffington 2017 Open Terrain RMSE (cm) Sensor Altitude (m) Pt. Spacing (m)  

San Francisco Bay 2.6                         14.5 

Leica ALS60 

MPiA 2000 1  
CA State Coastal 

Conservancy 4.4 28.5 

Leica ALS50 

Phase II 900 1  

DOGAMI 4.8 25.4 

Leica ALS60 

MPiA 1900 8.6  

       

       
 

 

 

 

 

 

 

 

Table 2-1. (continued)  

 

 

Medieros 2015 RMSE (cm) Location Sensor Altitude (m) Pt. Spacing (m)  
Apalachicola 
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3.    Digital Elevation Model Correction Overview 

 

3.1. Introduction 

 

    High frequency lidar beams lack the ability to penetrate the marsh canopy and capture the 

returns of the bare-earth of the marsh platform. As a result, returns of the canopy and ground 

surface foliage inaccurately represent bare-earth, resulting in a positive bias of DEMs. DEM 

error in coastal marshes is typically spatially variable and is dependent on ecological factors (e.g. 

vegetation type).  The following studies all show a mean, positive bias exists between lidar-

derived DEMs and ground surfaces: Montané & Torres, 2006; Liu, 2008; Schmid et al. 2011; 

Hladik & Alber, 2012; Medeiros et al., 2015. Multiple methods have been engineered and 

implemented to successfully minimize this complication, resulting in lower root mean squared 

error (RMSE) values and a reduction of the positive bias in the DEM. These methods can be 

organized into four categories: vegetation correction factors (Hladik & Alber, 2012), minimum 

bin gridding (Schmid et al., 2011), a biomass model (Medeiros et al., 2015) and a statistical 

correction, otherwise known as Lidar Elevation Adjustment with NDVI (LEAN) (Buffington, 

Dugger, Thorne, & Takekawa, 2016). 

3.2. Minimum Binning 

 

Minimum binning is a simple technique that reduces the error due to the misclassification of 

bare-earth ground points, which translates to a reduction of DEM error.  However, this option is 

only feasible when the lidar point cloud is available. This technique extracts the lowest lidar 

elevation value within a user defined window (i.e. bin resolution) and assigns that value to the 

suitable grid cell (Schmid et al., 2011).  Error reduction can be seen in studies by NOAA (2011) 

and (Schmid et al., 2011), which had a RMSE reduction of 10 cm and 8 cm at bin resolutions of 
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4 m and 6 m, respectively. Note there was a difference in bin resolution for each study.  The 

optimal bin size that reduces the most error is not universal and can depend on the point density 

of the lidar and on the structure and density of vegetation. In fact, NOAA suggests using a 

different bin size for different vegetation types, densities, and heights, but this information is not 

easily obtained. Ideally, the user should determine the optimal size with ground truth data.  

Furthermore, while this technique is a sufficient way to reduce error, it comes at the cost of 

resolution. By assigning one lidar return to a larger grid area (i.e. the bin resolution), the nominal 

point spacing of the lidar point cloud is effectively reduced, and the spatial resolution at which 

the bare-earth can be accurately represented is lowered. Depending on the intended model 

application and available source data, minimum binning may be a good fit for reducing lidar 

error.     

3.3. Vegetative Correction Factors 

 

Since lidar error is a function of vegetation type and structure, it is logical to individually 

correct error based on vegetation species. In this process, a mean error for different cover types is 

determined from ground truth elevations. The mean error is then subtracted from the DEM in 

areas where the cover type has been identified, producing a corrected DEM. Positive results can 

be seen from (Hladik & Alber, 2012; McClure, Liu, Hines, & Ferner, 2016) who reduced the 

RMSE by 6 cm and 11 cm, respectively, and eliminated the mean error (ME) or positive bias.   

The primary complication for this type of adjustment is mapping the species and defining cover 

classes. Accurate species mapping can be accomplished in the field as well as through remote 

sensing (typically supported by in-situ observations). In-situ observations are not only time 

consuming but also require expertise in vegetation species identification. Since vegetative 

characteristics are a function of edaphic factors it is very unlikely one species can be uniformly 
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correct with one adjustment. In the work by Hladik and Alber (2012), they found it necessary to 

use three different height classes for one species, Spartina alterniflora, to achieve an accurate 

elevation adjustment.  Meaning even within a defined species, associated error can be spatially 

dependent because the structure and productivity of the species is also spatially dependent.  

Further error can be introduced by the misclassification of species. In the work by (McClure et 

al., 2016) there was an inability to differentiate certain species remotely whose adjustment factor 

differed significantly. This mistake resulted in incorrect elevation adjustments, producing further 

error in the modified DEM.  

3.4. Biomass Model 

 

Unlike the previous methods, the biomass model developed by (Medeiros et al., 2015) is 

independent of vegetation species. Since this technique is not limited to specific vegetation 

species, errors are not generated from cover misclassifications and corrections may be more 

suitable for areas with complex species compositions and distributions. This independence is 

accomplished by relating estimated aboveground biomass to lidar DEM correction values. A 

variety of remote sensing parameters are tested to derive aboveground biomass values. 

Ultimately, lidar-derived canopy heights, Advance Spaceborne Thermal Emission and Reflection 

Radiometer (ASTER) (Red) and Interferometric synthetic aperture radar (Ifsar) are used as 

independent variables in a multiple variable regression to determine a relationship between 

remote sensing data and log-transformed aboveground biomass sampled in-situ.  The estimated 

aboveground biomass, derived from the remote sensing parameters, is used to independently 

predict lidar-derived DEM error. A relationship between log-transformed aboveground biomass 

and DEM error (verified by RTK-GPS) was also determined. It was found that separating 

biomass estimates into High and Low classes and then using a quartile error adjustment within 
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the classes was best for adjusting the DEM. This adjustment reduced overall RMSE from 0.65 m 

to 0.40 m. It should be noted this error in the original DEM is by far the greatest of published 

error data. The original DEM was derived using the minimum binning technique with a bin 

resolution of 5 m. The amount of time in the field collecting RTK measurements and obtaining 

biomass samples for density analysis are limitations of this method.  

3.5. Statistical Correction 

 

(Buffington et al., 2016) developed the “Lidar Elevation Adjustment with NDVI” (LEAN) 

which statistically corrects lidar error using multispectral imagery. This approach uses high 

resolution normalized difference vegetation index (NDVI) and DEM elevations as independent 

variables in a multiple variable linear equation to predict DEM error (verified by RTK-GPS). 

This approach was applied along the west coast of the United States in 17 different marshes with 

varying vegetation species and tidal conditions. The developed model reduced RMSE values 

from 0.23 to 0.07 m on average for all study sites. Of the techniques to correct DEMs without the 

source data, this is the simplest to apply; the only fieldwork necessary is the RTK survey. 

However, one of the limitations of this method is it does not account for the variability of species 

other than the ones specific to the survey grid. Therefore, extrapolating derived relations to an 

expansive area may challenge this solution. Also, derived error relationships could become weak 

in marshes where the NDVI is not a strong function of elevation (Couvillion & Beck, 2013) or 

error. To apply this method to a wider area with multiple species, multiple surveys must be 

performed for site-specific calibration.     
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4. Methods 

 

4.1. Study Areas 

 

RTK surveys were performed in four different micro-tidal marshes on the Louisiana coast. 

A total of 1331 RTK points were collected: 169 points southeast of Cocodrie; 155 points near the 

mouth of the Pearl River; 624 points in the Big Branch Marsh Wildlife Refuge (“Big Branch”); 

and 463 points on the north side of Elmer’s Island.  The surveys consisted of a range of 

geographic locations, salinities, and intertidal elevations. A variety of different marsh types were 

analyzed, including intermediate, brackish and saline. A map of the survey locations can be seen 

below in Figure 4.1. 

 

 

Figure 4.1. Map of coastal Louisiana showing the four RTK survey locations: Big Branch 

Marsh Wildlife Refuge, Pearl River, Cocodrie, and Elmer’s Island. Base map source: Esri’s 

DigitalGlobe Geoeye Earthstar Geographics. 
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4.1.1. Cocodrie, La Survey 

 

Known as the “Claw” (Figure 4.2A), this salt marsh is located west of Lake Barre in the 

Terrebonne Basin. Terrebonne Basin is an abandoned deltaic lobe of the Teche and  

 

 

Figure 4.2. Imagery of the Cocodrie survey area. Multiple survey grids can be seen in (A) 

and the individual RTK survey points are in green. Map of coastal of Louisiana showing 

RTK location (B). Figure (A) is the portion of Figure (B) contained in the orange box. 
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Mississippi River deltaic plain that was active 3000 to 4000 years ago (F. C. Wang, Lu, & 

Sikora, 1993). This basin experiences some of the highest rates of deterioration in coastal 

Louisiana (Barras et al., 2003). The water levels in this area fluctuate diurnally with mean tide 

range of approximately 35 cm (NOAA, Station ID: 8762075). From 2013 to 2018 the mean 

water level was approximately 0.12 m with respect to NAVD 88, Geoid 12a  (CMRS 0335). This 

station is approximately 7 km from the survey site. The dominant vegetation at the specific 

survey locations is Spartina alterniflora, which is known to be prominent in the lower intertidal 

zone of salt marshes in the Northern Gulf of Mexico (Mckee & Patrick, 1988). The mean 

growing season salinity is approximately 16.40 ppt (CRMS 0355). The elevation of this area is 

spatially dependent, and the slope is very low in the marsh interior, only 0.02 m of rise every 100 

meters. RTK points are oriented north/south and spaced at 20 meter intervals, as seen in Figure 

4.2A. The measured survey elevations, min, max and mean are 0.05 m, 0.59 m and 0.22 m, 

respectively, using NAVD 88 (Geoid 12A) as the reference system.  

4.1.2. Elmer’s Island Survey 

 

 Due to the higher salinities, this area is classified as a saline marsh and the dominant 

vegetation is S. alterniflora (Sasser, Visser et al. 2014) with a mean growing season salinity of 

19.43 ppt (CMRS 0164). However, in recent years with the onset of warmer winters, Avicennia 

germinans (black mangrove) continues to expand throughout this region (Alleman and Hester 

2011). Black mangroves can be seen in the most southeast portion of the RTK survey in Figure 

4.3A. The dominant vegetation slowly transitions from S. alterniflora to black mangroves from 

the northwest to southeast direction. RTK points are spaced approximately 7.5 meters apart as 

seen in Figure 4.3A. 
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Figure 4.3. Imagery of the Elmer’s Island survey area. The survey grids can be seen in (A) 

and the individual RTK points are colored green. Map of coastal of Louisiana showing RTK 

location (B). Figure (A) is the portion of Figure (B) contained in the orange box. 
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4.1.3. Pearl River Survey 

This study area is located in the Lower Pearl River Basin between the East Pearl and 

West Pearl Rivers Figure 4.4B. Seasonal freshwater input from the 

Pearl Rivers highly diversifies vegetation even within a relatively small area.  This basin 

 

 

Figure 4.4. Imagery of the Pearl River survey area. The survey grids can be seen in (A) and 

the individual RTK points are colored green. Figure (A) is the portion of Figure (B) contained 

in the orange box. 
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contains every type of marsh ranging from fresh to saline (C. Sasser et al., 2014). The particular 

area surveyed is classified as saline marsh by the USGS in 2013, but the species present during 

the survey (August 2018) suggest that it has since transitioned to a brackish marsh. The dominant 

species at the time of the survey was the European variety of Roseau cane (Phragmites australis) 

at the marsh edge and Bolboschoenus robustus towards the interior. The mean tidal range for this 

area is approximately 0.35-0.40 m (NOAA, Station ID: 8749704 and 8761305). From October 

2013 to October 2018 the mean water level was approximately 0.17 m with respect to NAVD 88 

(CRMS 3784). This station is approximately 1 km from the survey area.  The mean salinity 

during the growing season is 5.57 ppt (CMRS 3784) but can vary seasonally and bi-monthly 

depending on the outflow of the Pearl Rivers (Figure 4.7) and on the tidal influx from Lake Borgne. 

 

 

 

 

Figure 4.5. Seasonal salinity (blue) of CRMS station 3784 from January 2011 to December 

2018. The average salinity during the growing season is plotted in green. 
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4.1.4. Big Branch Survey 

 

The Big Branch Marsh National Wildlife Refuge is considered an intermediate marsh 

community dominated by Spartina patens and Schoenoplectus americanus (Figure 4.6A). 

 

 

Figure 4.6. Images of the Big Branch survey area. The survey grids can be seen in (A) and 

the individual RTK points are colored green. Map of the east coast of Louisiana near Lake 

Ponchartrain with RTK location (B). Figure (A) is the portion of Figure (B) contained in the 

orange box. 
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The Big Branch Marsh National Wildlife Refuge is considered an intermediate marsh 

community dominated by Spartina patens and Schoenoplectus americanus. The RTK survey 

roughly follows the northern edge of Bayou Lacombe and grid points are spaced every 7.5 

meters (Figure 4.6.) Two smaller grids are located between Bayou Lacombe and Lake 

Ponchartrain and were spaced every 5 meters. The elevations of the survey points range from      

-0.093 m to 0.309 m and the average elevation of the entire data set is 0.154 m, referencing 

NAVD 88. The site is hydrologically connected to Lake Pontchartrain via bayous and tidal 

creeks. Publicly-accessible gauges could not be found within the marsh, but the tides in Lake 

Pontchartrain are diurnal with a mean range of approximately 15 cm. According to the (CRMS 

0006), the mean water level is approximately 0.19 to 0.24 meters with respect to NAVD 88. 

Meteorological activities such as strong, persistent winds blowing across Lake Ponchartrain can 

create large setups and set downs along the shorelines. Further, big rain events can influence the 

water levels and salinities via Bayou Lacombe. For this area the mean salinity during the 

growing season is 3.05 ppt, measured from 2007 to 2018. 

4.2. In-situ data 

 

The following sections present the methods used for all data acquired at the study sites.  

 

4.2.1. Real Time Kinematic Survey 

 

RTK surveys were performed using a Trimble R8 rover provided by LSU’s Center for 

Geoinformatics (C4G). Real time corrections were provided by the Continuously Operating 

Reference Stations (CORS). Uncertainties are in the range of 1.6 cm horizontally and 3.0 cm 

vertically at the 95th percent confidence level (Trimble, 2013). Survey grids were positioned 

manually in Arc Map version 10.5. To create the grids, georeferenced lines were drawn in the 
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preferred location and points were created along those lines at a specified spacing using the Arc 

Map tool “Generate points along lines”. Once saved, the individual points could be viewed, and 

new fields of “Easting” and “Northing” were generated in the attribute table. The x and y 

coordinate of each point was added to the proper field by using the “Calculate Geometry” tool, in 

which the user then has the option to add the coordinate of the dataframe or the source data. All 

RTK points were projected in Louisiana State Plane South FIPS 1702 referencing North 

American Datum 1983 (NAD 83). Once the attribute table contained the necessary data, it was 

exported using the tool “Table to Excel” in Arc Map. In Excel 2013, attributes were aligned in 

tabular form including: ID, Easting, Northing and elevation but lacked the heading. The Excel 

2013 document was saved in CSV format and uploaded to the Trimble controller. In the field, 

survey points could be viewed on the controller with centimeter accuracy and elevations were 

recorded using the “stake point” option. This option directs the operator to the desired point until 

a certain level of horizontal accuracy is obtained. All RTK points were traversed to on foot as 

seen in Figure 4.7.  In order to assure accurate elevation measurements, the “fixed position” 

status was obtained and a 5 second countdown timer was used during the measurement to assure 

steadiness. The elevation measurement was abandoned if the device moved significantly during 

this time period. RTK points were then stored and exported in CSV format. The CSV file was 

uploaded into Arc Map using the “Add XY data” option, where other data could be assessed at 

the individual point’s geolocation. 
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4.2.2. Vegetation Survey 

 

At one point during the research efforts for this thesis there was desire to perform an in-

depth vegetation survey to assess the accuracy of a remote sensing classification (described in 

Section 4.3.6). Due to an unfavorable temporal alignment between the remote sensing data and 

the time period in which a vegetation survey could be performed, this idea was abandoned. 

However, the dominant vegetation types were identified during the RTK survey. Images of the 

vegetation were captured using an iPhone 6. The possible species list was narrowed using the 

U.S. Geological Survey’s (USGS’s) Vegetation types in coastal Louisiana 2013 map (C. Sasser 

et al., 2014) , which breaks down the Louisiana coastline by marsh type and identifies which 

vegetation species are likely to dominate the area. Using USGS’s list, species were searched 

 

Figure 4.7. RTK survey at Big Branch survey site. Photo: M. Foster-Martinez 



35 

 

using (Allain) and compared to the images captured. Vertical measurements of vegetation were 

also obtained in-situ by photographing vegetation referencing marks on the RTK pole. The 

photographs were later analyzed in the lab to determine the vertical measurement.  It should be 

noted, the species type, composition, and distribution of macrophytes present during the RTK 

survey may not represent the same circumstance at the time of the lidar acquisition. 

4.3. Remote Data 

 

4.3.1. Digital elevation models and lidar point clouds (LPCs) 

 

A multitude of DEMs and various lidar point cloud metrics (i.e. minimum and maximum 

points) were used for assessing DEM error and correction. Three lidar datasets are used in this 

study: 2017 USGS Lidar: Upper Delta Plain, LA; 2013 USGS Lidar: Jean Lafitte, LA; and 2015 

USGS South Terrebonne, LA. These correspond with the Big Branch and Pearl River sites, 

Elmer’s Island sites, and the Cocodrie site, respectively. All point clouds and DEM data were 

gathered using the NOAA: Data Access Viewer, except for the 2015 USGS: South Terrebonne, 

LA, which was found on an USGS affiliated website. NOAA conveniently provides an option to 

download the published DEM or derive rasters using other LPC metrics or other interpolation 

techniques. Further, the user can define the data class in which the raster is generated, “all 

points”, “ground points” etc. The final product is then emailed to the user.  

The National Map Data viewer (similar to USGS’s Earth Explorer) is a service provided 

by the 3D Elevation Program (3DEP).  The USGS manages the 3DEP program with the intent to 

gather and provide high quality topographic data across the United States. This program is the 

source for future elevation data, such as LPCs and Ifsar, and incorporates the derived DEM into 
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the National Elevation Dataset (NED). The USGS also provides a website map interface for data 

downloading the lidar-derived DEMs and source data (i.e. LPCs).  

4.3.2. 2017 USGS Lidar and DEM: Upper Delta Plain, La 

 

This airborne lidar was flown between January 2017 and April 2017 using a Riegl LMS-

Q680i lidar system at documented low water level, no snow conditions. The relative accuracy of 

the lidar acquisition was ≤ 6 cm within individual swaths and ≤ 8 cm RMSE within swath 

overlap with a maximum difference of ± 16 cm. The LPC was shot with a nominal point spacing 

of 0.7 meters. To meet the requirements of the ASPRS, a total of 63 ground control points were 

used to calibrate the elevations in areas where ground elevations were known. A total of 179 

independent accuracy checkpoints, 101 Bare Ground/Low Grass land covers (101 Non-vegetated 

area points), 67 in Tall Weeds/Brush categories, and 11 in Woods category (78 VVA points) 

were used to test the accuracy of the lidar dataset.  The reported vertical accuracy of the lidar 

data is approximately 4.9 cm RMSE with a 95th percent confidence level of 9.7 cm for non-

vegetated areas. The horizontal accuracy was untested, but a theoretical horizontal accuracy of 

26 cm was provided in the metadata (Partners, 2017). 

The 2017 USGS Lidar DEM: Upper Delta Plain, LA was derived using the Triangulated 

Irregular Network (TIN) technique. This technique creates a mathematical triangulated surface 

between lidar points in which a z value for all (x, y) values is known. The conversion of the TIN 

to grid format was not specified but was resampled into 1 meter cells. When converting the 

surface to a grid, the vertical RMSE in open terrain increased to 5.5 cm, and the horizontal 

RMSE increased to approximately 26 cm.   

4.3.3. 2013 USGS Lidar and DEM: Jean Lafitte and Barataria 
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Aerial lidar data was collected using an ALS60 Sensor. ALS60 is a discrete return 

topographic lidar mapping system manufactured by Leica Geosystems. Lidar data collected for 

the Jean Lafitte survey area has a nominal pulse spacing of 1 meter. The processed data includes 

up to 4 discrete returns per pulse, along with intensity values for each return. Collection began on 

March 5, 2013, and was completed on March 8, 2013. The tested vertical accuracy after creating 

the TIN was 6.2 cm RMSE and 12.2 cm at the 95th percent confidence level for non-vegetated 

areas. The horizontal accuracy is estimated to be 42 cm RMSE but was not tested. In order to 

have consistent DEMs throughout this study, the Jean Lafitte LPC was filtered for bare-earth 

points and surfaced using the TIN technique. The TIN was then converted to 1 meter grid DEM. 

Other rasters were created using average, minimum and maximum binning techniques at 

resolutions of 2.5, 5.0, 7.5 and 10 m. All data was processed using the NOAA Data Access 

Viewer (Partners, 2013). 

4.3.4. 2015 USGS lidar: South Terrebonne, LA 

 

Airborne lidar was collected using a Leica ALS70-HP. Similar to the ALS50, ALS70-HP 

is produced by Leica Geosystems and is also a discrete return topographic lidar system. The 

acquisition mission began February 13, 2015 at normal water levels, no snow, and leaf off 

conditions.  The lidar was shot at a flying altitude of approximately 1600 meters with a nominal 

point spacing of 0.5 m. The tested vertical accuracy is 7.2 cm RMSE and 15.2 cm at the 95th 

percent confidence level for non-vegetated areas. The horizontal accuracy was untested. The 

LPC was downloaded from USGS’s NED viewer. A LAS dataset was created in Arc Map using 

the “Create LAS Dataset” tool. The “LAS Dataset to TIN” tool was then used to convert the 

point file into a surface. The TIN was converted to a raster using the “TIN to Raster” tool using 

linear interpolation at a grid size 1 m. Other rasters were created using the “LAS to Raster” tool 
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by implementing average, minimum and maximum binning techniques at resolutions of 2.5, 5.0, 

7.5 and 10 meters (USGS, 2016). 

4.3.5. National Agriculture Imagery Program  

 

The National Agriculture Imagery Program (NAIP) acquires aerial imagery during the 

agricultural growing seasons in the continental US. NAIP is administered by the USDA's Farm 

Service Agency (FSA) through the Aerial Photography Field Office in Salt Lake City. NAIP 

imagery is acquired at a one-meter ground sample distance with a horizontal accuracy that 

matches within six meters of photo-identifiable ground control points. These ground control 

points are used to inspect the image. Additionally, tiles are inspected for horizontal accuracy and 

tonal quality. Since 2007, a near infrared option has been offered in addition to the red, blue, and 

green bands. Four band imagery is available in Louisiana for the years: 2010, 2013, 2015, and 

2017, which can be downloaded via the USGS’s Earth Explorer (USGS).  

The NAIP imagery is atmospherically corrected using the dark object subtraction (DOS) 

method. The goal of this method is to eliminate background noise the sensor encounters by 

scaling digital number to a no return value (Gilmore, Saleem, & Dewan, 2015). This technique 

subtracts the minimum reflection value of each band for all pixels, therefore all minimum pixel 

values are equal to zero. A schematic of the DOS technique can be seen in Figure 4.8 and was 

implemented using ERDAS Imagine 2018. The initial file is the JPEG 2000 file downloaded 

from Earth Explorer. The original image is split into the four band components, and a subtraction 

function is implemented to reduce the minimum value of the pixels for each band to zero. The 

third line is the calculated image of each band and is stored as temporary file. A stack layer 

function is performed on the set of temporary files.  The stack layers function combines all the 

bands into the new image, similar to the original JPEG 2000 file.  
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The produced file is used to calculate NDVI. The NDVI raster is created using the NDVI 

function in ERDAS Imagine 2018, which uses the general formula: 

𝑁𝐷𝑉𝐼 =
𝑁𝑒𝑎𝑟 𝐼𝑛𝑓𝑟𝑎𝑟𝑒𝑑−𝑅𝐸𝐷

𝑁𝑒𝑎𝑟 𝐼𝑛𝑓𝑟𝑎𝑟𝑒𝑑+𝑅𝐸𝐷
       Eq. 4.1 

Where Near Infrared and RED refer to the band of the image. The raster is then reprojected to 

Louisiana State Plane South FIPS 1702 using the “Reproject” tool in ERDAS Imagine and 

 

Figure 4.8.  Schematic of the Dark Object Subtraction technique performed on the NAIP 

imagery. 
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exported to Arc Map.   

4.3.6. National Agriculture Imagery Program Object Based Classification 

 

An object based unsupervised classification was performed in ERDAS Imagine 2018 

using the k-means approach. This is a clustering algorithm that needs no training data and finds 

an underlying structure between pixels by organizing image pixels into classes with spectrally 

similar characteristics (Duda & Canty, 2002). All four NAIP spectral bands were used as inputs 

for the clustering algorithm, and the number of clusters was set to 10. The classification was 

calculated for 10 iterations to determine a final grouping. Once the raster was created it was re-

projected to Louisiana State Plane South FIPS 1702 and exported to Arc Map. NAIP imagery is 

captured at different times of the day, causing there to be different levels of illumination between 

tiles. This difference results in varying digital number or spectral responses between images. In 

order to expand classification beyond tiles, DNs must be comparable. This is a major 

complication for image classification. In this work, classification remained within the tile so 

adjusting or matching image’s histograms was not necessary. 

4.3.7. European Space Agency Sentinel 2 Imagery 

 

Sentinel 2 is a European, wide-swath, high-resolution, multi-spectral imaging mission. 

Sentinel 2 consists of twin satellites flying in the same orbit but phased at 180 degrees. This was 

designed with the intent to provide a high revisit frequency of 5 days at the equator. Utilizing a 

push broom design, Sentinel 2a and 2b carry a multispectral optical sensor that samples 13 

spectral bands: four bands at 10 m, six bands at 20 m, and three bands at 60 m spatial resolution 

at swath width of 290 km. One of the unique advantages of Sentinel 2 is the three vegetation red 

edge bands. These bands aid the overall goal of Sentinel 2 like many of the other Copernicus 
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missions, which is to provide timely information for land cover/change classification, 

atmospheric correction and cloud/snow separation (Martimor et al., 2007). 

  Sentinel 2 level 1C data is available on USGS’s Earth Explorer. Level 1C data includes 

the top of atmosphere (TOA) reflections with applied radiometric and geometric corrections. 

(Drusch, Del Bello et al. 2012). Sen2Cor is applied to all images for atmospheric correction. 

Sen2Cor is an image based atmospheric correction approach that uses a semi-empirical algorithm 

that integrates image-based retrievals with Look-Up tables from the library of radiation transfer 

(LibRadtran) model to remove atmospheric effects from multi spectral images (Martins, Barbosa 

et al. 2017). The correction is performed using the ESA provided Sentinel toolbox which 

includes the Sen2Cor processor for level 1C data. Once corrected, the individual bands were 

imported into ERDAS Imagine, where a “Stack Layer” function combines all bands into one 

image of multiple layers. NDVI was calculated using the NDVI function in ERDAS Imagine. 

The imagery was then reprojected to Louisiana State Plane South FIPS 1702 using the 

“Reproject” tool. 

4.4. Data Organization and Analyzation 

 

All imagery derived files, DEMs, and LPC derived metrics were delivered in raster format 

and uploaded to Arc Map. Vector sets were created using the “Extract multi values to points” 

tool using the RTK shapefile. This tool extracts pixel values from the raster in the exact location 

of the point. The “Table to Excel” tool was used to export the vectors. Once the vectors were in 

“.xlsx” format the shapefiles and their attributes could be viewed, inspected and edited to delete 

incorrect or erroneous data points caused by RTK user error. RTK values beyond the 95th 

percentile were inspected and located in Arc Map to justify deletion.  A new column named 

“DEM error” was calculated by subtracting the RTK elevation value from the extracted DEM 
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value. Other relations between independent variables were plotted and coefficients of 

determinations were calculated in Excel 2013. 

The vector sets were imported into R-Studio Version 3.4.1, where error prediction 

models could trained and tested. Two regression types were used to create error prediction 

models: multi variable linear regression and random forest regression. The linear regression 

model, which was used for the LEAN method (section 3.5), was built using 100% of the vector 

set. Model coefficients were calculated by calling the linear model function “lm ()” in R-Studio 

Version 3.4.0. The regression summary report shows which independent variables are deemed 

significant. However, similar to the published study (Buffington 2017) all coefficients were 

copied back into Excel 2013 to predict error for a separate subset of data near the survey 

location. Most of time variables were deemed insignificant due to multicollinearity, but still 

produced a significant model.   

Random forest regression is an ensemble learning method in which decision trees are 

grown and bagged to determine an average prediction value (Liaw & Wiener, 2002). Each 

individual tree decision is grown using a randomly selected subset of the dataset.  The individual 

nodes are then split based on the best split between a random subset of independent variables 

(Breiman, 2001). This approach is advantageous because it’s not typically susceptible to 

overfitting.  In order to use random forest functions in R-studio, two packages were downloaded, 

“Random Forest” and “caret”. The random forest model was built using the “randomforest ()” 

function in R-studio. This function allows the user to tune the model using a variety of advanced 

options. However, the only adjustment implemented was changing the number of trees. This 

number can be optimized by simply plotting the random forest model, “plot(model)”. When 

building the model the “set.seed()” function was used to ensure the same random numbers 
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selected for each training, making the models comparable. Many different combinations of 

independent variables were used to build a model that explains the highest percentage of 

variance. The importance of each variable in the regression was assessed using the “ImpVar ()” 

function. Once the model was trained it was applied to a separate dataset using the “predict ()" 

function, in which the random forest model predicts error based on the combination of decision 

trees created from the training. 

To determine the performance and transferability of the error calculation, a theoretical 

DEM at each RTK point was created by subtracting the predicted error from the original DEM. 

A second DEM error was computed by subtracting the RTK elevation from the new DEM. New 

error statistics were calculated using the new DEM error which was then compared to the 

original DEM error to determine a percent improvement. 
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5. Results 

 

5.1. Big Branch Marsh National Wildlife Refuge 

 

 

 

 

Figure 5.1. RTK elevation (A) and error (B) visualization of the Big Branch RTK survey. 

Error is calculated by subtracting the RTK elevation value from the DEM. Color codes 

distinguish six natural breaks in the data. 
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At Big Branch Marsh Wildlife Refuge (referred to as “Big Branch” herein), an intermediate 

marsh, the RTK measurements of elevation ranged from -0.09 to 0.14 m (NAVD88) (Figure 

5.1A). The DEM error ranges from -0.39 to 0.59 meters (NAVD88) with a few DEM elevations 

 below the RTK measurements (B). However, the error statistics (Table 5.1), specifically the 

mean error of 0.11 cm, indicate that the majority of the DEM is positively biased. This positive 

bias is further confirmed by comparing the MAE to the ME (both 11 cm). The RMSE of the 

entire survey is 0.13 m, which is 0.08 m greater than the documented RMSE of the entire lidar 

dataset. 

 

The error patterns are spatially variable, but there are certain zones of the survey in which 

error is beyond the 3rd quartile of the error distribution. Errors of these magnitudes can be found 

in the southwest portion of the grid that’s north of Bayou Lacombe. This pattern is also found in 

the most southern survey section just north of the beach area (warmer colors in Figure 5.1B).   In 

order to quantify spatial relations of error with respect to relative elevation, error is plotted with 

respect to RTK elevation (Figure 5.2). Overall, there is an inverse relation between error and 

RTK elevation; the R-squared value is 0.1045 using a linear least squares regression (LLS). 

Upon further inspection, there seem to be two patterns in the scatter plot. Particularly between 

the lower elevations in the range of 0.0 m to 0.15 m, the higher-error data roughly follows a 

slope of a -1:1 line with respect to elevation.     

 Table 5.1. Summary of the error found at the Big Branch survey area, calculated as mean 

error (ME), mean absolute error (MAE) and root mean square error (RMSE).   

DEM ME (m) MAE (m) RMSE (m) 
1st 

Quart. 

3rd 

Quart. 

2017 USGS: Upper Delta Plain, LA  0.11 0.11 0.13 0.06 0.14 
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In Figure 5.3  error is plotted with respect to NDVI. On the whole, there is no correlation 

between NDVI and error at this site, receiving an R-squared value of 0.00005 (LLS) with a 

slightly positive relation. The bulk of the RTK data points are in the NDVI value range from 0.3 

to 0.4. Peak error occurs at an NDVI value of 0.34, and errors decrease in the positive and 

negative directions from the peak value. The lowest (i.e. most negative) error corresponds with 

an NDVI value of 0.425.  

 

Figure 5.2. Plot showing DEM error (m) versus measured RTK elevation at Big Branch (most 

northern grid (Figure 5.2A), fitted with a linear least squares (LLS) trend line and sloped 1:-1 

line (green). 
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In order to understand the distribution of biomass with respect to relative elevation, NDVI is 

plotted against RTK elevation (Figure 5.4). There is a positive relation between RTK elevation 

and NDVI, receiving an R-squared value of 0.1118 (LLS). Since NDVI roughly corresponds to 

chlorophyll levels, chlorophyll increases with increased relative elevation. Two NDVI values are 

below 0 with respect to RTK elevation. These pixels were examined and the low NDVI values 

are due to spectral mixing between the water and vegetative edge.  

 

Figure 5.3. DEM error (m) versus NAIP NDVI at Big Branch, fitted with a linear least 

squares (LLS) trend line. 
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5.2. Elmer’s Island 

 

5.2.1. Elmer’s Island Survey 1 

 

The measured RTK elevations taken at Elmer’s Island were compared to the 2013 USGS: 

Barataria, LA lidar-derived DEM (Figure 5.5). The DEM errors in this saline marsh are spatially 

variable ranging from -0.08 to 0.33 m. Errors beyond the 3rd quartile are located along the 

southwest edge, near the large canal, and in the north portion of the south east edge. This latter 

zone is a transition between Spartina alternifora and Avicenna germinans. Smaller systematic 

errors and errors within the random range can be found in the interior sections between the ridges 

found at the water’s edge. The mean error and mean absolute error are both approximately 0.10 

cm (Table 5.2), meaning most of the error is greater than zero. The RMSE for this dataset is 12 

cm, nearly double the given RMSE of the lidar dataset, a value of 0.062 m. Unlike the 

 

Figure 5.4. NAIP 2017 NDVI versus measured RTK elevation (m, NAVD88) at Big Branch, 

fitted with a linear least squares (LLS) trend line. 
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intermediate marsh, a relation between NDVI and error exists, receiving an R-squared value of 

0.2856 (Figure 5.6). NDVI values range from -0.58 to 0.48, and the highest errors are associated

 

with high NDVI values, giving a positive relation. A large bulk of NDVI values are negative, 

 

 

Figure 5.5. Visualization of RTK elevation (m) (A) and DEM error (B) at Elmer’s Island 

survey 1. Color codes distinguish six natural breaks in the data. 

A 
 

A 
 

A 
 

A 
 

A 
 

A 
 

A 
 

A 
 

A 
 

A 
 

A 

B 
 

B 
 

B 
 

B 
 

B 
 

B 
 

B 



50 

 

which roughly correspond to lower errors.  Low NDVI values are abnormal for vegetation. The 

low NDVI values are found in areas of sparse vegetation where mud is exposed and also in areas 

near the vegetation edge and water where spectral mixing has occurred.  Overall, the relationship 

between these two variables supports the use of NDVI as a predictor variable with the addition of 

other independent variables to calculate error in this marsh type.  

  

A strong relation between NDVI and RTK elevation also exists, receiving a coefficient of 

determination of 0.3179 (Figure 5.7). The positive relationship inherently shows low NDVI 

Table 5.2 Summary of the error found at the Elmer’s Island survey area, error statistics 

calculated as mean error (ME), mean absolute error (MAE) and root mean square error 

(RMSE).   

DEM ME (m) MAE (m) RMSE (m) 
1st Quart. 

(m) 
3rd Quart. 

(m) 

2013 USGS: Barataria, LA  0.1 0.1 0.12 0.05 0.14 

 

 

Figure 5.6.  Plot showing DEM error (m) versus NAIP NDVI at the Elmer’s Island survey, 

fitted with a linear least squares (LLS) trend line. 
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values corresponding to lower elevations and high NDVI values corresponding to higher 

elevations. As one approaches the higher elevations from 0.2 to 0.3 meters, the relation between 

NDVI and elevation becomes even tighter. It’s interesting to note that the NDVI values of 

Spartina alterniflora and Avincennia germinans, as a whole, respond linearly with respect to 

elevation versus a piecewise response as one might have expected. Further, below the elevation 

of 0.07 meters where the NDVI values are equally positive and negative, errors approach the 75th 

percentile, averaging 0.138 m.  

 

It is interesting to note that despite error and NDVI having a significant correlation and 

NDVI with respect elevation having a significant correlation, the relationship between RTK 

elevation and error is does not translate (Figure 5.8). Even though peak error value is seen at the 

 

Figure 5.7. NAIP 2013 NDVI versus measured RTK elevation (m NAVD88) at Elmer’s 

Island, fitted with a linear least squares (LLS) trend line for all points. Points are color coded 

based on the range of error associated with the RTK point. 

R² = 0.3179

-0.5

-0.3

-0.1

0.1

0.3

0.5

0.7

-0.1 -0.05 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35

N
A

IP
 N

D
V

I

RTK Elevation (m) (NAVD 88)

-0.07-0.00

0.01-0.05

0.06-0.09

0.10-0.14

0.15-0.20

0.21-0.34

Error (m)



52 

 

higher elevations, there is barely a positive relationship between the two, receiving an R-squared 

value of 0.0085. Below the elevation of 0.07 meters where the NDVI values are equally positive 

and negative, errors approach the 75th percentile, averaging 0.138 m (Figure 5.8).This suggest a 

factor other than biomass is causing the DEM to be positively biased.  

 

5.2.2. CPRA Survey 

The CPRA survey is located in a similar marsh to the Elmer’s survey, however the error 

range extends from -1.0 to 0.90 m (Figure 5.9). This range is much larger than Elmer’s Island 

survey 1. The error statistics also vary; the mean absolute error is 0.19 m (Table 5.3), which is 2 

cm larger than the mean error. This difference indicates there is some negative error, but overall 

the DEM is positively biased. The RMSE of the extracted dataset is 0.25 m, which is over 4 

times higher than the RMSE documented by the lidar dataset. Despite using the same DEM as 

the Elmer’s Island calculations, error is nearly doubled for all statistical measures. A more 

 

Figure 5.8. Plot showing DEM error (m) versus measured RTK elevation at Elmer’s Island, 

fitted with a linear least squares (LLS) trend line. 
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rigorous breakdown of this error can be seen in the next section. 

 

Figure 5.9. RTK elevation (A) and error (B) visualization of a part of the 2017 CPRA RTK 

survey at Elmer’s Island. Error is calculated by subtracting the RTK elevation value from the 

DEM. Color codes distinguish seven natural breaks in the data. 
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5.2.3. Elmer’s Island Classification Map 

 

The CPRA survey area was classified into 10 different ground cover classes (Figure 5.10). 

The separation of RTK points by class was performed so error statistics may be more 

comparable to Elmer’s Island survey 1 (Table 5.4). The vegetation classes include classes 1, 2, 3, 

5, and 8. These determinations were based on their proximity to marsh areas. Classes 4, 6, 7 and 

9 mostly represent water pixels or wet pixels, and class 10 represents beach sand, road and 

buildings. It can be seen that some of the water pixels are unclassified (black). Classes 3 and 5 

mostly represent marsh cover and class 8 represents black mangrove cover. Classes 1 and 2 are 

mostly found at the water’s edge or in small ponds of interior marsh and mostly likely represent 

spectrally mixed pixels of water, mud and vegetation, and therefore, are not pure vegetation 

classes. Seen in Table 4, the error statistics of classes 1 and 2 are very similar, with RMSE 

values of 0.34 m and 0.31 m, respectively. RTK points classified as classes 1 and 2 also have 

very similar mean elevations of -0.03 and 0.00 m, respectively.  Class 3 and 5 have similar error 

Table 5.3. Summary of the error found at the Elmer’s Island in the CPRA survey area, 

calculated as mean error (ME), mean absolute error (MAE) and root mean square error 

(RMSE).   

DEM ME (m) MAE (m) RMSE (m) 
1st Quart. 

(m) 

3rd Quart. 

(m) 

2013 USGS: Jean Lafitte, LA  0.17 0.19 0.25 0.06 0.27 
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statistics with mean errors of approximately 0.15 and 0.17 m and mean absolute errors of 0.18 

and 0.18 m, respectively. Although it was not verified in-situ, inspection of the imagery suggests 

class 3 and 5 mostly represent various degrees of Spartina alterniflora, which is the dominant 

vegetation found in the Elmer’s Island survey 1.  The mean elevations for class 3 and 5 are 0.12 

 

Figure 5.10. A 10 class land cover classification map of the 2017 CPRA RTK survey area. 

The marsh and mangrove classes are associated with classes 1, 2, 3, 5 and 8. 

Table 5.4. Summary of the error found at the Elmer’s Island survey area by land cover class. 

Error statistics are calculated as mean error (ME), mean absolute error (MAE) and root mean 

square error (RMSE). Mean RTK elevation calculated within each individual class.    

Error Statistic Class 1 Class 2 Class 3 Class 5 Class 8 

ME (m) 0.23 0.19 0.15 0.17 0.19 

MAE (m) 0.25 0.24 0.18 0.18 0.22 

RMSE (m) 0.34 0.31 0.25 0.23 0.29 

Mean RTK Elevation (m) -0.03 0.00 0.12 0.17 0.33 
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and 0.17 m, respectively. Despite being able to separate error statistics and elevations of RTK 

points, the classification map is not tested for accuracy against a target cover. The classification 

map merely gives insight to the performance of a broad correction technique and could possibly 

be used as a filter for DEM correction. 

5.3. Cocodrie, LA Survey 

 

The results from the RTK survey in a saline marsh in Cocodrie, LA, were compared to the 

latest DEM of the area (2015 USGS: LA South Terrebonne) and an older DEM (2011 USGS: LA 

Region 1). The DEM error is spatially variable and ranges from -0.15 to 0.17 m (Figure 5.11B). 

By zone, the DEM extracted at the furthest north grid consistently over predicts bare earth 

elevation, and the RTK elevations in this area were consistently lower than the other RTK points 

(Figure 5.11A), approximately 0.18 m. High error can also be found along the ridges, where this 

a slight increase in elevation. When comparing the two DEMs, the error statistics of the 2011 

DEM are much larger than the 2015 statistics, with RMSE values of 0.24 and 0.07 m, 

respectively (Table 5.5). The RMSE values for the 2011 and 2015 lidar datasets are reported as 

0.125 and 0.08 meters in the open terrain, which is 1.92 and 0.93 times less than the RMSE 

values derived from the survey. For both datasets the mean error and mean absolute error are 

nearly identical, suggesting most of the error is above zero and the DEM is positively offset. 
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Figure 5.11. RTK elevation (A) and error (B) visualization of the 2017 RTK survey near 

Cocodrie, La. Error is calculated by subtracting the RTK elevation value from the DEM 

(2015 USGS: LA South Terrebonne, LA). Color codes distinguish six natural breaks in the 

data. 

 

Table 5.5. Summary of the error found at the Cocodrie, LA Island survey area, calculated as 

mean error (ME), mean absolute error (MAE) and root mean square error (RMSE).   

DEM 
ME 

(m) 

MAE 

(m) 

RMSE 

(m) 

1st Quart. 

(m) 

3rd Quart. 

(m)  

2011 USGS: LA Region 1  0.2 0.2 0.24 0.14 0.28 

2015 USGS: LA South Terrebonne  0.03 0.04 0.07 0.006 0.07 
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The NAIP NDVI values from 2015 and 2011 are plotted with respect to RTK elevation in 

Figure 5.12.  As seen in the graph, the NDVI derived from the 2015 NAIP imagery linearly 

correlates to elevation more than the 2011 NAIP imagery, explaining 42% of the variance. 

Generally, the 2015 NDVI increases approaching higher elevations. The bulk of the 2015 NDVI 

ranges from 0.2 to 0.4 with some extreme values breaching 0.5 at the higher elevations. On the 

other hand, RTK elevation only explains 6% of the 2011 NAIP NDVI variance and has barely 

positive relationship. Another notable difference between the NDVI datasets is the variability. 

Comparing the NDVIs from 2011 and 2015, the variances are 0.003 and 0.018, respectively.  

 

 Similar to Big Branch, DEM error in the 2015 USGS: LA South Terrebonne DEM 

generally decreases with increase elevation, receiving an R-squared value of 0.169 (Figure 5.13). 

 

Figure 5.12. DEM error (m) versus 2011 and 2015 NAIP NDVI at the Cocodrie, LA survey 

site, fitted with a linear least squares (LLS) trend line. 
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Most of the RTK survey is performed in the range of 0.2 to 0.3 m, and errors range from -0.07 to 

0.13 m. From elevations of 0 to 0.2 m, error is above average and is positive.  

 

There is nearly no correlation between DEM error and 2015 NDVI and NDVI only 

explains 2% of the variance in error (Figure 5.14). Peak error occurs at an NDVI value of 

approximately 0.42, and most extreme negative errors occur in the range of 0.3 to 0.6. It is likely 

there are sources of error other than systematic vegetation offset. In this survey location, without 

a different data filter, it may not be possible to use NDVI as a predictor for DEM error, 

especially without other high resolution independent variables.  

 

Figure 5.13. DEM error (m) versus measured 2015 RTK elevation at Cocodrie, La. Data is 

fitted with a linear least squares (LLS) trend line. 
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5.4. Pearl River, LA Survey 

 

DEM error at the Pearl River survey site does not show a clear spatial pattern and error 

ranges from -0.004 to 0.45 m (Figure 5.15). The imagery in Figure 5.15does not represent the 

same vegetative conditions of the time of the lidar acquisition, but the variety of colors and 

textures suggest this area has complex vegetative patterns which may result in complex error 

distributions.  Larger errors are found at the south side of the survey grid 20 meters beyond the 

bank edge. Traversing inland, errors are less extreme but consistently stay in the range of 0.10 to 

0.29 m. The mean error and  mean absolute error are nearly identical, a value of 0.11 m, as only 

4 points contained negative errors (Table 5.6). The root mean square error is 0.14 m, which is 2.9 

times higher than the RMSE of the original lidar data set, a value of 0.049 m. 

 

Figure 5.14. Plot showing 2015 DEM error (m) versus 2015 NAIP NDVI at the Cocodrie, La 

survey, fitted with a linear least squares (LLS) trend line. 
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Figure 5.15. RTK elevation (left) and error (right) visualization of the 2018 RTK survey near 

Pearl River, La. Error is calculated by subtracting the RTK elevation value from the DEM. 

Color codes distinguish six natural breaks in the data. 

  

Table 5.6. Summary of the error found at the Pearl River, La Island survey. Error statistics are 

calculated as mean error (ME), mean absolute error (MAE) and root mean square error 

(RMSE).   

DEM ME (m) MAE (m) RMSE (m) 
1st Quart. 

(m) 

3rd Quart. 

(m) 

2017 USGS: Upper Delta Plain, LA  0.11 0.11 0.14 0.05 0.16 
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The majority of the survey occurs in vegetation whose NDVI values range from 0.4 to 0.7. 

Unlike the Elmer’s Island survey, NAIP NDVIs do not explain very much variance with respect 

to error (Figure 5.16 and Figure 5.17). However, the 2016 NAIP NDVI outperforms the 2017 

NAIP NDVI, and 10% of the variation is explained compared to 0.4% by the 2017 NAIP. 

Referencing the NAIP 2016 data, a positive relation can be found between NDVI and error. The 

peak error value occurs at an NDVI value of approximately 0.75, and error values decrease on 

average approaching the lower NDVI values.  

 

Figure 5.16. Scatter plot showing DEM error (m) at the Pearl River, La survey area versus 

2016 NAIP NDVI. Data is fitted with a linear least squares (LLS) trend line. 
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In this intermediate marsh, RTK elevation explains 36% of the variance in the 2016 NAIP 

NDVI. On the other hand, 2018 RTK elevations only explains 22% of the variation in the 2017 

NAIP NDVI (Figure 5.18). On average for both datasets, NDVI values of 0.4 and 0.68 

correspond to elevations of 0.15 and 0.4 m, respectively. The variance of NDVI for 2016 and 

2017 is similar with values of 0.015 and 0.017 m2, respectively, using the entire dataset.  At 

lower elevations the variance is 0.16 and 0.18 m2. This variance is larger than variance of the 

entire dataset and much higher than the variance at the higher elevations, values of 0.005 and 

0.01 m2, respectively.    

 

Figure 5.17. Scatter plot showing DEM error (m) at the Pearl River, La survey area versus 

2017 NAIP NDVI. Data is fitted with a linear least squares (LLS) trend line. 
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 As expected from the NDVI and error plots, the error and elevation relationships for this 

site are complex. Figure 5.19 plots error with respect to RTK elevation and shows a positive 

correlation exists, receiving an R-squared value of 0.12. Peak error occurs at an elevation of 0.39 

m. Errors in the range of 0.3 to 0.44 m are consistently above 0.10 m and average 0.16 m which 

is greater the average for the dataset. Error below 0.3 m elevation is within the random error 

range but also contains points of high error.   

 

 

 

 

 

 

Figure 5.18. Scatter plot demonstrating the relation between 2016 NAIP NDVI (m) and 

measured RTK elevation (m) referencing NAVD 88 at the Pearl River survey site. Data is 

fitted with a linear least squares (LLS) trend line. 
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Figure 5.19. Scatter plot showing DEM error (m) versus measured RTK elevation at Pearl 

River, La. Data is fitted with a linear least squares (LLS) trend line. 
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6. Digital Elevation Model Correction 

 

Systematic errors due to vegetation requires DEMs to be improved for accurate modeling 

results. As lidar accuracies have improved in both the vertical and horizontal directions, full 

corrections have become more achievable. This next chapter will apply three methods of DEM 

correction. First is optimal minimum binning; this method is the simplest and most user-friendly 

correction. Second is the LEAN method (discussed in Chapter 3), and the last method is a 

random forest error prediction model, which uses combinations of imagery-derived NDVI and 

lidar-derived metrics.  

6.1. Optimal Minimum Binning 

 

As discussed in Chapter 3.1, minimum binning requires a user defined grid size. In this 

work the target grid size is the resolution in which the root mean square error (RMSE) and/or 

absolute mean error is most reduced. The target grid size does not correspond to the optimal 

resolution of the DEM for a particular model, but rather, it is based only on the accuracy 

assessment with respect to the RTK measurements. Four different grid sizes were evaluated for 

each survey location, 2.5 m, 5 m, 7.5 m and 10 m. It is possible the most optimal grid size lies 

between these resolution but the differences are most likely minimal. Box and whiskers plots of 

the calculated error statistics for each minimum binning resolution at each survey site can be 

seen in Figures 6-1, 2, 3, 4 and Tables 6-1, 2, 3, 4.  
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6.1.1. Big Branch Wildlife Refuge 

 

The optimal bin size at Big Branch is approximately 7.5 m. When using this resolution 

the positive bias (ME) is reduced to -0.01 m and the MAE is reduced to 0.04 m. The RMSE is 

reduced from 0.13 m to 0.05 m, which is a 62% improvement. However, as the user-defined 

window increases (7.5 and 10 m) more extreme negative and positive values occur (Figure 6.1). 

This may be due to blunders in the lidar dataset or bins being expanded beyond the  

marsh surface towards the water’s edge.  

Table 6.1. Error statistics of the minimum binning derived DEMs at Big Branch, calculated as 

mean absolute error (MAE), mean error (ME) and root mean square error (RMSE). The 

optimal bin size is highlighted in red. 

 
2.5 m 5.0 m 7.5 m 10.0 m DEM 

MAE (m) 0.07 0.05 0.04 0.04 0.11 

ME (m) 0.07 0.03 -0.01 -0.01 0.11 

RMSE (m) 0.09 0.06 0.05 0.06 0.13 
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6.1.2. Elmer’s Island, LA 

 

The optimal bin size at Elmer’s Island, LA is 5.0 m (Table 6.2). When using this 

resolution, the positive bias (ME) is reduced to 0.01 m and the MAE is reduced to 0.06 m. The 

RMSE is reduced from 0.12 m to 0.09 m, which is a 25% improvement. However, as the user 

defined window increases to 7.5 m and 10 m, more extreme negative values occur (Figure 6.2). 

The negative values help reduce the mean error but decrease the accuracy for this DEM. 

 

Figure 6.1. Box and whiskers plots of error at Big Branch when deriving the DEM using the 

minimum binning technique at resolutions of 2.5, 5.0, 7.0, and 10 m. The box represents the 

25th, 50th and 75th quartiles and the whiskers (min and max) extend 1.5 times the interquartile 

range. The circles outside this range are beyond the 5th and 95th percentile of error. 
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Table 6.2. Error statistics of the minimum binning derived DEMs at Elmer’s Island, LA, 

calculated as mean absolute error (MAE), mean error (ME) and root mean square error 

(RMSE). The optimal bin size is highlighted in red. 

  2.5 min 5.0 min 7.5 min 10.0 min DEM 

MAE (m) 0.08 0.06 0.07 0.08 0.1 

ME (m) 0.07 0.01 -0.03 -0.05 0.1 

RMSE (m) 0.11 0.09 0.1 0.12 0.12 

 

 

Figure 6.2. Box and whiskers plots of error at Elmer’s Island when deriving the DEM using 

the minimum binning technique at resolutions of 2.5, 5.0, 7.0, and 10 m. The box represents 

the 25th, 50th and 75th quartiles and the whiskers (min and max) extend 1.5 times the 

interquartile range. The circles outside this range are the outliers. 
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6.1.3. Pearl River, LA 

 

The optimal bin size at Pearl River, LA is 5.0 m (Table 6.3). When using this resolution, 

the positive bias (ME) is reduced to 0.01 m and the MAE is reduced to 0.04 m. The RMSE is 

reduced from 0.14 m to 0.05 m, which is a 65% improvement. The sampling of extreme values 

not as prevalent as compared to Elmer’s Island (Figure 6.3). Considering the survey area is 

sloped, the introduction of negative errors is more likely because the predefined window extends 

to lower elevations.  
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Figure 6.3. Box and whiskers plots of error at Pearl River, LA when deriving the DEM using 

the minimum binning technique at resolutions of 2.5, 5.0, 7.0, and 10 m. The box represents 

the 25th, 50th and 75th quartiles and the whiskers (min and max) extend 1.5 times the 

interquartile range. The circles outside this range are the outliers. 

Table 6.3. Error statistics of the minimum binning derived DEMs at Pearl River, LA 

calculated as mean absolute error (MAE), mean error (ME) and root mean square error 

(RMSE). The optimal bin size is highlighted in red. 

 
2.5 min 5.0 min 7.5 min 10.0 min DEM 

MAE (m) 0.08 0.04 0.05 0.05 0.11 

ME (m) 0.07 0.01 -0.02 -0.03 0.11 

RMSE (m) 0.11 0.05 0.09 0.1 0.14 
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6.1.4. Cocodrie, LA 

 

The optimal bin size at Cocodrie, LA is 2.5 m (Table 6.4). When using this resolution, 

the positive bias (ME) is reduced from 0.03 to 0.01 m, and the MAE is essentially the same. The 

RMSE is reduced from 0.07 m to 0.06 m, which is a 14% improvement. However, as the user 

defined window increases above 2.5 m, the error statistics began to suffer. The DEM becomes 

negatively biased and accuracy statistics increase. The extreme negative errors could be because 

of lidar points beyond the 95th percentile of certainty but are likely due to the slope of the terrain 

and binning points outside of the marsh platform (Figure 6.4). 

 

Table 6.4. Error statistics of the minimum binning derived DEMs at Cocodrie, LA calculated 

as mean absolute error (MAE), mean error (ME) and root mean square error (RMSE). The 

optimal bin size is highlighted in red. 

 
2.5 min 5.0 min 7.5 min 10 min DEM 

MAE (m) 0.04 0.15 0.18 0.20 0.04 

ME (m) 0.01 -0.15 -0.17 -0.20 0.03 

RMSE (m) 0.06 0.16 0.20 0.23 0.07 
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6.1.5. Optimal Minimum Binning Summary 

 

Figure 6.5 clearly demonstrates that there is a positive offset caused by systematic error 

which could partly be due to vegetation. The histogram are fairly normal suggesting random 

error but small tails for all datasets can be seen on the right side of plot. Approaching 0 m error 

from the negative side there are also small tails for all the datasets. These tails suggest that 

extreme negative errors are not a result of random error. A histogram of the adjusted DEM using 

 

Figure 6.4. Box and whiskers plots of error at Pearl River, LA when deriving the DEM using 

the minimum binning technique at resolutions of 2.5, 5.0, 7.0, and 10 m. The box represents 

the 25th, 50th and 75th quartiles and the whiskers (min and max) extend 1.5 times the 

interquartile range. The circles outside this range are the outliers. 
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the optimal minimum binning can be seen in Figure 6.6. Figure 6.6 shows that using the optimal 

minimum binning method, the positive bias of the DEM has been shifted to zero but the 

distribution is still not normalized. For all DEMs, the MAE and RMSE have been improved; 

however, as a whole, a larger percentage of negative errors are introduced, and large positive 

errors have been reduced but still persist. Splitting the distribution below and above 0 m, the 

positive side of the distribution is less normally distributed as compared to the negative side. 

This distribution suggests that even using the lowest point within a defined grid size, systematic 

error caused by vegetation or other factors still influences the amount of error found and is 

irreducible using this technique. Using other approaches it may be possible to create a DEM that 

is not positively biased and more efficiently reduces the extreme positive and negative errors 

resulting in a distribution that is more random or normalized without the considerable tails.  

 

Figure 6.5. Error histograms of the unadjusted DEMs at the Cocodrie, LA, Elmer’s, LA, Pearl 

River, LA and Big Branch survey sites. 
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6.2. Lidar Adjustment using NDVI  

 

Elevation Adjustment with NDVI (named LEAN) uses a multi variable linear regression 

model to predict DEM error using NDVI and DEM elevation values as independent variables. 

The general equation is of the form: 

𝐸𝑟𝑟𝑜𝑟 = 𝑙 + 𝑣 + 𝑣2 + 𝑙 ∗ 𝑣 + 𝑙 ∗ 𝑣2 + 𝑣3 + 𝑙 ∗ 𝑣3                                                 Eq. 6.1 

Where l is the DEM elevation and v is the NDVI value. The Elmer’s survey 1 data will be used 

to train a LEAN model that will be applied to the CPRA study area. This will shed light on the 

transferability and flexibility of the derived model and conclusions can be drawn to help 

determine if further steps should be used for an expansive correction in this marsh type.  Also, 

the gridded RTK points north of Bayou Lacombe at Big Branch will be used to train a LEAN 

model and will be applied to the two grids south of Bayou of Lacombe. This will also give 

 

Figure 6.6. Error histograms of the optimal minimum binning DEMs at the Cocodrie, LA, 

Elmer’s, LA, Pearl River, LA and Big Branch, LA survey sites. 
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insight to the transferability and flexibility of an error correction model but in an intermediate 

marsh. 

6.2.1. Elmer’s Island Survey 1 

 

When applying the LEAN method to the entire Elmer’s Island dataset the linear 

regression produced a multiple R-squared value of 0.703 and an adjusted R-squared value of 

0.698, with a residual error of 0.038. The model is significant receiving a p-value of less than 

2.2e-16.  The significance of each independent variable can be seen in Table 6.5. The only 

independent variable with significance is l, the DEM. However, the other variables are 

significant when the DEM is removed from the regression, suggesting the DEM explains more 

variance but also a lot of the same variance in error as the other variables. Figure 6.7 shows the 

transformation of the unadjusted DEM to the adjusted DEM using the LEAN method. It can be 

seen at elevations below 0.15 m the new error adjustment under corrects the DEM, and 

Table 6.5. A regression summary of the LEAN model. The independent variables are 

labeled as coefficients with corresponding estimates, standard error, t value, and the 

probability of finding any value larger or smaller than t. 

Coefficients: Estimate Std. Error t value Pr(>|t|) 

(Intercept) -0.100 0.010 -9.628 <2e-16 

l 0.715 0.037 19.352 <2e-16 

v -0.086 0.079 -1.091 0.276 

(v2) -0.275 0.315 -0.872 0.383 

(l*v) 0.027 0.304 0.090 0.928 

(l*v2) 0.556 0.812 0.684 0.494 

(v3) -0.337 0.387 -0.870 0.385 

(l*v3) 0.594 2.141 0.277 0.782 

 (l*v3) 0.594 2.141 0.277 0.782 
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at elevations above 0.2 m the DEM is over corrected. Since a linear squares regression is used 

for the model build, the mean error is very close to 0 m. The mean absolute error is 0.03 m and 

the RMSE is 0.04 m. The strong performance is only in-bag, meaning it is not likely to perform 

as well outside this dataset.  

 

The model built at Elmer’s Island survey 1 does not translate well to the CPRA survey 

site (Figure 6.8). In fact, similar to the other models, there is hard break between where the 

model consistently over predicts and under predicts. This break seems to be at an elevation of 

approximately 0.25 m. At RTK elevations beyond 0.4 m the DEM was overcorrected, creating a 

negative bias. Even with the over and under predictions, the accuracies of the DEM were 

improved (Table 6.6). The mean error was reduced from 0.17 m to 0.06 m. The mean absolute 

error and root mean square error were reduced to 0.13 m and 0.19 m, which is an improvement 

 

Figure 6.7. Plot of the original DEM and New DEM vs RTK values. The New DEM is the 

theoretical DEM produced by the correction method.  A 1:1 line is indicated in black. 

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

D
E

M
 (

m
)

RTK (m)

NEW DEM

Original DEM



78 

 

of 33% and 25% respectively. 

 

 

6.2.2. Elmer’s Island Survey 1 error model applied to CPRA 

 

The results were examined for each class individually. Filtering the RTK survey points 

using the NAIP imagery derived vegetation class, it can be seen where the LEAN method is 

performing the best (Table 6.7). For all classes, accuracies improved. Mean errors of all classes 

 

Figure 6.8. Plot of the original DEM and New DEM vs RTK values at the CPRA survey site. 

A 1:1 line is indicated in black. 
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Table 6.6. Overall error statistics of the new DEM at the CPRA RTK survey area. Statistics 

calculated as mean error (ME), mean absolute error (MAE) and root mean square error 

(RMSE). The percent improvement of the adjusted DEM can be seen in the last row.    

  Mean Error (m) MAE (m) RMSE (m) 

New DEM 0.06 0.13 0.19 

Original DEM 0.17 0.19 0.25 

% Improvement -------- 33% 25% 
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were reduced for all classes, but class 8 was reduced too much, giving a mean error value of -

0.17 m. As expected, the pure marsh classes (class 3 and 5) performed the best. The MAE and 

RMSE of class 3 were reduced by 0.05 m and 0.06 m, respectively. These are improvements of 

34% and 27%, respectively. Class 5 performed the best with MAE and RMSE reaching percent 

improvements of 39% and 30%, respectively. It makes sense that LEAN model does not perform 

as well in these other classes because the correction model was not trained in those classes. 

 

6.2.3. Big Branch north survey grid 

 

When applying the LEAN method to Big Branch (northern survey grid) the linear 

regression produced a multiple R-squared value of 0.502 with a residual error of 0.045. The 

independent variables and the significance of each variable can be seen in (Table 6.8). None of 

Table 6.7. Errors statistics based on the classes distinguished by the NAIP imagery, 

calculated as mean error (ME), mean absolute error (MAE) and root mean square error 

(RMSE).  The percent improvement for each statistic of each class is highlighted in red. 

Mean Error (m) 

Class 1 

( 225 pts)  

Class 2 

(101 pts) 

Class 3 

(723 pts) 

Class 5 

(783 pts) 

Class 8 

    (27 pts) 

New DEM 0.17 0.13 0.06 0.04 -0.17 

Original 0.23 0.19 0.15 0.17 0.19 

MAE (m) Class 1 Class 2 Class 3 Class 5 Class 8 

New DEM 0.21 0.18 0.12 0.11 0.18 

Old DEM 0.25 0.24 0.18 0.18 0.22 

% Improvement 16% 25% 34% 39% 19% 

RMSE (m) Class 1 Class 2 Class 3 Class 5 Class 8 

New DEM 0.27 0.25 0.17 0.16 0.24 

Original 0.34 0.31 0.23 0.23 0.29 

% Improvement 20% 20% 27% 30% 18% 
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the variables were considered significant however the overall model is significant with a p-value 

of less than 2.2e-16 (Table 6.8). When the independent variable (l), is removed from the 

regression other variables become significant, meaning there is multicollinearity between 

variables.  Similar to the Elmer’s Island model, the LEAN method consistently over estimates 

error beyond elevations of approximately 0.15 m and underestimates error at elevations below 

RTK elevations of 0.15 m (Figure 6.9). As expected the mean error is approximately 0 m. The 

mean absolute error is 0.034 m and the RMSE is 0.044 m.  

 

Table 6.8. A regression summary of the LEAN model. The independent variables are labeled 

as coefficients with corresponding estimates, standard error, t value, and the probability of 

finding any value larger or smaller than t. 

Coefficients: Estimate Std. Error t value Pr(>|t|) 

(Intercept) 6.845 5.351 1.279 0.202 

l -13.506 15.96 -0.85 0.398 

v -48.405 34.349 -1.41 0.16 

l*v 100.919 102.665 0.983 0.326 

v2 110.359 73.019 1.511 0.131 

l*v2 -232.33 218.619 -1.06 0.289 

v3 -82.283 51.418 -1.6 0.11 

l*v3 174.064 154.14 1.129 0.259 
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6.2.4. Extrapolation of Big Branch model 

 

The model produced in section 6.2.2 is used to predict error at the two survey grids south 

of Bayou Lacombe. The new DEM versus the RTK elevations can be seen in Figure 6.10. 

Between the elevation ranges of 0.012 m and 0.2 m the model does a very good job at correcting 

the error. However, this portion of the dataset has the lowest amount of error. Between the 

elevations of 0.2 m and 0.3 m the model over predicts the error adjustment, leading to a 

negatively biased DEM. Beyond the elevation of 0.30 m the model performs very poorly. All 

errors are extremely overcorrected, leading to a negative-bias in the DEM. Overall, the model 

does reduce the ME, MAE and RMSE. The MAE and RMSE are reduced to 0.06 m and 0.12 m, 

 

Figure 6.9. Plot of the original DEM and New DEM vs RTK values for Big Branch. A 1:1 

line is indicated in black. 
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an improvement of 60% and 29%, respectively (Table 6.9). 

 

 

6.2.5. Pearl River, LA 

 

For Pearl River, LA site two error correction models were created. The first used the 2016 

NDVI data (Figure 6.11), and the second used the 2017 NDVI data (Figure 6.12). Unexpectedly, 

Table 6.9. Overall error statistics of the new DEM at the two southern grids located at the Big 

Branch survey area. Statistics calculated as mean error (ME), mean absolute error (MAE) and 

root mean square error (RMSE). The percent improvement of the adjusted DEM can be seen 

in the last row.    

  ME (m) MAE (m) RMSE (m) 

New DEM -0.02 0.06 0.12 

Original DEM 0.14 0.15 0.17 

% Improvement ---- 60% 29% 

  

 

Figure 6.10. Plot of the original DEM and New DEM vs RTK values at the two southern 

grids located at Big Branch survey site. A 1:1 line is indicated in black. 
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the two models performed very similar to each other. The 2016 model received in R-squared 

value of 0.8003, and the 2017 model received an R-squared value of 0.8301. For both models the 

mean error is very close to 0 m. The 2016 model has MAE and RMSE values of 0.029 m and 

0.38 m. The 2017 model has MAE and RMSE values 0.027 m and 0.035 m, respectively. Both 

plots indicate that the extreme errors are reduced (e.g. orange dots above the 1:1 line), but the 

models under perform at the extremes of the RTK elevations. Above elevations of 0.3 m the error 

prediction is too high, resulting a DEM that is below the RTK value. On the other end, below the 

0.25 m the model under predicts the error resulting in a positively biased DEM.  Similar to the 

other models, the prediction power is spread amongst the independent variables (Table 6.10).  

 

 

Figure 6.11. Plot of the original DEM and new 2016 derived DEM vs RTK values for Pearl 

River, LA. A 1:1 line is indicated in black. 
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Figure 6.12. Plot of the original DEM and new 2017 derived DEM vs RTK values for Pearl 

River, LA. A 1:1 line is indicated in black. 
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Table 6.10. A regression summary of the 2017 LEAN model at Pearl River, LA. The 

independent variables are labeled as coefficients with corresponding estimates, standard error, 

t value, and the probability of finding any value larger or smaller than t. 

Coefficients: Estimate Std. Error t value Pr(>|t|) 

(Intercept) -0.305 0.305 -1.000 0.319 

l 1.533 1.382 1.109 0.269 

v 1.645 1.755 0.937 0.350 

l*v -6.863 7.795 -0.880 0.380 

v2 -4.393 3.414 -1.287 0.200 

l*v2 17.030 14.496 1.175 0.242 

v3 3.495 2.210 1.581 0.116 

l*v*3 -13.292 8.871 -1.498 0.136 
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6.2.6. Cocodrie, LA 

 

The model build at Cocodrie, LA is not near as successful as the other model builds. The 

regression received an R-squared value of 0.16, only explaining 16% of the variance of the error.  

However, the model is significant receiving a p-value of 0.003 (Table 6.11). The DEM was the 

most significant independent variable with a p-value of 0.052. New error statistics are reduced 

with a ME, MAE and RMSE of 0.0 m, 0.035 m, and 0.047 m, respectively. As seen in Figure 

6.13, the model under corrects the DEM up to the elevations of 0.2 m. At the extreme values, 

beyond 0.3 m, the negative errors are made worse using the LEAN correction.  

 

Table 6.11. A regression summary of the 2017 LEAN model at Cocodrie, LA. The 

independent variables are labeled as coefficients with corresponding estimates, standard error, 

t value, and the probability of finding any value larger or smaller than t. 

Coefficients: Estimate Std. Error t value Pr(>|t|) 

(Intercept) -0.177 0.105 -1.684 0.095 

l 1.434 0.731 1.962 0.052 

v -0.253 0.439 -0.576 0.565 

l*v -2.691 3.978 -0.676 0.500 

v2 2.594 1.867 1.389 0.167 

l*v2 -2.170 8.753 -0.248 0.805 

v2 -3.217 2.239 -1.436 0.153 

l*v3 6.053 6.912 0.876 0.383 

 



86 

 

 

6.3. Random Forest Error Prediction Model 

 

The random forest models use a combination of lidar-derived rasters, such as minimum, 

maximum and average elevation as well as remote sensing parameters, similar to the work by 

Cooper, Davis, and Troxler (2019).  The first model was trained at Elmer’s Island survey 1 and 

tested on the CPRA RTK survey area, similar to section 6.2.1.1. The other model was trained 

using the Big Branch north grid and tested on the two Big Branch grids south of Bayou 

Lacombe, similar to section 6.2.1.1. For both sites, a combination of variables were used to build 

a model that explains the highest percentage of variance. Once this model was established it was 

then applied outside of the training data. 

6.3.1. Elmer’s Island Random Forest 

 

 

Figure 6.13. Plot of the original DEM and new derived DEM vs RTK values for Cocodrie, 

LA. A 1:1 line is indicated in black. 
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Five different model builds for Elmer’s Island survey 1 can be seen in Table 6.12. Only 

three models outperformed the same combination of variables used for the LEAN method 

(model #2). Using a combination of lidar-derived metrics and NAIP-derived NDVI, higher 

variance could be explained, as in models #3, #4, and #5. The highest performing model is model 

#5, explaining 62.08% of the variance. This model is used to extrapolate relations to the CPRA 

survey area, which uses NDVI, (DEM*NDVI), minimum bin, maximum bin and average bin as 

independent variables. This is 8% less then what the LEAN method explained.   

The error statistics of the applied correction can be seen in Table 6.13. Overall, the 

accuracy of the DEM was improved. Mean absolute error and root mean square error were 

reduced by 0.07 m and 0.07 m, respectively. These are improvements of 36% and 28%, 

respectively. The mean error was also reduced from 0.17 m to 0.06 m. Classes 3, 5 and 8 

performed the best receiving RMSE improvements of 29%, 37% and 33%. Class 1 and 2 still 

remain the most positively biased with mean errors of 0.16 m and 0.11 m, respectively. By 

percentage, Class 1 and 2 also have the least amount of RMSE improvement with values of 19% 

and 20%, respectively.  

Table 6.12. A list of independent variables used in a random forest model build at Elmer’s 

Island survey 1. The performance of the build is based on the mean square error (MSE) and 

the percentage of variance explained (% Var explained). Min, Max and Average (Avg.) 

rasters are derived using a resolution of 4 m.  

Model # Independent Variables MSE % Var explained 

1 LEAN 0.007 58.21 

2 LEAN, Min, Max, Avg. 0.002 59.45 

3 l*v, Min, Max, Avg. 0.00197 60.92 

4 v, Min, Max, Avg. 0.00192 61.83 

5 v, l*v, Min, Max, Avg. 0.00191 62.08 
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6.3.2. Big Branch Random Forest 

 

Six different model builds can be seen in Table 6.14. Every model build outperforms the 

same combination of variables used for the LEAN method (model #1). Using a combination of 

lidar derived metrics and NAIP derived NDVI, higher variance could be explained, models #2, 

#3, #4 and #5.  The final model uses a combination of lidar-derived metrics and LEAN 

parameters including: vegetation height (Hgt.), maximum, minimum and average rasters as well 

as the all the LEAN parameters derived with Sentinel 2 imagery.  This model explains 58.27% of 

Table 6.13. Errors statistics based on the classes distinguished by the NAIP imagery, 

calculated as mean error (ME), mean absolute error (MAE) and root mean square error 

(RMSE).  The percent improvement for each statistic of each class is highlighted in red. The 

overall statistics of the correction can be seen in the last column.  

Mean Error (m) Class 1 Class 2 Class 3 Class 5 Class 8 Overall 

New DEM 0.16 0.11 0.05 0.04 0.01 0.06 

Original 0.23 0.19 0.15 0.17 0.19 0.17 

MAE (m) Class 1 Class 2 Class 3 Class 5 Class 8 Overall 

New DEM 0.20 0.18 0.11 0.10 0.13 0.12 

Old DEM 0.25 0.23 0.18 0.18 0.22 0.19 

% Improvement 21% 25% 39% 44% 41% 37% 

RMSE (m) Class 1 Class 2 Class 3 Class 5 Class 8 Overall 

New DEM 0.27 0.24 0.16 0.14 0.20 0.18 

Original 0.34 0.31 0.23 0.23 0.29 0.25 

% Improvement 18% 23% 30% 39% 31% 28% 
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the variance in error for the training set. This is 8% more then what the LEAN method explains 

using a linear regression.    

 

The performance of model #6 applied to the southern survey grids can be seen in Table 6.15. 

Overall, the accuracy of the DEM is improved. Mean absolute error and root mean square error 

were reduced by 0.09 m and 0.08 m, respectively. These are improvements of 60% and 47%, 

respectively. The mean error was reduced to -0.01 m, meaning some negative bias was 

introduced in the new DEM. For marshes whose vegetation can change drastically year to year 

and the variance in error is not well explained by NDVI, it may be necessary to use other metrics 

to correct DEMs.  

Table 6.14. A list of independent variables used in a random forest model build at Big 

Branch’s north survey grid. The performance of the build is based on the mean square error 

(MSE) and the percentage of variance explained (% Var. explained). Min, Max and Average 

(Avg.) rasters are derived using a resolution of 4 m. **Parameter is derived with Sentinel 

imagery (9/10/16) 

Model # Independent Variables MSE % Var. Explained 

1 LEAN 0.0022 44.03 

2 LEAN, Max, Min, Avg. 0.0019 52.8 

3 lv, v2, v3, Max, Avg. 0.0018 53.9 

4 Avg., Min, lv, v2, v3, Max 0.0018 55.33 

5 LEAN, v**, Hgt., Max,  Min, Avg. 0.0017 57.46 

6 LEAN**, Hgt., Max, Min, Avg. 0.0017 58.27 
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The LEAN method and random forest model can be further broken down by vegetation 

classes at the CPRA site as seen in Table 6.16. The optimal random forest model outperforms 

LEAN in both accuracy statistics for all cover classes.  However, the mean error for both classes 

1 and 2 is better for the LEAN method. The major improvements from the LEAN to the random 

forest model are in classes 5 and 8. Both statistical accuracy assessments are improved and the 

mean error is also improved.  

Table 6.15. Overall error statistics of the new DEM at the two southern grids located at the 

Big Branch survey area using random forest model #6. Statistics are calculated as mean error 

(ME), mean absolute error (MAE) and root mean square error (RMSE). The percent 

improvement of the adjusted DEM can be seen in the last row.    

  ME (m) MAE (m) RMSE (m) 

New DEM -0.01 0.06 0.09 

Old DEM 0.14 0.15 0.17 

% Improvement --- 60% 47% 
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Table 6.16. A comparison of the LEAN method and optimal random forest (RF) model 

extrapolated to the CPRA RTK survey area. The statistics are broken down by the cover 

classes. The percent improve for each statistics is colored red. 

  

Class 

1 
 

Class 

2 
 

Class 

3 
 

Class 

5 
 

Class 

8 
 

Stat   LEAN RF LEAN RF LEAN RF LEAN RF LEAN RF 

ME 

(m) 

New Dem 0.07 0.16 0.03 0.11 -0.05 0.05 -0.06 0.04 -0.17 0.01 

Original 0.23 0.23 0.19 0.19 0.15 0.15 0.17 0.17 0.19 0.19 

RMSE 

(m) 

New Dem 0.27 0.27 0.25 0.24 0.17 0.16 0.16 0.14 0.24 0.20 

Original 0.34 0.34 0.31 0.31 0.23 0.23 0.23 0.23 0.29 0.29 

% Imp  18% 18% 20% 23% 26% 30% 30% 39% 17% 31% 

MAE 

(m) 

New Dem 0.21 0.20 0.18 0.18 0.12 0.11 0.11 0.10 0.18 0.13 

Original 0.25 0.25 0.24 0.24 0.18 0.18 0.18 0.18 0.22 0.22 

 %Imp  16% 21% 25% 25% 33% 39% 39% 44% 19% 41% 
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7. Discussion and Recommendations  

 

7.1. Ecological Influences of Error  

 

As discussed in section 2.2.1, the intensity of a lidar beam reflection can depend on many 

factors, one of which is the type of surface the beam is encountering. Since most discrete lidar 

systems use wavelengths in the near infrared zone, which is known to be highly reflected by 

healthy vegetation (Slaton, Raymond Hunt Jr, & Smith, 2001), the intensity of reflectance should 

change depending on vegetative characteristics (Merzlyak, Chivkunova, Melø, & Naqvi, 2002). 

These characteristics tend to vary across the marsh surface as a function of edaphic conditions 

(nutrients, salinity, sulfide concentrations, lower redox potential), all of which can be temporally 

variable (Bertness & Ellison, 1987; Byrd & Kelly, 2006; Mendelssohn, McKee, & Patrick, 1981; 

Mitsch & Gosselink, 1993). In theory these conditions should maximize the uniqueness of a 

waveform return (Rogers, Parrish, Ward, & Burdick, 2018). This logic supports the work by 

(Rosso, Ustin, & Hastings, 2006; Schmid et al., 2011), who roughly estimate lidar error as half 

the vegetation height and have shown that lidar errors are generally larger with increasing 

vegetation height and vegetation density. Counterintuitively, the results from the four surveys 

presented here have very similar accuracy assessments, despite inhabiting different vegetation 

types. Some of this similarity may be due to averaging errors across RTK points and the number 

of points measured within the varying vegetation types. When parsing the survey by certain 

vegetation characteristics and errors beyond the 3rd quartile, it can be determined that many of 

these similarities can be explained by the variations in plant structure, height and biomass. It also 

shows that the capabilities of lidar technology minimize the window in which errors may exist, 

producing a more common outcome. 
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7.1.1. Homogeneous stands 

 

When comparing the Elmer’s Island site to the Big Branch site, the errors at the 3rd 

quartile are exactly the same, a value of 0.14 m. At Elmer’s Island the majority of errors beyond 

the 3rd quartile are associated with very productive Spartina alterniflora and black mangrove and 

are in the range of 0.14-0.32 m. At Big Branch, the errors beyond the 3rd quartile are associated 

with Spartina patens located at the higher elevations. Despite being a shorter plant, usually in the 

range of 30-60 cm, Spartina patens produces proportionally as much error as the much taller 

species Spartina alterniflora (heights of  >100 cm). Comparing the error range to the height of 

Spartina patens, it can be determined that very little penetration occurs in Spartina patens as 

compared to Spartina alterniflora. It has been documented that Spartina patens in Louisiana 

usually has higher biomass levels than Spartina alterniflora, but these levels can vary depending 

on the time of year and marsh type. Some studies have shown that Spartina patens can have 

nearly twice the biomass as Spartina alternifora with total above ground biomasses levels of 

2276 and 1223 g/m2,  respectively (Hopkinson, Gosselink, & Parrando, 1978). A different study 

at Pearl River, LA shows, that the total biomasses can be very similar, values of 1150 and 900 

g/m2 for Spartina patens and Spartina alterniflora, respectively (Taylor, Grace, Guntenspergen, 

& Foote, 1994). Even though the levels of biomass can be very similar, the structure of the plant 

determines the distribution of the biomass.  Spartina alternifora and Spartina patens are both 

erect vertically but Spartina patens can become matted down as seen in Figure 7.1. This means 

the biomass density is not only different per square meter but that the biomass is more 

concentrated per contained volume of the vegetation. Therefore, the biomass that the laser 
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footprint would encounter once reaching the surface of the vegetation is even greater for 

Spartina patens. Similar to other documented instances, it is not only the biomass per square 

meter or only the plant height that is determining the amount of error, but it is also the 

distribution of the biomass vertically. Since Spartin alternifora is a taller plant but Spartina 

patens is denser per contained volume, the error responses for these two species are quite similar. 

The other monospecific stands surveyed in this study are Roseau cane and Bolboschoenus 

robustus at the Pearl River site. Similar to Spartina alterniflora, the Roseau cane structure is 

erect vertically but is a much taller species, reaching heights of up to 2.5 m. In the winter 

months, the leaves fall off, and a tall slender stalk remains. If following the general rule of thumb 

that error is half the vegetation height, a conservative estimate of error in this vegetation would 

 

Figure 7.1. Image of dense matted Spartina patens approximately 15-20 cm above the ground 

surface at the Big Branch site. Photo: M. Foster-Martinez 



95 

 

be 1.0 m, but this is not the case. This particular species had errors ranging from 0 to 0.45 m. 

When applying the 5-meter minimum binning method, errors were highly reduced with a 

maximum error of 0.09 m in this area. This result suggests that the lidar is filtering multiple 

returns below the two meter mark, and extreme high canopy returns are not being used for DEM 

generation. Also, the high performance of minimum binning shows there is an adequate amount 

of laser penetration to or near the ground.  The same is true for the Bolboschoenus robustus 

despite there being some large errors in the original DEM. The minimum binning was able to 

reduce a significant amount of the error, even though the stand was homogenous and patches did 

not occur. 

7.1.2. Heterogeneous stands  

 

The introduction of species mixing makes justifying error relations more difficult. This is 

most evident at the Big Branch site. At Big Branch, there is mixing of Schoenoplectus 

americanus and Spartina patens. On average, areas of higher elevation were dominated by 

Spartina patens. As elevations decreased, more Schoeneplectus americanus was present. At even 

lower elevations (<0.10 m), the vegetation became patchy, resulting in an overall decrease in 

biomass based on the NDVI. Within in these patchy areas, the Spartina patens no longer grew as 

a mat, but grew vertically, competing with the Schoeneplectus americanus. The error in these 

mixed areas is on average lower than the mats of Spartina patens, but spontaneous spots of high 

error still occur. Since Schoenoplectus americanus was never found as a homogeneous stand, it 

is hard to determine the root cause of the error. When using the minimum binning, errors were 

highly reduced, especially in the patchy areas. This result suggests that the lidar does not 

penetrate the mixed areas more, but rather due to the patchiness, exposed areas aid this type of 

DEM generation. 
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7.1.3. High error at low NDVIs 

 

In this work, high DEM errors at low elevation commonly correspond with very low 

NDVI. The best example is demonstrated at the Big Branch survey area. There are multiple 

reasons for this behavior. The first cause is due to the wetness of the survey area at lower 

elevations. Airborne lidar systems are known to suffer from poor or null returns from certain 

materials such as water, asphalt, tar, clouds and fog (Finkl & Makowski, 2014). This results in 

fewer returns, reducing the resolution of the point cloud used for DEM generation.  

The second reason is dense vegetation. Although the vegetation in these areas is 

scattered, the vegetation patches remain dense, preventing the lidar from fully penetrating the 

ground and creating a positive bias. During the TIN generation, steep large planes are then 

created from connecting biased wet areas with much fewer returns to points with even greater 

bias due to the vegetation. This results in large errors at low elevations with corresponding with 

low NDVIs.  

7.2. Ecological Limitation of Error Solutions 

 

A majority of published error corrections have been performed in saline marshes rather 

than fresh, intermediate, or brackish marshes. This is for good reason. Saline marshes in 

particular are usually disconnected from a freshwater source such as a river. In Louisiana, the 

salt marshes usually reside on the seaward side of a basin, such as in Terrebonne and Barataria 

Basins. These types of marshes are less prone to major fluctuations in salinity and water levels 

on an annual basis.  Therefore, the distribution and composition of species remains relatively 

constant from growing season to growing season (Odum, 1988). Since there is less variability of 

vegetation from year to year, the temporal alignment between the lidar acquisition and imagery 
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is not as important. It is possible to use imagery from the growing season after acquisition versus 

the imagery before the growing season begins. There are also not as many vegetative species that 

inhabit saline marshes compared to fresh marshes (Chabreck, 1970). Less species variety means 

it is plausible to use high resolution imagery with limited spectral differentiation to classify land 

cover (Carle, Wang, & Sasser, 2014; Gallant, 2015). Further, the error distributions of the lidar 

with respect vegetative parameters will be less complex because of the limited number of species 

and species mixing. Lastly, due to the tides and salinity, biomass has a notable relation to 

elevation (Morris, Sundareshwar, Nietch, Kjerfve, & Cahoon, 2002). This self-organization 

limits the number variables needed for the adjustment of the lidar-derived DEM. This is not as 

easily accomplished in fresh or intermediate marshes.       

More similar to fresh marshes, intermediate marshes, such as Big Branch, the systematic 

error due to vegetation is highly variable, temporally and spatially because plant communities are 

not severely limited by salinity stress (Johnson, Sasser, & Gosselink, 1985; Odum, 1988). From 

year to year, species distributions and compositions are likely to change because of changing 

water levels and salinities during the growing season. An example can be seen in Figure 7.2, 

which shows that the distribution of Spartina patens (white hues) and Schoenoplectus 

americanus (green hues) can change year to year. It should be noted that the coloration may have 

shifted between images due to external factors (e.g. illumination, sensor specifications and 

processing) and that vegetative changes were not confirmed in-situ. However even with this 

uncertainty in discriminating the vegetation, there are distinct differences. In 2015, it appears the 

Spartina patens is much more prominent, appearing homogeneously in some of the lower areas 

of the survey, and Schoenoplectus americanus is less dominant overall. This change could be 

driven by differing water levels during the growing season. The MWL was approximately 0.1 m 
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lower in 2015 than 2017. Major differences occurred during the months of May and June; the 

2017 levels were 0.25-0.46 m higher. This trend is problematic when using independent data (i.e. 

NAIP 2017) at nearly a full growing season after the lidar acquisition date. It is very unlikely the 

spatial distribution of vegetation will remain the same, and parameters derived for correction

 

will not be as helpful. Also, in response due to increasing sea level, many plant communities in 

fresh and intermediate marshes are shifting to more salt tolerant species, especially during years 

of less than normal precipitation (Jarrell, Kolker, Campbell, & Blum, 2016). This shift is 

apparent in Louisiana by examining the change in acreage for each marsh type; the salt marsh 

acreage has decreased due to land loss, and the intermediate and brackish marsh acreage has 

increased due to wetland conversion (C. Sasser et al., 2014; C. E. Sasser, Visser, Mouton, 

Linscombe, & Hartley, 2008; Visser, Sasser, Chabreck, & Linscombe, 1998; Visser, Sasser, 

Linscombe, & Chabreck, 2000).  

 

 

 

Figure 7.2.  2015(A) and 2017 (B) NAIP images of the Big Branch survey area.  Both images 

were photographed in September. 

 



99 

 

7.3. Model Performance 

 

A summary of all correction methods and improvements can be seen in Table 7.1. The 

optimal minimum binning improves the DEMs the most at the Pearl River, LA and Big Branch 

North sites but the resolution is sacrificed. LEAN models created at Pearl River, LA and Elmer’s 

Survey 1 sites had the best fit to the training data, R-squared values of 0.8003 and 0.703, 

respectively. When models are extrapolated outside of their training data, the optimal random 

forest model outperforms the LEAN method and optimal minimum binning. 

 

 

 

Table 7.1. Summary of the statistics and improvements of different methods at the survey 

sites. * Indicates model was trained and tested with the exact same dataset. 

Method Stats 

Big 

Branch 

North 

Big 

Branch 

South 

Elmer's 

Survey 1 

CPRA 

RTK 

Cocodrie, 

LA 

Pearl 

River, LA 

Optimal 

Min Bin 

MAE 64% 42% 40% 16% 0% 64% 

RMSE 62% 21% 25% 11% 14% 65% 

Resolution (m) 7.5 7.5 5 5 2.5 5 

LEAN 

MAE  69% * 60% 70% * 33% 25% * 76% * 

RMSE  66% * 29% 67% * 25% 33% * 73% * 

R-squared 0.502 --- 0.703 --- 0.16 0.8003 

Resolution (m) 1 1 1 1 1 1 

Random 

Forest 

MAE -- 60% -- 36% --- --- 

RMSE -- 47% -- 28% --- --- 

R-squared 0.58 --- 0.62 --- --- --- 

Resolution (m) 4 4 1 1 --- --- 
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7.3.1. Big Branch South 

 

The LEAN method was not as successful as the random forest model at Big Branch. This 

difference was likely caused by two reasons. First, the LEAN method relies on predictive power 

of different combinations of NDVI and the DEM. Since there are two species generating 

different error distributions at various DEM elevations, the error pattern with respect to NDVI is 

almost random. The timing of the imagery used in the LEAN model is also off; the imagery was 

taken the growing season after the lidar acquisition data. Therefore, the NDVIs may not 

represent the same distribution of vegetation from the previous growing season.  

On the other hand, the random forest model uses LEAN variables derived from Sentinel 2 

imagery from the previous growing season and uses lidar-derived metrics. These metrics are 

valuable information considering they are derived from very high resolution data (0.7 m) and 

have the exact temporal alignment of the DEM. This may be why the highest performing 

variable other than the DEM is the “lidar minimum.” For the most part, the models perform very 

similar to each other between the elevations of 0.09 m - 0.4 m. The linear regression scored an 

R-squared value of 0.12 for the random forest model and a value 0.09 for the LEAN model with 

respect to RTK elevation. The largest difference between the two models are seen at the extreme 

positive values, where the LEAN method over predicts the error. The random forest model at Big 

Branch demonstrates that lidar metrics are helpful for predicting error in an intermediate marsh 

and are less sensitive to extreme values. 

7.3.2. CPRA site 

 

At the CPRA survey site, the LEAN model has a higher R-squared value than the random 

forest model within the training dataset. Suggesting the LEAN model produces a tighter fit. 



101 

 

However, the random forest model at the CPRA site demonstrates that the model is less sensitive 

to extreme values and can also fit prescribed classes as well as the LEAN model.  At Elmer’s 

Island, the random forest model proved to be not only a better predictor in Classes 3 and 5 but a 

better predictor across the whole dataset. The main improvements were found in class 5 and class 

8 whose RMSE improved by 9% and 14%, respectively compared to LEAN. In class 8, the mean 

error produced was much better than the LEAN method. The LEAN method was designed to be 

used in saline marshes, and yet, was outperformed on all fronts by the random forest model.  

  It is likely the flexibility of the random forest model is what makes it a great model for 

this type of work. Both random forest models fared better against extreme values not seen in the 

training dataset. Unlike a linear regression, random forest picks the best variable of a subset of 

random variables for every decision node. This randomness creates hundreds of models all 

designed to predict error. When random forest encounters extreme inputs, such as in Class 8 of 

the 2013 Barataria DEM (Table 6.16), the regression has numerous models where the DEM is 

not the sole weight of the prediction. When all decision tree models are averaged, it is more 

likely the error prediction is not an extreme value, producing a less rigid result. On the other 

hand, when a linear model encounters an extreme variable, such as the DEM, the model is forced 

to use the heavily weighted DEM coefficient for the prediction. This usually results in an 

extreme value for DEM generation.  

7.4. Model Implications 

 

Sea level rise (SLR) has caused a migration of coastal habitats, some of which are limited 

by anthropogenic barriers or the necessary sediment input to survive. In this light, scientists and 

engineers have developed robust, expansive models to predict coastal and wetland evolution for 

the upcoming decades (Alizad et al., 2018; Alizad, Hagen, Morris, Medeiros, et al., 2016; Hagen, 
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Morris, Bacopoulos, & Weishampel, 2012). The complexity of sedimentation relationships in 

evolution models can range from course elevation models with uniform accretion relationships 

like Sea Level Affecting Marsh Model (SLAMM) to more site specific approaches like the work 

by Morris et al. (2002) who use biological feedback models to generate non-uniform accretion 

rates. Nonetheless, no matter the complexity and level of description attained, accurate initial 

elevations are paramount to achieve the highest quality result. The vertical elevation relative to 

mean sea level is considered a very important variable for classifying coastal covers and 

performing accretion calculations in the intertidal zone. 

NOAA demonstrates the importance of accurate initial elevations by using SLAMM to 

predict land cover change in a coastal environment (NOAA, 2010). SLAMM is a land cover 

prediction model that assigns cover types based on elevation. Wetland types are categorized by 

minimum and maximum elevation ranges defined with water level parameters that are shifted by 

sea level rise for a given time step. In this study, a base 5-meter lidar DEM derived from a TIN 

and a 5 m minimum-bin (5-min bin) derived DEM were used as initial elevations for two 

different model runs projected to the year 2050. The 5-min bin derived DEM was previously 

proven to be less biased and had a lower RMSE than the original DEM. For comparison, land 

cover conversion parameters were kept constant for both model runs. The difference of the 

results show that salt marshes and tidal flats had the most significant errors of the cover classes. 

There was a -11% change of salt marsh area using the base lidar DEM and a -22% change of salt 

marsh area using the corrected DEM, a difference of 101%. The percent change of area covered 

by tidal flats increased from -6% to 54% when adjusting the DEM. The change in sign of this 

result suggests mud flats would be created by 2050 but were actually diminished using the 

unaltered DEM. For this sea-level rise scenario, the original mudflats were converted to open 
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water and the marshes with overestimated elevation never reached the relative water level 

criteria for the program to reclassify marshes as mudflats. 

Other more advanced models than SLAMM, such as biomass dependent biologic 

feedback models or complex coupled models may be used to predict marsh evolution, but they 

are still sensitive to relative elevation. For example, the coupled hydrodynamic and marsh 

elevation model (Hydro-MEM) concurrently simulates the hydroperiod of the marsh surface 

driven by tides and platform topography, as well as the biological feedback of non-uniform 

platform accretion rates induced by Spartina alterniflora (Alizad, Hagen, Morris, Bacopoulos, et 

al., 2016). The addition of a hydrodynamic model to the biologic model captures the non-linear 

tidal responses within the marsh domain and more accurately describes the evolution of the 

marsh’s complex topographies during long-term increases in water levels. 

The marsh elevation model (MEM) component uses depth dependent organic and 

inorganic accretion rates to calculate total accretion at a particular location for a given time step 

(Morris et al., 2002). New elevations are calculated by adding an incremental increase in 

elevation due to accretion to the elevation value of the previous time step. This generates a new, 

current elevation to be used as the input for the next iteration.  The incremental accretion 

equation is of the form: 

𝑑𝑌

𝑑𝑡
= (𝑞 + 𝑘𝐵)𝐷                                                                                   Eq. 7.1                   

Where dY is the increment of total accretion, dt is the time interval, q represents the rate of 

sediment loading, k represents the efficiency of the vegetation as a trap, B represents the 

productivity and D is a non-dimensional depth. In this formula, 𝑞 and 𝑘 are constants fitted from 

previous work, but B and D are variables that depend on the relative elevation of the marsh 
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Since, topography, water level, and bottom frictions are changing in every time step, the next 

iteration is updated with new tidal datums (i.e. mean high water and mean low water) derived 

from Advanced Circulation (ADCIRC) results. The datums are interpolated across the marsh 

surface and are used as inputs for the biomass and non-dimensional depth calculations.  

 A couple scenarios may occur if the elevation of the marsh platform is initially 

overestimated during individual time steps: 1) Areas that should be tidally inundated are 

modelled as dry and will have no accretion. 2) Areas that are overestimated but situated below 

MHW and above the hypoxia limitation will result in inorganic and organic accretion, but the 

incorrect rates will be used for the total accretion calculation.  From the start of the model run 

there will be a time lag of the marsh evolution depending on the magnitude of elevation error, 

which is usually overestimated but will vary across the marsh surface. The initial errors will 

begin to compound, distorting the evolution of the marsh surface.  Depending on the length of 

the model run and the SLR scenario used, model results will likely be skewed and misrepresent 

future marsh conditions.  

Similar to MEM, the Wetland Accretion Rate Model For Ecosystem Resilience 

(WARMER) uses both biological and physical processes of vertical marsh accretion to project 

marsh evolution during SLR scenarios (Swanson et al., 2014). This model has been extensively 

used on the Pacific coast of the US in a variety of salt marshes. Using adjusted and unadjusted 

DEMs as model inputs, results show that 30-50% of the variations in marsh projection was due 

to initial elevations (Thorne, Buffington, Elliott-Fisk, & Takekawa, 2015). The variation was 

especially significant in marshes that were inundated with lower SLR scenarios.  

As a general rule, USGS suggests that the accuracy of the initial DEM (1.96*RMSE) 

must be twice as large as the increment of SLR modeled (2*1.96*RMSE) to minimize the error 
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in the results (Gesch, 2018). With respect to the marshes in Louisiana, the smallest SLR scenario 

that could be modeled is 0.28 m at Cocodrie, LA. The most difficult marsh to project would be 

the saline marsh at Elmer’s Island because of the high errors found in the DEM. Using only the 

marsh classes from the classified image, the smallest SLR scenario that could be accurately 

modeled is an increase of 0.90 m. However, if the random forest correction was applied to the 

marsh classes, a SLR increment of 0.59 m would provide projection results of equal confidence.  

7.5. Recommendations 

 

Choosing a method to correct DEMs depends on resolution criteria, marsh type, and 

available independent data. Minimum binning is best in terrain with low slope, where the canopy 

is sparse and some laser penetration is possible. This method is more convenient because it 

requires no field work to apply.  However in some areas, such as the Pacific coast and Florida 

coast, minimum binning does not reduce a significant amount of error (Medeiros et al., 2015). 

On the other hand, correction methods that rely on remote sensing data are generally subjected to 

resolution problems, temporal mismatches or issues with independent data availability. In 

marshes where the vegetation is homogenous and the terrain has a low slope, such as saline 

marshes, high resolution and temporal matches of the independent variables is less necessary. In 

other marsh types, such as fresh or intermediate marshes, it is necessary to have higher resolution 

data, such as hyperspectral imagery with high spatial resolution to account for the high 

variability in spatial density and plant species. For these marsh types, it is very important that 

there is the proper temporal match between the independent data and the lidar acquisition date. 

Overall, by using independent variables with higher spatial resolutions, corrections can be 

applied at finer resolutions. In theory, this will produce a DEM with less stair-stepped 

adjustments and less smoothing of the important micro-topographies.  
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8. Conclusion  

 

Fortunately, the observed errors in some of the marshes of Louisiana are lower than other 

published marsh errors, but they are likely to result in misleading hydrodynamic and wetland 

modeling outcomes. This work shows that the correction of DEMs in the marshes of coastal 

Louisiana is made more complex by the variety of marsh types and the temporal and spatial 

variability of the vegetation. It was determined that using lidar-derived metrics for correction is 

beneficial because this data is high resolution and temporally aligned. The temporal mismatch of 

high resolution independent data is a large hurdle if attempting to correct all of Louisiana’s 

DEMs, especially in non-saline marshes. Lastly, this research shows that model corrections have 

better results by not limiting solutions to parametric relations but by implementing non-

parametric regressions as well.  

Future work may include techniques similar to Cooper et al. (2019),  who use an object 

approach to distinguish cover patterns from multispectral drone imagery and correct error within 

these specified objects. If this technique has the flexibility to scale up to 1 m imagery, it would 

be extremely beneficial to to aquire imagery at the time of the lidar acquisition. It may be 

prudent to start acquiring full wave form data for DEM generation. Correcting DEMs by 

deriving vegetative parameters using the entire waveform can produce very accurate DEMs 

(Rogers et al., 2018) . In any case, these accuracies depend on the predictability of lidar 

encountering the biogeographical realm, making ground surface solutions merely approachable; 

for only in abstraction does the perfect surface exist.  
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