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ABSTRACT 

 

 

 

Tidal Wetland Inundation and Vegetation Phenology from Space. A Synthesis of Approaches 

for Characterizing Ecological Status and Inundation Dynamics in Tidal Wetlands with Remote 

Sensing Observations 

 

 

by 

 

Brian Thomas Lamb 

 

 

 

Advisor: Professor Maria Tzortziou 

 

 

 

 

               This dissertation focuses on the monitoring and characterization of tidal marshes using 

remote sensing-based approaches. Chapter 1 introduces the topics of wetland ecology and 

remote sensing. Chapters 2-4 are the main research chapters of the dissertation covering the 

topics of tidal marsh mapping, tidal marsh vegetation characterization, and assessment of tidal 

marsh inundation patterns. Chapter 5 summarizes the preceding chapters and highlights future 

research directions.  

              The primary research objective of Chapter 2 is the mapping and study of tidal marshes 

of the Chesapeake and Delaware Bays. This chapter also features a thematic focus on the 

evaluation of various forms of satellite imagery for wetlands studies in general. In this chapter, 

Chesapeake and Delaware Bay tidal marshes were mapped with producer’s accuracy greater 

than 88% and user’s accuracy greater than 83% using a random forest classification. A second 

classification effort focused on the mapping of wetlands vegetation at the Jug Bay wetlands 

complex in the Patuxent River. This classification, which also utilized the random forest 
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technique, yielded accuracies of greater than 90% for all mapped wetlands vegetation types. 

These two classifications made use of SAR and optical/IR satellite imagery as input layers. Post-

classification analysis demonstrated that optical/IR images were most useful for providing 

accurate classifications for Chesapeake Bay tidal marshes while the SAR images were most 

useful for classifying different wetlands vegetation at Jug Bay. This highlights the importance of 

SAR-optical/IR fusion for providing flexibility in achieving accurate classifications when 

mapping diverse wetlands types with a single classifier. 

                Chapter 3 builds on many of the findings from the evaluation portion of Chapter 2. In 

Chapter 3, a mapping methodology utilizing SAR-optical/IR fusion is used to expand tidal 

marsh mapping beyond the Chesapeake and Delaware Bays and into the entire Mid-Atlantic 

region. Chapter 3 also seeks to map not only tidal marshes, and distinguish them from 

freshwater marshes, but also map marshes that have been invaded by Phragmites australis. 

These three types of marshes were all mapped with greater than 80% user’s and producer’s 

accuracy in the Mid-Atlantic region. This marsh mapping effort was also carried out in the Gulf 

Coast region, where marshes were mapped with greater than 91% user’s accuracy and 95% 

producer’s accuracy, although the three individual marsh classes were often confused with one 

another. In addition to effectively mapping Phragmites australis with supervised classification 

approaches in the Mid-Atlantic region, a decision tree-based approach was developed to map 

invasive aquatic water chestnut (Trapa natans) with greater than 96% accuracy. This decision 

tree approach utilized multitemporal Sentinel-1 C-band SAR imagery. The same decision tree 

classification was utilized to map non-persistent emergent vegetation, an indicator of tidal 

freshwater wetlands, with greater than 93% accuracy.         

            Chapter 4 seeks to assess tidal marsh inundation patterns. In this chapter, numerous 
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satellite image-based inundation products were developed and validated using in-marsh water 

level observations from study sites. In this chapter, optical/IR, C-band SAR, and L-band SAR 

inundation products are validated with water level sensors and assessed for overall performance. 

This validation suggest that L-band inundation products offered the best performance for 

mapping tidal marsh inundated area with 90% accuracy. L-band inundation products were 

developed using backscatter intensity thresholding-based approaches which were derived 

empirically. Radiometric modeling efforts were also utilized to elucidate changes in scattering 

mechanisms in support of empirical image analyses. The radiometric modeling efforts and 

empirical image analyses demonstrate that C-band and L-band SAR backscatter tends to 

decrease in response to inundation in tidal marshes. However, an important distinction that the 

radiometric modeling efforts revealed was that C-band signals interact much more strongly with 

vegetation, while L-band signals respond more strongly with the surface underlying vegetated 

canopies. Further, L-band signals decrease to a greater magnitude in response to inundation 

making L-band imagery much more effective for assessing tidal marsh inundation state than C-

band imagery. These findings are also supported by image-based polarimetric decompositions 

which capture similar scattering shifts in response to inundation as those demonstrated by 

radiometric modeling efforts at L-band frequencies.  

                 Chapter 5 summarizes the previous chapters and discusses the launch of three 

satellites that are anticipated to advance the study of tidal marsh systems. The most relevant of 

which is the NISAR satellite which will operate at an L-band frequency with an anticipated 12-

day revisit time. The findings of this dissertation demonstrate the utility of L-band SAR for 

characterizing tidal marsh inundation state, combined with a 12-day revisit, NISAR imagery 

should greatly improve the characterization of tidal marsh inundation patterns. 
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Figure 4.34. White Lake region classified wetlands within UAVSAR image and CRMS sites 

(upper panel). UAVSAR image with HH-HV-VV RGB false-color composite (middle panel). 

HH and VV channels scaled between -4.0 and -20.0 dB, HV channel scaled between -10.0 and -

30.0 dB. Classified inundation extent shown in lower panel for July 1st 2019. 
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Figure 4.36. White Lake region July 25th 2019 classified UAVSAR inundation image. 10/20 

CRMS stations show detected inundation.  
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CHAPTER 1  

INTRODUCTION 

 

1.1 Wetland Importance Background  

 Wetlands are among the most productive and important ecosystems on Earth. Wetlands 

are defined by their high frequency and long duration of inundation relative to other ecosystems, 

possessing hydric soils, and possessing vegetation that is uniquely adapted to thrive in these wet 

conditions (Mitsch and Gosselink 2007). Wetlands have tremendously high rates of gross 

primary productivity (GPP) and are extremely efficient at carbon sequestration; this is especially 

true of tidal wetlands (McLeod et al. 2011; Hinson et al. 2017; Milligan et al. 2019; Feagan et al. 

2020). Howard et al. (2017) demonstrated that tidal marshes and mangroves have carbon 

sequestration rates orders of magnitude higher than tropical rainforests on a per-area basis. 

Although tidal wetlands generally act as carbon sinks on aggregate, they are also important 

sources of carbon-rich and humic dissolved organic matter to adjacent waters (Tzortziou et al. 

2008). Tidal wetlands also provide a plethora of ecosystem services including coastal flood 

protection, sediment capture, denitrification, and water filtration (Barbier et al. 2011; EPA 1996). 

The ensemble of ecosystem services that tidal wetlands provide is becoming increasingly 

important as coastal regions become more populated and more people depend on these 

ecosystem services. However, wetlands are being lost at a rapid rate globally (Mitsch and 

Gosselink 2007). Tidal wetlands in particular are vulnerable to loss through eutrophication 

(Deegan et al. 2012) and development (Pendleton et al. 2012). Further, the location of tidal 

wetlands means they are impacted by the transport of excessive nutrients and pollutants from 

connected freshwater aquatic systems, as well as by the encroachment of rising sea levels from 
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connected estuarine aquatic systems. Although it is well established that rising sea level will 

inevitably change the distribution of tidal wetlands, it is unknown how wetlands will respond to 

changes in sea level (Ross and Adam 2013; Tabak et al. 2016; Kirwan et al. 2016). However, 

several studies have indicated that changes in salinity have pronounced impacts on wetland 

vegetation community composition (Howes et al. 2010; Sutter et al. 2013; Turner et al. 2019). In 

addition to alterative physical impacts on native wetland vegetation, tidal wetlands are also 

impacted by the presence of invasive vegetation that form monospecific stands, greatly reducing 

wetland biodiversity and ecological function (Bertness 2002).  

 It is critical to have tools for monitoring and characterizing tidal wetlands. However, 

global estimates of herbaceous tidal wetlands (i.e. tidal marshes) distributions remain poor 

compared to other wetland systems, including woody tidal wetland systems like mangroves 

(Pendleton 2012; Bunting et al. 2018; Thomas et al. 2018). A study by Mcowen et al. (2017) has 

produced a global tidal marsh inventory by aggregating disparate tidal marsh surveys conducted 

at the national level. However, the Mcowen product does not provide a spatiotemporally 

harmonized and gap filled tidal marsh product and does not provide monitoring capabilities. In 

this thesis research, I seek to improve estimates of tidal marsh extent by implementing 

methodologies that are suitable not just for estimating tidal marsh distributions but monitoring 

tidal marsh distributions through time. In addition to focusing on assessment of tidal marsh 

distributions, this research effort also seeks to provide assessments of tidal marsh vegetation 

characteristics and inundation dynamics, as these are all indicators of the ecological status of 

tidal marshes. Marsh vegetation characteristics and tidal inundation extents also influence tidal 

biogeochemical exchanges at wetland-estuarine interfaces which has significant implications for 

coastal and global carbon cycling (Tzortziou et al. 2008; Logozzo et al. 2020).  
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 This research effort focuses on the study of tidal wetlands of the Mid-Atlantic and Gulf 

of Mexico coastal regions of the United States. Two regions with high population and tidal 

wetland densities, and two regions that are at increasingly significant risk for tidal flooding 

during high tides and storms (Feagan et al. 2020; Dahl et al. 2017). The Mid-Atlantic and Gulf of 

Mexico study regions were also selected due to the fact they contain some of the highest 

densities of tidal freshwater marshes in the United States (Leck et al. 2009). Tidal freshwater 

marsh ecosystems are generally defined as having low average salinities less than 0.5 parts per 

thousand (PPT) while still being strongly hydrologically influenced by tidal forcing from 

connected estuarine-ocean waters (Odum 1988; Leck et al. 2009). Compared to brackish and salt 

marshes, tidal freshwater marshes have vastly different vegetation characteristics (Odum 1988; 

Leck et al. 2009). Thus, remotely sensed identification of tidal freshwater marsh vegetation 

presents a potentially powerful monitoring tool for assessing salinities of deepwater systems 

connected to wetlands and monitoring impacts of climate change, sea level rise, and seawater 

intrusion on coastal habitat, plant species composition and carbon fixation and mineralization 

(Herbert et al. 2018).  

 Tidal wetlands play an important role in coastal flood protection by decreasing the 

velocity of flood pulses and serving as temporary storage areas for flood waters (EPA 1996). 

Despite the importance of tidal wetlands in mitigating the impacts of coastal flooding, sea-level 

rise has also contributed to a loss of tidal wetlands in the United States and globally (Becket et 

al. 2016; Ross and Adam 2013). Subsequently, the loss of tidal wetlands leaves developed 

coastal regions more vulnerable to the impacts of flooding from coastal storms (Costanza et al. 

2008). In the context of coastal flood vulnerability assessment, tidal marshes may be some of the 

first coastal systems to exhibit signs of change in long-term average sea levels. These changes 
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are evidenced by permanent inundation (ponding) on the marsh interior and by the loss of 

vegetation (Gangu et al. 2013). A suite of monitoring tools that allows for assessment of tidal 

marsh distribution, vegetation characteristics, and inundation dynamics provides a powerful set 

of indicators for assessment of wetland ecological status. 

  Tidal marshes can be large in extent, highly heterogenous, and difficult to access. These 

factors limit the ability to monitor and characterize wetlands using field studies alone. Satellite 

remote sensing provides synoptic observations of wetlands and direct observations of 

biophysical attributes that define wetlands, including surface hydrology (inundation state), 

hydrophilic vegetation, and hydric soils (Kulawardhana et al. 2007; Mitsch and Gosselink 2007). 

Many studies have utilized remote sensing to study abiotic and biotic wetland processes (Lang et 

al. 2008; Schmitt and Brisco 2013; Kim et al. 2014; Moser et al. 2016; Brisco et al. 2017; Byrd 

et al. 2018), and to inventory wetlands (Whitcomb et al. 2009; Clewley et al. 2015; Hird et al. 

2018). These remote sensing-based research efforts enable wetland studies to be carried out on 

much larger scale than field study-based efforts. However, tidal wetland systems, and tidal 

marshes in particular, have been understudied with remote sensing approaches compared to other 

wetlands. This may be due, in part, to challenges in accurately characterizing high frequency 

tidal variability in tidal marshes when assessing inundation dynamics. Especially since this tidal 

variability may interfere with assessments of tidal wetland vegetation characteristics and even 

tidal marsh distribution assessments. While understudied compared to other wetland systems, 

there have been many important remote sensing-based tidal marsh research efforts (Barlett and 

Klemas et al. 1981; Kearney 2002; Oliver-Cabrera and Wdowinski 2016; Ramsey et al. 2012; 

Ramsey et al. 2014; Ramsey et al. 2016; Rangoonwala et al. 2016; Slatton et al. 2008). These 

efforts highlight the challenges of working in tidally influenced systems and have largely 
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focused on brackish and salt marsh systems. Remote sensing-based studies of freshwater tidal 

marshes in contrast, have been extremely limited (Elmore 2008). This thesis specifically seeks to 

improve the large-scale study of freshwater tidal wetlands which serve as important indicators of 

ecological conditions and demarcate freshwater marshes and brackish marshes.  

 Overall, it is clear that satellite remote sensing is unparalleled in wetland monitoring in 

terms spatial capabilities, but how well can current satellite observations resolve tidal marsh 

dynamics? This thesis research seeks to address that question and ideally overcome some of the 

challenges that exist in utilizing remote sensing to study tidal marshes. 

 

1.2 Remote Sensing Theory Background 

 At the most fundamental level, remote sensing is the process of determining properties of 

a target at a physical distance from it. The vast majority of remote sensing systems utilize 

electromagnetic (EM) radiation, commonly referred to as light, for the identification of target 

properties. Early attempts to describe light scientifically date back to Ancient Greece and 

perhaps even earlier. However, in providing the foundations for modern remote sensing, three 

scientists provided precise descriptions of light that are fundamental to the field. The first of 

them is Christiaan Huygens who was the first scientist to mathematically describe light as a 

wave. Huygens description of light as a wave lead to debates with Isaac Newton who had 

previously described light as streams of particles. Eventually, modern quantum mechanics would 

vindicate both Huygens and Newton by ultimately arriving at the concept of light’s wave-particle 

duality. The second important figure in providing the physical foundations of modern remote 

sensing was Albert Einstein who provided the useful particle description of light as photons. 

Modern remote sensing requires both wave and particle descriptions of light (EM radiation). For 
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example, remote sensing imaging systems that operate at visible to infrared (IR) (optical/IR) 

wavelengths (400 nm to 2500 nm) utilize arrays of photon detectors, while radar instruments that 

operate at microwave wavelengths (1 mm to 30 cm) measure EM wave intensity with antennae. 

The equations below show the general wave equation (1), equation for photon energy (2), and 

equation for the speed of light (3). The wave equation term k describes the wavenumber which 

inversely relates wavelength to the wave frequency. Like the wave equation (1), the photon 

equation (2) also contains a wavelength term (𝜆) and demonstrates that the energy of a given 

photon is inversely proportional to wavelength. Equation 3 relates the constant speed of light to 

wavelength and frequency which has important significance when describing light’s interaction 

with media. 

 

𝜓(𝑧, 𝑡) = 𝐴 sin(𝑘𝑧 − 𝜔𝑡 +  𝜙0) (1) 

 

𝐸 =  
ℎ𝑐

𝜆
 (2) 

 

𝑐 =  𝜆𝜐 (3) 

 

where A is wave amplitude, k describes the wavenumber which inversely relates wavelength to 

the wave frequency, 𝜔 represents angular frequency, and 𝜙0 represents the wave phase in 

general wave equation 1. In equation 2, E denotes energy. In equations 2 and 3, 𝜆 denotes 

wavelength, ℎ is Plank’s constant, 𝑐 is the speed of light in a vacuum, and 𝜐 is frequency. 

 

 The third scientist to contribute greatly to modern remote sensing, and arguably the most 

important in a fundamental sense, was James Clerk Maxwell. Maxwell was the first physicist to 

fully describe the intertwined nature of the electric and magnetic properties of light in a series of 
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four succinct equations which includes the research of Carl Friedrich Gauss and Michael 

Faraday. Maxwell’s equations (4-7) below describe interactions between light’s electric and 

magnetic fields in free space.  

 

∇ ∙ E =  
𝜌

𝜀0
 (4) 

∇ ∙ B =  0 (5) 

∇ × E =  −
𝜕

𝜕𝑡
B (6) 

∇ × 𝐁 =  𝜇0  (𝐉 + 𝜀0

𝜕

𝜕𝑡
E) (7) 

 

where E is the electric field, 𝜌 is charge density, 𝜀0 is permittivity of free space,  B is the 

magnetic field, 𝜇0 is the permeability of free space, and J is current density. 

 

 It is critical to note that Maxwell’s equations describe not only light’s intertwined electric 

and magnetic fields, but also describe the propagation of them in space. 𝜀0 and 𝜇0 describe the 

electrical permittivity and permeability of free space (a vacuum), respectively. Together these 

terms also describe the speed of light in a vacuum as shown in the equation 8 below. Like 

equation 3, equation 8 also describes the speed of light, but does so as a function of the 

properties of the free space in which light propagates rather than the inherent properties of the 

light itself. 

𝑐 =  
1

√𝜀0 𝜇0

 (8) 
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 The properties of a medium, rather than a vacuum, are described by the relative 

permittivity and relative permeability (𝜀𝑟 and 𝜇𝑟) which are dimensionless factors that relate 

permittivity and permeability of a medium (𝜀 and 𝜇) to their free space counterpart terms (𝜀0 and 

𝜇0) (shown in equations 9-10). Most Earth targets can be approximated as non-magnetic media; 

therefore, their relative permeability is equal to one, meaning their permeability will be equal to 

the permeability of free space. In contrast, permittivity values and the associated relative 

permittivity values can vary greatly. This is one of the most important concepts in both 

microwave and optical remote sensing. The relative permittivity of a given medium, which is 

often referred to as the dielectric constant, dictates many important interactions between EM 

radiation and media in which it propagates. These interactions include: Scattering, absorption, 

and transmission. These interactions are all of great importance to the field of remote sensing and 

will be discussed in greater detail in future sections.  Equation 11 below demonstrates that the 

velocity of an EM wave is related to the medium’s relative permittivity alone when the medium 

is non-magnetic. In remote sensing of Earth targets, EM waves will often pass between media 

with different dielectric values. When this occurs, the velocity (𝜈) of the wave will change as 

shown in equation 11, which results in a change in wave propagation direction, through a process 

known as refraction, a type of scattering. This is a very important concept in remote sensing at 

air-water interfaces and will be discussed in greater detail in following sections. 

 

𝜇 = 𝜇𝑟𝜇0 (9) 

 

𝜀 =  𝜀𝑟𝜀0 (10) 

 

𝜈 =  
1

√𝜀𝑟 √𝜀0𝜇0

=  
𝑐

√𝜀𝑟

 (11) 
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 At this point, it is important to address a distinction between the microwave and optical 

remote sensing communities. The microwave community will generally refer to the dielectric 

properties of a medium while the optical community will refer to the refractive index of the 

medium. The refractive index (𝑛) is simply the square root of the dielectric constant. The 

dielectric constant and refractive index are both complex terms with real and imagery parts. The 

real term refers to a medium’s induced polarized orientation when impinged upon by an electric 

field, while the imaginary term refers to the loss of an electric field as it propagates through the 

medium. To a first approximation these properties control scattering and absorption, 

respectively. A medium’s dielectric constant (or refractive index) will vary depending on the 

frequency of the EM wave propagating within it, as shown in equation 15 below. 

 

𝑛 =  √𝜀𝑟 =  
𝑐

𝜈
 (12) 

 

𝑛 = 𝑛 + 𝑖𝑘 (13) 

 
 

𝜀𝑟 =  𝜀′
𝑟 − 𝑖𝜀′′

𝑟 (14) 

 
 

𝜀𝑟(𝜔) =  𝜀′
𝑟(𝜔) −  𝑖𝜀′′

𝑟(𝜔) (15) 

 

where 𝑛 refers to the refractive index and 𝜀𝑟 refers to the dielectric constant. The second terms in 

equations 13 and 14 denote the imaginary (loss/absorption) terms in the complex refractive index 

and dielectric constant, respectively. Equation 15 expresses the frequency-dependence of the 

dielectric constant which also applies to the refractive index.    
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 Having developed some background on the physical properties of EM radiation and 

established the importance of the medium’s dielectric constant in interaction with EM radiation, 

it is important to address a few remaining concepts. First, only interactions between EM 

radiation and media have been discussed thus far. However, it is important to note that many of 

the EM descriptions of media properties are also descriptions of particle properties (e.g. 

dielectric values). Second, the initial wave function in equation 1 defined only a one-dimensional 

wave with an arbitrary plane of oscillation. Maxwell’s equations demonstrate that electric and 

magnetic fields are intertwined. For an EM wave, the electric and magnetic fields will oscillate 

in orthogonal planes with the same propagation direction. As previously mentioned, in Earth 

remote sensing the vast majority of targets are non-magnetic, therefore the magnetic fields of an 

EM wave will seldom change due magnetic interactions. Electric fields, in contrast, often change 

due to interaction with common Earth targets. This means that EM wave descriptions are often 

simplified using the electric field alone. The updated wave equation 16 below reflects this 

simplification, and also includes the description of the electric field’s oscillation about the x-axis, 

with the z-axis remaining the direction of propagation. Note like equation 1, this updated wave 

equation describes wave propagation in time and space with the same wavenumber (𝑘), angular 

frequency (𝜔), and phase terms (𝜙0). 

 

𝐸𝑥(𝑧, 𝑡) = 𝐸0𝑥 sin(𝑘𝑧 − 𝜔𝑡 +  𝜙0) =  𝐸0𝑥𝑒𝑖𝜙 (16) 

 

 The orientation of the electric field serves as a useful description for later sections when 

discussing radar polarization. Additionally, note that in contrast to the original wave equation 1, 

this updated wave equation has an imaginary term. This imaginary term is useful for representing 
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a wave’s phase along with the amplitude. This description becomes very useful in microwave 

remote sensing where wave amplitude and phase are often recorded together, while each provide 

unique information on target properties. 

 It is critical to be able to link the wave equation 16 defined above to the radiometric 

properties that remote sensing instruments measure or derive. Many remote sensing instruments 

record EM wave intensity rather than amplitude (𝐸). To get to intensity, one must first convert to 

power (P) by squaring the EM wave amplitude. Intensity is a measure of time-average power (𝑃) 

per-unit area (𝐴). Intensity (𝐼) is often express in units of Watts per square meter. Power and 

intensity equations are shown below. 

 

𝑃 = |𝐸(𝑧, 𝑡)|2 (17) 

𝐼 =  
〈𝑃〉

𝐴
(18) 

  

 EM radiation intensity can be further described by whether it is incoming or outgoing 

relative to a target. When EM radiation of a given intensity is incoming, it is termed irradiance 

denoted by the letter E (note this term is different from electric field amplitude in equation 16). 

When EM radiation is exiting a target it is aptly termed exitance denoted by the letter M. Often 

in remote sensing, it is useful to define not just whether EM radiation of a given intensity is 

leaving or exiting a target, but to determine the precise direction from which the EM radiation 

originates. When EM radiation intensity is measured from a defined solid angle (steradian), this 

property is termed radiance denoted by the letter L. Radiance is defined as Watts per square 

meter per steradian. Most remote sensing instruments, especially optical/IR sensors, measure 
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radiance rather than irradiance because imaging system detectors must be constrained to a very 

narrow field of view. The last concept needed to generally describe how satellite instruments 

observe EM radiation are spectral properties. Spectral irradiance is general measured in Watts 

per square meter per unit spectral wavelength (𝜆), spectral radiance includes the steradian term. 

Often the spectral wavelength units are micrometers (um) and nanometers (nm). The common 

units are shown below. 

𝐼𝑟𝑟𝑎𝑑𝑖𝑎𝑛𝑐𝑒 =  𝐸 (𝑢𝑛𝑖𝑡𝑠 =  𝑊𝑚−2) 
 
𝑅𝑎𝑑𝑖𝑎𝑛𝑐𝑒 =  𝐿 (𝑢𝑛𝑖𝑡𝑠 =  𝑊𝑚−2𝑠𝑟−1) 

 
𝑆𝑝𝑒𝑐𝑡𝑟𝑎𝑙 𝐼𝑟𝑟𝑎𝑑𝑖𝑎𝑛𝑐𝑒 =  𝐸𝜆 (𝑢𝑛𝑖𝑡𝑠 =  𝑊𝑚−2𝑛𝑚−1) 

 

𝑆𝑝𝑒𝑐𝑡𝑟𝑎𝑙 𝑅𝑎𝑑𝑖𝑎𝑛𝑐𝑒 =  𝐿𝜆 (𝑢𝑛𝑖𝑡𝑠 =  𝑊𝑚−2𝑠𝑟−1𝑛𝑚−1) 

 

 Nearly all satellites with optical imaging systems measure spectral radiance or derive 

spectral radiance as a radiometric property. Optical instruments are generally multispectral, with 

separate photon detectors corresponding to different spectral channels. These spectrally distinct 

photon detectors have a spectral response function that defines quantum detection efficiency for 

a given photon of a given wavelength. These photon detectors measure photon counts within a 

spectral range, commonly referred to as a spectral band. These spectral bands are generally 

recorded as digital number values which correspond to scaled photon counts. A single digital 

number value corresponds to a single spectral band’s individual pixel. To generate multispectral 

images, optical instruments have both spatial and spectral detector arrays that are required to 

produce detailed imagery. The digital number values of pixels of a given image roughly 

correspond to scaled photon counts, but on their own are physically meaningless units. In order 

to produce physical units, optical satellites have accurately calibrated parameters (gains and 
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offsets) that relate digital number values to physical units, most commonly spectral radiance. 

After spectral radiance values have been determined, top of atmosphere (TOA) reflectance 

imagery of the Earth’s surface can be calculated from the ratio of upwelling spectral radiance 

observed by the satellite to downwelling spectral irradiance. Downwelling solar irradiance for a 

given satellite image can be calculated accurately based on sun-sensor geometry, date, time, and 

image location. Although defining TOA reflectance for optical imagery is conceptually simple, 

obtaining accurate estimates of Earth’s surface reflectance is challenging. Atmospheric gases and 

particles interact strongly with EM radiation at optical wavelengths, perturbing both the 

downwelling irradiance incident on the Earth’s surface and the reflected upwelling radiance 

reaching the satellite sensor. The process of correcting or compensating for these atmospheric 

effects is a topic that is not covered further in this thesis but is of critical importance to obtain an 

accurate characterization of the Earth’s surface. For this reason, all optical imagery used in the 

thesis has been corrected to surface reflectance (Kaufman et al. 1997; Vermote et al. 2016).  

 In contrast to optical imaging systems, for longer wavelength microwave systems, the 

atmosphere is largely transparent (non-perturbing). Meaning that atmospheric correction is not 

required for long wavelength microwave remote sensing platforms. This thesis exclusively 

addresses active microwave instruments, namely imaging radar, for wetland characterization and 

observation. All radar imagery in this thesis has been acquired by synthetic aperture radar (SAR) 

imaging systems. SAR systems utilize the motion of an aircraft or satellite to produce a 

synthetically lengthened aperture (antenna) which has the effect of increasing the spatial 

resolution of acquired imagery after advanced signal processing. SAR signal processing and 

system design are important and complex topics, but are outside the scope of this thesis, and are 

not discussed further. Since SAR are active microwave instruments, they have a number of 
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technical differences and complexities that differentiate them from passive optical sensors. SAR, 

being a form of radar, are active instruments that transmit their own EM signals of a known wave 

amplitude/intensity and measure the amplitude/intensity of the return signal. In doing so, radar 

instruments are essentially measuring the scattering efficiency of a target. This is termed the 

scattering cross section denoted by sigma (σ). The radar cross-section equation below further 

describes how σ is defined in the context of a radar imaging system. 

 

𝜎 =
𝐼𝑟𝑒𝑐

𝐼𝑖𝑛𝑐
 4𝜋𝑅2 (19) 

 

where 𝜎 is the radar scattering cross section, Irec and Iinc are received and incident intensity, 

respectively, and R is the range or distance between the radar and the target (Woodhouse 2006). 

 

 Radar systems can be monostatic when signal transmission and signal reception occurs 

on the same antenna or bistatic where separate antennae are dedicated to signal transmission and 

reception (Jensen et al. 2018). In the monostatic case, only direct backscattered signal from a 

target can be measured. In the bistatic case, theoretically any scattering direction relative to a 

target can be measured. The vast majority of spaceborne radar are monostatic, including all SAR 

satellites described in this thesis, thus every account of sigma (σ) from this point forward is 

referring to monostatic backscattered σ. In order to obtain a measure of the scattering cross 

section that is not dependent on a SAR imaging system’s footprint or pixel size, it is necessary to 

normalize σ by an area as is shown in equation 20 for sigma naught (σ0) below. 
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𝜎0 =  
𝜎

𝐴
 (20) 

 

 Both 𝜎 and 𝜎0 often need to be described as a function of satellite view geometry (signal 

transmit and receive geometry for radar), even though 𝜎0 should be theoretically only be 

impacted by ground properties. SAR are side looking instruments with a view geometry that is 

off-nadir by approximately 20-50 degrees. When this off-nadir view geometry is taken into 

consideration with the fact that many Earth targets are anisotropic scatterers in the microwave 

region, it becomes even more essential to account for this view geometry. The first reason for 

this is the fact that the Earth’s surface is seldom flat (topographically invariant) even at the 

resolution of a single image pixel, which can vary widely from < 10 m to > 50 km. When a SAR 

instrument images topographically variant targets, the total scattering area changes as a function 

of the Earth’s topography in relation to sensor view geometry, even when the SAR imaging 

system’s resolution cell remains constant. Equations 21 and 22 (reproduced from Woodhouse 

2006) describe radar backscatter in the slant range geometry which accounts for slanting 

topography in an image resolution cell.  

𝛾 =  
𝜎0

cos 𝜃𝑖
 (21) 

 

𝛽0 =  
𝜎0

sin 𝜃𝑖
 (22) 

 

where 𝛾  is slant range scattered intensity observed by the sensor normalized by sensor view 

angle relative to topography and 𝛽0  is slant range scattered intensity normalized by ground area.  
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 Terrain correction is required to accurately convert slant range geometry backscatter (𝛾 

and 𝛽0) to ground range geometry backscatter (𝜎0) which best describes target properties. 

Because wetlands are largely topographically invariant, this terrain correction is a fairly 

straightforward process, and is not discussed further. It should be noted that equation 23 

introduces a theta term for sensor view angle. This view angle is important to account for, even 

considering topographically invariant targets like wetlands, as backscatter changes as a function 

of view angle for certain targets types like wetland vegetation. 

 

𝜎0(𝜃) =  
𝜎(𝜃)

𝐴
(23) 

 

 

 

 Sigma naught radar imagery can at times be difficult to interpret as the dynamic range of 

the imagery may not sufficiently capture intermediate brightness levels (intermediate backscatter 

values). For this reason, it is often helpful to convert sigma naught (𝜎0) values to decides (𝑑𝐵) 

as shown in equation 24. 

 

𝑑𝐵 = 10 ∗ 𝑙𝑜𝑔10(𝜎0) (24) 

 

 In addition to being differentiated from optical sensors by the fact they are active sensors, 

radar have many other differentiating factors from optical sensors. Radar not only measure wave 

amplitude/intensity but also wave phase. The phase information proves very useful in many more 

complex SAR processing techniques that are discussed in later sections. Another distinction 

between radar and optical instruments is the fact that radar measure wave polarization. Currently, 
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no operational optical satellites designed for Earth surface imaging have polarimetric 

observational capabilities. Lastly, radar instruments are largely distinguished from optical 

instruments not only by their microwave wavelengths, but the fact that these microwave 

wavelengths are monochromatic rather than multispectral. In this thesis, two types of 

monochromatic radar are used for wetland observation and characterization, these are C-band 

radar (5.55 cm wavelength) and L-band radar (23.5 cm wavelength). This is contrasted with the 

optical/IR imagery used in this thesis that is multispectral.  

 In summarizing the previous sections, a critical takeaway is that 𝜎0 is a measure of 

scattering efficiency of a target which largely depends on the target’s dielectric properties 

(𝜀𝑟(𝜔)) in combination with target geometry. Further, it is the relative geometry of the target (if 

anisotropic) in relation to the satellite’s view geometry that influences 𝜎0. Although not 

previously discussed, it is crucial to note that 𝜎0 is also dictated by the physical size of the target 

(or targets) in a resolution cell relative to the radar signal’s transmitted wavelength. This has 

important implications for comparative physical responses of C-band scattering, L-band 

scattering, and optical/IR reflectance for wetland targets. In the following section we discuss the 

dielectric properties of several common wetland targets, while noting that the relative size of the 

wavelength compared to the physical target(s) size and satellite view-target scattering geometry 

are also largely influential factors in dictating the value of 𝜎0. 

 

1.3 Wetland Target Dielectric Properties 

 Wetlands are defined by the presence of hydrophilic vegetation, hydric soils, and periodic 

water presence (generally surface water). Water’s dielectric properties are some of the most 

unique of any naturally occurring material on Earth which presents numerous opportunities in 
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being able to separate wetland targets from drier targets and study wetland hydrological 

processes when using EM-based approaches. At optical/IR wavelengths, the real part of the 

dielectric constant (𝜀′
𝑟) is approximately 1.79 at ultraviolet-blue wavelengths (400 nm), 1.77 at 

red edge wavelengths (700 nm), and 1.73 at the 1000 nm transition between the near infrared 

(NIR) and shortwave infrared (SWIR) (Pope and Fry, 1997; Segelstein 1981). The imaginary 

part of the dielectric constant (𝑖𝜀′′
𝑟) has a value of 2.62e-20 at 400 nm, 1.21e-15 at 700 nm, and 

1.21e-12 at 1000 nm (Pope and Fry, 1997; Segelstein 1981). When considering the fate of 

optical/IR EM radiation propagating in a medium of water, the relative spectral difference in the 

imaginary part of the dielectric constant has great implications for spectrally dependent 

absorption, and thus how much signal returns to a multispectral optical sensor imaging a water 

target. NIR and SWIR EM signals are more strongly attenuated than visible EM signals along the 

same geometric path length. At the interface of two media like air and water, some radiation will 

undergo scattering (mostly specular reflectance) dictated by 𝜀′
𝑟. However, the relative 

differences between the real dielectric values at visible and NIR-SWIR wavelengths are 

relatively small, and thus surface scattering spectral differences at the air-water interface are 

small. Further, optical satellites are generally designed with a view geometry that minimizes the 

observation of the specular reflectance that dominates this surface scattering for water targets 

(namely sun glint). This sun glint minimization means that a significant portion of optical EM 

signals will be upwelling radiance from within the water medium rather than from the water’s 

surface. As previously stated, the spectrally dependent absorption has important implications 

here, with significantly higher levels of visible EM radiation returning to the sensor than NIR-

SWIR EM radiation. This important difference has manifested in the development of many 

effective multispectral-based approaches for identifying surface water targets. One very 
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commonly used approach is the development of spectral indices, the normalized difference water 

index (NDWI) and modified difference normalized water index (mNDWI) which make use of 

normalized differences of green and NIR bands, and green and SWIR bands, respectively 

(McFeeters 1996; Du et al. 2016). These water indices have addition utility in wetland 

characterization because they effectively respond to relative percent covers of vegetation and 

open water, as vegetation produces higher scattering in the NIR and SWIR relative to the visible 

(McFeeters 1996; Du et al. 2016; Jones 2019). This means that these water index responses are 

spectrally opposite for open water and vegetation, providing a sufficient range to allow 

estimation of vegetation cover and open water. Several surface water products exist that derive 

surface water extents from spectral indices or similar spectral band combinations, with the 

European Commission Joint Research Centre (JRC) Global Surface Water (GSW) product being 

one of the most commonly used products for moderate-high (30-meter) spatial resolution surface 

water mapping (Pekel et al. 2016). More recently, the U.S. Geological Survey released a 

Dynamic Surface Water Extent (DSWE) 30-meter resolution product utilizing a sophisticated 

decision tree classification incorporating several water indices and vegetation indices that 

classifies surface water probabilities in addition to potential wetlands (Jones 2019).  

 These optical indices and their associated derived products are limited in several ways 

compared to radar-based estimates of wetland inundation state and soil hydrologic properties. 

Compared to the small wavelengths of optical EM radiation, microwave EM radiation provides 

far greater penetration into vegetated canopies, allowing SAR to characterize the sub-canopy 

surface water or soil hydrologic state more effectively than optical sensors. Secondly, because 

SAR are side looking instruments, they observe not only the tops of vegetated canopies, but a 

more geometrically integrated canopy response, allowing not only assessment of upper canopy 
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vegetation properties, but structural biomass as well. Third, the physical responses of 

microwaves to not only the presence, but the geometric distribution, of water in wetland systems 

is far stronger than optical EM responses. The remainder of this thesis chapter focuses on 

descriptions of microwave EM responses in characterizing wetland targets, which have been 

underutilized relative to optical approaches despite numerous technical advantages. 

 At microwave frequencies the dielectric properties of water are even more extreme than 

at optical wavelengths. At L-band wavelengths water reaches an 𝜀′
𝑟 of ~80, while the 𝑖𝜀′′

𝑟 

reaches value of ~20 (depending on temperature) (Ulaby and Long, 2015). At C-band 

wavelengths water reaches an 𝜀′
𝑟 of ~70, while the 𝑖𝜀′′

𝑟 reaches value of ~25 (depending on 

temperature) (Ulaby and Long, 2015). Thus, at these microwave wavelengths there is 

tremendously strong scattering and high absorption, with minimal transmission of EM radiation 

into water. The seemingly narrow focus on the water’s dielectric properties is not without reason. 

In the context of radar-based characterization of wetlands, vegetation and soils also contain high 

water contents. Based on the extremely high dielectric values of water at microwave 

wavelengths, it can be accurately summarized that it is the geometric distribution of water that 

dictates scattering from vegetation and soil targets in addition to open water. It is for this reason 

that many microwave radiometric models approximate vegetation as a water cloud (Ulaby and 

Long 2015). The importance of water’s dielectric properties is further evidenced in the work by 

Duan and Jones (2017) summarizing previous research by Ulaby and El-Rayes (1987) and Lam 

et al. (2008) which estimated a dry (dead) marsh grass dielectric of 3.2 + i.79i and a wet (live) 

marsh grass dielectric of 13.62 + 4.83i. This difference in the real and imagery dielectric between 

live and dead marsh vegetation manifests in important scattering and absorption differences. 

Research by Atwood et al. (2020) found that a dielectric of 6.5 + 0.5i originally measured in corn 
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stalks provided an effective analogue to Typha (cattail) stems in wetland microwave radiometric 

modeling efforts. Ellison et al. (2017) measured 2.45 GHz dielectric values of energy cane, 

tallow tree, and live oak vegetation matter with water contents below 12%, finding  that all 

vegetation types exhibited similar real dielectric values of 2.13 on average, while imaginary 

dielectric values were less than 0.1. These studies clearly illustrate the important role that water 

plays in dictating the microwave dielectric values of wetland vegetation. Noting the importance 

of the dielectric constant variability in wetland targets, this factor is discussed in the following 

section as it pertains to microwave scattering and the backscatter that is observed by radar 

instruments. 

 

1.4 Wetland Target Radar Scattering Responses 

 In wetland systems, vegetation, surface waters, and moist or saturated soils all contribute 

to an integrated radar backscatter response in a single resolution cell or image pixel. Scattering 

responses from these three primary targets vary and depend on dielectric properties and 

geometry in relation to the SAR sensor. For instance, backscatter from open water will vary as a 

function of both water's roughness from wind and wave activity and the SAR incidence angle 

(Vachon and Wolf 2011). Soils will generally act as rough surfaces when wet, scattering SAR 

signals somewhat anisotropically. However, as moisture increases and soils transition from moist 

to inundated, a more specular scattering response occurs (Woodhouse 2006). Vegetation 

backscatter responses are the most complex of all these three targets, as vegetation scattering 

varies as a function of: vegetation water content, stem and leaf density, stem and leaf orientation, 

canopy height, and whether vegetation is herbaceous or woody (Ulaby and Long, 2015). The 

complex scattering responses from vegetation also produce unique scattering signatures that 
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allow vegetation to be distinguished from other targets. The first unique response is a tendency 

for leaves and stems to produce a volume scattering response in SAR signals. Volume scattering 

has the effect of depolarizing a SAR signal as many scattering events occur (Woodhouse 2006). 

The volume scattering response is captured in a relative difference between the polarization of 

the transmitted signals and polarization difference in the return signal. For instance, it is common 

for the Sentinel-1a SAR satellite to transmit a vertically polarized signal and measure vertically 

(VV) and horizontally (VH) polarized returns, with the first letter denoting transmitted 

polarization and the second denoting the received polarization. The PALSAR and PALSAR-2 

satellites will commonly transmit a horizontally polarized signal and measure horizontal (HH) 

and vertical (HV) polarized returns. In both the Sentinel-1 and PALSAR/PALSAR-2 cases, the 

relative backscatter intensity differences between the co-polarized (VV, HH) and cross-polarized 

(VH, HV) signals will provide a relative assessment of vegetation-induced volume scattering. In 

general, the less degree of difference in the co-polarized and cross-polarized backscatter, the 

greater the occurrence of volume scattering. 

 Wetland vegetation produces an additional unique scattering response when the sub-

canopy is inundated known as the double bounce effect. This response occurs as a result of two 

strong corner reflections off water's surface and then off a trunk(s) or stem(s) (or vice-versa). 

These two scattering events have the combined effect of producing a strong (high intensity) 

backscatter response. The double bounce effect is most pronounced if the scatterers (e.g. trunks 

or stems) have a geometry opposite the SAR signal (Ulaby and Long, 2015). In most wetland 

systems, both woody (e.g.  swamps) and herbaceous (e.g. marshes), trunks and stems will have 

an approximately vertical orientation, meaning that the double bounce scattering effect will be 

most pronounced in SAR signals with horizontal polarization (HH). The double bounce effect in 



23 
 

the co-polarized VV backscatter will be reduced relative to HH backscatter in wetlands with such 

vertically structured vegetation. In general, the double bounce scattering mechanism is largely 

thought to be absent from cross-polarized channels (HV, VH). Still, some studies have indicated 

the existence of helical scatterers in wetland systems that produce depolarized coherent 

scattering in the VH, HV channels. This cross-polarized coherent scattering mechanism is 

generally believed to have a minor contribution to backscatter and is best detected by 

polarimetric phase analyses (Hong and Wdowinski 2013; Hong et al. 2015). A more thorough 

discussion of phase-based SAR approaches for wetland monitoring will be discussed in later 

sections. The remainder of this section discusses SAR backscatter intensity. Figure 1.1  

showcases the double bounce and volume scattering effects for C-band and L-band sensor 

backscatter. Note that soil and vegetation penetration depth differ for C-band L-band sensors, 

and that the degree of double bounce scattering changes as a function of wavelength relative to 

the physical size of the scatterer (e.g. herbaceous vegetation, tree, etc.). In the next section an in-

depth assessment of existing literature and assessment of current SAR technologies for wetland 

characterization and observation is provided. 
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Figure 1.1. Depiction of SAR scattering and optical/IR reflectance in wetland systems for three 

most utilized satellite sensors in the following chapters of this thesis. Note when vegetated 

canopies are dense, signal penetration depth is a function of sensor wavelength. Interaction 

between satellite signals and wetland targets is dependent on the target’s physical size relative to 

wavelength. Notably the double bounce effect is more pronounced for herbaceous vegetation 

with C-band signals, while inundated trees will produce a strong double bounce effect at L-band 

wavelengths. All depicted signal differences are based on backscatter or reflectance intensity, not 

signal phase which is discussed in later sections. 

 

1.5 Radar-Based Wetland Characterization and Limitations to Address  

 Numerous studies have demonstrated the utility of SAR in wetland monitoring and 

characterization. Many of these studies have focused on inland wetlands. However, there are a 

number of SAR remote sensing studies focusing on tidal marshes specifically (Oliver-Cabrera 

and Wdowinski 2016; Ramsey et al. 2012; Ramsey et al. 2013; Ramsey et al. 2015; 

Rangoonwala et al. 2016; Kasischke and Bourgeau-Chavez 1997; Tannis et al. 1994). These 

studies largely focus on tidal marsh inundation monitoring with L-band and C-band SAR. These 

studies generally produce empirical and theoretical findings that tidal marsh SAR backscatter 

tends to decrease in the presence of tidal inundation, with the amount of backscatter decrease 
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being a function of inundation depth. Some of the most comprehensive comparative studies of L-

band imagery and C-band imagery for tidal marsh inundation characterization come from 

Ramsey et al. (2012) and Ramsey et al. (2013). These studies point to L-band PALSAR imagery 

being more effective in tidal marsh inundation mapping when using threshold-based approaches 

compared to C-band ASAR imagery (91% vs. 67% inundation classification accuracy). Oliver-

Cabrera and Wdowinski (2016) found that PALSAR L-band Interferometric SAR (InSAR) 

image pairs acquired over inundated tidal marshes of the Gulf Coast tended to produce much 

higher interferogram coherence than RADARSAT-2 C-band InSAR image pairs acquired at 

similar tidal stages. This indicates that L-band scattering responses to tidal inundation state was 

more consistent across the tidal marsh study domain. Findings from Kasischke and Bourgeau-

Chavez (1997) indicate some of the complexities of C-band imagery (ERS-1) in assessing 

inundation state. In their Southwest Florida study domain, both brackish tidal marsh and 

freshwater marsh ERS-1 backscatter increased transitioning from dry periods to wet periods, 

which was attributed to vegetation growth. Tannis et al. (1994), in contrast, found consistent 

ERS-1 C-band backscatter decreases for brackish marshes comparing low tide images to high 

tide.  

 It is not until the freshwater marsh SAR inundation studies are evaluated that a more 

well-supported assessment of C-band and L-band marsh inundation characterization performance 

becomes clear. Pope et al. (1997) found backscatter increases in HH and VV channel C-band 

imagery of the SIR-C instrument when high biomass herbaceous wetlands inundated, while 

Kasischke et al. (2003) found that freshwater herbaceous wetland backscatter decreased in 

response to inundation when imaged with the ERS-1 satellite’s VV channel. These results are not 

necessarily inconsistent, but rather point to the combined influence of herbaceous vegetation 
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biomass variability and inundation state in influencing C-band backscatter directional change. 

Although the combined influence of inundation state and marsh vegetation structure clearly have 

an impact on C-band backscatter response, the scattering mechanisms are not fully described by 

empirical analyses. 

 Radiometric model-based SAR scattering studies do help to elucidate scattering 

mechanisms when assessed in tandem with empirical image analysis. Tannis et al. (1994) and 

Kasischke and Bourgeau-Chavez (1997) found that SAR backscatter from the ERS-1 satellite 

was best fit to radiometric modeling efforts by describing herbaceous marshes as non-double 

bounce scattering, while woody wetlands were descried as double bounce scattering. Equations 

25 and 26 are reproduced from Kasischke and Bourgeau-Chavez (1997) showcasing total 

wetland backscatter contributions (𝜎   𝑡
0 ) from different sources with and without the double 

bounce mechanism.  

𝜎   𝑡−𝑤
0 =  𝜎   𝑐

0 +  𝜏   𝑐
2    𝜏   𝑡

2   (𝜎   𝑚
0 +  𝜎   𝑡

0   𝜎   𝑠
0  +  𝜎  𝑑

0 ) (25) 

𝜎   𝑡−ℎ
0 =  𝜎   𝑐

0 +  𝜏   𝑐
2   (𝜎   𝑚

0 +  𝜎   𝑠
0 ) (26) 

where 𝜎   𝑐
0  is backscatter from the vegetation crown. 𝜏   𝑐

2  is the transmission coefficient of the 

vegetation canopy. 𝜏   𝑡
2   is the transmission coefficient of the trunk. 𝜎   𝑚

0  is multiple path 

scattering between vegetation and ground. 𝜎   𝑡
0  is direct scattering from trunks.  𝜎   𝑠

0  is direct 

surface scattering from the ground.  𝜎   𝑑
0  is double bounce scattering between trunks and ground 

 

 Equations 25 and 26 effectively showcase scattering contributions from different sources 

and showcase how these radiative transfer equations are written with and without the double 

bounce mechanism present. Although the equation 25 terms  𝜏   𝑡
2  , 𝜎   𝑡

0 , and  𝜎   𝑑
0  refer to trunk 



27 
 

scattering contributions, these terms could readily be modified to represent stem scattering 

contributions if stems have a sufficient diameter and water content (high dielectric values) to 

contribute to strong double bounce scattering. The importance of the identification of the double 

bounce mechanism in assessing tidal marsh inundation state differs depending on approach. A 

comparison of the backscatter thresholding in Ramsey et al. 2013 and InSAR analysis in Oliver-

Cabrera and Wdowinski (2016) serve as fine examples of the difference in approach. When 

using SAR backscatter approaches (returned signal intensity), the consistent L-band backscatter 

decreases as a function of inundation depth indicate that as marsh vegetation submerges, forward 

specular scattering dominates the total scattering response ( 𝜎   𝑠
0 ), while backscatter contributions 

from the vegetation canopy (𝜎   𝑐
0 ) decrease. However, scattering from vegetation canopies 

generally tend to scatter SAR signals incoherently (Woodhouse 2006). Thus, effective InSAR 

studies assessing tidal inundation state, must necessarily isolate the existence coherent scattering 

mechanisms like the double bounce effect or even coherent multiple path scattering (𝜎   𝑚
0 ) 

between marsh canopy and ground. This is not possible with incoherent scattering of non-

inundated marsh vegetation, high biomass vegetation where no sub-canopy scattering occurs, or 

open water (Brisco et al. 2017). In the case of an inundating marsh, even though the backscatter 

intensity decreases as a function of water height as vegetation submerges as forward scattering 

dominates, so long as non-volume scattering vegetation structures like large stems remain 

present to produce coherent scattering, the retuned backscatter signal phase may remain 

coherent, even if the backscatter intensity is lowered.   

 Perhaps the most effective approach for isolating scattering mechanisms associated with 

marsh inundation state is by making use of polarimetric phase information in SAR imagery 

(PolSAR), rather than comparing the phase differences in separate image pairs as InSAR does. 
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Studies by Hong and Wdowinski (2013) and Hong et al. (2015) found that when marshes 

inundate, phase coherence between the VV and HH channels remains high, pointing to the 

presence of the double bounce scattering mechanism. These studies also found that cross-

polarized channel and co-polarized phase difference coherence also remained high in many 

cases, pointing to the existence of coherent volume scattering. Similar findings of the existence 

of coherent volume scattering were also obtained by Atwood et al. (2020) in Typha. dominated 

marshes. PolSAR approaches not only detect the coherent scattering from double bounce and/or 

other coherent scattering mechanisms, but also identify comparative relative contributions of 

volume scattering and surface scattering when using physical scattering model-based 

polarimetric decompositions like Van Zyl and Yamaguchi approaches. Further, PolSAR 

approaches have the advantage of being useful for assessing marsh inundation state and 

vegetation characteristics for X-band, C-band, and L-band SAR (Hong and Wdowinski 2013; 

Hong et al. 2015; Ramsey et al. 2015). In contrast, L-band InSAR approaches are demonstrated 

as much more accurate in assessing marsh inundation state than C-band (Kim et al. 2014; Oliver-

Cabrera and Wdowinski 2016). In thesis Chapters 2 and 3, backscatter-based approaches for tidal 

marsh inundation assessment and vegetation characterization are utilized. In Chapter 4 these 

approaches are compared to PolSAR-based approaches and radiometric models to better 

elucidate scattering mechanisms. Currently, studies that fully assess marsh SAR scattering 

through a combination of backscatter, polarimetric phase, and radiometric modeling analyses are 

limited (Kim et al. 2014; Atwood et al. 2020; Kasischke et al. 2003). Only Tannis et al. (1994) 

and Slatton et al. (2008) have combined such analyses in tidal marsh inundation assessments. 

Further, no studies (to the best of my knowledge) have provided comparative analyses using 

recent PALSAR-2 L-band imagery and Sentinel-1 C-band imagery. 
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 Although the vast majority of these aforementioned studies illustrate the importance of 

accurate vegetation characterization in the context of assessing tidal marsh inundation state with 

SAR (particularly C-band SAR), few studies have specifically assessed tidal marsh vegetation 

characteristics using SAR imagery (Ramsey et al. 2015; Ramsey et al. 2016; Rangoonwala et al. 

2014; Jensen et al. 2019). Literature reviews on the topic of remote sensing of tidal marsh 

vegetation illustrate that optical/IR remote sensing is more commonly utilized for tidal marsh 

vegetation assessment (Bartlett and Klemas 1981; Campbell et al. 2015; Hurd et al. 2005; 

Klemas et al. 2013; Langely and Megonigal 2012; Feagan et al. 2020). The nature of these 

respective SAR and optical/IR studies reveal differences in capabilities, where the SAR studies 

characterize tidal marsh vegetation structure and biomass while optical/IR studies focus on 

assessment of vegetation greenness and identification of specific vegetation by utilizing 

multispectral mapping and classification approaches. These differences however, do point to the 

potential underutilization of SAR in tidal wetland vegetation classifications, especially 

considering the complementary nature of these approaches and fact that SAR-optical fusion has 

been demonstrated as a powerful approach for freshwater marsh wetland vegetation 

classifications (Bourgeau-Chavez et al. 2013; Bourgeau-Chavez et al. 2015). Additionally, SAR 

imagery has been identified as very useful in the identification of functional wetland classes, 

including tidal marshes (Whitcomb et al. 2009; Clewley et al. 2015).  

 

1.6 Current Challenges and Opportunities in Wetland Remote Sensing   

 The preceding sections illustrate numerous areas of potential research development in the 

remote sensing of tidal wetlands. A number of these specific research opportunities align well 

with the general objectives of this thesis, namely, to improve the monitoring and characterization 
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of tidal marsh extent, vegetation characteristics, and inundation state. In the following thesis 

Chapter 2, an evaluation of current remote sensing technologies is carried out and assessed in the 

context of wetland characterization for the Chesapeake Bay-Delaware Bay region of the Mid-

Atlantic United States. An empirical assessment of tidal marsh inundation characterization 

capabilities using PALSAR L-band imagery and Sentinel-1 C-band imagery is performed over 

two brackish tidal marsh study sites. Additionally, a SAR-optical fusion approach is used for the 

classification of tidal marshes and the classification of specific tidal wetland vegetation 

characteristics over a tidal freshwater marsh system with a diverse vegetation community 

composition. As previously noted, remote sensing-based studies of tidal freshwater marshes are 

very limited. In Chapter 2, assessment of vegetation identification is carried out with both SAR 

and optical imagery. Chapter 2 concludes with a similar evaluation study for the Long Island 

Sound region of the Mid-Atlantic United States and findings are contrasted with those from the 

Chesapeake Bay. 

 In Chapter 3 of this thesis, the approaches developed in Chapter 2 are utilized to identify 

tidal marshes throughout the Mid-Atlantic and Gulf Coast regions using SAR-optical fusion 

approaches that were demonstrated successful in Chapter 2. Chapter 3 highlights the importance 

of the identification of tidal freshwater marshes in the context of their role as indicators of 

ecological setting, especially of abiotic ecological factors like salinity and hydrology, and in 

being able to delimit boundaries between brackish and freshwater areas. The identification of 

tidal freshwater marshes is carried out through identification of non-persistent vegetation unique 

to freshwater and freshwater tidal marsh systems that is not found in brackish and salt marsh 

systems (Odum 1988). Chapter 3 includes applied studies on the identification of the invasive 

tidal marsh species Phragmites australis (common reed) and invasive Trapa natans (water 
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chestnut) which is often found in deepwater areas adjacent to freshwater tidal marshes. This 

chapter focused on the separation of Trapa natans from non-persistent emergent vegetation as 

the phenologies of these different types of vegetation are similar, but were accurately separated 

from one another in Mid-Atlantic tidal marshes and deepwaters (> 93% accuracy). This 

vegetation mapping effort is the first of its kind identifying tidal freshwater marsh and aquatic 

vegetation utilizing primarily Sentinel-1 SAR imagery which was found to have a more effective 

structural phenological response than optical imagery. 

 Chapter 4 of this thesis involves an in-depth assessment on the current state of SAR-

based tidal marsh inundation mapping approaches at study sites in the Mid-Atlantic and Gulf 

Coast regions of the United States. SAR-based inundation product development is also compared 

to existing optical inundation products. This analysis is carried out with a combination of C-band 

and L-band SAR imagery, in situ validation, and radiometric modeling efforts. This research 

effort transitions into Chapter 5 which provides a summation of Chapters 1-4 in the context of 

future opportunities and challenges that exist in tidal marsh remote sensing. This final chapter 

specifically highlights opportunities that exist with the anticipated launch of three new satellites 

all of which provide unique and potential ground-breaking opportunities in the field of tidal 

wetland remote sensing. These three satellite launches include the NASA-ISRO SAR Mission 

(NISAR), the Surface Biology and Geology Mission (SBG) Designated Observable, and the 

Geostationary Littoral Imaging and Monitoring Radiometer (GLIMR) Earth Venture Instrument 

(EV-I) mission. These three satellites represent technological advances in radar, hyperspectral, 

and geostationary remote sensing, respectively and will be discussed in the context of thesis 

research conclusions in Chapter 5.  
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CHAPTER 2 

EVALUATION OF SATELLITE IMAGERY FOR WETLAND CHARACTERIZATION 

 

2.1 Introduction to Chapter and Chesapeake Bay Study Site 

 The following chapter focuses on the evaluation of current era satellite imagery for the 

purpose of wetland observation and characterization. Sections 1.4 and 1.5 of the previous chapter 

addressed potential advances in SAR and optical wetland remote sensing in the context of EM 

theory, addressing scattering and absorption, dielectric constant, sensor-target geometry, and 

similar topics. Building on that theoretical groundwork, this chapter takes a more applied focus, 

evaluating the capabilities of specific satellite and aircraft imagery for wetland observation and 

characterization. This chapter then addresses how these observational capabilities align with the 

challenges and opportunities addressed in the theoretical context. Section 2.2 of this chapter 

addresses specific characteristics of remote sensing platforms and the imagery they produce. 

The wetland remote sensing evaluation study described herein is set in Chesapeake and 

Delaware Bays. This region of the Mid-Atlantic has some of the highest wetland densities on the 

eastern seaboard, a significant portion of which are tidal marshes. The initial inception of this 

work came from a NASA funded project assessing wetland-estuarine carbon cycling in the 

Chesapeake Bay region (NNX14AP06G, PI: Tzortziou). The research on this NASA project 

uncovered many additional research questions that are partially answered here in Chapter 2 but 

are further addressed in Chapters 3 and 4. Sections 2.2 through 2.6 can be found in publication 

form under the title “Evaluation of Approaches for Mapping Tidal Wetlands of the Chesapeake 

and Delaware Bays” in the journal Remote Sensing (Lamb et al. 2019). This chapter concludes 

with Section 2.7 which contains a similar wetland remote sensing evaluation approach for the 

Long Island Sound region (NASA Grant 80NSSC17K0258, PI: Tzortziou). 
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2.2. Background on Current Remote Sensing Capabilities in Wetland Observation 

 Many studies have utilized remote sensing to study abiotic and biotic wetland processes 

(Lang et al. 2008; Schmitt et al. 2013; Kim et al. 2014; Moser et al. 2016; Brisco et al. 2017; 

Byrd et al. 2018), and to inventory wetlands (Whitcomb et al. 2009; Clewley et al. 2015; Hird et 

al. 2017). For wetland process studies, polar orbiting optical and synthetic aperture radar (SAR) 

satellites with spatial resolutions of 5–250 meters have generally represented a compromise in 

terms of spatial resolution and temporal resolution (revisit time), which are both important for 

monitoring wetland dynamics. Satellite imagery with spatial resolutions finer than five meters is 

more suited to characterizing wetland spatial variability and producing detailed wetland maps 

(Gilmore et al. 2008; Klemas et al. 2013; Campbell et al. 2017). However, many of the satellites 

acquiring this high spatial resolution imagery are commercial, requiring users to purchase 

imagery and at times also requiring tasking of the satellites for image acquisition over a given 

study site. Further, commercial imagery generally lacks the large-scale regional coverage in 

space and time needed for mapping a wetland’s extent and inundation dynamics over large areas. 

Publicly available high spatial resolution aerial photography, such as the United States 

Department of Agriculture Farm Service Agency National Aerial Imagery Program (NAIP) 

provides an alternative to high spatial resolution commercial satellite imagery and provides 

growing season imagery for the entire United States every two to three years. The United States 

Fish and Wildlife Service produces its National Wetlands Inventory (NWI) by manually 

digitizing wetland boundaries using NAIP and other high spatial resolution aerial photography 

(Cowardin et al. 1979; FGDC 2013). Although manual digitization is effective for wetland 

mapping (Smith 2013), these mapping efforts are labor intensive, preventing frequent updates of 

associated datasets. As a result, the NWI and similar products may at times be out of date by 
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several years or even decades (Lang et al. 2008). In contrast to wetlands mapping efforts 

utilizing aerial photography, which often relies on manual digitization, satellite imagery-based 

mapping efforts have generally relied on supervised and unsupervised automated classification 

approaches (Kulawardhana et al. 2007). When the wetlands being classified are large in extent, 

automated classification approaches with 30-m resolution satellite imagery can achieve 

classification accuracies greater than 95%, which is similar to accuracies obtained from 

classifications with 1-m resolution imagery recommended by the Federal Geographic Data 

Committee (FGDC) for wetlands mapping (Frohn et al. 2009). Use of satellite imagery for 

wetlands characterization and mapping also provides the ability to fuse optical imagery with 

SAR imagery, which each have unique and complementary observational capabilities (Ozesmi 

and Bauer 2002). 

Optical satellite imagery has been widely used for characterizing wetland vegetation. The 

visible red to near infrared spectral angle provides a combined measure of vegetation greenness, 

leaf area index, and upper canopy structure, integrated within an image pixel. This spectral angle 

is often leveraged to produce spectral ratios and indices that relate to the aforementioned 

vegetation properties (Tucker 1979; Prabhakara et al. 2015). SAR satellites operate at microwave 

wavelengths, achieving greater signal penetration in vegetated canopies and more accurate 

characterization of vegetation structural biomass and inundation below canopies than optical 

spectral ratios and indices. C-band SAR (5.56-cm wavelength) is particularly suitable for 

separating/identifying emergent marsh vegetation based on biomass. Ramsey et al. (2015) and 

Dabrowska-Zielinska et al. (2016) both demonstrated strong statistical relationships between leaf 

area index (LAI) and cross-polarized C-band backscatter in emergent marsh wetlands. With an 

increasing biomass of shrubs and trees, C-band signals saturate, limiting their ability to 
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differentiate high biomass emergent marsh vegetation from forest- and shrub-dominated 

wetlands (Woodhouse 2006). L-band SAR (23-cm wavelength) can effectively separate 

emergent marsh vegetation from shrubs and trees. The differences in vegetation canopy 

interaction between optical, C-band SAR, and L-band SAR make these forms of imagery 

complementary in wetland mapping in general, and particularly useful in mapping the tidal 

wetlands of the Chesapeake and Delaware Bays, which are largely classified as estuarine 

emergent (i.e., tidal marsh) by the NWI and dominated by emergent species of moderate 

biomass. 

Just as the characterization of vegetation structure remains critical in mapping emergent 

tidal marshes, so is the characterization of wetland hydrology. SAR and optical datasets can both 

accurately assess surface water extent (Clewley et al. 2015; White et al. 2015; Behnamian et al. 

2017; Bioresita et al. 2018; Kuenzer et al. 2015; McFeeters 2013; Du et al. 2016). SAR-based 

surface water mapping generally relies on backscatter thresholding approaches (Behnamian et al. 

2017; Bioresita et al. 2018). Optical surface water mapping generally relies on the derivation of 

spectral indices and subsequent thresholding or the thresholding of several multispectral bands. 

The normalized difference water index (NDWI) with green and near infrared bands and the 

modified normalized difference water index (mNDWI) with green and shortwave infrared bands 

(McFeeters 2013; Du et al. 2016) are two commonly used optically-based surface water indices.  

Because microwave signals penetrate vegetation canopies, SAR is able to detect inundation 

under vegetated canopies more effectively than optical imagery. Several studies have utilized 

SAR imagery for inundation mapping in vegetated wetlands (Lang et al. 2008; Kim et al. 2014; 

Ramsey et al. 2012). SAR backscatter intensity may increase or decrease when vegetated 

wetlands become inundated depending on the relative contributions of: 1) double-bounce 
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scattering between vegetation and the underlying water surface, which increases like-polarized 

backscatter; 2) multiple scattering by vegetation, which enhances cross-polarized backscatter; 

and 3) forward specular scattering from open water, which greatly decreases backscatter 

(Woodhouse 2006; Pope et al. 1997; Kasischke et al. 2003). The double-bounce scattering 

mechanism is most present in co-polarized backscatter, σ0
HH and σ0

VV (with the first H or V 

representing the polarization of the transmitted signal and second H or V representing polarization 

of the return signal). Volume (multiple) scattering from vegetation is best characterized with the 

cross-polarized backscatter, σ0
HV and σ0

VH. As the inundation level increases in wetlands, moist 

soil transitions to standing water and double-bounce scattering enhances co-polarized 

backscatter, while cross-polarized backscatter decreases monotonically as vegetation exposed 

above the water level decreases. This opposite behavior of co- and cross-polarized backscatter 

can be used to identify inundated vegetation provided sufficient vegetation remains present 

above the water level. These scattering responses also vary in magnitude and sensitivity with 

SAR wavelength (e.g., C-band vs. L-band frequency). 

 In this study we examine the characterization of inundation dynamics and vegetation 

characteristics of target wetland study sites in the Chesapeake Bay using SAR and optical 

satellite imagery. We explore and evaluate the capabilities of SAR and optical imagery and use 

this to guide layer selection for a fused SAR-optical-Digital Elevation Model (DEM) 

classification based on the random forest algorithm (Breiman 2001), mapping the tidal wetlands 

of the Chesapeake and Delaware Bays for 2017. In this regional scale wetlands classification, we 

separated estuarine emergent wetlands from palustrine emergent wetlands. This separation 

corresponded to a general split between freshwater marshes and brackish/salt marshes. Our 

approaches utilized multitemporal satellite imagery from a single year and can be updated on an 
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annual basis to provide annual assessments of change in tidal wetlands distribution. Our regional 

scale wetlands mapping effort leveraged the temporally dense record of publicly accessible 

satellite imagery including Sentinel-1A, Sentinel-2A, Landsat 8, and Advanced Land Observing 

Satellite (ALOS) – Phased Array type L-band Synthetic Aperture Radar 1 & 2 

(PALSAR/PALSAR2) imagery. 

 

2.3 Materials and Methods  

2.3.1 Methods Overview 

 Due to the fact we are attempting to provide assessments of wetland extent, wetland 

vegetation characteristics, and wetland inundation dynamics in a single study, the methods we 

employed were by their very nature multifaceted and at times complex. For these reasons, we 

provide an ordered overview of the methods sections here to provide clarity to the reader. 

Section 2.3.2 describes the satellite datasets we evaluated and successively employed for wetland 

characterization and subsequent mapping. Section 2.3.3 describes the target wetlands study sites 

we selected for this evaluation. Section 2.3.4 describes wetland vegetation characterization in 

terms of both field studies and previous datasets utilized for vegetation characterization in 

addition to remote sensing-based methods employed for vegetation characterization. Section 

2.3.5 describes wetland inundation characterization and is split into Subsection 2.3.5.1, which 

discusses the field studies and previous datasets used for the hydrologic characterization of study 

sites, and Subsection 2.3.5.2, which describes the remote sensing-based methods employed for 

inundation characterization. The methods section concludes with Sections 2.3.6 and 2.3.7, which 

describe mapping efforts employing random forest classifications. Section 2.3.6 describes a 

classification of vegetation within a target study site wetlands complex using both SAR-only and 
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SAR-optical-DEM image stacks as classification inputs. In Section 2.3.6, we describe the use of 

a post-classification importance assessment for the SAR-only and SAR-optical-DEM 

classifications to determine which forms of imagery were most important for improving 

classification accuracy. Section 2.3.7 describes the methods for mapping general wetlands 

classes in a regional scale classification for the Chesapeake and Delaware Bays using the same 

SAR-optical-DEM image stack used in Section 2.3.6. Section 2.3.7 concludes with a post-

classification importance assessment of the SAR-optical-DEM regional scale wetlands 

classification, which was then compared to the SAR-optical-DEM wetland vegetation 

classification described in Section 2.3.6. 

 

2.3.2 Satellite Image Selection and Processing 

 We evaluated L-band PALSAR and PALSAR-2, and C-band Sentinel-1A SAR imagery, 

as well as Sentinel-2A and Landsat 8 optical imagery for the characterization of wetland 

vegetation and inundation state, as well as mapping of overall tidal wetland extent, at three target 

study sites. We then utilized these satellite datasets to map palustrine emergent, estuarine 

emergent, and forested wetlands throughout the Chesapeake and Delaware Bays for 2017 in a 

regional scale classification. The aforementioned satellites provided data with revisit intervals of 

48, 48, 12, 10, and 16 days, respectively. There was sufficient temporal overlap between the 

satellite datasets from 2016 through to 2017 to evaluate satellite performance in the 

characterization of vegetation phenology and inundation extent over a range of tidal stages. This 

was the timeframe for which we performed the majority of our analysis. The exception to this 

rule was the PALSAR satellite, which operated between 2006 and 2011. We used Google Earth 

Engine (GEE) for the majority of our image data assembly (Gorelick et al. 2017). GEE is a 
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cloud-based image processing platform that has been effective for computationally demanding 

image processing and classification applications, such as large-scale agricultural mapping, forest 

monitoring, and wetlands mapping (Hird et al. 2017; Shelestov et al. 2017). The majority of our 

classification work employed SAR and optical satellite imagery; however, we also made extensive 

use of the Shuttle Radar Topography Mission (SRTM) Digital Elevation Model (DEM) in our 

regional scale classification efforts. We accessed Sentinel-2A and Landsat 8 optical imagery and 

the SRTM DEM through GEE. Sentinel-2A imagery was available on GEE as a top of atmosphere 

(TOA) reflectance product, while Landsat 8 was available as a surface reflectance product. All 

optical imagery was quality and cloud masked in GEE prior to the analysis and classification. 

Sentinel-1A imagery accessed through GEE was processed with the European Space 

Agency’s Sentinel Applications Platform (SNAP) toolbox in a processing sequence in which 

ground range detected SAR imagery undergoes the following processes: orbit correction, border 

noise removal, thermal noise removal, radiometric calibration, and terrain correction with an 

SRTM DEM. Although SAR terrain correction tools can be variable in performance, the flat 

terrain of the Chesapeake and Delaware Bay regions was unlikely to produce significant 

differences in processed SAR imagery based on the choice of SAR terrain correction tool; 

however, this is a non-trivial consideration in topographically complex study areas. PALSAR-2 

imagery was available on GEE in the form of annual mosaics. These annual mosaics were 

assembled by the Japan Aerospace Exploration Agency (JAXA). JAXA produced the PALSAR-

2 annual mosaics by orthorectifying PALSAR-2 image strips from a given year, applying a slope 

correction with the 90-m SRTM DEM, and then mosaicking the image strips and applying a 

destriping process. PALSAR imagery was the only satellite dataset not available through the 

GEE platform. We used PALSAR imagery provided and processed by the Alaska Satellite 
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Facility (ASF) through an agreement with JAXA. ASF processed the PALSAR imagery to a 

ground-range-detected, terrain-corrected, level 1.5 product, which we downloaded from ASF’s 

VERTEX online interface. PALSAR and PALSAR-2 L-band imagery was available for HH 

polarization, and at times HV polarization as well, while Sentinel-1A C-band imagery was 

available for both VV and VH polarizations. 

Processing of imagery outside of the GEE environment for target wetlands site vegetation 

and inundation analysis and development of training/validation data for the regional scale 

classification were performed using Quantum GIS (QGIS), Python, and the R programming 

language (R Core Team 2017). 

 

2.3.3 Study Site Selection 

 We selected three target wetlands study sites for the evaluation of satellite imagery for 

vegetation and inundation characterizations and to inform our regional scale wetlands mapping 

effort for the Chesapeake and Delaware Bays. These sites were chosen based on their high 

wetland densities and distinct ecological characteristics relative to one another. The three target 

sites included the Smithsonian Global Change Research Wetland (GCReW), or Kirkpatrick 

Marsh (hereafter referred to as Kirkpatrick Marsh), the Blackwater National Wildlife Refuge 

(hereafter referred to as Blackwater NWR), and the Jug Bay Wetlands Sanctuary (hereafter 

referred to as Jug Bay) (Figure 2.1).  

Kirkpatrick Marsh, in the Rhode River sub-estuary along the northwestern shoreline of the 

Chesapeake Bay, is classified as an estuarine, emergent, persistent, and irregularly flooded marsh 

(E2EM1P) according to the National Wetlands Inventory (NWI) 2013 update. Kirkpatrick Marsh 

is noted as being high elevation by previous studies (Correll and Jordan 1991; Langley and 
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Megonigal 2012; Nelson et al. 2017). The vegetation composition is typical of a high elevation 

marsh in the Mid-Atlantic region of the United States with dominant species including: Scirpus 

americanus (also known as Schoenoplectus), Spartina patens, Iva frutescens, and Phragmites 

australis. These are all persistent species with significant amounts of non-photosynthetic plant 

material remaining present on the marsh surface during the non-growing season.  

Blackwater NWR and its connected wetlands comprise the largest estuarine wetlands complex 

in the Chesapeake Bay (Figure 2.1). Situated along the eastern shoreline of the Chesapeake Bay, 

this site contains several classes of individual wetlands, the vast majority of which are estuarine, 

emergent, persistent, and irregularly flooded marshes (E2EM1P) according to the NWI 2013 

update. Blackwater NWR also contains estuarine, emergent, persistent, and regularly flooded 

marshes (E2EM1N). The low elevation of Blackwater’s marsh surface, combined with sea-level 

rise, sediment deficits, and marsh destruction by nutria, have resulted in significant wetland 

degradation with more than 5000 acres of tidal marsh being converted to open water since 1938 

(Kearney et al. 2002; Scott et al. 2009; Ganju et al. 2013; Ganju et al. 2017). Thus, even though 

Blackwater NWR shares the same NWI wetland class as Kirkpatrick Marsh, it is a very different 

system in terms of its geomorphology. These differences are further evidenced by the presence of 

low marsh species like Spartina alterniflora, which is largely absent from Kirkpatrick Marsh. 

Blackwater NWR also contains Spartina patens and Distichlis spicata, which are common high 

marsh species. These three dominant species of Blackwater NWR are all persistent graminoid 

emergents.  

Located along the Patuxent River in southern Maryland, Jug Bay is a tidal freshwater wetlands 

complex containing several NWI wetland classes (Figure 2.1). The most common wetland classes 

include estuarine, emergent, persistent, and irregularly flooded marsh (E2EM1P), estuarine, 
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emergent, persistent, and regularly flooded marsh (E2EM1N), as well as various deepwater, shrub, 

and forested wetlands according to the NWI 2013 update. The salinity differences between Jug 

Bay relative to Kirkpatrick Marsh and Blackwater NWR facilitates pronounced differences in 

vegetation characteristics (Odum et al. 1984; Odum 1988). Jug Bay, like other Mid-Atlantic tidal 

freshwater systems, contains a significant amount of non-persistent vegetation types including: 

Nuphar lutea (spatterdock), Peltandra virginica (green arrow arum), and Pontederia cordata 

(pickerelweed) (Leck et al. 2009; Swarth et al. 2013). Jug Bay also contains substantial amounts 

of Zizania aquatica (wild rice), which is semi-persistent in nature, losing its leaves at the end of 

the growing season, while its stems persist on the marsh surface either standing or in a horizontal 

mat during the non-growing season. Jug Bay contains significant amounts of persistent Typha spp. 

(cattail) as well. We surveyed the Jug Bay Wetlands Sanctuary during all four seasons and 

performed vegetation inventories during each of these visits (6/7/2016, 5/1/2017, 23/6/2017, 

13/9/2017, 14/9/2017, 5/12/2017, 6/12/2017, and 13/4/2018). We observed that dominant 

vegetation was fairly well zonated, forming stands that were largely monospecific. We observed 

that Nuphar lutea was by far the most dominant non-persistent vegetation in Jug Bay.  
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Figure 2.1. False-color rendering of Sentinel-2 near infrared imagery of Chesapeake Bay and 

Delaware Bay study region with Kirkpatrick Marsh, Blackwater National Wildlife Refuge 

(NWR), and Jug Bay Wetlands target study sites shown in the right panel with false-color 

National Aerial Imagery Program (NAIP) aerial photography and National Wetlands Inventory 

(NWI) boundaries in white. 

 

2.3.4 Marsh Vegetation Characterization Using Field Surveys and Satellite Images 

 Kirkpatrick Marsh and Jug Bay were selected as evaluation sites for vegetation 

characterizations with SAR and optical satellite imagery. We were particularly interested in 

evaluating the differences between persistent and non-persistent vegetation types within these 

study sites and determining whether their presumed phenological differences would be captured 

using multitemporal satellite imagery. Previous vegetation inventories existed for Kirkpatrick 

Marsh (Lu, Williams, and Megonigal, 2016) and Jug Bay (Swarth et al. 2013). In order to update 

these surveys to correspond to the 2016–2017 satellite imagery datasets, we visited both target 

sites and performed GPS-based transects in July 2016, recording dominant vegetation types. 

These transects were then referenced with 2015 NAIP imagery, as well as the original Lu, 

Williams, and Megonigal and Swarth et al. shapefile-based vegetation inventories in order to 
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perform updates to the dominant vegetation boundaries (Figure 2.2). We performed this 

manually digitized update in QGIS, changing the boundaries of dominant species only where 

clearly identifiable shifts in the spatial distribution of dominant vegetation had occurred relative 

to the 2015 NAIP imagery. In many cases, the Lu, Williams, and Megonigal survey for 

Kirkpatrick Marsh and Swarth et al. survey for Jug Bay needed only minor spatial adjustments.  

These updated surveys were then ingested into Google Earth Engine (GEE). Within GEE, 

we accessed collections of Sentinel-1A, Sentinel-2A, and Landsat 8 imagery in order to evaluate 

whether optical vegetation indices or SAR backscatter timeseries exhibited unique temporal 

signatures that could be utilized for the identification of different classes of vegetation. We 

computed the normalized difference vegetation index (NDVI) and triangular vegetation index 

(TVI) for optical imagery (Tucker 1979; Prabhakara et al. 2015).  

NDVI is one of the more commonly used indices for characterizing wetland vegetation 

(Kulawardhana et al. 2007; Langley and Megonigal 2012; Kearney et al. 2002). TVI is less 

commonly utilized but it has been demonstrated to be more effective for characterizing 

vegetation in high biomass ranges in agricultural studies. After evaluating the temporal and 

spatial coverage of Landsat 8 and Sentinel-2A imagery, we elected to only use Sentinel-2A 

vegetation indices as they provided a denser timeseries of cloud-free imagery over both target 

sites. Following this evaluation, Sentinel-2A NDVI and TVI, as well Sentinel-1A VV- and VH-

polarized backscatter (σ0
VV and σ0

VH) spatial averages, were computed for each vegetation class 

for Kirkpatrick Marsh and Jug Bay. These timeseries were then exported from GEE and 

analyzed with Python and R.   
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NDVI =
(NIR−Red)

(NIR+Red)
  (1) 

TVI = 0.5[120(NIR − Green) − 200(Red − Green)] (2) 

 

 

     

 

 

  

 

 

 

 

 

 

Figure 2.2. 2015 NAIP natural-color site maps of Kirkpatrick Marsh (a) and Jug Bay (b). 2013 

NWI boundaries shown in white. The color shapefile boundaries show the updated Swarth et al. 

(2013) and Lu, Williams, and Megonigal (2016) vegetation survey boundaries. 

 

 

2.3.5. Marsh Inundation Characterization and Approaches 

2.3.5.1. Field Measurements of Marsh Inundation 

 To evaluate how differences in geomorphology (i.e., marsh elevation) impact marsh 

inundation regimes and our ability to detect inundation using different remote sensing tools, our 

remote sensing assessment and mapping of marsh inundation focused on Kirkpatrick Marsh and 

Blackwater NWR. Kirkpatrick Marsh consists of almost entirely high marsh, is less frequently 

inundated than low marsh systems, and the mean tidal amplitude of the adjacent Rhode River 

sub-estuary is 0.3 meters (Langley and Megonigal 2012; Jordan et al. 1986; Tzortziou et al. 

2008). This presented a unique opportunity to determine how effectively inundation events of 

low water depth (less than 0.5 meters) that occurred below dense vegetated canopies could be 

detected using satellite imagery, particularly in regions dominated by the high biomass and 

densely growing Phragmites australis. The Blackwater NWR system is a mix of a low and high 
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marsh. We surveyed a sub-region of the Blackwater NWR site on 15 October 2015 (see GPS 

locations in Figure 2.3). We noted that major sections of the surveyed area were dominated by 

Spartina alterniflora. During this survey, we observed that major regions of the marsh inundated 

during regular high tides (approximate tidal range of 0.6 meters in the connected estuary). 

To assess the capability of the satellite imagery in characterizing tidal inundation within 

these study sites, tidal stage water level timeseries were acquired from nearby National Oceanic 

and Atmospheric Administration (NOAA) tidal stations and matched with satellite overpass 

times. The NOAA tidal gauge closest to Blackwater NWR is Bishop’s Head (Station ID: 

8571421). The tidal gauge closest to Kirkpatrick Marsh is Annapolis (Station ID: 8575512). No 

time-based or water level-based adjustments were made to the Bishop’s Head tidal timeseries 

because reliable estimates of in-marsh water heights were not available over Blackwater NWR. 

In the case of Kirkpatrick Marsh, water level adjustments were made by leveraging the findings 

from previous studies that characterized the hydrology of the marsh in detail (Correll and Jordan 

1991; Nelson et al. 2017). Nelson et al. determined that a water depth of 0.89 meters or greater in 

a major tributary draining Kirkpatrick Marsh was needed to reach a bankfull depth, at which 

point the marsh platform begins to inundate (Nelson et al. 2017). The results from Nelson et al. 

were obtained using a SonTek Acoustic Doppler Current Profiler (ADCP) measuring water depth 

and velocity. Because the SonTek was only deployed for limited times, we performed an 

assessment of relationship between the SonTek and the nearby Annapolis NOAA tidal gauge to 

determine whether adjustments could be made to the Annapolis series to estimate the Kirkpatrick 

Marsh tidal creek water levels during all satellite overpasses. We performed this assessment by 

resampling the SonTek and Annapolis series to a common temporal resolution of one minute. A 

lagged correlation analysis (lag range of −120 minutes to +120 minutes) was performed for a 
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time period of approximately one week for three separate seasons in 2016. These three selected 

periods were times when the SonTek was determined to be operating continuously. The three 

time periods were determined to have an average time offset of 34.33 minutes (with the SonTek 

water level changes preceding the Annapolis water level changes). The height offset was 

determined to be 0.4774 meters on average (with the Kirkpatrick Marsh tributary bottom where 

the SonTek was deployed being lower in elevation than the Annapolis tidal gauge). These 

parameters are shown in Table 1. 

Table 2.1. Adjusted Annapolis stage parameters for estimating tidal creek stage of Kirkpatrick 

Marsh. 

Date n (minutes) Max R-value Time Offset (minutes) Height Offset (meters) 

June 2016 6000 0.9911 34 0.4856 

October 2016 6000 0.9963 37 0.4769 

December 2016 6000 0.9912 32 0.4696 

Average -- -- 34.33 0.4774 

 

 

 

2.3.5.2. Satellite-Based Inundation Mapping at Kirkpatrick Marsh and Blackwater NWR 

 

 

 After the adjusted water level series were obtained, GEE was used to derive optically-based 

water indices (NDWI and mNDWI) from Sentinel-2A and Landsat 8 imagery and to provide σ0
VV, 

σ0
VH, and σ0

VV/σ0
VH ratio timeseries from Sentinel-1A, covering Kirkpatrick Marsh between 2016–

2017. We evaluated the σ0
VV/σ0

VH ratio as a potential normalized inundation indicator as σ0
VV 

tends to increase as marshes inundate from enhanced double-bounce scattering, while σ0
VH tends 

to decrease from reductions in volume scattering. The spatial means of the backscatter and water 

index values were computed over the Kirkpatrick Marsh (NWI class E2EM1P). The same process 

was used for the NWI-defined irregularly inundated estuarine marshes (E2EM1P) and regularly 



48 
 

inundated marshes (E2EM1N) of the Blackwater NWR study site in addition to several less spatially 

extensive NWI wetland classes. The optical water index and SAR backscatter timeseries were 

computed in GEE, then exported for further analysis in Python and R. The Kirkpatrick Marsh and 

Blackwater NWR satellite timeseries were compared to the adjusted Annapolis tidal series and 

Bishop’s Head tidal series, respectively.  

 Pearson’s correlation was used to determine the goodness of fit between the Sentinel-1A 

backscatter and the Sentinel-2A water index variability and tidal stage in both Kirkpatrick Marsh 

and Blackwater NWR. These relationships were also plotted using both ordinary least squares and 

second order polynomials. Blackwater NWR had only one PALSAR image acquired at high tide 

that was from the same orbit as a corresponding low tide image (ascending orbital path 136). This 

high tide–low tide image pair was used for comparison, in addition to the Sentinel-1A and Sentinel-

2A image timeseries, providing an assessment of optical, C-band SAR, and L-band SAR for 

inundation characterization at the Blackwater NWR site (Figure 2.4). No PALSAR imagery was 

available for the stage height above the bankfull depth in Kirkpatrick Marsh, thus no corresponding 

assessment of inundation mapping could be performed. Above the bankfull depth, Landsat 8 

images were also limited. As a result, only Sentinel-1A backscatter (σ0
VV, σ0

VH, and σ0
VV/σ0

VH 

ratio) and Sentinel-2A NDWI and mNDWI could be assessed for their inundation mapping 

capabilities at Kirkpatrick Marsh. 

NDWI =
(Green−NIR)

(Green+NIR)
  (3) 

mNDWI =
(Green−SWIR)

(Green+SWIR)
   (4) 

 

 In Kirkpatrick Marsh, having a well-constrained estimate of the bankfull depth from a 

previous study (Nelson et al. 2017) allowed us to segment Pearson’s correlation analysis of 
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Sentinel-1A backscatter and Sentinel-2A optical water indices into above- and below-bankfull 

depth categories. Within the above-bankfull depth (ABD) category, Sentinel-1A backscatter, 

particularly σ0
VV and σ0

VV/σ0
VH ratio exhibited the highest correlation with water level (tidal stage) 

and were subsequently selected for mapping the inundation extent (see the Results section for 

justification). Noting the relationships showing moderate to strong statistical relationships between 

the marsh-integrated σ0
VV and σ0

VV/σ0
VH ratio and water level above-bankfull depth, we utilized 

this relationship to map the inundation over Kirkpatrick Marsh at different tidal stages with a 

statistically based change detection approach. This approach relied on computing a below-bankfull 

depth (BBD) temporal mean image and BBD temporal standard deviation (SD) image for σ0
VV and 

the σ0
VV/σ0

VH ratio on a per-pixel basis for low tide Sentinel-1A imagery covering the marsh 

between 2016–2017. The full 2016–2017 imagery timeseries (above- and below-bankfull depth) 

was then classified as inundated for any pixel 2 SD below the mean for σ0
VV/σ0

VH ratio or 2 SD 

above the mean for σ0
VV (Equations (5) and (6)), representing a >95% confidence interval 

separation from the BBD σ0
VV or σ0

VV/σ0
VH temporal mean. We also evaluated 1 SD and 3 SD 

thresholds for inundation classification. Using a per-pixel change detection classification allowed 

us to control for spatial and temporal variability across the marsh due to variability in vegetation 

structure, biomass, and non-tidal hydrology to detect changes linked to high tide inundation events. 

Inundated pixel =  σ0
VV > (µ_vv_bbd + 2SD_vv_bbd) (5) 

Inundated pixel =  σ0
VV/σ0

VH < (µ_vvvh_bbd – 2SD_vvvh_bbd) (6) 

 

where σ0* is the backscatter for a given image pixel location in full timeseries, µ_*_bbd is the backscatter 

temporal mean for below-bankfull depth image series at a given pixel location, and 2SD_*_bbd is two 

backscatter standard deviations for below-bankfull depth image series at a given pixel location.  
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Figure 2.3. 2015 

NAIP natural-color site 

map for a subsection of 

Blackwater NWR used 

for pixel extraction. 

NWI boundaries for 

the estuarine class are 

shown as red polygons. 

Pixel extraction 

regions of interest 

(ROIs) are noted in the 

legend. GPS points 

depict locations of the 

15 October 2015 field 

survey. 

 At the Blackwater NWR site, we performed an additional analysis on a sub-region of the 

wetlands complex. We evaluated 2015 NAIP imagery in combination with an October 2015 

ground survey and 2013 NWI polygons to determine which sections of the study site were 

consistently classified as tidal marsh, estuarine forest, upland forest, and open water. This was 

done to produce accurate regions of interest (ROIs) that could be used for pixel extraction of 

high tide and low tide satellite image pairs. Since only one PALSAR high tide–low tide pair 

existed, we could not perform a timeseries analysis, but rather performed a backscatter pixel 

distribution comparison between high tide and low tide imagery. The PALSAR image pair was 

acquired from the same ascending orbital path 136. The low tide image was acquired on 2006-

12-05 03:30:00 GMT with a Bishop’s Head tidal stage of 0.084 meters. The high tide image was 

acquired on 2010-03-15 03:32:00 GMT with a Bishop’s Head tidal stage of 0.805 meters. 

Sentinel-1A high tide–low tide pairs from similar tidal stages were selected for comparison to 

PALSAR. Sentinel-1A low tide imagery was acquired on 2016-10-30 23:06:00 GMT with a 

Bishop’s Head tidal stage of 0.238 meters, and high tide imagery was acquired on 2016-10-06 

23:06:00 GMT with a tidal stage of 0.885 meters. 
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Figure 2.4. Blackwater October 2015 survey locations (points) and Figure 2.3 subregion (white 

box) overlaid on Synthetic Aperture Radar (SAR) imagery. Phased Array type L-band Synthetic 

Aperture Radar (PALSAR) L-band backscatter (σ 0
HH) images are shown in the upper panels with 

the left-side image (a) being low tide and the right-side image (b) being high tide. Sentinel-1A C-

band backscatter (σ 0
VV) images are shown in the lower panels with the left-side being low tide (c) 

and the right-side image (d) being high tide. All SAR images are scaled between −5 dB and −20 

dB. 

 

 

2.3.6 Target Site Wetland Vegetation Mapping and Classification Overview  

 

  We selected Jug Bay as a wetland vegetation mapping site. We mapped specific wetland 

vegetation classes at Jug Bay described in the Swarth et al. survey and expanded the mapping 

effort into the surrounding Patuxent River region. We performed two classifications at Jug Bay, 
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the first was a multitemporal SAR classification where the layer selection was informed by the 

vegetation timeseries analysis described in Methods Section 2.3.4 and the corresponding Results 

Section 2.4.2. A SAR-only classification was developed at Jug Bay to capitalize on pronounced 

differences in the SAR timeseries between vegetation classes. In an effort to capture these 

phenological differences in a classification, we created a 10-layer image stack with Sentinel-1A 

SAR temporal derivatives for both VV and VH polarizations including annual mean, annual 

standard deviation, summer mean (July–August), fall mean (September–October), and winter 

mean (November–December) layers.  

We then classified this SAR-only image stack using a per-pixel supervised classifier based 

on the random forest algorithm (Figure 2.5). The random forest approach was also used in the 

regional scale classification described in Section 2.3.7. The random forest algorithm is a machine 

learning classification approach structured as an ensemble of decision trees that split predictor 

variable values at nodes and define a precited class based on votes across the decision trees 

(Breiman 2001). The random forest approach performs an internal validation and classification 

accuracy assessment using out-of-bag sampling (making cross-validation unnecessary), is robust to 

over-fitting, and has been demonstrated as effective in previous satellite image-based wetland 

classification efforts (Clewley et al. 2017; Breiman 2001). The random forest approach also 

provides a post-classification importance assessment of predictor variables (Breiman 2001). In the 

SAR-only random forest classification, we parameterized the classifier with three predictors 

sampled for splitting at each node in a given tree and used 200 trees, as performed in Clewely et al. 

(2017). We used the updated Swarth survey as training/validation data for the random forest 

classification at Jug Bay. Within the R environment, the “sp” package was used to define a 

stratified random sample of 500 points within each multipart polygon of a given Swarth survey 
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vegetation class (and one open water class). These training/validation points were then used to 

extract associated predictor values from the SAR-only image stack, which was subsequently used 

to train and validate the random forest classification and classify the image stack using R’s 

“randomForest” package. 

 To provide a comparison to the SAR-only Jug Bay wetland vegetation classification 

described above and to provide a second comparison to the regional scale wetlands classification 

described in the following Section 2.3.7, we performed a second per-pixel random forest 

classification of vegetation at Jug Bay using the same SAR-optical-DEM stack used in the 

regional scale classification. We parameterized this second random forest classifier with 200 

trees and selected four predictors for splitting at each node. The comparison between the SAR-

only and SAR-optical-DEM classifications were performed in order to evaluate the importance 

of layer selection in wetland mapping at Jug Bay. The second comparison of the SAR-optical-

DEM classification at Jug Bay and the regional scale SAR-optical-DEM classification described 

in Section 2.3.6. was performed in order to provide a controlled evaluation of the satellite image 

importance in terms of characterizing vegetation within wetlands and separating wetlands from 

other land cover. The rationale for SAR-optical-DEM stack layer selection is described in the 

following section (2.3.7). 

 

2.3.7 Regional Scale Wetland Mapping and SAR-Optical-DEM Layer Selection  

  Results from our satellite-based vegetation and inundation characterizations at target 

wetlands sites were used to guide the selection of input satellite imagery for the regional scale 

wetlands classification for the Chesapeake and Delaware Bays. The motivation was to carefully 

select image layers that provided information that could uniquely identify estuarine emergent 
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wetlands (i.e., tidal marshes). For the regional scale classification, we also included additional 

wetland classes in the form of forested wetlands and palustrine emergent wetlands. Several 

common non-wetland classes were included in the regional scale classification in order to 

evaluate potential classification confusion with wetlands. These classes included: open water, 

urban, barren, grass, agriculture, shrub, and forest.  

In order to perform the regional scale classification, we first created a training/validation 

dataset. The training/validation dataset of non-wetland classes were acquired directly from the 

2011 National Land Cover Database (NLCD) (Jin et al. 2013). Training/validation dataset 

wetland classes were created by merging the National Wetlands Inventory (2013 update) and the 

2011 NLCD to map the locations of emergent wetlands and forested wetlands. NWI wetlands 

polygons were assigned an integer value based on the wetland class, rasterized to a 10-m spatial 

resolution, then resampled and georegistered to the NLCD pixels at a matching 30-m spatial 

resolution. Only areas of overlap between the NWI and NLCD were used to define the wetland 

extent, culminating in a conservative estimate of wetland extent and reducing classification 

commission errors for wetland classes in the training of the random forest classifier. These data 

layers were merged together culminating in a final training raster. 

GEE was used to process the optical imagery, SAR imagery, and topographic variables that 

served as inputs to the regional scale random forest classification. Within GEE, we stacked 

imagery by first selecting Sentinel-1A image paths. These paths were split between path 4 and 

path 106, which roughly divided the eastern and western sides of the Chesapeake Bay. The first 

layers we included in the GEE image stacks were the 2017 annual mean backscatter and standard 

deviation for Sentinel-1A σ0
VV and σ0

VH imagery. In this way, we could reduce the size of the 

Sentinel-1A image collection while preserving useful temporal information for the classifier and 
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also temporally filter imagery to reduce SAR speckle noise (Quegan 2001). Sentinel-1A fall 

2017 high tide–low tide difference layers for the σ0
VV,  σ0

VH, and σ0
VV/σ0

VH ratio images were 

also included in the GEE stacks since, as seen in Results Section 2.4.1.1 and 2.4.1.2, large 

differences between high and low tide imagery occurred during the fall season (September-

November). Part of our evaluation process was to determine whether these tidal difference layers 

were particularly useful in classifying estuarine emergent marshes compared to all other 

classification layers. The 2017 PALSAR-2 annual mosaics with σ0
HH and σ0

HV images were also 

binned in the Sentinel-1A image paths within the GEE image stacks. Although our results 

demonstrated that PALSAR L-band imagery was highly effective for mapping inundation at the 

Blackwater NWR site (Results Section 2.4.1.1), multitemporal PALSAR-2 imagery coinciding 

with the 2016–2017 timeframe of our analysis was not available. However, the PALSAR results 

from Blackwater NWR also demonstrated that single date L-band imagery was important to 

include in the regional scale classification (namely PALSAR-2 imagery) because of its capability 

in the biomass-based separation of forested and emergent wetlands. 

We computed vegetation indices (NDVI, TVI) and water indices (mNDWI) with cloud-

masked Landsat 8 surface reflectance imagery for summer 2017 (June–August), fall 2017 

(September–October), and winter 2017 (November–December). Several of these ranges 

contained multiple overlapping images, which we reduced by computing the temporal median 

index value. These spectral indices were acquired from various Landsat paths and were binned to 

the separate Sentinel-1A image paths in the GEE image stacks. Landsat 8 imagery was selected 

over Sentinel-2A imagery because it was available in GEE as a mature surface reflectance 

product (Vermote et al. 2016; USGS 2018). The Landsat 8 imagery also tended to be less cloudy 

at the regional scale than Sentinel-2A imagery. Like the temporal reductions of the Sentinel-1A 
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imagery, the inclusion of Landsat 8 vegetation and water indices (over multispectral bands) was 

done in an effort to reduce the total number of input variables (layers) in the GEE image stacks. 

Topographic variables were included in the GEE image stacks in the form of elevation and slope 

derived from the SRTM DEM. The elevation and slope layers were also binned into the Sentinel-

1A image paths. Topographic variables were included in the GEE image stacks because they 

have been demonstrated as being more important than optical or SAR imagery in supervised 

classifications by previous wetlands mapping studies (Clewley et al. 2017; Knight et al. 2013). 

The final GEE image stacks had nine SAR input layers, nine optical input layers, and two 

topographic input layers. The layers in the GEE image stacks varied in spatial resolution, with 

Sentinel-1A having a 20 × 22-m spatial resolution (resampled to 10 × 10-m pixel resolution in 

GEE), PALSAR-2 annual mosaics having a 25 × 25-m resolution, and SRTM DEM and Landsat 

8 resolutions being 30 × 30 m. We resampled the GEE image stacks to the coarsest common 

resolution of 30 × 30 m. The GEE image stacks were exported to a local desktop. These SAR-

optical-DEM image stacks for Sentinel-1A path 4 and path 106 were mosaicked using R’s 

“Raster” package. The rationale for layer inclusion in the SAR-optical-DEM stack is described in 

Table 2. 

The final SAR-optical-DEM image stack served as predictors for both the regional scale 

classification and the Jug Bay SAR-optical-DEM classification described in Section 2.3.6. For 

the regional scale classification, a random forest classification was performed by defining 

training data using QGIS to select random points within the training raster. This was done by 

performing a stratified random point sampling with 10,000 points per training class, and then 

performing a second random sample with 100,000 total points. These samples were then 

combined to produce a training dataset that represented a compromise between including 
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underrepresented classes while also accounting for class prevalence. To assess the degree to 

which parameter tuning impacted the accuracy of the random forest classifier, we performed a 

series of regional scale classifications by adjusting the number of trees in the classifier by the 

following values: 10, 25, 50, 75, 100, 150, 200, 300, 400, and 500. 

 

 

 

 

Figure 2.5. Schematic of regional scale random forest classification process in which the National 

Land Cover Database (NLCD) and the National Wetlands Inventory (NWI) are merged to produce 

a classification training raster and Quantum GIS (QGIS) and its associated Geospatial Data 

Abstraction Library (GDAL) are used to produce training polygons used to classify Google Earth 

Engine (GEE) image stacks in the R environment with R’s Random Forest package. 
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Table 2.2. Description of input layers to regional scale random forest classification. 

Layer in GEE Stack Description Rationale Example 

vv_mean Sentinel-1 VV 2017 annual mean Decreases SAR speckle noise while preserving resolution, 
Jug Bay 

vh_mean Sentinel-1 VH 2017 annual mean captures central backscatter tendency 

vv_sd Sentinel-1 VV 2017 annual standard deviation Provides separability between high annual temporal variability 
Jug Bay 

vh_sd Sentinel-1 VH 2017 annual standard deviation emergent estuarine wetlands and other landcover 

vv_tidal_diff Sentinel-1 VV tidal difference (Fall 2017) Captures tidal variability in emergent estuarine systems 

presumably absent from other landcover Blackwater, 

Kirkpatrick vh_tidal_diff Sentinel-1 VH tidal difference (Fall 2017) 

vvvh_tidal_diff Sentinel-1 VV/VH tidal difference (Fall 2017) 

hh PALSAR-2 HH 2017 annual mosaic Provides biomass-based backscatter separability between 
Blackwater 

hv PALSAR-2 HV 2017 annual mosaic between emergent and forested wetlands 

summer_tvi Landsat 8 TVI (Summer 2017) Captures wetland vegetation phenology (three seasons help 

separate emergent wetlands from crops); more biomass Kirkpatrick fall_tvi Landsat 8 TVI (Fall 2017) separate emergent wetlands from crops); more biomass 

winter_tvi Landsat 8 TVI (Winter 2017) separability than NDVI 

summer_ndvi Landsat 8 NDVI (Summer 2017) Captures wetland vegetation phenology (three seasons help 

separate emergent wetlands from crops)  Kirkpatrick fall_ndvi Landsat 8 NDVI (Fall 2017) 

winter_ndvi Landsat 8 NDVI (Winter 2017) 

summer_mndwi Landsat 8 mNDWI (Summer 2017) Captures fractional surface water in sparsely vegetated wetlands 

Blackwater fall_mndwi Landsat 8 mNDWI (Fall 2017) 

winter_mndwi Landsat 8 mNDWI (Winter 2017) 

elevation SRTM DEM Estuarine emergent wetlands close to sea-level 
Sites low elevation  

slope SRTM DEM Gradient 

 

2.4. Results 

2.4.1. Satellite-Based Marsh Inundation Characterization and Mapping 

2.4.1.1. Blackwater NWR Inundation 

 We assessed the linear and non-linear empirical relationships between the tidal stage and 

SAR backscatter/optical water index values for several different wetland types (shown in Table 

3). The Sentinel-1A σ0
VV/σ0

VH ratio exhibited the highest correlation with the tidal stage 

compared to other imagery at the Blackwater NWR site for the dominant E2EM1P wetland class 

for both ordinary least squares and polynomial fits. In general, SAR-tidal stage correlation was 

greater than that of optical water indices. The mNDWI exhibited a moderate degree of 

correlation with the tidal stage for E2EM1P wetlands, which was significantly higher than the 

correlation for NDWI. Figure 2.6 depicts the ordinary least squares (OLS) fit and second order 

polynomial fit (Poly) relationships between the tidal stage and σ0
VV/σ0

VH ratio for both major 
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estuarine emergent wetland classes. The polynomial better modeled the data than the OLS, but 

neither was ideal. However, the increasing downward slope of the polynomial fit in the range of 

0.4 to 0.6 meters did indicate the presence of a change point relationship, where backscatter only 

exhibited sensitivity to tidal stage above a certain level. Even though the polynomial behavior 

suggested the existence of a change point, without having a well-constrained estimate of water 

level bank full depth, we could not perform a piecewise regression analysis. However, we 

demonstrate how such an analysis was used in Section 2.4.1.2 for Kirkpatrick Marsh. 

Table 2.3. Pearson’s correlation (R-value) for Sentinel-1A (S1) and Sentinel-2A (S2) values and 

Bishop’s Head tidal stage for the ordinary least squares (OLS) fit and polynomial (Poly) fit. 

NWI 

Class 
S1-VH 

OLS 

S1-VH 

Poly 

S1-VV 

OLS 

S1-VV 

Poly 

S1-VV/VH 

OLS 

S1-VV/VH 

Poly 

S2-NDWI 

OLS 

S2-NDWI 

Poly 

S2-mNDWI 

OLS 

S2-mNDWI 

Poly 

Total Area 

(km^2) 

E2EM1N −0.638 0.757 0.374 0.575 −0.705 0.889 0.314 0.378 0.460 0.468 12.01 

E2EM1P −0.689 0.761 0.581 0.666 −0.765 0.856 0.352 0.393 0.471 0.515 284.40 

E2EM1P6 −0.450 0.541 0.368 0.378 −0.530 0.567 0.192 0.283 0.001 0.235 3.70 

E2EM1Pd −0.646 0.725 0.457 0.539 −0.684 0.772 0.407 0.412 0.560 0.669 15.38 

E2SS4P −0.189 0.422 0.395 0.403 −0.456 0.457 0.047 0.303 −0.065 0.080 13.92 

E2FO4P −0.089 0.357 0.360 0.381 −0.401 0.401 0.006 0.236 0.108 0.142 24.63 

 

  
(a) (b) 

 

Figure 2.6. Relationships between the Sentinel-1A σ0
VV/σ0

VH (VV/VH backscatter) ratio and tidal 

stage for dominant NWI wetland types in Blackwater NWR; both E2EM1N (estuarine emergent, 

persistent, regularly flooded) (a) and E2EM1P (estuarine emergent, persistent, irregularly 

flooded) (b) show similar relationships with the tidal stage.  
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(a-1) (a-2) 

  
(b-1) (b-2) 

  
(c-1) (c-2) 

Figure 2.7. Comparison of the Sentinel-1A σ0
VV/σ0

VH ratio (VV/VH backscatter ratio), Sentinel-

1A σ0
VV (VV backscatter), and PALSAR σ0

HH (HH backscatter) for high tide and low tide imagery. 

Although the Sentinel-1A σ0
VV (a) and σ0

VV/σ 0
VH ratio (b) effectively capture variability from 

tidal influence, they do not provide the clearly defined separability of PALSAR σ0
HH (c) for 

threshold-based inundation classification of tidal marshes in Blackwater NWR. 
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Figure 2.7 illustrates that Sentinel-1A σ0
VV and σ0

VV/σ0
VH ratio distributions exhibited 

substantial change between high and low tide. The PALSAR high tide–low tide pair distributions 

for the σ0
HH imagery exhibited even greater change and sufficient separability for an absolute 

threshold of −13.5 dB to be applied to the high tide and low tide imagery to classify tidal marsh 

inundation. The thresholded images were differenced to derive a marsh intertidal zone, as shown 

in Figure 2.8. 

 

Figure 2.8. Blackwater NWR PALSAR high tide–low tide classified inundation extents based on 

absolute backscatter thresholds from PALSAR image pair differencing. Open water was classified 

as below −13.5 dB for both low tide and high tide imagery. The marsh intertidal zone was 

classified as below −13.5 dB at high tide and above −13.5 dB at low tide. This threshold was 

derived in Figure 2.7. Only NWI estuarine emergent wetlands and marine classes were classified 

as tidally inundated, non-tidally inundated, or open water (red polygons on map also include 

estuarine forest, which was not classified). Like estuarine forests, upland areas are also shown as 

grayscale SAR imagery from the high tide image. 
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2.4.1.2 Kirkpatrick Marsh Inundation 

 

 

 Second order polynomial and ordinary least squares relationships between satellite 

imagery and tidal stage were evaluated for Kirkpatrick Marsh as they were for Blackwater NWR 

with the exception that ordinary least squares was split into a BBD regression and an ABD 

regression, as determined by the Nelson et al. study that better constrained the hydrology of 

Kirkpatrick Marsh relative to Blackwater NWR. Figure 2.9 depicts similar relationships to 

Blackwater NWR where the start of the increasing downward slope of the polynomial existed in 

close proximity to the BBD–ABD split and tracked the two BBD and ABD regressions fairly 

well, demonstrating the potential utility of the polynomial for modeling backscatter over the full 

tidal range when known break points for a marsh bankfull depth cannot be obtained. These 

findings, shown in Table 4 and Figure 2.9, served as the impetus for use of the change detection-

based inundation classification with the Sentinel-1A σ0
VV/σ0

VH ratio shown in Figure 2.10. 

Figure 2.10 shows the Kirkpatrick Marsh inundated area for the four 2016–2017 Sentinel-1A 

images acquired at the four highest tidal stages using 1 SD, 2 SD, and 3 SD as change detection 

thresholds. Also shown in Figure 2.10 is an open-water estuary ROI demonstrating that the open 

water σ0
VV/σ0

VH ratio did not change with the water level stage. Vachon and Wolfe (2011) 

demonstrated that C-band backscatter increases for all polarizations when open water becomes 

roughened by wind and wave activity. σ0
VV was noted as being most sensitive to water surface 

roughness from wind. Wind and wave activity can influence the water level stage, especially 

when combined with peak tidal phases. However, our results demonstrate that the variability in 

the σ0
VV/σ0

VH ratio was likely caused by scattering variability from marsh vegetation–inundation 

interaction, rather than roughness-based scattering changes to the water’s surface on the 

inundated marsh, as evidenced by a lack of change in the estuary σ0
VV/σ0

VH ratio. This scattering 
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change on the marsh was likely due to increases in double-bounce scattering in σ0
VV and 

decreases in volume scattering in σ0
VH as the marsh inundated.  

Table 2.4. Pearson’s correlation (R-value) for Sentinel-1A and Sentinel-2A values for the full 

tidal range (polynomial only) and above-bankfull depth (ABD) for Kirkpatrick Marsh tidal 

creek water level. 

 

Imagery Type Full Poly OLS (ABD) Poly (ABD) n (ABD) 

S1-VH 0.326 −0.478 0.572 13 

S1-VV 0.790 0.819 0.859 13 

S1-VV/VH 0.897 −0.868 0.917 13 

S2-mNDWI 0.280 0.335 -- 4 

S2-NDWI 0.473 −0.514 -- 4 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.9. Kirkpatrick Marsh Sentinel-1A σ0
VV/σ0

VH ratio with a full-range polynomial (solid 

black line), BBD regression (dotted line), ABD regression (dashed line), and Nelson et al. bankfull 

depth as the vertical black line with grey confidence intervals (95%). 
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(b-4) (a-4) 

 

  

 

 

 

 

   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 Figure 2.10. Change detection-based inundation products from the Sentinel-1A σ0
VV/σ0

VH ratio for 

 high tide imagery over Kirkpatrick Marsh: (a) σ0
VV/σ0

VH ratio, and (b) the corresponding classified 

 inundation. Tidal stage increases moving from the top of the figure to the bottom (1–4) 

(a-1) (b-1) 

(b-2) 

(b-3) 

(a-2) 

(a-3) 
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2.4.2 Satellite-Based Marsh Vegetation Characterization 

 

2.4.2.1. Kirkpatrick Marsh Vegetation 

 

 

  
(a) (b) 

  
(c) (d) 

Figure 2.11. Timeseries plots for the spatial mean Sentinel-1A σ0
VH, Sentinel-2A NDVI, and 

Sentinel-1A σ0
VV for dominant vegetation species over Kirkpatrick Marsh (a,b,c, respectively). 

(d) The σ0
VV/σ0

VH ratio for the above-bankfull depth for the dominant vegetation demonstrating a 

similar response to tidal inundation between all four species, albeit with a biomass offset. 
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The four dominant species of vegetation at Kirkpatrick Marsh exhibited similar temporal 

directional tendencies for Sentinel-1A σ0
VV and σ0

VH and Sentinel-2A NDVI. NDVI captured a 

predictable greenness phenology for two full growing seasons. Scirpus americanus (also called 

Schoenoplectus) vegetation exhibited a lower NDVI than the other species, likely owed to its 

more vertical structure and more open canopy (Langley and Megonigal 2012). Spartina patens, 

which is the most horizontally oriented vegetation and forms dense mats of many small stems 

and leaves, had a consistently higher NDVI than even Phragmites australis and Iva frutescens, 

despite having a lower biomass. The response of TVI (not shown in Figure 2.11) was very 

similar to the NDVI, despite findings of TVI being less prone to biomass-based saturation 

(Schmitt et al. 2013). This indicates that the optical vegetation indices were responsive to the 

upper canopy structure, especially canopy closure, as well as greenness, but provided little 

capability in separating vegetation based on biomass.  

Sentinel-1A σ0
VV and σ0

VH imagery captured biomass-based offsets between species, with 

Phragmites australis and Iva frutescens exhibiting an offset backscatter from Scirpus and 

Spartina patens, indicating stability in biomass separation between the species. Sentinel-1A σ0
VH 

showed lower backscatter for Scirpus compared to the other vegetation during the growing 

season. Both Sentinel-1A σ0
VV and σ0

VH tended to decrease during the growing season for all 

four species. Several times during the fall seasons in 2016 and 2017, σ0
VV increased greatly and 

σ0
VH decreased greatly. Exploring the divergence between σ0

VV and σ0
VH with the σ0

VV/σ0
VH ratio 

showed this was likely the result of tidal influence as the σ0
VV/σ0

VH ratio for the four dominant 

species all showed strong inverse relationships when the σ0
VV/σ0

VH ratio was regressed against 

the water level above bankfull depth (Figure 2.11). 

 



67 
 

2.4.2.2. Jug Bay Wetlands Vegetation 

 Different classes of vegetation at Jug Bay had pronounced differences in vegetation 

structural phenology. The two most common classes of vegetation, Typha spp. and Nuphar lutea, 

exhibited very different Sentinel-1A σ0
VV signatures (Figure 2.12, left panel). These backscatter 

changes were consistent with differences in the seasonal structural changes that occurred 

between persistent and non-persistent vegetation (Figure 2.12, right panel). Persistent Typha spp. 

exhibited backscatter increases in fall that were similar to the persistent species at Kirkpatrick 

Marsh. Correlation of the 2016–2017 Sentinel-1A σ0
VV timeseries between Typha spp. from Jug 

Bay and Kirkpatrick Marsh Scirpus americanus, Spartina patens, Iva frutescens, and Phragmites 

australis produced R-values of: 0.86, 0.76, 0.80, and 0.85, respectively. Indicating that 

Kirkpatrick Marsh and Jug Bay likely share a similar tidal hydrology given that most of the 

variability in Sentinel-1A σ0
VV in tidal marshes with persistent vegetation was explained by 

variability in tidal stage. The similar temporal variability in backscatter between persistent 

vegetation across study sites is contrasted by the temporal backscatter variability differences 

between persistent and non-persistent species at Jug Bay. These differences are captured in the 

2017 σ0
VV annual standard deviation map shown in the central panel of Figure 2.13. Note that the 

Sentinel-1A backscatter (σ0
VV) annual standard deviation effectively depicted the locations of 

non-persistent Nuphar lutea. These findings were the impetus for inclusion of VV-polarized 

backscatter (σ0
VV) annual standard deviation as one of the several input layers included in the 

SAR-only and SAR-optical-DEM Jug Bay classifications. 
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Figure 2.12. Timeseries plots for spatial mean Sentinel-1A σ0
VV according to Jug Bay vegetation 

type (left panel). Right panel shows site photos of general summer to winter phenological changes 

in non-persistent Nuphar lutea and persistent Typha spp., which were effectively captured by the 

SAR timeseries. 

 
(a) (b) (c) 

Figure 2.13. Jug Bay random forest classification. ROIs from the Swarth survey overlaid on the 

2015 NAIP imagery and Sentinel-1A σ0
VV 2017 annual standard deviation imagery (a and b, 

respectively). (c) SAR-only random forest classification. Note that Sentinel-1A σ0
VV annual 

standard very effectively highlighted locations of non-persistent Nuphar lutea, which was not 

clearly distinguished in the natural color NAIP imagery. 
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Table 2.5. Jug Bay random forest classification confusion matrix for SAR-only classification. 

Diagonal matches between observed (Reference) and predicted (Classification) classes are 

bolded. 

    
 

    Classification       

  
 

Water Nuphar Zizania Typha Shrub Forest Producer's Accuracy (%) 

R
ef

er
en

ce
 

Water 495 0 0 0 0 0 100.00 

Nuphar 0 464 31 2 0 0 93.36 

Zizania 0 17 469 14 5 0 92.87 

Typha 0 1 14 481 9 2 94.87 

Shrub 0 1 6 10 471 5 95.54 

Forest 0 0 0 0 3 480 99.38 

User's Accuracy (%) 100.00 96.07 90.19 94.87 96.52 98.56   

                Overall Accuracy % 

                95.97 

 

Table 2.6. Jug Bay random forest classification confusion matrix for SAR-optical-DEM 

classification. 

    
 

    Classification       

  
 

Water Nuphar Zizania Typha Shrub Forest Producer's Accuracy (%) 

R
ef

er
en

ce
 

Water 500 0 0 0 0 0 100.00 

Nuphar 1 481 19 6 0 1 94.69 

Zizania 0 8 477 5 3 0 96.75 

Typha 0 1 10 483 10 0 95.83 

Shrub 0 0 0 9 491 0 98.20 

Forest 0 0 0 0 0 496 100.00 

User's Accuracy (%) 99.80 98.16 94.27 96.02 97.42 99.80   

                Overall Accuracy % 

                97.57 

 

Table 2.7. Jug Bay random forest layer importance assessment for SAR-only classification. 

Columns 2–7 represent the decrease in accuracy predicting a given class when removing the 

input layer (predictor) in column 1. For example, the removal of the VV_mean layer (σ0
VV 

annual mean) decreased the accuracy by 0.2193 when classifying a given pixel as water. Thus, 

higher values of accuracy decrease represent layer importance. Columns 8–9 represent the 

decrease in accuracy for all classes and decrease in the Gini coefficient. Top three layer 

classification improvements for each vegetation/landcover class prediction (columns) are 

bolded. 

 

Layer Type Water Nuphar Zizania Typha Shrub Forest MeanDecreaseAccuracy MeanDecreaseGini 

VV_mean 0.2193 0.0763 0.0942 0.0789 0.3221 0.1573 0.1573 216.4184 

VH_mean 0.1671 0.0706 0.1209 0.1133 0.2701 0.2326 0.1618 258.9103 

VV_SD 0.0019 0.2059 0.1683 0.1864 0.3489 0.4963 0.2331 319.5366 

VH_SD 0.0004 0.0905 0.2567 0.0511 0.2171 0.3411 0.1588 200.7394 

VV_summer 0.2306 0.0858 0.1430 0.1562 0.1402 0.1806 0.1559 273.6167 

VH_summer 0.1981 0.0437 0.0859 0.1374 0.1381 0.2040 0.1340 226.1407 

VV_fall 0.0406 0.0028 0.0693 0.0252 0.1007 0.1058 0.0571 99.9647 

VH_fall 0.0112 0.0357 0.1531 0.0456 0.2795 0.1928 0.1190 194.1971 

VV_winter 0.0223 0.2752 0.2119 0.1622 0.2436 0.2148 0.1884 316.4512 

VH_winter 0.0191 0.2163 0.2981 0.1751 0.2679 0.3360 0.2186 365.0655 
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Table 2.8. Jug Bay random forest layer importance assessment for SAR-optical-DEM 

classification. 

 
Layer Type Water Nuphar Zizania Typha Shrub Forest MeanDecreaseAccuracy MeanDecreaseGini 

VV_mean 0.2189 0.1184 0.1087 0.1070 0.1862 0.0334 0.1288 219.2148 

VH_mean 0.2468 0.1930 0.1906 0.1637 0.3262 0.0269 0.1910 328.2239 

VV_SD 0.0150 0.2690 0.0967 0.1428 0.2534 0.0179 0.1331 236.3179 

VH_SD 0.0028 0.1636 0.1873 0.1304 0.2292 0.0158 0.1215 189.5208 

VV_tidal_diff 0.0002 0.0044 0.1148 0.1492 0.0166 0.0003 0.0475 79.6682 

VH_tidal_diff 0.0004 0.0031 0.1957 0.0228 0.0181 0.0121 0.0415 71.2645 

VVVH_tidal_diff 0.0002 0.0060 0.0429 0.0849 0.0123 0.0010 0.0245 44.7473 

HH 0.0213 0.0034 0.0276 0.0101 0.0206 0.0007 0.0138 15.6724 

HV 0.0019 0.0033 0.0378 0.0130 0.0204 0.0005 0.0127 16.6604 

summer_tvi 0.0581 0.0417 0.1470 0.0880 0.0595 0.0256 0.0698 111.7885 

summer_ndvi 0.0685 0.0502 0.1196 0.0666 0.1002 0.2178 0.1034 182.2881 

summer_mndwi 0.2041 0.0604 0.1324 0.0817 0.0573 0.0613 0.0991 180.2152 

fall_tvi 0.0140 0.0861 0.1052 0.0406 0.0556 0.0324 0.0558 85.8827 

fall_ndvi 0.0379 0.0601 0.1414 0.0978 0.1428 0.2085 0.1146 192.8352 

fall_mndwi 0.1262 0.1097 0.1422 0.1020 0.1038 0.0411 0.1041 184.5659 

winter_tvi 0.0065 0.0325 0.0798 0.0477 0.0254 0.1041 0.0492 70.8000 

winter_ndvi 0.0054 0.0212 0.0871 0.0444 0.0320 0.0529 0.0404 67.6125 

winter_mndwi 0.0738 0.0049 0.0959 0.0436 0.0186 0.0337 0.0448 40.8471 

DEM 0.0213 0.0386 0.0593 0.0559 0.0533 0.2899 0.0862 142.0544 

DEM_grad 0.0014 0.0029 0.0199 0.0121 0.0175 0.0001 0.0090 13.8682 

 

 

  The random forest classification for Jug Bay achieved accurate results using 10 

timeseries Sentinel-1A input layers as predictors (>95%). The 20 input layers from the SAR-

optical-DEM stack achieved slightly higher accuracies (>97%). In the SAR-optical-DEM stack, 

SAR layers were the most important predictor layers for increasing classification accuracy. In the 

SAR-only classification, the σ0
VV annual standard deviation and σ0

VV and σ0
VH winter mean 

(November–December) imagery were the most useful predictors. All vegetation classes within 

this wetland system and open water were classified with accuracies greater than 90% for both 

user’s accuracy (commission error) and producer’s accuracy (omission error) (Tables 5 and 6). 

Tables 7 and 8 illustrated that each of the layers were uniquely useful for classifying individual 

classes in both the SAR-only and SAR-optical-DEM classifications. For both Nuphar lutea and 
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Typha spp., the σ0
VV standard deviation and winter σ0

VV and σ0
VH imagery were the most useful 

predictors in the SAR-only classification. In the SAR-optical-DEM classifications, the σ0
VV 

standard deviation was also a useful predictor for Nuphar lutea and Typha spp. The σ0
VV tidal 

difference layer was uniquely important for the classification of Typha spp. 

 

2.4.3 Regional Scale Wetlands Mapping 

Informed by the findings from the vegetation and inundation characterizations at the target 

wetlands study sites, we mapped the wetlands of the Chesapeake Bay and Delaware Bay regions. 

This regional classification is shown in Figure 2.14. Open water was mapped with the greatest 

accuracy (user’s accuracy and producer’s accuracy >96%). Emergent estuarine wetlands were 

mapped with the next highest accuracy with user’s and producer’s accuracies of 83% and 88%, 

respectively. Emergent palustrine wetlands were mapped with a producer’s accuracy of 65% and 

a user’s accuracy of 79%. All other classes were mapped with lower accuracies (Table 9). We 

found that emergent estuarine wetlands and emergent palustrine wetlands were most often 

confused with one another in terms of classification accuracy and were often adjacent to each 

other in regions generally characterized as tidal freshwater wetlands by previous studies. When 

the palustrine and estuarine emergent classes were lumped into a single emergent class, 

classification accuracy improved to a user’s accuracy greater than 86% and a producer’s 

accuracy of greater than 90%. The overall accuracy of the regional scale classification was 

relatively low at 67%; however, much of this diminished accuracy was due to a confusion 

between upland classes, rather than inaccuracy in wetland classification which was the focus of 

this study. 
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Figure 2.14. Random forest classification for Chesapeake Bay and Delaware Bay wetlands for 

2017. Estuarine emergent wetlands are depicted in blue. Palustrine emergent wetlands are 

depicted in red. Forested wetlands depicted in green were classified less accurately than emergent 

wetlands. 

 

Our random forest parameter tuning assessment revealed that increasing the number of trees 

made little difference in improving classification accuracy above a certain limit. We found that 

increasing the number of trees from 10 to 25 to 50 to 100 to 200 increased the overall 

classification accuracy from 58.13% to 63.38% to 65.43% to 66.53% to 67.04%. However above 

200 trees, the accuracy remained asymptotically limited below 68%. For these reasons, we 
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selected the 200-tree classifier for the final regional scale classification of the SAR-optical-DEM 

stack shown in Figure 2.14. 

The importance assessment of the regional scale random forest classification is shown in 

Table 10. These findings illustrate that the SRTM DEM elevation was the most important layer 

in terms of increasing overall classification accuracy, as evidenced by both the mean decrease in 

accuracy from removing the SRTM DEM elevation layer as a classification predictor variable 

and in the Gini impurity index. Optical vegetation indices were more important for separating 

wetlands from non-wetland landcover than SAR layers. SAR layers were overall less important 

than the optical and SRTM DEM layers in the overall classification. Of the SAR layers, tidal 

difference layers were the least important of the SAR input layers. The Sentinel-1A σ0
VH annual 

mean was the most important SAR layer in terms of the overall classification importance and 

Gini impurity index value in the regional scale classification as it had the third highest mean 

decreases in overall accuracy and the fifth highest Gini index value. 

 

Table 2.9. Regional scale random forest classification confusion matrix. Diagonal matches 

between observed (Reference) and predicted (Classification) classes are bolded. 

  

            Classification 

  

            

    
Water Urban Barren Grass Agriculture Shrub 

Upland 

Forest 

Forested 

Wetland 

Palustrine 

Emergent 

Estuarine 

Emergent 
Total Producer's Accuracy % 

R
ef

er
en

ce
 

Water 22172 80 263 37 51 2 75 51 87 260 23078 96.07 

Urban 31 11261 637 1957 1061 50 449 164 61 105 15776 71.38 

Barren 502 1522 4473 650 1575 233 669 221 107 290 10242 43.67 

Grass 31 2410 208 4449 4835 696 3643 1031 65 78 17446 25.50 

Agriculture 11 764 290 1666 22852 220 1699 615 113 31 28261 80.86 

Shrub 16 311 106 1039 1486 2853 5059 1535 45 27 12477 22.87 

Upland Forest 28 494 100 1431 1415 1343 23427 3374 30 7 31649 74.02 

Forested Wetland 56 254 53 496 585 529 3662 10732 372 224 16963 63.27 

Palustrine Emergent 93 75 73 116 1009 83 171 550 5954 950 9074 65.62 

Estuarine Emergent 127 71 160 34 53 2 1 130 699 9993 11270 88.67 

  

Total 23067 17242 6363 11875 34922 6011 38855 18403 7533 11965     

  User's Accuracy % 96.12 65.31 70.30 37.47 65.44 47.46 60.29 58.32 79.04 83.52         Overall Accuracy % 

                          67.05 
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Table 2.10. Regional scale random forest layer importance assessment. 

 

LayerType Water Urban Barren Grass Ag. Shrub U. Forest W. Forest Palustrine Estuarine MeanDecreaseAccuracy MeanDecreaseGini 

vv 0.286 0.027 0.026 0.000 0.040 0.006 0.051 0.063 0.038 0.092 0.071 6792.088 

vh 0.282 0.020 0.074 −0.003 0.112 0.020 0.103 0.127 0.069 0.116 0.104 10293.323 

vv_sd 0.018 0.005 0.009 −0.002 0.022 0.001 0.026 0.024 0.029 0.016 0.016 4621.997 

vh_sd 0.007 0.017 0.016 0.002 0.075 0.016 0.038 0.042 0.048 0.036 0.032 7285.724 

vv_tidal_diff 0.000 0.003 0.002 0.000 0.004 0.000 0.005 0.004 0.003 0.005 0.003 3740.538 

vh_tidal_diff 0.000 0.002 0.001 0.000 0.005 0.000 0.005 0.003 0.003 0.010 0.003 3897.383 

vvvh_tidal_diff 0.001 0.001 0.002 0.000 0.005 0.001 0.002 0.001 0.002 0.005 0.002 3669.585 

hh 0.027 0.017 0.005 −0.001 0.019 0.003 0.022 0.029 0.014 0.019 0.017 4689.331 

hv 0.072 0.033 0.011 0.001 0.027 0.010 0.041 0.031 0.023 0.052 0.033 5633.296 

summer_tvi 0.179 0.148 0.070 0.012 0.054 0.014 0.025 0.029 0.066 0.292 0.081 8488.662 

summer_ndvi 0.184 0.237 0.133 0.023 0.028 0.026 0.094 0.167 0.102 0.268 0.117 11751.909 

summer_mndwi 0.245 0.174 0.032 0.009 0.044 0.014 0.044 0.042 0.098 0.128 0.084 8987.405 

fall_tvi 0.093 0.084 0.034 0.009 0.042 0.015 0.032 0.014 0.060 0.290 0.059 7603.245 

fall_ndvi 0.148 0.170 0.092 0.020 0.036 0.039 0.078 0.066 0.095 0.235 0.091 11122.123 

fall_mndwi 0.237 0.166 0.036 0.014 0.037 0.021 0.042 0.033 0.096 0.104 0.079 12343.496 

winter_tvi 0.078 0.048 0.026 0.011 0.062 0.030 0.031 0.017 0.110 0.205 0.055 6736.456 

winter_ndvi 0.349 0.081 0.063 0.010 0.034 0.073 0.046 0.043 0.090 0.072 0.090 8764.048 

winter_mndwi 0.205 0.128 0.023 0.004 0.045 0.018 0.045 0.027 0.089 0.077 0.069 9277.989 

dem 0.198 0.052 0.038 0.025 0.051 0.039 0.171 0.120 0.243 0.451 0.130 14884.806 

dem_grad 0.274 0.008 0.011 0.000 0.006 0.001 0.029 0.005 0.008 0.016 0.045 4979.564 

 

2.5 Discussion 

 Inundation mapping results from Blackwater NWR (Section 2.4.1.1) demonstrated that 

PALSAR L-band σ0
HH high tide–low tide image pairs could be used to unambiguously separate 

inundated and non-inundated tidal marshes using absolute thresholding. The threshold value of 

−13.5 dB separating inundated and non-inundated marsh was similar to the −14.0 dB threshold 

used by Clewley et al. (2017) to map surface water with PALSAR imagery. Because the marshes 

surveyed in Blackwater NWR are dominated by emergent graminoid species of low to moderate 

biomass (e.g., Spartina alterniflora, Spartina patens, and Distichlis spicata), the close agreement 

with Clewley et al. was not surprising and was indicative of specular forward scattering 

dominating backscatter response when low–moderate biomass graminoid vegetation becomes 
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submerged or partially submerged during high tide. Kim et al. (2014) evaluated C-band and L-

band SAR for inundation detection in Cladium sp. (sawgrass)-dominated wetlands, which have a 

structure and biomass similar to Spartina alterniflora-dominated wetlands. Kim et al. (2014) 

found that L-band SAR backscatter exhibited a much stronger inverse relationship with the 

wetland water level than C-band SAR backscatter, likely indicating more specular forward 

scattering at longer wavelengths (lower backscatter) as moderate-biomass emergent vegetation 

submerges. Ramsey et al. (2013) performed a similar comparison, noting that L-band-based 

inundation maps had higher levels of agreement (91%) with in situ inundation measurements 

than C-band-based maps (67–71%) in Spartina alterniflora dominated wetlands. Consistent with 

these previous studies, our results demonstrate that L-band SAR imagery was more effective 

than C-band SAR imagery in detecting inundation in the moderate-biomass emergent wetlands 

of Blackwater NWR. It should be noted, however, that in our analysis, we compared C-band and 

L-band SAR imagery of different polarizations (Sentinel-1A C-band VV vs. PALSAR L-band 

HH), which limited a direct wavelength-based comparison of the imagery as polarimetric 

responses to inundation state can be variable as well (Brisco et al. 2011; Hong et al. 2013; Hong 

et al. 2015). These findings have relevance to the science objectives of the upcoming NASA-

ISRO Synthetic Aperture Radar (NISAR) mission, which will operate at an L-band frequency 

and will have a nominal revisit of 12 days. The implementation of thresholding techniques for 

deriving inundation products from NISAR imagery could make for an effective and simple 

approach, which is important to consider given the anticipated computational demands for 

storing and processing NISAR imagery. 

The single high tide–low tide PALSAR image pair provided effective backscatter separation 

in the Blackwater NWR study site. However, this particular threshold (and general approach of 
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absolute thresholding) may not be applicable to inundation mapping in other wetlands dominated 

by higher biomass species like Typha spp. and Phragmites australis. Bourgeau-Chavez et al. 

(2013) and Bourgeau-Chavez et al. (2015) demonstrated that Phragmites australis and Typha 

spp. could be effectively distinguished from lower biomass emergent vegetation in wetlands 

mapping efforts, indicating that these higher biomass emergent species may not produce the 

same backscatter responses in L-band signals when inundated as the lower biomass emergent 

species of Blackwater NRW did. Although we did not acquire PALSAR imagery above the 

bankfull depth in Kirkpatrick Marsh, future work should focus on investigating differences in L-

band backscatter response between Phragmites australis and lower biomass vegetation at this 

site. We are currently in the process of performing this analysis with multitemporal PALSAR-2 

imagery. 

In contrast to the PALSAR L-band results, classification of inundation using Sentinel-1A C-

band imagery at Blackwater NWR was more challenging. The Sentinel-1A VV-polarized 

backscatter (σ0
VV) and σ0

VV/σ0
VH ratio did show substantial changes in distributions between high 

and low tide for tidal marsh ROIs, but these differences did not provide clear separability. For 

these reasons, we did not attempt to use Sentinel-1A imagery to classify inundation over 

Blackwater NWR. Our results suggest that detailed characterization of a wetland’s tidal 

hydrology, such as that provided in Nelson et al. for Kirkpatrick Marsh, is important for 

constraining satellite-based inundation estimates and should be integrated into future efforts 

applying change detection approaches to classify inundation over Blackwater NWR.  

At the Kirkpatrick Marsh site, we determined that increases in the Sentinel-1A σ0
VV and 

decreases in the σ0
VV/σ0

VH ratio were both strong indicators of the tidal inundation extent given 

the moderate–high goodness of fit between the site-adjusted tidal stage and marsh integrated 
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backscatter above the bankfull depth as defined in Nelson et al. [48]. We found a clear separation 

between the marsh-integrated σ0
VV and σ0

VV/σ0
VH ratio at a Kirkpatrick Marsh tidal creek water 

level greater than 1.1 meters. These factors allowed us to map tidal inundation over a series of 

high tide images in this high marsh system (Figure 2.10). Utilizing imagery acquired every 12 

days from the Sentinel-1A satellite allowed us to effectively implement temporal change 

detection approaches to map inundation, which would not have been possible with imagery from 

SAR satellites with longer revisit times. The change detection approaches we implemented could 

be used for inundation mapping with timeseries imagery from the future L-band NISAR mission, 

which will also have a 12-day revisit. 

At both Kirkpatrick Marsh and Blackwater NWR, Sentinel-1A imagery acquired at the 

highest tidal stages was acquired during fall. Higher tidal stages were correlated with a higher 

σ0
VV and a lower σ0

VV/σ0
VH ratio. Pope et al. (1997) suggested that C-band VV-polarized 

backscatter enhancement in emergent wetlands during high water periods could be attributed to 

reductions in the overall attenuation of vertically oriented SAR signal by vertically oriented 

vegetation. However, the findings by Pope et al. (1997) suggest that only high biomass emergent 

vegetation exhibits an increase in σ0
VV for C-band imagery. In contrast, our results demonstrated 

that all four dominant vegetation types of Kirkpatrick Marsh exhibited backscatter increases 

during inundated conditions, despite having pronounced differences in biomass and structure. 

This may be attributed to the collapse of vertical stems and leaves during fall, resulting in 

increasingly horizontally structured vegetation, which enhances double-bounce scattering in 

vertically polarized SAR signals when the underlying marsh surface is inundated. It is also likely 

that the change in vegetation structure combined with senescing vegetation becoming saturated 

with saline water during or following high tide (but not submerged) may have increased 
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backscatter by increasing the dielectric constant of the partially collapsed vegetation, which was 

also acting a rough surface, thus increasing the direct σ0
VV response. These are all potential 

explanations for the observed Sentinel-1A σ0
VV enhancement in fall, but they are by no means 

definitive. To further investigate the causal mechanisms of this fall backscatter enhancement, 

measurements with a grid of water level sensors were recently deployed across Kirkpatrick 

Marsh at sites with different vegetation characteristics, which will allow us to assess how the 

interaction of inundation and vegetation phenology contribute to this observed enhancement in 

Sentinel-1A σ0
VV. Such a water level sensor grid will also serve to validate Sentinel-1A change 

detection-based inundation products for Kirkpatrick Marsh and validate future PALSAR-2 

inundation mapping efforts as well. 

In the case of the SAR-based inundation mapping work, both the results from Kirkpatrick 

Marsh and Blackwater NWR proved useful in informing the regional scale wetland 

classification. The pronounced tidal responses in both Sentinel-1A σ0
VV and σ0

VV/σ0
VH ratio was 

the impetus for including high tide-low tide difference layers in the regional scale classification. 

Although L-band high tide-low tide image pairs covering the Chesapeake Bay would have been 

optimal to include in this classification, this imagery was not available for 2017. However, the 

results from Blackwater NWR also demonstrated the capability of L-band imagery in separating 

forested and emergent wetlands, which was the impetus for including PALSAR-2 annual 

mosaics in the regional scale classification. Wetland inundation could not be mapped with 

optical water indices because relationships between tidal stage and water index value were weak 

at both Kirkpatrick Marsh and Blackwater NWR. Although the mNDWI is demonstrated as 

being effective for mapping surface water (Du et al. 2016), it is less effective for inundation 

detection under vegetated canopies than SAR imagery. However, multi-season mNDWI imagery 
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was included in the regional scale classification to provide a characterization of open water 

extent as a complement to the SAR imagery characterizing wetland inundation extent. 

Comparing Sentinel-1A σ0
VV timeseries for Kirkpatrick Marsh and Jug Bay showed that 

σ0
VV variability was very similar between different vegetation types at Kirkpatrick Marsh, but 

also very similar to Typha spp. at Jug Bay. This is likely indicative of phenological and 

inundation changes combining in a distinct way to enhance backscatter for all persistent 

vegetation types in fall. Potential causal factors of this fall backscatter enhancement have already 

been discussed. Our results demonstrated that persistent vegetation maintained a backscatter 

increase from summer to fall/winter, while non-persistent vegetation exhibited a backscatter 

decrease, which was of a greater relative magnitude as well. The reason for the decrease in non-

persistent vegetation backscatter was well-evidenced by site photos depicting the loss of biomass 

as Nuphar lutea decayed at the end of the growing season, which was effectively tracked with 

decreases in the C-band SAR backscatter (Figure 2.12). 

The use of timeseries-based Sentinel-1A SAR derivatives was highly effective for separating 

emergent vegetation classes at Jug Bay from one another and further separating them from shrub 

and forest classes. The Jug Bay SAR-only random forest classification achieved overall 

accuracies greater than 95%. The Jug Bay SAR-optical-DEM classification using the same layers 

as the regional scale wetland classification achieved accuracies greater than 97%. The Jug Bay 

random forest importance assessment revealed that the Sentinel-1A σ0
VV backscatter annual 

standard deviation layer was one of the most important layers in terms of improving 

classification accuracy in both SAR-only and SAR-optical-DEM classifications. Qualitatively, it 

was clear that this layer was effective at depicting locations of non-persistent vegetation (Figure 

2.13). The implementation of timeseries approaches for mapping functional vegetation classes 
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could be used for mapping non-persistent vegetation outside of the Chesapeake Bay region. The 

Sentinel-1A imagery that was acquired nearly every 12 days in 2017 provided consistent 

observations of the phenological changes over the Jug Bay site that were not provided using 

cloud-obscured optical imagery. The reliability of SAR with stable operating modes was clearly 

demonstrated in this case as the consistency of SAR observations allowed for successful 

detection of phenological changes in persistent and non-persistent vegetation. The extent of non-

persistent vegetation in coastal emergent wetlands is indicative of regions that are tidal 

freshwater, rather than brackish or saline (Odum 1988). The continued monitoring of these tidal 

freshwater wetlands serves as a tool for assessing changes to salinity properties along the 

freshwater-brackish-saline continuum. 

In the regional scale random forest classification of wetlands in the Chesapeake and 

Delaware Bays, we used nine optical layers, nine SAR layers, and two DEM layers as 

classification predictors. The overall classification accuracy of our regional scale mapping effort 

was 67%, which was relatively low. However, much of the overall classification error was due to 

confusion between different non-wetland landcover classes. The overall goal of this effort was to 

map estuarine emergent wetlands (i.e., tidal marshes), which was done with relatively high 

accuracies (user’s and producer’s accuracies of 83% and 88%, respectively). We found that 

palustrine emergent wetlands were classified with a lower accuracy than estuarine emergent 

wetlands and noted that these two classes were most often confused with one another. When 

these classes were grouped into a single emergent wetland class, classification accuracy 

improved to a user’s accuracy greater than 86% and a producer’s accuracy of greater than 90%. 

All predictor layers used in this regional scale classification were carefully selected based on the 

findings from our target wetland site studies or a rationale that supported the separation of 
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wetlands from other sites (i.e., use of multi-season NDVI and TVI to separate emergent wetlands 

from crops). We used the C-band SAR backscatter temporal mean and standard deviation to 

capture emergent wetland central tendency and temporal variability, the latter of which tended to 

be higher in emergent wetlands than other landcover types. We used multi-season mNDWI in the 

regional scale classification to aid in surface water identification, although the importance 

assessment of the regional scale classification demonstrated that summer NDVI, DEM gradient 

(slope), and Sentinel-1A σ0
VV and σ0

VH annual means were more useful variables for mapping 

the locations of open water. Sentinel-1A SAR high tide low tide image pairs for the fall season 

were included in an attempt to isolate estuarine emergent wetlands. Although the target wetland 

study sites showed well-defined changes in Sentinel-1A backscatter corresponding to tidal stage, 

the tidal difference layers proved to be some of the least useful layers for improving regional 

scale random forest classification accuracy overall, and for the estuarine emergent wetland class 

in particular. This was somewhat surprising but is likely the result of the SAR standard deviation 

layer capturing much of the similar variance that the tidal differences layers were, thus providing 

little additional useful information to the random forest classifier. Optically based vegetation 

indices proved to be some of the most useful layers in the regional scale wetland classification. 

This was likely because multi-season optical imagery aids the random forest classifier in 

separating emergent wetlands from crops, and because the peak TVI and NDVI values of 

emergent wetlands tend to be lower than upland vegetated systems as a result of less canopy 

closure (more vertically structured vegetation) and more near infrared attenuation by surrounding 

water compared to upland systems. The overall finding that the topographic variables (elevation 

and slope) were the most useful predictor layers in the regional scale classification was 

consistent with Clewley et al. (2015) and Knight et al. (2013). Overall, our results from the 
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regional scale random forest classification highlighted the increasing relative importance of 

SAR, optical, and elevation data in overall wetland classification, consistent with Knight et al. 

(2013). 

Our results demonstrate the existence of somewhat of a paradox: In our regional scale 

classification, optical imagery was superior for wetland mapping in terms of separating wetlands 

from other landcover. However, in our inundation and vegetation characterizations and 

vegetation mapping efforts at Jug Bay, SAR imagery proved more important for these 

characterizations. The use of the same SAR-optical-DEM stack in the regional scale 

classification and Jug Bay vegetation classification provided a direct comparison of layer 

importance for these different mapping efforts shown in Tables 8 and 10. These differences in 

the regional scale wetland classification and the Jug Bay vegetation classification were likely the 

result of timeseries optical imagery showcasing consistent differences between wetlands and 

other landcover, while the temporal and spatial variability within wetlands that timeseries SAR 

effectively captured may essentially act as noise in a statistically-based classifier when 

attempting to separate wetlands from upland landcover classes in the regional scale classification 

effort. 

 

2.6. Conclusions 

 We used a combination of ground surveys and optical and SAR imagery to characterize 

tidal inundation patterns at two estuarine marsh study sites and vegetation characteristics at an 

estuarine marsh and a tidal freshwater marsh complex. Informed by the findings from these 

target wetlands sites, we mapped wetland vegetation for an expanded region in the Patuxent 

River with a very high accuracy (>95% overall) by utilizing timeseries SAR imagery and fused 
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SAR-optical-DEM imagery. The SAR-optical-DEM classification relied on the same layers used 

in our regional scale wetlands classification for emergent estuarine wetlands in the Chesapeake 

and Delaware Bays. In this way we produced two classifications, one providing a detailed 

classification of vegetation types within a wetlands complex and another separating wetlands 

from other landcover. Even when relying on the same input layers, these classifications produced 

very different post-classification importance assessments, with SAR layers being more useful for 

the detailed vegetation classification and DEM and optical being more useful for separating 

wetlands from other landcover classes. 

Temporal SAR derivatives were used here, for the first time, to map non-persistent 

vegetation in the Patuxent River. Our approach provides a straightforward, yet powerful tool for 

mapping tidal freshwater systems through the identification of indicator non-persistent 

vegetation, which can lead to improved management of tidal freshwater systems. Critical to this 

approach is the ability to now leverage the consistent 12-day repeat C-band SAR observations 

provided by Sentinel-1A, which rarely changed its operating mode over our study region. The 

combination of Sentinel-1A’s temporal fidelity and spatial resolution is unprecedented in SAR 

remote sensing and presents numerous opportunities and applications in wetland mapping and 

characterization. However, our findings suggest that L-band SAR is more useful than optical or 

C-band SAR for inundation mapping in tidal marshes. Future work should include assessments 

of inundation mapping with imagery from the fully polarimetric L-band Uninhabited Aerial 

Vehicle Synthetic Aperture Radar (UAVSAR) mission in conjunction with radiometric 

modeling, which will support the objectives of the upcoming NISAR mission (L-band frequency 

and 12-day revisit). 

 Remote sensing imagery was also used here to map estuarine emergent wetlands in the 
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Chesapeake and Delaware Bays with Google Earth Engine. The emergence of cloud-based 

remote sensing analysis platforms present opportunities to expand mapping efforts like the one 

described here to much larger extents, potentially globally. Global estimates of tidal marsh extent 

are poor (Pendleton et al. 2012). However, recent efforts by Mcowen et al. (2017) have 

aggregated national tidal marsh inventories into a global tidal marsh inventory. This global 

inventory likely underestimates the extent of tidal marshes since it aggregates national 

inventories that are often themselves incomplete. However, there is potential to improve these 

estimates of tidal marsh extent by utilizing tidal marsh inventories as training data for remote 

sensing-based tidal marsh classifications at the global scale. With the advent of cloud computing 

remote sensing platforms, such mapping efforts are now highly feasible. 
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2.7. Long Island Study Comparative Study 

2.7.1 Introduction 

 The following section (2.7) serves as a follow on for the majority of Chapter 2 covering 

the Chesapeake Bay. Here, a similar satellite image evaluation is carried out for tidal marsh sites 

in the Long Island Sound (LIS). This includes an evaluation of both Sentinel-1A SAR and 

optical/IR imagery (Landsat 8 and Sentinel-2) as performed for the Chesapeake Bay study in 

Sections 2.2-2.6. Additionally, for this study covering the LIS, a more thorough evaluation of 

PALSAR/PALSAR-2 L-band imagery was carried out as there was a greater availability of 

PALSAR-2 imagery over LIS study sites and a greater number of PALSAR scenes available 

covering a range of tidal stages. 

 When this study was carried out, there were limited vegetation surveys, and for that 

reason the National Wetlands Inventory (NWI) was used as the primary dataset to identify 

particular wetlands and assess multitemporal satellite imagery. The analysis in this section 

mainly focuses on the assessment of satellite image response to tidal inundation variability which 

provides the groundwork for Chapter 4 focusing on the development of tidal marsh inundation 

products. This section (2.7) does not focus extensively on tidal marsh vegetation characterization 

which is covered extensively in Chapter 3. In this section, additional results from Chesapeake 

Bay study sites are included to provide comparisons between the Chesapeake Bay and LIS tidal 

marshes. The major general difference between these regions is the tidal range, with the LIS 

having a tidal range approximately 2.5 times greater than that of the Chesapeake Bay. 
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2.7.2 Long Island Sound Study Sites 

 Several LIS study sites were selected for this evaluation (Figure 2.16). Three sites were 

more intensively studied: Wheeler Marsh, Great Meadows Marsh, and the Nissequogue River. 

The Wheeler Marsh system contains three NWI classes (E2EM1P, E2EM1N, E2SS1P). At the 

Wheeler Site, these NWI classes correspond to irregularly flooded tidal marsh, regularly flooded 

tidal marsh, and tidal shrub-scrub wetlands according to the NWI. Site visits to Wheeler Marsh 

revealed that these three wetlands are better described as a sparsely vegetated low marsh, densely 

vegetated low marsh, and high marsh, respectively. The Great Meadows Marsh system contains 

two primary NWI classes (E2EM1N, E2EM1P) which also more accurately correspond to 

sparsely vegetated low marsh and densely vegetated high marsh, respectively. The Nissequogue 

River site contains six wetland classes. Three of the Nissequogue classes are emergent tidal 

marshes (E2EM1P, E2EM1N, E2EM5P) corresponding to correspond to irregularly flooded tidal 

marsh, regularly flooded tidal marsh, and Phragmites australis-dominated tidal marsh, according 

to the NWI. Unlike Great Meadows and Wheeler Marsh sites, we were not able to verify the split 

between E2EM1P and E2EM1N classes with extensive field studies at Nissequogue, but did 

verify that these classes were both native marsh, and were effectively split from the accurately 

classified Phragmites australis-dominated tidal marsh class (E2EM5P) with limited field studies. 

The Nissequogue River site also contain non-tidal marsh wetland and deepwater classes, 

including; one intertidal aquatic bed wetland class (E2ABN), one intertidal mudflat class 

(E2SUS3N), and one tidally influenced shrub-scrub class (E2SS1P).  
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Figure 2.15. Long Island Sound study region and study sites. Approximate NOAA tidal gauge 

locations shown in magenta. Background grayscale image is Sentinel-1 SAR. Color polygon 

overlays are National Wetlands Inventory classes shown in upper left legend. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.16. Sentinel-2 optical growing 

season false-color RGB image (Near 

Infrared, Green, Blue). Left panel 

Wheeler Marsh (Northeast) and Great 

Meadows (Southwest). Right panel shows 

the Nissequogue River. Note that white 

NWI boundaries shown varying NIR 

reflectance that corresponds to canopy 

closure and canopy density. This NIR 

variability is apparent over the three 

wetland classes at Wheeler Marshes. At 

the Nissequogue site, the southeast 

portion of the map shows high NIR 

reflectance corresponding to Phragmites 

australis and shrub dominated wetlands. 

The lower reflectance in the center and 

northwest portion of the map correspond 

to native tidal marsh, aquatic beds, and 

mudflats. 
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2.7.3 Methods & Results 

 Over the three intensive study sites, Sentinel-1 backscatter was extracted by wetland class 

and compared to local tidal stage. Over Wheeler Marsh, Sentinel-2 optical water indices and 

PALSAR/PALSAR-2 backscatter were also compared to tidal stage, culminating in a 

comparison between optical water indices, C-band SAR, and L-band SAR over this site. 

Previous results over the Chesapeake Bay demonstrated that optical indices were limited in 

performance compared to C-band and L-band SAR approaches over the Blackwater N.W.R. site 

which is the largest tidal marsh complex in the Chesapeake Bay. Wheeler Marsh represents a 

tidal marsh system with similar vegetation characteristics, but a greater tidal range. 

 

  

  

 

 

 

 

  

 

 

Figure 2.17. Sentinel-1 VV (left) and VH (right) backscatter vs. tidal stage for Nissequogue 

River deepwater NWI classes. Note that both the intertidal mudflat (E2US3N) and intertidal 

aquatic bed (E2ABN) both show backscatter decreases corresponding to increasing tidal stage. 

This decrease is present in both polarimetric channels. 
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Figure 2.18. Sentinel-1 backscatter vs. tidal stage for Nissequogue River emergent NWI classes. 

Note that the sparsely vegetated low tidal marshes (E2EM1N) show high R-values when 

regressed against tidal stage. With greater canopy biomass of the densely vegetated low tidal 

marshes (E2EM1P) and Phragmites-dominated marshes (E2EM5P), statistical agreement with 

tidal stage lessens. Overall, the VH channel shows greater agreement between backscatter and 

tidal stage. 
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Figure 2.19. Sentinel-1 backscatter vs. tidal stage for Nissequogue River shrub NWI class 

(E2SS1P). Note that tidal stage and backscatter have minimal statistical agreement for this 

wetland type for both VV and VH channels. 

 

 For the Nissequogue River wetlands, it was apparent that as the wetland biomass 

increased there was less response to the underlying surface state (as indicated by tidal stage). 

This finding was consistent with previous studies reviewed in thesis Sections 1.4 and 1.5 

showing that C-band SAR responds strongly to vegetation structure. The same patterns can be 

observed in Figures 2.20 and 2.21 below for Great Meadows tidal marsh wetlands. 

 

 

  

 

 

 

Figure 2.20. Great Meadows Sentinel-1 backscatter-tidal stage relationships for sparsely 

vegetated tidal marsh. 
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Figure 2.21. Great Meadows Sentinel-1 backscatter-tidal stage relationships for densely 

vegetated low tidal marsh. 

 

  

   

 

 

 

 

 

 

 

 

 

Figure 2.22. Wheeler Marsh Sentinel-1 backscatter-tidal stage relationships for sparsely 

vegetated low tidal marsh (upper panels) and densely vegetated low tidal marsh (lower panels). 
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 Sentinel-1 C-band backscatter-tidal stage relationships varied by wetland type. One 

pattern that does emerge from this analysis, is the fact that in all cases (across all three study sites 

and wetland and deepwater classes), VH channel backscatter decreased in response to increasing 

tidal stage, although the degree of statistical fit and magnitude of change varied greatly for both 

the VV and VH channels. VV/VH ratio channels were also assessed, as the previous section (2.2-

2.6) demonstrated this ratio to have a strong response to tidal stage in both the Blackwater NWR 

and Kirkpatrick Marsh sites in the Chesapeake Bay (Figures 2.6 and 2.9). 

 

 

 

 

 

 

 

 

 

 

Figure 2.23. Sentinel-1 VV/VH backscatter ratio-tidal stage comparison for Wheeler Marsh 

(upper panels) and Blackwater NWR (lower panels) for E2EM1N and E2EM1P wetland classes. 

Note tidal stage units on for Wheeler are feet, Blackwater NWR units are meters. 
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 The Wheeler Marsh site was the only site to have a full comparison of C-band SAR, L-

band SAR, and optical water indices. L-band SAR, optical indices, and C-band SAR had the 

greatest R-values when correlated against tidal stage, respectively. For the densely vegetation 

low tidal marsh class (E2EM1P), only L-band SAR had high correlations with tidal stage (R-

value > 0.8). The Sentinel-1 C-band VV/VH ratio that exhibited the strong statistical 

relationships with tidal stage at Chesapeake Bay sites was limited for Wheeler Marsh and Great 

Meadows Marsh LIS sites, comparatively (R-value < 0.46).  

 L-band backscatter consistently decreased with increasing tidal stage for all LIS tidal 

marsh sites. Although comparable PALSAR/PALSAR-2 timeseries imagery was not available 

for Blackwater NWR, the decrease in L-band backscatter is consistent with high tide-low tide 

PALSAR image comparisons over Blackwater NWR tidal marshes, where high tide and low tide 

imagery exhibited complete separability at a backscatter threshold of -13.5 dB. 

 

Table 2.11. Expanded correlation matrix comparing satellite imagery to tidal stage. Blackwater 

NWR (B), Wheeler Marsh (W), Great Meadows (GM), and Nissequogue River (N). Columns 

represent Sentinel-1 polarimetric channels (S1), Landsat and Sentinel-2 optical water indices 

(NDWI and mNDWI), and PALSAR L-band correlation with tidal stage. Ordinary least squares 

(OLS) and second order polynomial (Poly) relationships are both assessed. 

 

 

 

NWI Class
S1-VH 

OLS

S1-VH 

Poly

S1-VV 

OLS

S1-VV 

Poly

S1-VV/VH 

OLS

S1-VV/VH 

Poly

NDWI 

OLS

NDWI 

Poly

mNDWI 

OLS

mNDWI 

Poly

PALSAR-

HH OLS

PALSAR-

HH Poly

PALSAR-

HV OLS

PALSAR-

HV Poly

E2EM1N-B −0.638 0.757 0.374 0.575 −0.705 0.889 0.314 0.378 0.460 0.468 -- -- -- --

E2EM1P-B −0.689 0.761 0.581 0.666 −0.765 0.856 0.352 0.393 0.471 0.515 -- -- -- --

E2EM1P6-B −0.450 0.541 0.368 0.378 −0.530 0.567 0.192 0.283 0.001 0.235 -- -- -- --

E2EM1Pd-B −0.646 0.725 0.457 0.539 −0.684 0.772 0.407 0.412 0.560 0.669 -- -- -- --

E2SS4P-B −0.189 0.422 0.395 0.403 −0.456 0.457 0.047 0.303 −0.065 0.080 -- -- -- --

E2FO4P-B −0.089 0.357 0.360 0.381 −0.401 0.401 0.006 0.236 0.108 0.142 -- -- -- --

E2EM1N-W -0.833 0.875 -0.779 0.787 0.452 0.474 0.911 -- 0.912 -- -0.845 0.878 -0.917 0.978

E2EM1P-W -0.395 0.430 0.014 0.274 -0.290 0.500 0.562 -- 0.701 -- -0.806 0.955 -0.625 0.924

E2EM1N-GM -0.671 0.733 -0.430 0.430 -0.251 0.413 -- -- -- -- -0.817 0.937 -0.717 0.897

E2EM1P-GM -0.472 0.555 -0.082 0.107 -0.376 0.497 -- -- -- -- -0.716 0.872 -0.666 0.824

E2EM1N-N -0.833 0.875 -0.759 0.764 -- -- -- -- -- -- -0.670 0.744 -0.843 0.947

E2EM1P-N -0.395 0.430 -0.075 0.299 -- -- -- -- -- -- -0.544 0.684 -0.446 0.854



94 
 

 The findings of strong statistical agreement between PALSAR/PALSAR-2 backscatter 

and tidal stage motivated the generation of backscatter-tidal stage plots that also assessed 

backscatter distributions in the context of evaluation of separability between L-band backscatter 

images in tidal sequence. This is shown in Figure 24. The findings from these plots motivated the 

generation of thresholds in the HH and HV channels at -14.0 dB and -23.0 dB, respectively. 

These thresholds were used to develop tidal inundation product maps that are shown in Figure 

25. Note that these threshold value for the HH channel is very similar to that obtained for the 

Chesapeake Bay at -13.5 dB.  

 

 

 

 

 

 

 

 

 

 

 

Figure 2.24 PALSAR and PALSAR-2 comparison with tidal stage. Distributions of pixels (+/- 1 

SD) over the Wheeler Marsh site show that distributions fall below the threshold range used for 

classification of tidal marsh inundation over the Chesapeake Bay Blackwater NWR when tidal 

stage is sufficiently high.    
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Figure 2.25. PALSAR/PALSAR-2 HH imagery ordered by tidal stage in upper panel. The lower 

panel shows classified inundation using thresholding approach over Wheeler Marsh site. 

 

 

2.7.4 Discussion and Conclusions 

 The Methods and Results sections demonstrated that C-band SAR responses are not as 

broadly applicable to characterizing wetland inundation state as L-band SAR. Additionally, the 

Sentinel-1 C-band VH channel generally proved more responsive to tidal inundation state than 

the VV channel. L-band SAR showed a consistent response to tidal inundation state over LIS 

tidal marsh study sites with decreases in backscatter being similar to those over Chesapeake Bay 

tidal marshes. This was evidenced by the comparison of tidal stage correlations in Table 11. The 

Sentinel-1 VV/VH ratio that was demonstrated as statistically effective for detecting tidal marsh 

inundation in Blackwater NWR and Kirkpatrick Marsh was far less effective for LIS sites. This 

may largely be the result of differences in tidal stage between these sites. Especially given that 

vegetation communities between Blackwater NWR, Wheeler Marsh, and Great Meadows are 



96 
 

very similar, with all these sites being dominated by the low marsh species Spartina alterniflora 

and secondary communities of Spartina patens and Distichlis spicata in adjacent marsh of higher 

elevation. With a much lower tidal range, high tide inundation events may not submerge the 

majority of vegetation biomass at Blackwater NWR, whereas Wheeler Marsh and Great 

Meadows sites show significant vegetation submergence as evidenced by site visits.  

 The findings here largely agree with previous literature demonstrating the L-band 

scattering response varies primarily in response to surface hydrologic state in tidal marsh 

systems (Ramsey et al. 2012; Ramsey et al. 2013; Kim et al. 2014). In contrast C-band SAR, is 

more sensitive to the combination of vegetation characteristics and surface hydrologic state (e.g. 

the degree of submergence of marsh vegetation). In Chapter 3, we further explore the use of 

Sentinel-1 C-band SAR for tidal wetland vegetation characterization, which this chapter 

demonstrates produces strong interactions with vegetation but varies in directional backscatter 

response. In Chapter 4, we leverage some of the empirical findings in this chapter to further 

develop and validate C-band and L-band-based tidal marsh inundation products with the use of 

in situ observations and radiometric modeling efforts. We also utilize radiometric modeling 

efforts to determine which specific scattering mechanisms led to the generally varied C-band 

backscatter responses across different wetlands, and generally consistent L-band backscatter 

responses across different wetlands. 
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CHAPTER 3 

ASSESSMENT OF WETLAND VEGETATION CHARACTERISTICS 

 

3.1. Introduction 

 Blue carbon ecosystems such as tidal marshes, mangroves, and seagrass meadows are 

among the most productive ecosystems on the planet and far surpass all other ecosystems in 

carbon sequestration on a per-area basis (Mcleod et al. 2011; Howard et al. 2017; Hinson et al. 

2017). Global mangrove distributions have been effectively mapped with efforts like the Global 

Mangrove Watch (GMW) (Thomas et al. 2017; Bunting et al. 2018). However, estimates of tidal 

marsh extent remain poor (Pendelton et al. 2012; Mcowen et al. 2017). Further, very few 

research efforts have attempted to assess marsh vegetation characteristics over large scales, in 

spite of the important role that marsh vegetation plays in trapping sediments and contributing 

organic matter to soil carbon stocks. As noted in thesis Chapter 2, tidal marsh vegetation can 

vary greatly in terms of biomass, structural phenology, and seasonal persistence. These 

differences necessarily contribute to differences in carbon dynamics in addition to numerous 

other factors such as storm surge attenuation capabilities, resiliency to sea level rise impacts, 

habitat suitability, and influence on aquatic biogeochemical. (Barbier et al. 2011)  

 In this chapter, we build on the findings from Chapter 2 to characterize tidal marsh extent 

and vegetation characteristics for the Mid-Atlantic Coast and Gulf of Mexico (Gulf Coast) of the  

United States, two regions of high wetland density and importance (Feagan et al. 2020). By 

leveraging the expanding opportunities that exist in open-access satellite image processing, we 

develop a flexible methodology that enables potential mapping of tidal marshes, palustrine 

marshes, and deepwater habitats outside of our study regions. Within identified wetlands and 
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deepwaters, we further refine our wetland identification methodology to separate between 

wetlands with persistent and non-persistent vegetation, as this separation is critical for accurately 

characterizing wetland biodiversity, ecological processes and biogeochemical cycles. In tidal 

marshes, the presence of non-persistent vegetation serves as an indicator of low salinity tidal 

freshwater settings (Odum 1988). Thus, the monitoring of tidal freshwater marsh vegetation can 

provide critical indicators of changing salinity regimes in coastal settings. In assessing overall 

wetland status, it is critical to not only characterize wetland distributions, carbon dynamics, and 

hydrologic settings, but ecological function and habitat suitability as well. Invasive species 

presence remains a primary factor in reducing wetland ecological function in addition to human 

modification (Bertness et al. 2002). For this reason, we develop tools to identify common 

invasive species in United States wetlands and deepwaters including the common reed 

(Phragmites australis) and water chestnut (Trapa natans).  

 

3.1.1 Prior Wetlands Mapping and Vegetation Characterization Efforts 

 In the United States, several wetlands mapping products exist that provide accurate 

delineation of wetlands and deepwaters at the national scale. Although these large-scale products 

characterize wetland functional classes specifically, they also provide a general assessment of 

wetlands vegetation. The United States Fish and Wildlife Service (USFWS) National Wetlands 

Inventory (NWI) is the most commonly used wetland product for the conterminous United 

States. The technical details of NWI development are discussed in the preceding chapter.  The 

NWI is very spatially detailed and provides accurate wetland-upland classifications (Kudray and 

Gale 2000). However, we have noted instances where classifications of wetlands are incorrect 

over our study sites, especially with regards to vegetation characterization. In addition to 
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potential inaccuracies, the NWI classification scheme has potential issues when performing 

wetland characterization with satellite imagery in conjunction with NWI data. The NWI uses the 

Cowardian classification within which wetlands are defined by the presence of hydrophilic 

vegetation, hydric soils, and/or temporary inundation. The NWI defines deepwaters as 

permanently inundated regions situated below the deepwater boundary of wetlands (Cowardin et 

al. 1979). It should be noted that deepwaters and wetlands are only differentiated by the 

permanence of surface waters and that deepwaters can be vegetated. In the context of remote 

sensing-based research, a deepwater habitat with aquatic vegetation emerging from the water’s 

surface may be indistinguishable from a flooded wetland with similar vegetation. Because we 

implement a modified version of the Cowardin classification in this research effort, it is critical 

to note the differences between wetlands and deepwaters . In addition to being a stand-alone data 

product, the NWI is also the source for the United States tidal marsh assessment used in the 

Mcowen global tidal marsh inventory (Mcowen et al. 2017), the Feagan blue carbon Gross 

Primary Productivity (GGP) product (Feagan et al. 2020), and the National Landcover Database 

(NLCD) which is produced by several federal agencies under the auspices of the United States 

Geological Survey (USGS). The NLCD relies on the NWI for wetlands classification training 

data (Homer et al. 2015; Yang et al. 2018). The last version of the NLCD was produced for 2016 

(Yang et al. 2018). Although the NLCD is based on moderate spatial resolution imagery (30-m), 

it is only released as a standalone product every five years (Homer et al. 2015; Yang et al. 2018). 

Because tidal marshes are highly dynamic, a five year temporal fidelity may not be sufficient to 

resolve short-term changes in wetlands extent which can occur on an annual basis, especially as 

related to wetlands losses that occur as a result of extreme storm events (Campbell et al. 2017; 

Howes et al. 2010; Turner et al. 2019). Having monitoring tools that support mapping of 
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wetlands vegetation at a one to two year resolution would enable more effective habitat 

assessments, ecological forecasting, greenhouse gas inventory production, assessment of carbon 

cycling and storage, and wetlands migration/loss assessment due to sea level rise (Becket et al. 

2016; Byrd et al. 2018; Holmquist et al. 2018; Ross and Adam 2013; Tobias and Neubauer 

2009). In this research effort, we present a methodology that enables large-scale wetlands 

mapping and vegetation characterization at an annual resolution by fusing Landsat 8 imagery 

with Sentinel-1 Synthetic Aperture RADAR (SAR) imagery. This approach enables production 

of wetlands products that can be updated more frequently than the NWI and NLCD, and has the 

potential for global applicability, which we evaluate herein. In addition to detailed wetlands 

vegetation assessments that can be used to validate the NWI. 

 

3.1.2 Rationale for Developed Satellite-Based Mapping 

 To assess the spatial distribution of tidal marshes, we focused the development of our 

wetlands mapping methodology on meeting two keys objectives. The first objective is accurate 

mapping of wetlands and deepwaters in the Gulf Coast and Mid-Atlantic regions using an 

approach based on satellite remote sensing that is scalable to global application. The second 

objective is the assessment of vegetation characteristics within these identified wetlands. One of 

the most fundamental and important assessments of emergent herbaceous wetland (i.e. marsh) 

vegetation characteristics is the identification of persistent and non-persistent vegetation types. 

Persistent vegetation has a significant portion of biomass that remains conspicuously present 

outside of the growing season, while non-persistent vegetation is readily decomposed at the end 

of the growing season (Cowardin et al. 1979; Odum 1988). In general, non-persistent vegetation 

is found only in emergent wetlands below a certain salinity threshold meaning this non-persistent 
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vegetation serves as a salinity indicator for open water systems (i.e. streams, rivers, lakes, and 

estuaries) connected to wetlands (Odum 1988). According to the Cowardian classification, these 

open water systems are deepwaters habitats, but they are distinguished from deepwaters with 

above surface or at surface vegetation. From this point forward, we make the distinction between 

open water systems which are non-vegetated and vegetated deepwater systems (at or above 

surface), both of which are distinct from wetlands that are only temporarily flooded or inundated. 

The identification of non-persistent vegetation in tidally influenced wetlands is critical as it 

serves as an indicator of the tidal freshwater zone with low salinity, < 0.5 PPT on average. Tidal 

freshwater wetlands have some of the highest levels of biodiversity found in temperate regions 

and their presence serves as a sea level rise indicator (Leck et al. 2009). In spite of their 

importance very few remote sensing studies have focused on tidal freshwater wetland monitoring 

(Elmore 2008). In addition to vegetation persistence being an indicator of salinity of open water 

systems connected to wetlands, the accurate characterization of non-persistent and persistent 

wetland extents is also important for assessment of ecological setting and wetlands ecosystem 

services. Non-persistent and persistent vegetation have vastly different carbon cycling 

characteristics, geomorphological traits, and storm surge attenuation capabilities (Herbert et al. 

2018; Odum 1988; Howes et al. 2010). A major applied focus of this research effort is the 

identification of invasive vegetation in wetlands and deepwater habitats which we carried out in 

concert with the two major research objectives. 

 To achieve the first research objective, we carried out a general wetlands classification 

which we term the level-1 classification. In the level-1 classification, we use the random forest 

machine learning approach to classify estuarine emergent wetlands (tidal marshes), palustrine 

emergent wetlands (non-tidal freshwater marshes), Phragmites australis dominated emergent 
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wetlands, woody wetlands, non-vegetated wet regions (mudflats and sandbars), and open water 

(Breiman 2001). These classes are all found within the combined wetlands and deepwaters 

categorization described in Cowardin et al. (1979). Although Phragmites australis is a specific 

wetland vegetation class rather than a functional class like other level-1 classes, Phragmites 

australis possesses several traits that significantly differentiate it from other species of emergent 

wetlands vegetation, including a higher biomass, unique phenology, tendency to form 

monospecific stands, and a tendency to occupy distinct locations in a wetlands complex (general 

high elevations and along edges) (Prisloe et al. 2006; Smith 2013; Bertness et al. 2002). We 

surmised that multi-season satellite imagery would capture these unique traits allowing effective 

distinction from common wetland vegetation like Spartina spp. in estuarine wetlands and Typha 

spp. in palustrine wetlands as was demonstrated in Bourgeau-Chavez et al. (2013). Following the 

level-1 classification, we performed a level-2 classification of specific vegetation functional 

classes within the level-1 classified emergent wetlands and deepwaters. To develop our level-2 

classification approach, we first evaluated timeseries satellite imagery across a range of wetland 

study sites with well-established wetland vegetation inventories to determine what forms of 

satellite imagery are most useful for deriving a decision tree-based mapping approach. We 

ultimately derived a decision tree approach making use of the same multi-temporal SAR and 

optical imagery used in the level-1 random forest classification, enabling identical pixel 

colocation between the level-1 and level-2 classifications and maximizing computational 

efficiency in image processing. 
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3.2. Materials and Methods 

3.2.1 Study Sites 

 The target wetlands study sites we established included general study sites and intensive 

study sites. The general study sites cover large regions, while the intensive study sites cover 

smaller regions and have associated ground surveys which we conducted over many seasons in 

most cases. The motivation in selection of study sites was to exercise classification techniques 

over a wide variety of coastal wetlands systems. In the Mid-Atlantic region, general study sites 

include the Hudson River (NY-NJ), Housatonic River/ Long Island Sound (CT-NY), Delaware 

River (NJ-DE), Patuxent River (MD), and Choptank River (MD). The Gulf Coast general study 

sites included the Sabine River (TX), the Wax Lake Delta (LA), and Mississippi River wetlands 

including the Breton Sound and the Bird’s Foot Delta (LA). These systems vary greatly in terms 

of geomorphology, hydrology, and salinity gradients. 

 

 

 

 

 

 

 

 

Figure 3.1. General study sites in the Mid-Atlantic (left) and Gulf Coast (right) 
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 We selected the Jug Bay Wetlands Sanctuary as the intensive study site in the Patuxent 

River, the Wheeler Marsh system as a Long Island Sound intensive study site, and Beacon 

Bridge wetlands (not an official name) and Constitution Marsh sites as Hudson River intensive 

study sites. Jug Bay was selected as a study site as it possesses a mix of persistent and non-

persistent emergent vegetation which is typical of tidal freshwater marshes throughout both the 

Gulf and Atlantic Coasts (Odum 1988; Leck et al. 2009; Swarth et al. 2013). The Wheeler Marsh 

system was chosen as an intensive study site due to the fact it is meso-saline brackish and thus 

possesses only persistent emergent vegetation, but also has a high frequency and magnitude of 

tidal inundation relative to other sites. This presents the potential for confusion between 

vegetation phenological variability and hydrologic variability when characterizing wetlands with 

timeseries SAR imagery, a potential challenge we explicitly sought to address in this effort. The 

Hudson River wetlands sites were selected as intensive study sites because they are tidal 

freshwater and possess a mixture of persistent and non-persistent vegetation types. The final 

datasets used for analyses are a blend of our own ground surveys, wetland surveys from other 

studies, the NWI, and our analysis of recent aerial photography. At Jug Bay we developed a final 

dataset from a survey by Swarth et al. (2013), which represents a more accurate classification 

than the NWI which in certain areas incorrectly classified the non-persistent emergent vegetation 

species Nuphar lutea as either persistent emergent tidal marsh or aquatic bed dominated 

deepwaters (as shown in Figure 3.2). At Constitution Marsh, a New York State Tidal Wetlands 

Inventory (NYS-TWI) covering the Hudson River Estuary (HRE) is used to more accurately 

identify vegetation than the NWI, although we did not note incorrect NWI classifications of 

functional wetlands at this site. In the Beacon Bridge wetlands, we used NWI and also note areas 

of confirmed Trapa natans expansion based on our ground surveys, and suspected Trapa natans 
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based on 2017 aerial photo identification. In general, the NWI accurately classified Trapa natans 

as aquatic beds in Hudson River sites but did not cover certain areas of recent expansion.  For 

Wheeler Marsh, we use NWI boundaries, but have updated the wetland classes based on ground 

survey confirmation shown in parentheses in Figure 3.2. For Wheeler Marsh the “low marsh” 

class represents sparse Spartina alterniflora and mudflat, “mid marsh” represents dense Spartina 

alterniflora, and “high marsh” represents Spartina patens and Distichlis spicata mix. The NWI 

E2SS1P class is incorrect and represents an estuarine system with scrub-shrub vegetation, 

however our site visits indicate this NWI boundary is best represented by an estuarine high 

marsh class as shown in the site photos in Figure 3.3. 

 

 

 

 

 

 

 

 

 

Figure 3.2. Intensive study sites with final wetland vegetation inventory datasets; Jug Bay, 

Constitution Marsh, Beacon Bridge wetlands (not an official name), and Wheeler Marsh. 

Wheeler Marsh ground-confirmed classes are shown in parentheses. Note there are several cases 

where NWI classifications do not match more detailed wetlands inventories or ground surveys. 
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Figure 3.3. Site photo examples of wetland vegetation for the Beacon Bridge wetlands, 

Constitution Marsh, Jug Bay, and Wheeler Marsh. Note in many of the photos connected surface 

waters and aquatic beds are shown adjacent to wetlands. Constitution Marsh presents a clear 

demonstration of the fine elevation gradients that zonate moderate elevation marsh wetland 

vegetation like Typha from low elevation marsh wetland vegetation like Nuphar from floating 

aquatic deepwater vegetation like Trapa natans. Wheeler Marsh shows a common zonation of 

persistent vegetation types in a brackish tidal marsh complex. 

Beacon Bridge Wetlands  

Canada Geese in Trapa natans bed 

Constitution Marsh  

Typha spp. canopy 

Constitution Marsh 

Trapa natans 

Nuphar spp. 

Typha spp. 
Jug Bay Nuphar lutea 

Wheeler Marsh (E2EM1N) Sparse 

Spartina alterniflora and mudflat 

Wheeler Marsh (E2EM1P) Dense Spartina 

alterniflora 

Wheeler Marsh (E2SS1P – incorrect ID) 
Site visit confirmed estuarine high marsh: 
Spartina patens, Distichlis spicata, and 
short-form Spartina alterniflora 
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3.2.2 Satellite Image Assembly and Selection Rationale 

 Sentinel-1 C-band SAR, Landsat 8 optical/IR, and Sentinel-2 optical/IR imagery were 

initially evaluated for application to wetlands vegetation characterization. After initial testing, we 

focused this timeseries analysis on Sentinel-1 SAR imagery due to its more frequent revisit 

(when considering cloud impacts on optical imagery), lack of atmospheric impacts, and 

enhanced capabilities in characterizing vegetation structural phenology. Initial qualitative 

comparative assessments of Sentinel-1 SAR imagery between Jug Bay and the Hudson River 

sites indicated similar temporal signatures. Upon more detailed investigation it was determined 

that Jug Bay’s non-persistent satellite signatures were attributed to the presence of rooted 

emergent vegetation (defined as wetlands), while the Hudson River signatures were primarily 

attributed to the presence of a non-persistent floating aquatic species of invasive water chestnut 

(Trapa natans) (defined as deepwaters). While carrying out this research effort, it became 

apparent that it was critical to distinguish between floating aquatic non-persistent vegetation and 

rooted non-persistent emergent vegetation. This was crucial in a general technical sense 

regarding development of accurate mapping tools differentiating wetlands from deepwaters, as 

well as in a more specific sense of monitoring invasive vegetation in the Hudson River.   

 We evaluated Sentinel-1 SAR backscatter for different wetlands vegetation classes 

between 2017 and 2019, extracting spatial mean backscatter for each class and tracking changes 

from 2017 to 2019 at a 12-day resolution (Sentinel-1a revisit time). We used Google Earth 

Engine (GEE) for initial image processing in this timeseries assessment (Gorelick et al. 2017). 

Water level observations in the Wheeler Marsh and Jug Bay wetlands sites were also assessed. 

After performing this timeseries assessment, we processed imagery using GEE for the purpose of 

mapping emergent wetlands for the Gulf and Mid-Atlantic Coasts and with the objective of 
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developing a globally scalable classification methodology. Although we focused our timeseries 

assessment on Sentinel-1 SAR imagery, we also noted the importance of optical imagery in 

assessment of vegetation greenness. To assess vegetation greenness, we used the Normalized 

Difference Vegetation Index (NDVI), which has remained one of the most well-known and 

effective indices for assessing the presence of vegetation, vegetation greenness, and can assess 

vegetation biomass in certain instances (Tucker 1979; Prabhakara et al. 2015). NDVI and NDVI 

variants, have been demonstrated as especially useful in assessing marsh vegetation greenness 

and canopy closure (Bartlett and Klemas 1981; Langley and Megonigal 2012; Lopes et al. 2020). 

The NDVI summer temporal median (June through August) was computed from Landsat 8 

surface reflectance, cloud masked imagery (Vermote et al. 2016; Zhu et al. 2015) in GEE. The 

importance of optical-SAR fusion in wetlands characterization was highlighted in Chapter 2, 

where SAR imagery was found to be more useful than optical in classifying different vegetation 

types within wetlands, while optical imagery and digital elevation models (DEMs) were more 

important than SAR for separating wetlands from other landcover types. Based on our findings 

from the satellite image timeseries assessment (results section 3.1) and previous efforts, we 

performed classifications using an 8-band SAR-optical-DEM stack consisting of Sentinel-1 VV 

annual mean, VH annual mean, VV annual standard deviation (SD), VV Spring mean, VV 

Summer mean, VV Fall mean, Landsat 8 Summer NDVI, and the Shuttle Radar Topography 

Mission (SRTM) DEM. These particular layers represent a selection of layers most useful for 

carrying out both the level-1 and level-2 classifications as described in the following sections. 

Further, the temporal mean compositing of Sentinel-1 imagery serves to reduce speckle 

compared to single date SAR imagery (Yu and Quegan 2001). 
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Figure 3.4. Sentinel-1 multi-season VV imagery over Mid-Atlantic study sites. RGB channels 

correspond to spring, summer, and fall backscatter layers, respectively. Tidal marshes dominated 

by persistent emergent vegetation in Wheeler Marsh (b) and Delaware Bay (c) show enhanced 

backscatter in spring and fall (as shown by red, blue, purple colors). Hudson River (a), Patuxent 

River (d), and Choptank River (e) show enhanced backscatter during summer for non-persistent 

vegetation in bright green, with a mix of persistent scattering (purple color) throughout the study 

sites. Note the mountainous areas of the Hudson River Highlands do not exhibit temporal 

differences in backscatter while the agricultural regions of the Choptank watershed show 

enhanced backscatter during the summer growing season. Urban areas in all sites exhibit high 

and temporally invariant backscatter shown as white pixels. 
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3.2.3 Level-1 Classification of Functional Wetlands Classes  

 The objective of the level-1 classification was to accurately map tidal wetlands of the 

Gulf Coast and Mid-Atlantic United Sates using supervised classification approaches. We 

utilized the random forest classifier for this purpose (Breiman 2001). Following Lamb et al. 

(2019), we created a merged training-validation dataset by combining the NWI with the 2016 

NLCD and selecting wetland training points only where the classes matched (e.g. herbaceous 

NLCD wetlands code 95 must match one of NWI estuarine emergent classes like E2EM21P, 

E2EM1N to produce a valid training point). Classes of non-wetland landcover were selected 

directly from the 2016 NLCD. The generated training-validation dataset consisted of ten million 

points. We reduced this dataset to approximately 400,000 training-validation points by 

performing two random samples with approximately half of the points coming from a stratified 

random sample with an equal number of points per cover class, and the other half coming from a 

random sample. This culminated in a final training-validation dataset that weighted class 

prevalence while preserving a baseline representation of uncommon classes. The aforementioned 

NLCD training-validation layer was generated in GEE by exporting NLCD layers from 2016 

along with the respective SAR-optical-DEM image stacks for the Gulf Coast and Mid-Atlantic 

regions. This approach ensured that training-validation layers and the satellite image stacks were 

georegistered. After the training-validation dataset was generated and the SAR-optical-DEM 

image stack was exported from GEE and downloaded to a local computer, we used the R 

programming language to ingest the SAR-optical-DEM stacks along with the training-validation 

sets. Within the R environment, we used the Random Forest package to perform supervised 

classifications of the SAR-optical-DEM stack with the training-validation dataset. We 

parameterized the random forest (RF) classifier with 500 trees. In the level-1 classification we 
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identified open water, estuarine emergent wetlands, palustrine emergent wetlands, Phragmites 

australis dominated emergent wetlands, and woody wetlands. We assessed classification 

accuracy using both confusion matrices and post-classification layer importance assessments.  

 

 

 
 
 
Figure 3.5. Schematic of image processing, classification, and post classification adjustments. * 

Level-2 decision tree classification final derivation is depicted in the following section (Figure 

3.6).  

 
 

 

3.2.4 Level-2 Classification of Wetland Vegetation 

 

 The objective of the level-2 classification was to develop a rule-based approach 

employing decision tree and thresholding to accurately identify persistent and non-persistent 

vegetation within the emergent wetlands and deepwaters identified in the level-1 classification 

and to the further objective of separating non-persistent emergent vegetation from non-persistent 

floating aquatic vegetation. Lamb et al. (2019) demonstrated that Sentinel-1a VV backscatter 

annual standard deviation (SD) was one of the more critically important image layers in allowing 

the separation of non-persistent Nuphar lutea from all other wetland vegetation (both woody and 
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persistent emergent) at the Jug Bay study site when using a supervised random forest 

classification (overall classification accuracy > 95%). However, this prior mapping effort did not 

attempt to develop rule-based approaches with the potential for being applied across multiple 

wetlands systems and across multiple regions, nor did it provide a comparison between emergent 

wetland non-persistent vegetation and floating aquatic deepwater non-persistent vegetation. In 

this study we included Nuphar lutea and Trapa natans dominated sites to determine if they could 

be first identified as a single non-persistent class, and then split based on differences in biomass, 

which we surmised the C-band SAR backscatter would be sensitive to. In selecting these types of 

vegetation, our goal was to apply timeseries C-band SAR and the associated Sentinel-1 VV 

backscatter annual SD  to classify non-persistent vegetation within a relatively wide biomass 

range. Another objective of this study was to determine which seasonally averaged Sentinel-1 

VV layers would be useful for separating non-persistent emergent vegetation from Trapa natans. 

Guided by the findings in results section 3.1.2, we developed a decision tree classification by 

applying a threshold of 4.7 dB to Sentinel-1 annual SD imagery to split persistent and non-

persistent vegetation classes and then splitting persistent emergent vegetation from Trapa natans 

by applying a -17.25 dB threshold to Sentinel-1 Spring VV imagery (see results section 3.1.2 for 

justification). 
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Figure 3.6. Final level-2 classification for the Mid-Atlantic for 2017. The Gulf Coast level-2 

classification utilizes the same methodology but does not separate between aquatics (e.g. Trapa 

natans) and non-persistent emergents because we do not have sufficiently detailed wetland 

surveys to effectively evaluate this split. 

 

 

3.2.5 Post-Classification Accuracy Assessment & Processing 

 

 To correct classification errors, a post-classification adjustment was produced using the 

Sentinel-1 VH annual mean layer to convert any wetland class to open water if backscatter was 

lower than -28 dB. A second post classification adjustment that utilizes growing season 

vegetation index thresholding (NDVI) was produced to mask classified wetlands to open water if 

NDVI values were below 0.08. Because mixed pixels along both wetland-water edges and barren 

class (rock, sand, mud areas)-water edges were post-classified as open water, this necessarily 

creates a slight positive biasing of the open water class prevalence and a slight negative biasing 

of the barren class. However, these adjustments were critical to obtain well-constrained estimates 

of emergent wetland extent, which is the primary focus of this research effort. We adjusted both 

the level-1 and level-2 classification layers with a 5x5 majority filter which reduced erroneous 

classifications of single pixels and small pixel clusters, a common issue with per-pixel classifiers 

like random forest. The combined, post-classified level-1 and level-2 wetlands mapping results 

are presented in Figures 3.13 and 3.14 for the Mid-Atlantic and Gulf Coast regions, respectively.  
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3.2.6 Study Site-Based Classification Performance Assessment   

 We evaluated the level-1 and level-2 classification results using independent datasets at 

three study sites. This in-depth performance assessment served two purposes. The first purpose is 

to showcase how the developed methodologies can be directly applied to wetlands ecological 

assessments and the identification of invasive vegetation. The second purpose of this assessment 

is to provide an in-depth performance assessment with high quality independent datasets. In the 

first performance assessment, we evaluated the performance of level-2 classification in detecting 

Trapa natans in the Hudson River. We used the Hudson River Submerged Aquatic Vegetation 

(HRSAV) dataset produced by the Hudson River National Estuarine Research Reserve, New 

York State Department of Environmental Conservation, and the Cornell Institute for Resource 

Information Services, as an external validation source for this performance assessment. The 

HRSAV does not map emergent wetlands as the 2007 New York State Tidal Wetlands Inventory 

does, but does track Trapa natans, with the most recent HRSAV release in 2018. In this Hudson 

River case study, we also assess which level-1 classes were most associated with identified 

Trapa natans aquatic beds, which have potential to be classified as open water, mudflats, and 

even emergent wetlands. In the second performance assessment we evaluated level-1 and level-2 

classification performance in mapping emergent wetlands in the Choptank River. To assess 

performance of the level-1 and level-2 classifications we develop an independent evaluation 

dataset with 2017 Summer National Aerial Imagery Program (NAIP) imagery. We digitize the 

boundaries of persistent and non-persistent vegetation identified in the NAIP imagery and then 

assessed the performance comparison between the NAIP wetland dataset and level-1 and level-2 

classifications. In the third performance assessment, we evaluated level-1 and level-2 

classification performance in the Wax Lake Delta. In this case we use the NWI as a performance 
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evaluation dataset. Although we used NWI data for training the level-1 classification, the dataset 

we used in the Wax Lake Delta is still considered independent because it is from the riverine 

wetland class, which we had excluded in the level-1 classification to enable mapping of wetland 

systems based on vegetation community composition and salinity rather than location in a 

riverine setting. The NWI data for the Wax Lake Delta was updated in 2017 and includes four 

riverine NWI classes. These classes are: R1ABT (riverine, tidal, aquatic bed, semi-permanently 

flooded), R1AB3V (riverine, tidal, aquatic bed, rooted vascular, permanently flooded), R1AB3T 

(riverine, tidal, aquatic bed, rooted vascular, semi-permanently flooded), and R1AB4V (riverine, 

tidal, aquatic bed, floating vascular, permanently flooded). Carle et al. (2015) noted that 

vegetation in the Wax Lake Delta generally exhibited species zonation as a function of elevation. 

Mixed grasses and forbs dominate intermediate elevations while lower elevation mudflats are 

generally dominated by non-persistent emergent species like Nelumbo lutea and Sagitarria spp.. 

The lowest elevation vegetated regions are dominated by non-persistent floating-leaved 

Potamogeton nodosus. We evaluated the use of the level-2 classification in identifying these non-

persistent species using the range of the four tidally influenced NWI classes described above. 

Because Carle et al. (2015) did not note the presence of Trapa natans in this system, we 

evaluated only the presence of the general non-persistent class which includes both emergent 

wetland vegetation and aquatic deepwater vegetation. All three independent performance 

validation datasets (HRSAV, NAIP, and NWI) were shapefile-based datasets which were buffered 

inward by 30-m to reduce the influence of edges and mixed pixels in assessing the performance 

of the 30-m level-1 and level-2 classifications. Ideally, this inward buffer distance would be 60-

m to 90-m to provide certainty of edge removal and account for satellite geolocation errors. 

However, we found a 60-m buffer to be too spatially restrictive for smaller shapefile polygons in 
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all these datasets. Ultimately, a 30-m buffer was chosen as a compromise for the HRSAV and 

NWI datasets for the Hudson River and Wax Lake Delta. The even smaller area of the NAIP-

based evaluation dataset for the Choptank River prohibited the use of a buffer. 

 

3.3. Results 

3.3.1. Study Site Assessments  

 We compared the spatial mean Sentinel-1 backscatter for wetlands vegetation classes 

within each of the Mid-Atlantic intensive study sites shown in Figure 3.2 maps. The VV and VH 

backscatter timeseries analyses for each study site are shown in Figures 3.7-3.10. The timeseries 

comparison showed that persistent vegetation classes exhibited reduced backscatter variability 

associated with vegetation phenology as compared to non-persistent vegetation classes which 

exhibited well-defined backscatter seasonality over three years of analysis for both VV and VH 

polarizations. The backscatter response of persistent vegetation was largely dependent on SAR 

polarization, vegetation density, marsh soil surface elevation, and the combination of water level 

change and seasonal vegetation structural change. For instance, the E2EM1P class representing 

dense Spartina alterniflora at Wheeler Marsh in Figure 3.7 showed consistent VV backscatter 

increases around September of each year where satellite overpasses also happened to correspond 

with high tides. Similarly, the Jug Bay Typha spp. series in Figure 3.8, showed similar VV 

backscatter increases in the fall season during high tide events. Field visits to both sites 

confirmed that both Spartina alterniflora and Typha spp. exhibit changes in structure during the 

fall season when leaf and stem orientations transition from a primarily vertical orientation to a 

more random orientation. Combined with high water events that increase the inundated wetlands 

area, this may result in increased backscatter via the double bounce scattering mechanism where 
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increasingly horizontal leaves and stems more efficiently backscatter the opposite polarized VV 

SAR signal. The backscatter decrease in the VH channel is also indicative of increases in 

inundated wetland area which reduces volume scattering. The influence of seasonal processes on 

backscatter is also apparent in the Jug Bay Typha spp. series during summer, where backscatter 

decreases consistently during the summer season over the three years. This response was 

especially notable for the VV polarization. In contrast to the dense canopies and moderate 

wetland elevations represented by the Typha spp. series in Figure 3.8 and E2EM1P class 

representing dense Spartina alterniflora in Figure 3.7, the Wheeler Marsh E2EM1N class in 

Figure 3.7 represents a lower elevation and a less dense canopy. Outside of the fall season when 

the E2EM1N class exhibits slight backscatter increases (or relative stability), throughout the 

majority of the timeseries, backscatter values decrease as a function of tidal stage. The VH 

polarization showed fairly consistent decreases as a function of tidal stage. Occupying a similar 

low elevation, the non-persistent Nuphar lutea series from Jug Bay in Figure 3.8 shows VV and 

VH backscatter decreases that correspond to tidal stage, especially in the fall when this 

vegetation is decomposing. From late fall through spring Nuphar lutea matches the open water 

series VV and VH backscatter very closely. The similar VV and VH backscatter between open 

water and non-persistent Trapa natans from Constitution Marsh can be observed in Figure 3.9. 

Although, the backscatter timeseries between Trapa natans and Nuphar lutea, suggest Trapa 

natans has a substantially shorter growing season as shown in Figures 3.9 and 3.10. Another key 

distinction between these non-persistent vegetation classes is that Nuphar lutea exhibits fairly 

large backscatter temporal variability in the fall season that, along with vegetation senescence, 

may be caused by high water levels partially or completely submerging these rooted plants. The 

fact that Trapa natans is floating rather than rooted may explain why backscatter decreases 
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gradually outside of the growing season, since water level changes do not impact the amount of 

Trapa natans exposed above the water’s surface.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.7. Wheeler Wetland Vegetation Class Sentinel-1 VV and VH Backscatter Timeseries 

(upper and lower panels, respectively). Water depth (in meters) is the NOAA tide gauge at 

Bridgeport (ID: 8467150) calibrated to in-marsh water level changes observed with Onset 

HOBO sensors from August 2018 to December 2018. Calibrations include time and water depth 

adjustments. E2EM1N (red dotted series) represents low elevation portion of wetland complex 

with sparse Spartina alterniflora and mudflat backscatter series. E2EM1P (gold dashed series) 

represents middle elevation marsh with dense Spartina alterniflora. E2SS1P (black series) is 

high marsh dominated by Spartina patens, Distichlis spicata, and short-form Spartina 

alterniflora. For both E2EM1P and E2SS1P some Phragmites australis is present along wetland-

open water and wetland-upland edges. 
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Figure 3.8. Jug Bay Wetland Vegetation Class Sentinel-1 VV and VH Backscatter Timeseries 

(upper and lower panels, respectively). Water depth (in meters) is the NOAA tide gauge at 

Solomon’s Island (ID: 8577330) calibrated to in-marsh water level changes observed with Onset 

HOBO sensors from October 2019 to December 2019. Calibrations include time and water depth 

adjustments. All series represent spatial mean backscatter from Jug Bay wetland classes 

originally published in Swarth et al. (2012) and updated in Lamb et al. (2019). The wetland 

classes are as follow: solid black series = shrub-scrub, dashed gold series = Typha spp., red 

dashed series = Zizania aquatica, solid green series = Nuphar lutea, solid blue = open water. 
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Figure 3.9. Constitution Marsh Vegetation Types Sentinel-1 VV and VH Backscatter Timeseries 

(upper and lower panels, respectively). Note that open water class (solid blue) and Trapa natans 

(solid green) exhibit similar backscatter changes outside of the growing season. Typha spp. series 

(dashed gold) tends to decrease in backscatter during the growing season, while Trapa natans 

backscatter peaks above both scrub series (solid black) and Typha spp. during the growing 

season.  
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Figure 3.10. Beacon Bridge Wetland Vegetation Types Sentinel-1 VV and VH Backscatter 

Timeseries (upper and lower panels, respectively). The confirmed Trapa natans series (solid 

green) was verified with a site visit on June 2019. The suspected Trapa natans series (dashed 

black) was derived from digitized aerial photography noting similarity between the ground-

identified Trapa natans (confirmed). The regions that these series cover are shown in Figure 3.2. 
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3.3.2 Assessment of Sentinel-1 Imagery for Level-2 Vegetation Classification 

 The high levels of backscatter variability tracking the growth phenology of the non-

persistent vegetation classes (shown in Figures 3.7-3.10) facilitated the temporal reduction of the 

SAR dataset by computing the annual mean and standard deviation (SD) layers for Sentinel-1 

VV and VH polarization timeseries imagery. For all non-persistent vegetation, the VV polarized 

backscatter exhibited higher peaks in the summer, and generally higher SD overall compared to 

VH polarized backscatter (Figures 3.7-3.10). For this reason, we utilized VV annual SD imagery 

for vegetation characterization rather than VH annual SD imagery. After observing high levels of 

spatial variability in 2017 VV annual SD imagery (hereafter referred to as VV-SD) comparing 

persistent and non-persistent vegetation types, we evaluated separability between the vegetation 

classes within each target wetland site by extracting all VV-SD pixels within the bounds of 

shapefiles corresponding to each wetland vegetation type. We then examined distributions to 

determine if a rule-based decision tree approach could be applied to split persistent and non-

persistent emergent classes. We found that thresholding can effectively separate persistent and 

non-persistent vegetation using the VV-SD (annual standard deviation backscatter) layer at a 

threshold of 4.7 dB (green horizontal line in Figure 3.11). To further separate non-persistent 

aquatic vegetation from non-persistent emergent vegetation, we applied a separate threshold with 

VV mean imagery for the spring season (04/15/2017 to 06/15/2017) (hereafter referred to as VV-

Spring), which allowed separation between Trapa natans and non-persistent emergents (Figure 

3.11). These results informed our final derivation of the level-2 classification shown in methods 

section 2.4 and Figure 3.6). 
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Figure 3.11. 2017 Sentinel-1 Annual Standard Deviation Layer by Wetland Vegetation Class at 

Wheeler Marshes (w), Jug Bay (jb), and Hudson River (h) sites. In boxes, first term represents 

wetland vegetation type and second term is location (e.g. “typha-h” is Typha spp. from 

Constitution Marsh at the Hudson River). All boxes represent VV-SD extraction for the wetland 

bounds shown in Figure 3.2 that were also used for time series spatial mean backscatter 

computation in Figures 3.7-3.10. Note that colors also correspond to vegetation type in Figures 

3.7-3.10, except for Wheeler Marsh where grayscale box colors represent elevation gradient. 

Note threshold of 4.7 dB threshold separates persistent and non-persistent vegetation (horizontal 

dashed green line). 
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Figure 3.12. 2017 Sentinel-1 Spring Mean Backscatter by Wetland Vegetation Class at Wheeler 

Marshes (w), Jug Bay (jb), and Hudson River (h) sites. Naming convention, color schemes, and 

areas of extraction are the same as Figure 3.11. Note with the VV Spring layer, a threshold of 

17.25 dB separates Trapa natans from other non-persistent vegetation (horizontal dashed green 

line).  

 

3.3.3 Level-1 Classification Results and Accuracy Assessment 

 We performed the level-1 classifications separately for the Mid-Atlantic and Gulf Coast 

regions. After carrying out the classifications we quantitatively assessed performance accuracy 

via confusion matrices (Tables 3.1-3.2) and also post-classification variable importance 

assessment (Tables 3.3-3.4) as outputs from the random forest classification process. In addition 

to providing a regional scale classification as shown in Figure 3.12, we also demonstrate wetland 

classification performance over general study sites in the Hudson River, Housatonic River, 

Delaware River, Patuxent River, and Choptank River (Figure 3.13, sub-panels a-e). In part, these 

riverine regions were selected for performance assessment as they contain some well-defined 
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salinity gradients to assess the split between palustrine emergent wetlands (non-tidal freshwater 

marshes) and estuarine emergent wetlands (tidal marshes). The Delaware River, Patuxent River, 

and Choptank River all exhibited very well-defined gradients that roughly occur along the 

freshwater tidal transition. Phragmites australis was mapped in all sites in Figure 3.13. 

Phragmites australis tended to occur along wetland-upland edges and along freshwater-brackish 

transitions. The level-1 extent of Phragmites australis agrees with previous publications in the 

Chesapeake Bay finding that Phragmites australis was most present on the Chesapeake Bay’s 

Eastern Shore and most strongly associated with the presence of agriculture and moderate levels 

of disturbance (Sciance et al. 2016). The three emergent classes (estuarine emergent, palustrine 

emergent, and Phragmites australis) were all mapping with user’s and producer’s classification 

accuracies greater than 81% as shown in table 3.1. When these three emergent classes were 

aggregated into a single emergent wetland class, accuracy user’s accuracy increased to 89.69% 

and producer’s accuracy increased to 93.19%. 

 The level-1 classification performance in the Gulf Coast region was evaluated largely in 

the same manner as was the Mid-Atlantic described. Four general study sites with strong salinity 

gradients were chosen as assessment sites. These sites included the Sabine River wetlands, Wax 

Lake Delta wetlands, Brenton Sound wetlands, and Bird’s Foot Delta wetlands (Figure 3.14, 

panels a-d). The mapped wetland distributions in these sites indicate the presence of salinity 

gradients which are strongly influenced by the presence of major river systems. For instance, the 

Brenton Sound and Bird’s Foot Delta classified wetlands indicate the presence of palustrine 

wetlands closest to the Mississippi River and major freshwater diversions, whereas estuarine 

emergent marshes dominate away from major freshwater discharges. Phragmites australis was 

most present in the Bird’s Foot Delta which largely agrees with descriptions of wetland 
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vegetation in this area by the Audubon Society (Audubon). Overall classification accuracy of the 

three emergent classes is much lower than Mid-Atlantic sites at around 70% (Table 3.2). The 

aggregation of these three emergent classes into a single emergent class yields accuracies higher 

than the Mid-Atlantic with a user’s accuracy of 91.81% and producer’s accuracy of 95.02%. 

 
Figure 3.13. Mid-Atlantic Level-1 Random Forest Classification. Insets depict finer scale maps 

of the Hudson River wetlands (a), Housatonic River wetlands (b), Delaware River wetlands (c), 

Patuxent River wetlands (d), and Choptank River wetlands (e). The three separate emergent 

wetland classes are mapped with greater than 81% accuracy in all cases (see Table 3.1 confusion 

matrix). A clumped emergent wetland class was mapped with a user’s accuracy of 89.69% and 

producer’s accuracy of 93.19%.    



127 
 

 

 
 

Figure 3.14. Gulf Coast Level-1 Random Forest Classification. Insets depict finer scale maps of 

the Sabine River wetlands (a), Wax Lake Delta wetlands (b), Brenton Sound wetlands (c), and 

Bird’s Foot Delta wetlands (d). Classification accuracy of the three emergent classes is much 

lower than Mid-Atlantic sites at around 70% (see Table 3.2 confusion matrix). However, the 

aggregation of these three emergent classes into a single emergent class yields accuracies higher 

than the Mid-Atlantic with a user’s accuracy of 91.81% and producer’s accuracy of 95.02%. 

 

 

 



128 
 

Classification

water urban barren grass agriculture shrub
upland 

forest

woody 

wetlands

estuarine 

emergent

palustrine 

emergent

Phragmites 

australis
Total

Producer's Accuracy 

%

water 39538 96 275 28 102 1 14 4 370 14 17 40459 97.72

urban 53 21874 1722 3207 5789 517 2007 162 457 305 78 36171 60.47

barren 561 3981 8849 839 3208 221 1587 155 1036 129 172 20738 42.67

grass 18 5258 559 6667 10207 1174 11662 860 280 432 108 37225 17.91

agriculture 23 3665 893 3092 47904 827 6661 563 515 899 183 65225 73.44

Reference shrub 12 1991 206 2230 3359 3121 9460 1213 106 381 101 22180 14.07

forest 13 1830 389 3148 5094 1327 94643 5119 28 164 64 111819 84.64

woody wet. 3 286 11 526 349 408 9855 12221 33 101 101 23894 51.15

estuarine 249 213 333 76 252 9 15 42 19043 312 1349 21893 86.98

palustrine 49 167 72 175 1217 111 431 119 687 16249 549 19826 81.96

Phragmites 18 49 18 28 154 14 30 25 840 95 13729 15000 91.53

Total 40537 39410 13327 20016 77635 7730 136365 20483 23395 19081 16451 -- --

User's Accuracy % 97.54 55.50 66.40 33.31 61.70 40.38 69.40 59.66 81.40 85.16 83.45 -- Overall Accuracy %

68.49

Layer/Class water urban barren grass agriculture shrub
upland 

forest

woody 

wetlands

estuarine 

emergent

palustrine 

emergent

Phragmites 

australis

Mean Decrease 

Accuracy

Mean Decrease 

Gini

dem 0.289 0.091 0.088 0.043 0.077 0.059 0.192 0.184 0.529 0.563 0.622 0.200 59933.873

vv_mean 0.295 0.115 0.067 0.019 0.088 0.010 0.148 0.125 0.146 0.318 0.307 0.140 41249.718

vh_mean 0.275 -0.014 0.119 0.011 0.194 0.057 0.271 0.237 0.142 0.488 0.388 0.198 54252.579

vv_sd 0.026 0.009 0.033 0.010 0.069 0.030 0.052 0.052 0.050 0.238 0.303 0.060 30873.451

vv_spring 0.052 0.052 0.049 0.011 0.057 0.022 0.109 0.078 0.125 0.244 0.266 0.085 33232.514

vv_summer 0.148 0.073 0.049 0.014 0.053 0.018 0.089 0.028 0.269 0.260 0.328 0.098 34889.631

vv_fall 0.513 0.062 0.027 0.012 0.036 0.020 0.081 0.041 0.070 0.186 0.247 0.110 35029.453

ndvi 0.371 0.193 0.171 0.055 0.058 0.061 0.275 0.222 0.311 0.489 0.480 0.223 67814.979

Layer/Class water urban barren grass agriculture shrub
upland 

forest

woody 

wetlands

estuarine 

emergent

palustrine 

emergent

Phragmites 

australis

Mean Decrease 

Accuracy

Mean Decrease 

Gini

dem 0.108 0.089 0.060 0.079 0.106 0.066 0.185 0.169 0.413 0.400 0.283 0.173 67977.601

vv_mean 0.260 0.101 0.065 0.014 0.087 -0.022 0.116 0.243 0.185 0.112 0.129 0.119 45262.077

vh_mean 0.282 -0.002 0.094 0.036 0.166 0.021 0.164 0.211 0.126 0.045 0.189 0.132 52141.798

vv_sd 0.040 0.017 0.036 0.018 0.081 0.018 0.053 0.039 0.053 0.046 0.089 0.047 35667.538

vv_spring 0.140 0.070 0.027 0.015 0.038 0.004 0.066 0.057 0.108 0.097 0.106 0.064 36429.023

vv_summer 0.126 0.065 0.050 0.013 0.051 0.002 0.059 0.058 0.078 0.076 0.143 0.060 37290.038

vv_fall 0.077 0.049 0.039 0.011 0.031 0.002 0.050 0.025 0.076 0.030 0.128 0.042 32750.327

ndvi 0.486 0.147 0.142 0.057 0.083 0.042 0.209 0.265 0.138 0.184 0.196 0.177 71390.643

Classification

water urban barren grass agriculture shrub
upland 

forest

woody 

wetlands

estuarine 

emergent

palustrine 

emergent

Phragmites 

australis
Total

Producer's Accuracy 

%

water 35015 86 330 13 171 0 16 13 845 65 2 36556 95.78

urban 35 13084 1354 2323 6877 103 1861 631 870 497 32 27667 47.29

barren 681 2699 4899 1140 4996 45 876 353 874 175 23 16761 29.23

grass 39 2723 606 8211 14099 598 9468 1185 437 162 16 37544 21.87

agriculture 51 2630 561 4724 50487 475 7093 1695 1177 996 102 69991 72.13

Reference shrub 7 689 116 2290 6227 1875 18641 1134 64 22 2 31067 6.04

forest 10 861 128 3189 5163 829 77938 6290 13 36 0 94457 82.51

woody wet. 15 590 24 289 1207 70 12264 23620 56 221 4 38360 61.57

estuarine 1061 207 223 7 413 0 1 57 32073 5374 584 40000 80.18

palustrine 373 197 59 24 666 3 99 328 6573 21294 384 30000 70.98

Phragmites 5 48 8 3 132 0 10 4 3438 1478 3847 8973 42.87

Total 37292 23814 8308 22213 90438 3998 128267 35310 46420 30320 4996 -- --

User's Accuracy % 93.89 54.94 58.97 36.96 55.82 46.90 60.76 66.89 69.09 70.23 77.00 -- Overall Accuracy %

63.13

 

Table 3.1. Confusion Matrix Mid-Atlantic. 

 

 

 

 

 

 

 

 

 

 

 

Table 3.2. Confusion Matrix Gulf Coast. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 3.3. Random Forest Importance Assessment (Mid-Atlantic). 

 

 

 

 

 

 

 

 

Table 3.4. Random Forest Importance Assessment (Gulf Coast). 
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 While the separation of estuarine emergent (tidal marshes), palustrine emergent (non-tidal 

freshwater marshes), and Phragmites australis dominated marshes were successful in the Mid-

Atlantic region, the classifications results still highlight some limitations of approach. Notably 

that freshwater tidal wetlands are difficult to effectively map with a split between palustrine and 

estuarine emergent classes. This was indicated by the fact the tidal freshwater portions of the 

Choptank and Patuxent rivers were often classified as palustrine. Although a limitation of a 

discrete classification without an explicitly defined tidal freshwater wetland class, these results 

are not unexpected as non-tidal and tidal freshwater marshes often have similar vegetation types. 

The level-2 classification results in the next section present potential solutions to determining the 

location of tidal freshwater wetlands. 

 

3.3.4 Level-2 Classification Results 

 After performing the level-1 classification we carried out the level-2 classification. The 

results of the level-2 classification in Mid-Atlantic are shown in Figure 3.15. Note that the 

classification of non-persistent emergent vegetation and Trapa natans is present in these 

products. In the Figure 3.15 level-2 classification, the Hudson River (panel-a) is the only system 

with significant Trapa natans identification. The Housatonic River/Wheeler Marsh classification 

(panel-b) shows no non-persistent vegetation indicating an accurate classification for a brackish 

marsh system. The freshwater tidal systems of the Delaware River, Patuxent River, and 

Choptank Rivers (panels c-e) all show the presence of non-persistent emergent vegetation in 

tributaries to the main river, all of which are less saline than the main river systems.  
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Figure 3.15. Maps of combined level-1 and level-2 classification with assessment at study sites 

over Mid-Atlantic. Level-1 random forest classification wetland colors have been muted to 

highlight non-persistent emergent wetlands in bright green and Trapa natans in magenta. Panels 

a-e correspond to the Hudson River, Housatonic River/Wheeler Marsh, Delaware River Patuxent 

River, and Choptank River, respectively.  

 

 

 The level-2 classification results for the Gulf Coast largely followed general expected 

patterns for the distribution of non-persistent emergent vegetation. Note that in this case there is 

one non-persistent class rather than a split between non-persistent emergent and non-persistent 

aquatic as there was for the Mid-Atlantic. Most mapped non-persistent emergent vegetation was 

associated with low salinity regions. In the Brenton Sound, the occurrence of non-persistent 

vegetation is minimal but tends to be associated with palustrine wetlands. The presence of non-

persistent vegetation in the Wax Lake and Bird’s Foot Delta wetlands is more expansive, but also 
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tends to be associated with the presence of palustrine wetlands. In reality, these palustrine 

wetlands are likely tidal freshwater marshes. In the Bird’s Foot Delta and Wax Lake Delta, 

classified non-persistent vegetation is indicative of the presence of Sagittaria spp. (Carle et al. 

2015). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.16. Maps of combined level-1 and level-2 classification with assessment at study sites 

over Gulf Coast. Panels a-d correspond to the Sabine River, Wax Lake Delta (and surrounding 

wetlands), the Brenton Sound, and the Bird’s Foot Delta, respectively. Note that level-1 emergent 

wetland colors have been muted to highlight locations of non-persistent vegetation in the level-2 

classification. 
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3.3.5 Level-2 Accuracy Assessment at Study Sites 

 

 

 We chose three sites for in-depth assessments of level-1 and level-2 combined 

classification accuracy. Each of these sites had a separate independent validation dataset. In the 

first validation study, we assessed the accuracy of Trapa natans in the Hudson River using the 

2018 HRSAV dataset. Classification accuracy of level-2 Trapa natans as verified by the HSRAV 

dataset was 96.47% (n = 6882 pixels). Level-2 classified Trapa natans occurrence within level-1 

random forest classification prior to masking level-2 classification to level-1 wet classes was 

76.14% in barren class (includes mudflats), 15.66% in open water, 3.98% in estuarine emergent 

wetlands, 3.91% in palustrine emergent wetlands. All other level-1 classes exhibited a total 

occurrence with Trapa natans occurrence of less than 0.5%. The fact that all the level-1 classes 

included in the HRSAV dataset bounds were wet classes points to the effectiveness of the level-1 

classification in the Hudson River. 

 In the second validation study we assessed combined level-1 and level-2 classification 

performance in the Choptank River with an independently derived validation dataset making use 

of digitized NAIP imagery. In the NAIP validation dataset, only non-persistent emergent and 

persistent emergent vegetation was observed, thus no aquatic beds (e.g. Trapa natans) should be 

detected over this site. Performance comparison between NAIP persistent emergent wetland 

bounds and classified wetlands (n = 1006 pixels) showed a 0% occurrence of Trapa natans and a 

1.2% occurrence of non-persistent emergents. Level-1 class occurrence in NAIP persistent 

emergent bounds was: 3.71% woody wetlands, 1.10% estuarine emergent, 89.78% palustrine 

emergent, 4.91% Phragmites australis. When these three level-1 persistent emergent classes are 

clustered, this corresponds to a 95.79% accuracy. Performance comparison NAIP non-persistent 

emergent bounds and classified wetlands (n = 675 pixels) showed a 1.93% occurrence of Trapa 
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natans and 93.60% occurrence of classified non-persistent emergents. Level-1 class occurrence 

in NAIP non-persistent bounds was: 22.37% open water, 1.19% woody wetlands, 8.15% 

estuarine emergent, and 68.15% palustrine. 

 The third validation study was based in the Wax Lake Delta and makes use of 2017 NWI 

data as a validation dataset for the combined level-1 and level-2 classification. Four riverine 

NWI classes (R1ABT, R1AB3V, R1AB3T, and R1AB4V) were used. Based on site vegetation 

maps and NWI-based wetland descriptions (Carle et al. 2015), these sites are presumed to be 

dominated by non-persistent vegetation, but because we do not have precise geolocations of 

exact vegetation types, we reference occurrences of classified pixels in NWI bounds rather than 

accuracies. In the R1ABT class, occurrence of level-2 non-persistent was 32.21%. The level-1 

classification occurrence was 52.65% open water, 21.15% agriculture, 1.12% Phragmites 

australis, 8.33% estuarine emergent, and 16.14% palustrine emergent. For the R1AB3V, level-2 

non-persistent occurrence was 47.37%. The level-1 classification occurrence was 57.69% open 

water, 17.05% agriculture, 0.15% Phragmites australis, 3.08% estuarine emergent, and 20.74% 

palustrine emergent. In R1AB4V, the level-2 occurrence was 14.08%. The level-1 class 

occurrence was 13.97% open water, 1.40% urban, 27.06% grassland, 0.13% Phragmites 

australis, 29.35% estuarine emergent, and 25.03% palustrine emergent. For the R1AB3T, the 

level-2 occurrence was 23.94%. The level-1 classification occurrence was 88.61% open water, 

1.40% grassland, 7.18% estuarine emergent, and 1.81% palustrine emergent. Figure 3.19, panel b 

shows the Sentinel-1 VV annual standard deviation layer used to derive the level-2 classification 

which exhibits high levels of spatial variability within NWI validation classes (red polygons), 

highlighting the potential limitations of both our level-2 decision tree-based classification 

approach and/or issues with the NWI in accurately mapping wetlands and deepwaters vegetation 
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communities. 

 

 
Figure 3.17. Comparison between Hudson River classified Trapa natans extents in level-2 

classification and independent validation with 2018 HRSAV dataset. Small panned map in upper 

left corner shows Hudson River and locations of panels a-d. Panel a showcases classified Trapa 

natans extent in the Mohawk River, a tributary to the Hudson River, note that the HRSAV dataset 

does not cover this site. Panels b-d depict the common extents between the HRSAV Trapa natans 

extent in white polygons, while the magenta pixels showcase level-2 classified Trapa natans 

locations. Classification accuracy of level-2 Trapa natans was 96.47% (n = 6882 pixels) 
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Figure 3.18. Comparison between Choptank River level-1 and level-2 classified wetland extents 

and independent validation with 2017 NAIP digitized wetland dataset. Identified non-persistent 

wetlands in the NAIP dataset were primarily Nuphar spp.. Utilizing the NAIP dataset as 

validation, the combined level-1 and level-2 classification accuracy was determined to be 

93.60% for non-persistent emergent wetlands (n = 675 pixels) and 95.79% for persistent 

emergent wetland (n = 1006 pixels). 
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Figure 3.19. Left panel depicts classified level-1 and level-2 extents in 2017 NWI white 

polygons (white boundaries). Right panel depicts the Sentinel-1 VV annual standard deviation 

with same NWI polygons (red boundaries) showing that a number of regions in the NWI riverine 

polygons do not reach threshold of 4.7 dB for level-2 non-persistent classification indicating that 

vegetation communities may be mixed within NWI polygons. This also highlights the challenge 

of assessing classification accuracy without specific wetland vegetation surveys. 

  
 

3.4. Discussion 

 The results of the level-1 classification demonstrate the utility of SAR-optical-DEM 

fusion in achieving relatively high emergent wetland classification accuracies. For both the Gulf 

Coast and Mid-Atlantic, emergent wetlands (i.e. marshes) (aggregation of estuarine emergent, 

palustrine emergent, and Phragmites australis) we achieved user and producer accuracies greater 

than 89%. The Gulf Coast combined emergent class user’s accuracy was 91.81% and producer’s 

accuracy was 95.02%. Application to the Mid-Atlantic coastline was slightly less accurate with 

user’s accuracy of 89.69% and producer’s accuracy of 93.19%. Combined with the findings of 
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open water being mapped with accuracies greater than 93.89% in all cases, these results 

demonstrate that this methodology presents an effective tool for monitoring emergent wetland 

loss and gain through open water conversion with critical applications to both the Gulf Coast and 

Mid-Atlantic tidal wetlands (Turner et al. 2019; Ganju et al. 2017). The overall accuracies for 

identification of marshes (emergent wetlands) was comparable to NWI accuracy assessment 

studies generally finding accuracies exceeding 90% at the NWI class level (Handley and Wells 

2009; Nichols 1994; Kudray and Gale 2000). It is critical to note however that no previous 

studies have performed an extensive validation of the NWI for the mapping of tidal marshes 

(estuarine emergent wetlands). Further within our study sites, we noted several instances where 

the NWI incorrectly classified estuarine emergent wetlands at Jug Bay and Wheeler Marsh. 

Thus, even the NWI accuracy assessment studies serve as a general classification accuracy goal, 

we do not have a direct assessment of tidal marsh classification accuracy. 

 The degree to which this methodology enabled us to distinguish between specific 

emergent wetland classes was variable. In the Mid-Atlantic, these classes were distinguished 

with better than 81% user’s and producer’s accuracy. Accuracies in the Gulf Coast were lower 

with user’s accuracies ranging from 69.07% to 77.00% and producer’s accuracies ranging from 

41.87% to 80.18% for the three emergent wetland classes. These results suggest that the level-1 

classification methodology should be used only for general emergent wetland mapping in the 

Gulf Coast. Application of this SAR-optical-DEM classification approach to two very different 

coastlines, the Gulf of Mexico and Mid-Atlantic coasts, revealed several important findings. The 

first is that in both the Gulf Coast and Mid-Atlantic classifications, the SRTM DEM was the 

most important layer in improving classification accuracy for all three emergent wetland classes 

(Tables 3.3 and 3.4). These findings agree with those from Knight et al. (2013). Growing season 
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NDVI was the second most important classification layer for both the Gulf Coast and Mid-

Atlantic emergent classes. The third most important classification layer differed between the 

Gulf Coast and Mid-Atlantic with the VV annual mean being more important for the Gulf Coast 

emergent wetland classifications and VH annual mean being more important for the Mid-

Atlantic (Table 3.3 vs. Table 3.4). This indicates potential vegetation structural/phenological 

differences and/or hydrological differences between wetlands in the respective regions, as 

Sentinel-1 VV and VH channel sensitivity to wetland vegetation and hydrologic state have been 

demonstrated as differing depending on these factors (Dabrowska-Zielinska et al. 2016) These 

differences in SAR polarimetric channel response need be considered when classifying diverse 

wetlands at large scales.  

 The level-2 classification was developed from timeseries analysis at Mid-Atlantic target 

sites demonstrating that persistent and non-persistent vegetation had sufficiently different 

phenological signatures that were effectively detected by C-band SAR. We initially sought to 

determine whether vegetation phenological SAR signatures could be distinguished from 

hydrologic influence on SAR signatures in these tidal wetland systems. Figures 3.7 and 3.8 

demonstrated that water level variability does have a pronounced impact on SAR backscatter, 

especially for low elevation wetland vegetation like Spartina alterniflora and Nuphar lutea. 

When we temporally reduced Sentinel-1 image timeseries over our sites to compute VV annual 

standard deviation (SD) layers and VV-Spring layers, these layers were demonstrated as being 

primarily responsive to vegetation structural phenological changes rather than hydrologic 

variability. For those reasons, these layers became the basis of the level-2 classification, which 

proved to be quite accurate over Mid-Atlantic study sites. The accuracy of the level-2 

classification results was greatest for the Hudson River detection of Trapa natans (> 96%). 
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Although Trapa natans detection was not a primary objective at the inception of this research 

effort, the results demonstrate the methods developed for detection of this invasive species were 

highly effective. Further, other sites where Trapa natans has not been observed (Jug Bay and 

Wheeler Marsh) did not show incorrect identifications, even with Jug Bay being dominated by 

large stands of non-persistent Nuphar lutea which shares a similar phenology. Initially, we 

suspected that Trapa natans and Nuphar lutea may be distinguished based on biomass-based 

backscatter differences during the growing season. However, the assessment of Sentinel-1 VV 

backscatter timeseries showed that during peak growth in July and August, both species had 

nearly identical peak backscatter values (-6 dB). This required us to separate these species based 

on phenological differences using the Spring-VV layer. The similarities in peak growth 

backscatter points to both species exhibiting strong surface scattering compared to a more 

canopy-based scattering response. This highlights the need to account for vegetation geometry 

when using C-band SAR for wetland and aquatic vegetation mapping. 

 The brackish wetlands of Wheeler Marsh and the surrounding lower Housatonic River, 

were largely absent of any classified non-persistent vegetation, indicating an accurate level-2 

classification (Figure 3.15.b.). Level-2 classification accuracy at the Choptank River site was 

also highly accurate. In evaluating the level-2 classification accuracy in the Choptank River 

wetlands with the independent 2017 NAIP wetlands dataset, we noted only a 1.93% incorrect 

identification of Trapa natans in NAIP non-persistent emergent sites, while non-persistent 

emergent wetlands were correctly identified at a rate of 93.60%. The NAIP persistent emergent 

sites had no classified Trapa natans and a 1.20% incorrect identification of non-persistent 

emergents. The level-2 classification results for the Wax Lake Delta were far less accurate than 

the Mid-Atlantic sites where non-persistent vegetation was only identified with 47.37%. 
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However, it is important to note that the Wax Lake Delta NWI validation dataset in this case may 

not be as accurate as the Choptank NAIP-based validation dataset that was carefully digitized 

with expertise in separating persistent and non-persistent vegetation types in Mid-Atlantic 

systems, and the Hudson River HRSAV dataset that identified a single target species. Several 

studies have noted mixed stands of specific vegetation in the Wax Lake Delta wetlands (Carle et 

al. 2015; Elliton 2016; Olliver et al. 2020), which the NWI may not classify accurate. 

 The combined results of the level-1 and level-2 yielded some important findings with 

respect to differences between these classifications. In the level-2 accuracy assessment for the 

Hudson River (Figure 3.18), the overwhelming majority of identified non-persistent vegetation 

was Trapa natans. Trapa natans tended to occur most commonly in the level-1 classification 

barren class, which includes mudflats, at 76.14%. Trapa natans occurred in 15.66% of open 

water classified pixels, in 3.98% of classified estuarine emergent wetlands, and in 3.91% of 

classified palustrine emergent wetlands. This may be a level-1 classification inaccuracy due to 

confusion of shallow open waters with mudflats. This could also be due to the fact that mudflats 

may only be intermittently exposed depending on season and tidal stage. Field observations did 

suggest that Trapa natans tended to occur in very shallow waters. Given that this species is a 

floating aquatic there is also potential for clustering in very shallow waters and/or mudflats after 

riverine transport. However, these results speak to the importance of applying detection 

algorithms (e.g. level-2) over multiple types of “wet” cover classes (e.g. level-1). The level-2 

classification results from the Choptank River showed a 1.93% false detection rate for Trapa 

natans and a 93.60% correct identification rate of non-persistent emergent vegetation compared 

to the NAIP validation dataset. Level-1 class occurrence in NAIP non-persistent bounds was: 

22.37% open water, 1.19% woody wetlands, 8.15% estuarine emergent, and 68.15% palustrine 
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emergent. Like the Hudson River results, this highlights the importance of applying detection 

algorithms similar to the level-2 classification over multiple “wet” classes. Interestingly, the 

Choptank level-2 non-persistent emergent class showed no occurrences with the level-1 barren 

class, which may be due to non-persistent emergents having a longer period of vegetated cover 

over the mudflats they grow in compared to Trapa natans which is more ephemeral in nature 

(Figure 3.8 vs. Figure 3.9). This may have resulted in a level-1 classification of palustrine 

emergent wetlands rather than the barren class representing mudflats. The results from the 

Choptank River demonstrated that persistent emergent wetlands were seldom incorrectly 

classified as non-persistent emergent by the level-2 classification with a 1.20% false 

identification rate. Choptank River persistent emergent wetlands identification was largely 

accurate with the level-1 classification showing occurrences of 3.71% woody wetlands, 1.10% 

estuarine emergent, 89.78% palustrine emergent, and 4.91% Phragmites australis. These results 

largely speak to the complementary nature of the level-1 and level-2 classifications and how 

machine learning and explicitly defined empirical classification approaches can complement and 

corroborate one another. Results from the combined level-1 and level-2 classification over the 

Wax Lake Delta suggested that challenges may exist in applying methodologies developed for 

the Mid-Atlantic to the Gulf Coast for identifying specific wetland vegetation classes, most 

likely due to structural and/or phenological differences between wetlands in the respective 

regions. In the Wax Lake Delta site, it was common for wetlands to be incorrectly identified as 

agriculture. In two NWI validation riverine aquatic bed wetlands, the level-1 classification of 

agriculture made up >17% and >23% of pixels within NWI wetland bounds. These errors likely 

occur because significant portions of the Gulf Coast have both rice production and aquaculture 

which are both classified as agriculture by the NLCD dataset used in level-1 training data. In 
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future efforts, these specific forms of landcover would be split from conventional upland 

agricultural (i.e. corn, soy, wheat production) as this would provide future insights about how to 

better separate “wet” agriculture from natural wetlands. It should be noted that overall emergent 

wetland classification for the Gulf Coast was highly accurate (>90%), and it may be the lower 

elevation low marsh and aquatic vegetation that is particularly susceptible to erroneous 

classification as agriculture, especially given the prevalence of aquaculture and rice production 

in the Gulf Coast region.  

 

 

 

3.5. Conclusions 

 

 We produced updated emergent wetlands and deepwaters maps for the Gulf Coast and 

Mid-Atlantic United States for 2017. Application of this approach to the Mid-Atlantic coast 

resulted in relatively high accuracies (> 80%) for the separation of tidal marshes, palustrine 

marshes, and Phragmites dominated marshes; yet the approach had lower accuracy in the Gulf 

Coast, most likely due to structural and/or phenological differences between wetlands in the 

respective regions. These phenological differences are important to consider when selecting 

temporally-based SAR imagery for classifications. This is especially true in the context of future 

potential development of a global tidal marsh product, as Sentinel-1 SAR, Landsat 8 optical, and 

SRTM DEM all provide the coverage for such  a product, but may need to be tailored for specific 

regions based on a priori understanding of marsh structure, phenology, and hydrology. 

Differences in specific classification accuracy between the Gulf Coast and Mid-Atlantic also 

highlighted important considerations in proper training data selection for given regions, i.e. 

needing to include “wet” agricultural classes like rice production and aquaculture to better 

separate natural wetlands from other landcover. With regards to achieving a global tidal marsh 
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product, training data availability may be a substantial issue, especially for training data selection 

for non-tidal wetland classes. Although the Mcowen tidal marsh inventory presents a potential 

training data set for global tidal marsh mapping efforts, the Mcowen product’s integration of the 

NWI from the US and other disparate tidal marsh inventories from other countries presents 

numerous challenges. The foremost of which, that was identified in this research effort, is the 

fact that the NWI tidal marsh mapping accuracy has not been extensively tested and over some 

study sites showed incorrect classifications. Further, it is unclear if inventories akin to the 

Mcowen tidal marsh inventory exist for other wetland classes and non-wetland classes like rice 

production and aquaculture. Our results indicate that it is critical, at the very minimum, to have 

several non-wetland classes included in wetland classifications for confusion testing. It may be 

possible to use global products like the MODIS Land Cover product, GlobeLand30, or 

Copernicus Global Land Cover product as training data for herbaceous wetlands and all other 

non-wetland classes. These herbaceous wetland classes could be referenced with the Mcowen 

tidal marsh inventory to split tidal marshes from palustrine marshes, forming a global training 

dataset. Sentinel-1, Landsat 8, and SRTM DEM all provide global coverage in temperate regions 

where tidal marshes are present. Thus, input data availability is not an issue in these 

classifications, although training data quality needs to be further assessed.  

 Overall, the level-1 classification yielded fairly accurate results that point to applicability 

to global tidal marsh mapping. However, the novelty of this research effort lies in the level-2 

classification which represents the first time C-band SAR was used to effectively map and 

separate persistent emergent, non-persistent emergent, and floating aquatic vegetation in 

wetland-deepwater systems. Previously, optically-based studies had been used to map similar 

vegetation classes (Villa et al. 2015; Villa et al. 2017). The findings in this research largely 
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complement of those of Villa et al., especially given that SAR provides the ability to separate 

above- and below-water aquatic vegetation more effectively than optical approaches, while 

optical approaches have a clear advantage in assessing the presence and absence of below-

surface aquatic vegetation. Overall, the level-2 classification results demonstrate that timeseries 

approaches with C-band Sentinel-1 SAR imagery presents numerous opportunities for emergent 

wetland characterization and monitoring. The approaches used in this particular research effort 

can be modified for use in different regions where emergent and floating aquatic vegetation have 

different phenologies as C-band SAR was demonstrably sensitive to phenological change for 

both floating and emergent vegetation, even more so than extreme water level changes (Figure 

3.11). It is clear that emergent wetland characterization largely benefits from the regular 

observations from the Sentinel-1 SAR satellite operating at a C-band frequency.  

 With the anticipated launch of the NASA-ISRO Synthetic Aperture Radar (NISAR) 

satellite operating at the longer L-band wavelength (at times operating at S-band as well), fusion 

of vegetation response from Sentinel-1 C-band SAR with sub-canopy surface characterization 

from NISAR L-band SAR presents even further opportunities in wetland and deepwater 

monitoring and characterization. The inclusion of L-band imagery in classifications will likely 

greatly increase the classification accuracy of woody wetlands and provide better separation 

between woody and emergent wetlands (Clewely et al. 2015; Whitcomb et al. 2009). L-band 

imagery may also aid in providing a more standardized methodology for tidal marsh mapping at 

the global scale, as it will be more capable of detecting sub-canopy hydrologic variability than C-

band SAR. This chapter indicates C-band backscatter is primarily responsive to emergent 

wetland and deepwater vegetation structure and phenology which can vary greatly across tidal 

marsh systems. 
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Chapter 4 

 

TIDAL WETLAND INUNDATION PRODUCT DEVELOPMENT 

 

4.1 Introduction 

 The accurate characterization of wetland inundation patterns is of critical importance for 

understanding wetland carbon cycling, biogeochemistry, habitat suitability, wetland restoration 

feasibility, flood vulnerability in wetland-adjacent areas, and potential wetland loss from sea 

level rise in coastal regions. Connected tidal marsh-estuary systems have been described as 

hotspots for biogeological exchange. For example, previous measurements in the Kirkpatrick and 

Blackwater NWR marsh-estuarine systems have shown that the amount of marsh-exported 

dissolved organic carbon varies temporally, but mainly in response to differences in tidal height 

and tidal range rather than seasonal variation in biological processes (Cao and Tzortziou 2020; 

Tzortziou et al pers. communication). Measurements of marsh-exported dissolved organic carbon 

(DOC) at the Kirkpatrick marsh showed a negative correlation with water-depth at low-tide (n = 

29, r =-0.75), reflecting the extent to which marsh soil porewater (i.e. shallow groundwater) is 

exported into the tidal creek, a process that is most rapid during the lowest tides. Since low-low 

tides are often linked to high-high tides, this relationship also reflects the influence of the extent 

of marsh inundation, which determines how much marsh surface floods and interacts to provide 

soil dissolved organic matter (DOM) to surface flood waters. Because of the important role that 

inundation patterns play in mediating carbon exchange and other biogeochemical processes, it is 

critical to accurately characterize these inundation dynamics to understand both hydrological 

patterns and biogeochemical processes. 
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 Over the past two decades major advances have been made in the study of wetland 

hydrology due to increases in the number of optical/IR and microwave remote sensing platforms 

capable of characterizing wetland inundation state. With optical/IR remote sensing platforms, the 

ability to detect water’s strong absorption features in the near and shortwave infrared has led to 

the successful development of optical/IR inundation products (McFeeters 1996; Du et al. 2016; 

Pekel et al. 2017; Jones 2019). However, optical/IR inundation products are generally limited to 

characterization of surface water extent and can only assess wetland inundation state when 

wetland vegetated canopies are sufficiently sparse and/or submerged.  

 Active microwave instruments, including synthetic aperture radars (SARs), produce 

signals that penetrate vegetated canopies effectively and respond to the hydrologic state of the 

underlying surface. Further, SAR signals undergo unique forms of scattering that provide 

advantages over other remote sensing techniques when imaging inundated wetlands, like the so-

called double bounce scattering that results from two successive scattering events (e.g. from the 

water surface then the stems/trunks) often producing enhanced backscatter intensity in SAR 

imagery. In high biomass woody wetlands like forested wetlands, the backscatter enhancements 

that occur because of this double bounce effect have been well established and have been used to 

map inundation patterns in woody wetlands and separate forested wetlands from upland forests 

when using L-band SAR imagery (J. Rosenqvist et al. 2020; Whitcomb et al. 2009). 

Comparatively, the double bounce scattering effect has generally been found to be less 

pronounced or negligible in emergent wetland systems dominated by herbaceous vegetation. 

Thus, the characterization of inundation state in emergent wetland systems becomes potentially 

more challenging than in woody wetlands. Several studies have found that herbaceous wetlands 

undergo varying degrees of backscatter increase and decrease when inundated (Pope et al. 1997; 
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Kasischke 2003; Ramsey 2013; Kim et al. 2014). Additionally, these studies have found 

differing backscatter responses at different wavelengths (C-band vs. L-band) and polarizations 

(HH, VV, and VH). However, few studies have fully linked empirical SAR image analyses to 

mechanistic analyses incorporating radiometric modeling to fully elucidate SAR scattering 

response to inundation state in emergent wetland systems. This has been particularly true of tidal 

marsh wetland systems where few such studies exist (Tannis et al. 1994; Kasischke and 

Bourgeau-Chavez 1997; Slatton et al. 2008). Compared to inland emergent wetlands systems, 

characterizing hydrological changes at tidal (approximately semi-diurnal) timescales in coastal 

wetlands systems is a challenge for aircraft and satellite remote sensing platforms as the temporal 

resolution of these observations (revisit time) is generally limited. 

 In this thesis chapter, we seek to overcome some of the challenges in characterizing tidal 

marsh inundation state by assessing the accuracy of previously developed SAR-based inundation 

products from Lamb et al. (2019) and Lamb et al. (2020) with two validation approaches; (1) an 

in situ empirical validation with water level sensor observations and (2) a radiometric modeling 

analysis. The radiometric modeling analysis makes use of the Michigan Microwave Canopy 

Scattering (MIMICS) model. MIMICS provides a physically-based elucidation of SAR 

backscatter and separates backscatter contributions from different scattering sources, in addition 

to providing a first principles-based validation of algorithms used in our prior inundation product 

development. In the first part of this research effort we assess the accuracy of previously 

established tidal marsh inundation products developed using single polarimetric and dual 

polarimetric SAR imagery from the ESA Sentinel-1a C-band SAR and JAXA Advanced Land 

Observing Satellite (ALOS) Phased Array type L-band Synthetic Aperture Radar (PALSAR and 

PALSAR-2). We then leverage the findings from radiometric modeling analysis to inform on the 
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use of quad polarimetric-based approaches for characterization of inundation state using 

PALSAR-2 satellite imagery and aircraft imagery from the NASA-ISRO (NISAR) Uninhabited 

Aerial Vehicle Synthetic Aperture Radar (UAVSAR) AM/PM Campaign. The UAVSAR 

AM/PM Campaign has been acquiring quad-polarimetric SAR imagery since 2019 to support 

science objectives and product development related to the upcoming NISAR satellite mission. 

We specifically seek to address how well polarimetric decompositions utilizing polarimetric 

phase information compare to polarimetric backscatter-based approaches for assessing tidal 

marsh inundation state. This research effort is relevant to the upcoming NISAR satellite mission 

that will include a SAR sensor operating at L-band wavelengths, and generally, in dual 

polarimetric, and at times quasi-quad polarimetric, acquisition modes over the coastal United 

States. NISAR will acquire imagery at intervals comparable to the C-band Sentinel-1 satellites, 

generally a 12-day revisit, allowing the characterization of tidal marsh inundation state through 

C-band and L-band data fusion. 

 

4.2. Materials and Methods 

4.2.1. Study Sites and Water Level Sensor Deployment. 

 We established several wetlands study sites in the Mid-Atlantic and Gulf Coast United 

States where we had previously characterized wetland inundation with SAR imagery or did so in 

this research effort. These sites include Wheeler Marsh (CT), Kirkpatrick Marsh (MD), 

Blackwater NWR (MD), the Wax Lake Delta (LA), White Lake (LA), and Sabine River/Port 

Arthur (TX). For the purpose of validating remote sensing-based inundation products, we 

deployed grids of Onset HOBO U20L water level sensors (hereafter referred to as “water level 

sensors”) in Wheeler Marsh and Kirkpatrick Marsh (Figure 4.1). Water level sensors were 
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deployed in these systems for several months to allow for a time offset and water level-based 

calibration with nearby NOAA tide gauges. After water level sensors had been deployed for 

several months, we performed a lagged correlation analysis between the in-marsh water level 

sensor series and the NOAA tide gauge series and established a time offset based on the lagged 

maximum R2 value. After determining the best fit time offset, we performed a regression 

analysis to determine slopes and intercepts for in-marsh water level and NOAA tide gauge water 

level. Calibrations between the in-marsh water level sensors and NOAA tide gauge observations 

were accurate across marsh-deployed sensors (R2 >= 0.95) as shown in Table 4.1. This enabled 

us to accurately estimate in-marsh water levels at each sensor location using calibrated water 

temporal offsets as well as water level slopes and intercepts from the longer-term NOAA tidal 

series. The accuracy of this calibration effort allowed us to extend the record of in-marsh water 

level estimates to that of our satellite record (2006-2020). 

 

 

 

 

 

 

 

 

Figure 4.1. Natural color maps of Wheeler Marsh (left) and Kirkpatrick Marsh (right) sites with 

water level sensor grid deployments. Example water level sensor states show all non-inundated 

(white) for Wheeler Marsh and all inundated for Kirkpatrick (black) for demonstration only. 

Note that Kirkpatrick Marsh is a high marsh system, while Wheeler Marsh contains, low marsh-

mudflat mix, low marsh, and high marsh corresponding to the red, black, and white, respective 

polygon bounds. 
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Index Site Sensor ID Start Deployment
End 

Deployment
NOAA Gauge

Offset 

(minutes)

R^2 

(max)
Slope

Intercept 

NAVD88 (feet) 

Intercept 

MLLW (feet) 
Vegetation

0 Kirkpatrick 20473575 11/28/2018 12/12/2019 Annapolis -35 0.977 0.921 -1.361 -0.591 patens

1 Kirkpatrick 20473576 11/28/2018 12/12/2019 Annapolis -22 0.978 0.971 -1.051 -0.281 Scirpus/Iva

2 Kirkpatrick 20473578 11/28/2018 12/12/2019 Annapolis -28 0.972 0.919 -1.216 -0.446 Phragmites

3 Kirkpatrick 20473579 11/28/2018 12/12/2019 Annapolis -23 0.978 0.971 -1.225 -0.455 Scirpus

4 Kirkpatrick 20473580 11/28/2018 12/12/2019 Annapolis -22 0.978 0.919 -1.256 -0.486 patens

5 Kirkpatrick 20473581 11/28/2018 12/12/2019 Annapolis -33 0.98 0.938 -1.153 -0.383 Phragmites

6 Kirkpatrick 20473582 11/28/2018 12/12/2019 Annapolis -31 0.977 0.93 -0.951 -0.181 Phrag/Iva

7 Kirkpatrick 20473583 11/28/2018 12/12/2019 Annapolis -29 0.976 0.93 -1.199 -0.429 Scirpus

8 Kirkpatrick 20473584 11/28/2018 12/12/2019 Annapolis -20 0.981 0.941 -1.008 -0.238 Phrag

9 Kirkpatrick 20473585 11/28/2018 12/12/2019 Annapolis -24 0.975 0.977 -1.309 -0.539 Scirpus/Typha

10 Kirkpatrick 20473586 11/28/2018 12/12/2019 Annapolis -17 0.973 0.919 -1.39 -0.62 Mixed

0 Wheeler 20308250 8/8/2018 12/5/2018 Bridgeport 15 0.99 0.988 -4.221 -0.381 mudflat/alterniflora

11 Wheeler 20358449 8/8/2018 12/5/2018 Bridgeport 13 0.99 0.995 -4.448 -0.608 mudflat/alterniflora

12 Wheeler 20358450 8/8/2018 12/5/2018 Bridgeport 16 0.987 0.991 -4.171 -0.331 mudflat/alterniflora

13 Wheeler 20358451 8/8/2018 12/5/2018 Bridgeport 15 0.984 0.983 -5.608 -1.768 mudflat/alterniflora

21 Wheeler 20358452 8/8/2018 12/5/2018 Bridgeport 13 0.977 0.983 -6.891 -3.051 alterniflora

22 Wheeler 20358453 8/8/2018 12/5/2018 Bridgeport 15 0.975 0.982 -6.22 -2.38 alterniflora

23 Wheeler 20358454 8/8/2018 12/5/2018 Bridgeport 15 0.973 0.966 -6.394 -2.554 alterniflora

31 Wheeler 20358447 8/8/2018 12/5/2018 Bridgeport 9 0.949 0.933 -7.329 -3.489 patens/Distichlis

32 Wheeler 20358455 8/8/2018 12/5/2018 Bridgeport 17 0.967 0.971 -5.975 -2.135 alterniflora

33 Wheeler 20389462 8/8/2018 12/5/2018 Bridgeport 16 0.966 0.962 -6.575 -2.735 alterniflora

KM-Mean Kirkpatrick -- 11/28/2018 12/12/2019 Annapolis -25.818 -- 0.94 -1.193 -0.423 --

WM-Mean Wheeler -- 8/8/2018 12/5/2018 Bridgeport 14.4 -- 0.975 -5.783 -1.943 --

BWNWR Blackwater USFWS-YSI 9/20/2016 10/31/2016 Bishop's Head 186 0.636 -- -- -- --

 

 

Table 4.1. Water level sensor grid calibration with long-term NOAA tidal stage observations. 

This includes the time offset between in-marsh and NOAA tidal water level series, the 

corresponding maximum R2 value for this time offset, and the slopes and intercepts of those 

relationships. Note that the negative time offset for the Kirkpatrick Marsh site indicates that in-

marsh water level changes precede those of the NOAA tide gauge in Annapolis, while in-marsh 

water levels for Wheeler Marsh lag those of the NOAA tidal gauge in Bridgeport. Index 5 shows 

the series for an in-marsh water level sensor deployed nearby a tidal creek where water level 

changes were previously estimated to precede those at the Annapolis NOAA station by 34.4 

minutes (Lamb et al. 2019; Nelson et al. 2017), indicating good consistency of approach. Water 

level observations for Blackwater NWR were obtained by a USFWS YSI instrument 

deployment.  

 

 

 

 

 

  

 

 

 The water level observations over Blackwater NWR were obtained from a United States 

Fish and Wildlife Service (USFWS) monitoring effort that ran for two months in 2016 using a 

YSI instrument measuring water levels. This YSI water level timeseries was compared to the 

Bishop’s Head NOAA station water level series using only lagged correlation analysis (slopes 

and intercepts were not computed). The maximum R2 value of 0.636 was obtained at a time 

offset of 186 minutes. Although this correlation is lower than Wheeler Marsh and Kirkpatrick 
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Marsh, the difference is excepted given the hydrologic complexity of the Blackwater NWR 

system. These time offset findings do agree with a previous NOAA and USACE study for this 

site finding a 2.5 to 3-hour lag between the Shorter’s Wharf region (where the YSI was 

deployed) and a less distant NOAA tidal station at McCready’s Creek (Allen et al. 2001). 

 Gulf Coast sites were selected based on several criteria. First, they needed to be identified 

as having a high density of tidal marshes as identified in Lamb et al. (2020), have a sufficient 

number of UAVSAR AM/PM scenes, and have water level sensor sites within the wetland 

systems. All selected Gulf Coast study sites were deemed to have sufficient water level sensor 

observations from the State of Louisiana Coastal References Monitoring System (CRMS) 

network in addition to having ample wetland densities and numbers of UAVSAR AM/PM 

campaign scenes. The CRMS water level observations for select UAVSAR scenes at the time of 

image acquisition are shown in Table 4.4. 
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Figure 4.2. Sentinel-1a VV backscatter multi-season composites (R = spring, G = summer, B = 

fall) for study sites with water level sensors deployed by other research groups. Sites include 

Blackwater NWR, the Wax Lake Delta, Sabine River, and White Lake, respectively (left to right, 

top to bottom). The yellow points on Gulf Coast sites correspond to CRMS water level sensors. 

Blackwater NWR water level data was acquired from a USFWS YSI in the Shorter’s Wharf 

region of Blackwater NWR between 2015-2016. The closest active NOAA tide gauge at 

Bishop’s Head is also shown.  

 

4.2.2 MIMICS Radiometric Model Parameterization  

 The Michigan Microwave Canopy Scattering (MIMICS) model provides the ability to 

model microwave scattering for various vegetated biomes, including wetlands. MIMICS allows 

flexible parameterization of vegetation canopies and the underlying surfaces. In this effort, our 

objective was to simulate radar scattering from tidal marshes with varying surface hydrologic 

states and vegetation characteristics. A generalized form of a tidal marsh was parameterized with 

vertically structured vegetation, a rough ground surface with varying soil moisture, and surface 
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water with a salinity of 20 PPT. The vertical vegetation was modeled as a combination of 

cylinder-like stems and thin leaves. The rough ground surface, which we observed in many of 

the study sites, was parameterized with a root-mean-square height of 2 cm and a gaussian 

autocorrelation parameter length parameter of 10 cm. These values were identical to those used 

to represent a tidal marsh with a rough surface in a modeling effort by Duan and Jones (2017). In 

our effort, we represented marsh soil as equal proportions of sand, silt, and clay. Our modeling 

effort was most focused on the hydrologic variability influence on backscatter. To characterize 

change in hydrologic state, we varied marsh soil moisture from 0% to 100% in 5% increments. 

After a soil moisture of 100%, we replace the soil model with a water surface layer model, then 

iteratively changed the water height by successively lowering the marsh vegetation canopy into 

the water thereby effectively reducing the amount of vegetation exposed above the water level. 

This has the same effect as inundating/submerging marsh vegetation as tidal stage increases. 

 Parameterizing vegetation variability required a more nuanced approach than 

characterizing the marsh surface. Marsh vegetation types include grasses, rushes, and sedges 

which all have significant amounts of both stems and leaves. Stems were modeled as primarily 

vertically structured cylinders. Leaves were also modeled as primarily vertically structured. In 

order to provide more detailed parameterizations of marsh vegetation, we performed field 

surveys and sampling of marsh vegetation. These field studies included measurements of 

vegetation water content and the physical dimensions of vegetation, which are shown in the 

following Tables 4.2 and 4.3. 
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Vegetation (Phenological State) samples % moisture

Typha (Green) 10 74.77

Typha (Brown) 3 9.61

alterniflora (Green) 9 75.09

alterniflora (Brown) 6 17.10

Phragmites (Green) 12 63.94

Phragmites (Brown) 21 12.38

Scirpus (Green) 11 68.58

Scirpus (Brown) 6 16.41

Scirpus (Brown-Wet) 4 37.41

patens (Green) 14 58.27

patens (Brown) 8 13.24

high marsh mix (Green) 10 64.40

high marsh mix (Brown) 9 28.04

cynosuroides (Green) 2 60.66

Average all samples (Green) 68 66.57

Average all samples (Brown) 57 17.50

Table 4.2 Vegetation water contents from field sampling. In most cases green samples were 

acquired during the growing season while brown samples were acquired outside of the growing 

season. Vegetation was acquired across numerous Mid-Atlantic sites. Note vegetation % 

moisture remains fairly consistent between different vegetation types but varies largely 

depending on season.  

 

 

 

 

 

 

 

 

 

 

Table 4.3 Vegetation dimensions field sampling. Canopy length (height) was measured in 

inches. Averages for tall, medium, and short canopies are calculated below. Tall-form Spartina 

alterniflora vegetation canopy height estimates were acquired from the USDA’s Plants Database. 

 

 
 

 

 

Date Location Species Samples Canopy Length (m)

20170916 Jug Bay Typha 6 1.847

20190619 Connecticut River Typha 2 1.702

20190412 Kirkpatrick Phragmites 10 2.256

20190619 Connecticut River Phragmites 3 1.727

20190412 Kirkpatrick Scirpus 4 1.803

20190619 Connecticut River Short-form Alterniflora 3 0.279

20190619 Connecticut River High Marsh 3 0.229

USDA-Plants Wheeler, Blackwater Tall-form Alterniflora NA 1.372 (0.610 to 2.137)

Average (tall) -- -- 25 1.977

Average (med) -- -- NA 1.372

Average (short) -- -- 6 0.254
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 The vegetation sampling yielded very consistent vegetation moisture content values 

between different species. With average growing season vegetation moisture content being 

66.57% and non-growing season average vegetation moisture being 17.50%. Vegetation canopy 

heights varied depending on species but were generally in the 2.0 meter range or 0.5 meter range. 

Although tall-form Spartina alterniflora vegetation samples were not obtained during our 

surveys, the USDA Plants Database was referenced and a value of approximately 1.0 meter was 

used to model this species (USDA). The final MIMICS radiometric model vegetation 

parameterizations were performed based on approximated marsh vegetation canopies rather than 

exact species or correspondence to a specific field sampling. This was done to select generalized 

vegetation heights with easily interpretable values and because field sampling of vegetation 

heights was limited compared to vegetation moisture content sampling. To provide generalized 

vegetation parameters, we parameterized the model with stems with a 1.5 cm diameter, length of 

99 cm (maximum allowable value), and a vertical distribution to represent stems for marsh 

vegetation. Leaves were 2.5 cm in diameter and modeled as primary vertically oriented. The 

canopy was modeled with 50 stems per cubic meters and 200 leaves per cubic meter. The marsh 

canopies were then parameterized in MIMICS with canopy heights of 0.5, 1.0, and 2.0 meters. 

Compared to the generalized vegetation dimensions, more precise vegetation water content 

parameterizations were used, with 66.57% and 17.50% water contents being used to represent 

seasonal water content end-members in MIMICS. In total, six vegetation-based variants of the 

MIMICS model were parametrized with three vegetation height iterations and two water content 

iterations. We ran simulations for C-band scattering from the Sentinel-1 satellite and L-band 

scattering from the PALSAR/PALSAR-2 satellites for all six vegetation cases.  

 The MIMICS simulations produce outputs of both total backscatter intensity and 
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backscatter contributions from various types of scatterers in the simulated environment which 

include ground scattering, direct vegetation scattering, and ground-vegetation scattering. Because 

our objective is to assess the sub-canopy hydrologic state of a simulated marsh, we focus our 

analysis of model outputs on the simulations with 2.0-meter canopy height and growing season 

vegetation water content (66.57%). By focusing on this particular simulation, we can assess C-

band and L-band response to hydrologic state for a common high biomass marsh vegetation case 

where vegetation is most likely to interfere with radar’s sub-canopy surface interaction, and thus, 

characterization. Utilizing MIMICS to fully assessing scattering mechanisms, we assess not only 

total backscatter intensity, but also the decomposition of scattering mechanisms which we 

compare to satellite-based analyses in later sections. Equation 1 that follows is reproduced from 

Kasischke and Bourgeau-Chavez (1997) with modified terms that better correspond to MIMICS 

first order solutions to the radiative transfer equation. MIMICS ground-crown and crown-ground 

terms correspond to double bounce scattering. MIMICS crown-ground-crown is approximated 

by the multiple path scattering term. MIMICS direct crown scattering and surface scattering are 

accurately represented by their original forms in equation 1. 

 

𝜎   𝑡−ℎ
0 =  𝜎   𝑐

0 +  𝜏   𝑐
2   (𝜎   𝑑

0 + 𝜎   𝑚
0  +  𝜎   𝑠

0 ) (1) 

where 𝜎   𝑡−ℎ
0  is total herbaceous marsh backscatter.  𝜎   𝑐

0  is backscatter from the vegetation 

crown. 𝜏   𝑐
2  is the transmission coefficient of the vegetation canopy.  𝜎   𝑑

0  is double bounce 

scattering between stems and ground (crown-ground and ground-crown). 𝜎   𝑚
0  is multiple path 

scattering (crown-ground-crown). 𝜎   𝑠
0  is surface scattering. 
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4.2.3 Description and Assembly of Datasets  

 We carried out an assessment of SAR satellite image capabilities in characterizing marsh 

inundation state from 2006-2020. PALSAR/PALSAR-2, UAVSAR, and Sentinel-1a imagery 

were all used in this assessment. Additionally, optical inundation products were compared to the 

SAR-based inundation products and assessed against in situ water level observations. Sentinel-1 

imagery was acquired from Google Earth Engine (GEE) where it had been processed with ESA’s 

SNAP toolbox for calibration and radiometric terrain correction prior to GEE ingestion. The 

SNAP toolbox was also used for the processing of PALSAR-2 imagery, performing calibration, 

multi-looking, speckle filtering, and radiometric terrain corrections. Multi-looking PALSAR-2 

imagery was performed with the least number of looks required to produce a square pixel. 

Generally, this meant use of a 4x2 or 5x2 window. Multi-looking in this manner served to reduce 

speckle noise as well. Additional speckle filtering was then performed using a 5x5 Enhanced Lee 

filter. Radiometric terrain correction was performed with the 30-meter version of the SRTM 

DEM. PALSAR imagery was acquired from the Alaska Satellite Facility (ASF) at the 1.5 level 

where it had been previously calibrated and radiometric terrain corrected. After ASF acquisition, 

we speckle filtered PALSAR imagery with a 5x5 Enhanced Lee filter. UAVSAR imagery was 

accessed from ASF in Ground Projected Complex format and processed with ESA’s PolSARpro 

software (v6.0) and ASF’s MapReady software.  

 Sentinel-1 imagery was regularly acquired at 12-day intervals over the Mid-Atlantic 

study sites between 2015/2016 and 2020, which provided us with a very dense timeseries for 

analysis. PALSAR/PALSAR-2 and UAVSAR were acquired less frequently but were used more 

commonly in the proceeding analysis. For these reasons only PALSAR/PALSAR-2 and 

UAVSAR images are listed in Table 4.4. 
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Sensor Acquisition Time (GMT) Site Channels Tidal Stage (meters)

PALSAR 2006-12-24 03:16:00 Wheeler HH 0.857

PALSAR 2007-09-26 03:16:00 Wheeler HH, HV 2.313

PALSAR 2007-12-27 03:15:00 Wheeler HH 1.052

PALSAR 2008-06-28 03:13:00 Wheeler HH, HV 0.707

PALSAR 2009-08-16 03:18:00 Wheeler HH, HV 0.884

PALSAR 2009-10-01 03:18:00 Wheeler HH, HV 1.791

PALSAR 2010-01-01 03:18:00 Wheeler HH 2.224

PALSAR 2010-04-03 03:17:00 Wheeler HH 0.887

PALSAR 2010-05-19 03:17:00 Wheeler HH, HV 0.800

PALSAR 2010-07-04 03:17:00 Wheeler HH, HV 0.352

PALSAR 2010-10-04 03:15:00 Wheeler HH, HV 1.558

PALSAR 2010-11-19 03:15:00 Wheeler HH, HV 1.737

PALSAR 2011-01-04 03:14:00 Wheeler HH 1.947

PALSAR 2011-02-19 03:13:00 Wheeler HH 2.209

PALSAR-2 2015-03-02 17:02:00 Wheeler HH, HV no data

PALSAR-2 2016-02-29 17:02:00 Wheeler HH, HV 0.939

PALSAR-2 2016-04-25 17:02:00 Wheeler HH, HV 1.951

PALSAR-2 2017-04-24 17:03:00 Wheeler HH, HV 1.305

PALSAR-2 2017-04-27 4:40:00 Wheeler HH, HV, VH, VV 2.582

PALSAR-2 2017-11-06 17:02:00 Wheeler HH, HV 2.807

PALSAR 2006-12-05 03:30:00 Blackwater HH 0.128 (0.561)

PALSAR 2007-10-28 15:36:00 Blackwater HH 0.032

PALSAR 2008-10-30 15:35:00 Blackwater HH -0.327

PALSAR 2010-03-15 03:32:00 Blackwater HH 0.579 (1.164)

PALSAR 2011-03-25 03:16:10 Blackwater HH,HV,VH,VV 0.686

PALSAR-2 2015-05-10 4:56:00 Blackwater HH,HV,VH,VV 0.302

PALSAR-2 2015-09-27 4:53:00 Blackwater HH,HV 0.732

PALSAR-2 2016-09-02 5:03:00 Blackwater HH,HV 0.232

PALSAR-2 2016-09-25 04:53:00 Blackwater HH,HV 0.765

PALSAR-2 2017-01-02 5:03:00 Blackwater HH,HV 0.655

PALSAR-2 2017-05-07 4:52:00 Blackwater HH,HV,VH,VV 0.777

UAVSAR 2019-06-21 21:11:00 Wax Lake HH,HV,VH,VV --

UAVSAR 2019-07-02 23:27:27 Wax Lake HH,HV,VH,VV --

UAVSAR 2019-07-17 21:34:43 Wax Lake HH,HV,VH,VV --

UAVSAR 2019-07-17 21:34:43 Wax Lake HH,HV,VH,VV --

UAVSAR 2019-07-26 21:26:54 Wax Lake HH,HV,VH,VV --

UAVSAR 2019-08-13 21:56:25 Wax Lake HH,HV,VH,VV --

UAVSAR 2019-09-23 12:54:41 Wax Lake HH,HV,VH,VV --

UAVSAR 2019-10-01 21:59:22 Wax Lake HH,HV,VH,VV --

UAVSAR 2019-10-29 13:20:22 Wax Lake HH,HV,VH,VV --

UAVSAR 2019-07-01 14:02:30 White Lake HH,HV,VH,VV 0.780 (0.924)

UAVSAR 2019-07-16 12:47:28 White Lake HH,HV,VH,VV 0.808 (1.716)

UAVSAR 2019-07-25 13:21:57 White Lake HH,HV,VH,VV 0.738 (.744)

UAVSAR 2019-06-06 14:17:10 Sabine River HH,HV,VH,VV --

UAVSAR 2019-07-16 13:03:21 Sabine River HH,HV,VH,VV --

UAVSAR 2019-07-25 13:40:18 Sabine River HH,HV,VH,VV --

UAVSAR 2019-08-12 13:42:28 Sabine River HH,HV,VH,VV 0.497

UAVSAR 2019-09-23 13:21:08 Sabine River HH,HV,VH,VV 0.939

UAVSAR 2019-09-30 13:40:41 Sabine River HH,HV,VH,VV 0.719

UAVSAR 2019-10-29 13:50:13 Sabine River HH,HV,VH,VV --

Table 4.4 PALSAR/PALSAR-2 and UAVSAR acquisition table. Tidal stage represents the 

closest estimate of tidal stage for an image covering a study site. Wheeler, Kirkpatrick, and 

Blackwater NWR tidal stages have been time adjusted. Highlighted and underlined tidal values 

correspond to images used in analyses. Parenthesis represent the previous maximum tidal stage 

two days of fewer prior to image acquisition. 
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Figure 4.3. Tidally ordered assembly of PALSASR/PALSAR-2 HH imagery over the Wheeler 

Marsh study site (red outline). Note that backscatter decreases greatly as tidal stage increases 

(left-right, top-down). Backscatter scaled from -4.0 to -14.0 dB. 
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4.2.4 Previous Inundation Products Developed (rationale for part 1) 

 The inundation products we established in previous studies utilized change detection and 

threshold-based approaches. We developed a change detection approach for timeseries Sentinel-

1a C-band imagery over Kirkpatrick Marsh, and a threshold-based approach for PALSAR L-

band low tide-high tide image pairs over Blackwater NWR (Lamb et al. 2019).  We then applied 

a similar threshold-based approach to a PALSAR/PALSAR-2 image timeseries over Wheeler 

Marsh (Lamb et al. 2020). One of the primary findings of this effort was that similar responses 

between high tide and low tide were observed in backscatter distributions in L-band imagery 

comparing Blackwater NWR to Wheeler Marsh, in spite of pronounced differences in tidal range 

between the sites. Over the Wheeler Marsh site, regressing spatial mean marsh backscatter 

against tidal stage showed a strong inverse relationship (shown in results section). The boxplot 

results reproduced from Lamb et al. (2019) in Figure 4.4 also showcase this response over 

Blackwater NWR.   

 

4.2.5 Quad Polarimetric-Based Inundation Products (rationale for part 2) 

 We acquired quad-polarimetric (HH, HV, VH, VV) complex quad-pol PALSAR-2 

imagery for Wheeler Marsh and Blackwater NWR, including a high tide-low tide image pair for 

Blackwater NWR. Several quad-polarimetric UAVSAR scenes were acquired over the Wax 

Lake, White Lake, and Port Arthur regions. We performed two forms of inundation 

classifications on these images, the first were polarimetric decompositions utilizing image phase 

information, which offer some of the best performance in assessing emergent wetland inundation 

state for single images (Schmitt and Brisco 2013; Hong et al. 2014; Atwood et al. 2020).  We 

performed polarimetric decompositions on these quad-polarimetric images using the van Zyl and 
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Yamaguchi decompositions, as these polarimetric decompositions best relate to physical 

scattering mechanisms including surface scattering, double bounce, and volume scattering. 

Polarimetric decompositions were performed on complex quad-polarimetric imagery as dual-

polarimetric decompositions cannot as effectively resolve these three scattering mechanisms (Ji 

and Hong 2015). In addition to performing these polarimetric decompositions, we also utilized 

threshold-based approaches on the same quad-polarimetric images to assess performance 

comparison between backscatter-based and polarimetric decomposition-based approaches for 

tidal marsh inundation state characterization. The quad-polarimetric decompositions and 

threshold-based decompositions were compared to the previously classified inundation products 

with similar tidal stages. 

 

4.3. Results 

 

4.3.1. Empirical Inundation Product Development and Validation 

 

 In the following section we evaluate L-band, C-band, and optical/IR imagery response to 

tidal marsh inundation state. We do this by assessing image change as it relates to tidal influence. 

Findings from Lamb et al. (2019) demonstrated that over the Blackwater NWR study site, L-

band backscatter distributions shift so drastically that thresholding can be utilized to classify 

inundation. Reproduction of figures from this research effort are shown in Figure 4.4. Similar 

response of decreasing backscatter as a function of increasing tidal stage are present in Figure 4.5 

which shows that similar responses are present for timeseries imagery over Wheeler Marsh as 

well. Table 4.3 showcases the correlation between marsh-averaged SAR backscatter and optical 

water indices/products in terms of their relationship to tidal stage. 
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Figure 4.4. Low tide (upper panel) vs. high tide (lower panel) PALSAR backscatter distribution 

comparison for Blackwater NWR. Threshold of -13.5 dB (dotted horizontal line) effectively 

separates low tide and high tide marsh (presumably linked to inundation state). The marsh pixels 

extraction regions dominated by Spartina alterniflora vegetation. Figure 4.4 was previously 

published in Lamb et al. (2019) but was included here to showcase comparison to Figure 4.5. 

Tidal heights acquired from water level in connected estuary at Bishop’s Head NOAA station. 
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Figure 4.5. Comparison of full PALSAR/PALSAR-2 timeseries (2006-2017) as a function of 

Wheeler Marsh tidal stage for HH and HV polarizations (upper and lower panels). Horizontal 

lines shown at -14.0 dB for HH imagery and -23.0 dB for HV imagery. Pixels were extracted 

from region dominated by Spartina alterniflora. Note that in contrast to Blackwater NWR 

PALSAR analysis in Figure 4.4, Wheeler Marsh exhibits a far greater range of marsh elevations 

and a greater tidal range for an average tidal cycle. Water level estimated from time and height 

adjusted Bridgeport NOAA station to capture in-marsh water levels. 
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Table 4.5. Sentinel-1 (S1) and PALSAR/PALSAR-2 correlation with tidal stage (shown as R-

values). This analysis includes all available satellite imagery up to 2018. OLS represents linear 

least squares fit between marsh-averaged backscatter and tidal stage. Poly represents a 2nd order 

polynomial fit. R-values greater than 0.8 have been bolded. Note that because only one PALSAR 

high tide-low tide image pair was available for Blackwater NWR analysis, no correlation 

assessment was performed. The B, W, GM, and N terms after the NWI classes correspond to 

Blackwater NWR, Wheeler Marsh, Great Meadows Marsh, and Nissequogue River, respectively. 

 

 
 

 

 In Figures 4.6-4.8 below, tidal image series have been updated to include imagery 

through 2020. Note the table above only includes imagery up to 2018. The correlation between 

backscatter and tidal stage improves for the longer timeseries Sentinel-1 C-band imagery, 

however the separability between high tide and low tide backscatter distributions are less 

apparent than for the L-band tidal series in Figure 4.5. Figure 4.8 shows an analysis for the 

Kirkpatrick Marsh site (not shown in Table 4.3). 

 

NWI Class
S1-VH 

OLS

S1-VH 

Poly

S1-VV 

OLS

S1-VV 

Poly

S1-VV/VH 

OLS

S1-VV/VH 

Poly

NDWI 

OLS

NDWI 

Poly

mNDWI 

OLS

mNDWI 

Poly

PALSAR-

HH OLS

PALSAR-

HH Poly

PALSAR-

HV OLS

PALSAR-

HV Poly

E2EM1N-B −0.638 0.757 0.374 0.575 −0.705 0.889 0.314 0.378 0.460 0.468 -- -- -- --

E2EM1P-B −0.689 0.761 0.581 0.666 −0.765 0.856 0.352 0.393 0.471 0.515 -- -- -- --

E2EM1P6-B −0.450 0.541 0.368 0.378 −0.530 0.567 0.192 0.283 0.001 0.235 -- -- -- --

E2EM1Pd-B −0.646 0.725 0.457 0.539 −0.684 0.772 0.407 0.412 0.560 0.669 -- -- -- --

E2SS4P-B −0.189 0.422 0.395 0.403 −0.456 0.457 0.047 0.303 −0.065 0.080 -- -- -- --

E2FO4P-B −0.089 0.357 0.360 0.381 −0.401 0.401 0.006 0.236 0.108 0.142 -- -- -- --

E2EM1N-W -0.833 0.875 -0.779 0.787 0.452 0.474 0.911 -- 0.912 -- -0.845 0.878 -0.917 0.978

E2EM1P-W -0.395 0.430 0.014 0.274 -0.290 0.500 0.562 -- 0.701 -- -0.806 0.955 -0.625 0.924

E2EM1N-GM -0.671 0.733 -0.430 0.430 -0.251 0.413 -- -- -- -- -0.817 0.937 -0.717 0.897

E2EM1P-GM -0.472 0.555 -0.082 0.107 -0.376 0.497 -- -- -- -- -0.716 0.872 -0.666 0.824

E2EM1N-N -0.833 0.875 -0.759 0.764 -- -- -- -- -- -- -0.670 0.744 -0.843 0.947

E2EM1P-N -0.395 0.430 -0.075 0.299 -- -- -- -- -- -- -0.544 0.684 -0.446 0.854
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Figure 4.6. Comparison of full Sentinel-1 timeseries as a function of Wheeler Marsh tidal stage 

for VV (left) and VH (right) polarizations. Horizontal lines shown at -14.0 dB for VV imagery 

and -23.0 dB for VH imagery. Pixels were extracted from region dominated by Spartina 

alterniflora. Note that in contrast to L-band analysis in Figure 4.5, the polarimetric responses 

vary between the VV and VH polarizations, with VV backscatter generally increasing and VH 

backscatter decreasing as a function of tidal stage. Water level estimated from time and height 

adjusted Bridgeport NOAA station to capture in-marsh water levels. Error bars on points 

represent +/-1 SD 

 

 

 

 

 

 

 

 

 

 

Figure 4.7. Comparison of full Sentinel-1 timeseries as a function of Kirkpatrick Marsh tidal 

stage for VV (left) and VH (right) polarizations. Pixels were extracted from regions dominated 

by Spartina patens, Schoenoplectus americanus, Iva frutescens, and Phragmites australis. Error 

bars represent +/-1 SD in backscatter. Vertical red line represents marsh bankfull depth from 

Nelson et al. (2017). R-value is from above bankfull depth linear regression. 
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Figure 4.8. Wheeler Marsh Sentinel-1 VV/VH-tidal stage comparison scatter plot. Error bars 

represent +/-1 SD. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.9. Kirkpatrick Marsh Sentinel-1 VV/VH-tidal stage comparison scatter plot. Error bars 

represent +/-1 SD. Vertical red line represents marsh bankfull depth from Nelson et al. (2017). 
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 Between Kirkpatrick Marsh, Wheeler Marsh, and Blackwater NWR, the Sentinel-1 C-

band VV/VH ratio generally provided the most sensitivity to tidal stage compared to the VV and 

VH polarizations alone. In comparing Kirkpatrick Marsh to Wheeler Marsh backscatter 

distributions, no consistent separability was observed for this C-band polarimetric ratio as was 

observed for HH and HV channels in L-band imagery. Thus, absolute thresholding approaches 

could not be effectively applied to C-band imagery, and instead change detection approaches 

were utilized. Lamb et al. (2019) had originally tested confidence interval-based change 

detection approaches for producing inundation products over the Kirkpatrick Marsh site. This 

approach had defined these confidence intervals based on a temporal standard deviation 

calculation for all 2016-2017 imagery acquired at low tide (below bankfull depth). The 

confidence intervals for detection of inundation were tested at 1, 2, and 3 standard deviations 

(Lamb et al. 2019). In this effort we selected a 1.5 SD threshold for classification of inundation 

above bankfull depth. 
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Figure 4.10. 2016 and 2017 example high tide VV/VH ratio imagery (left) and classified 

inundation with 1.5 SD low tide VV/VH confidence interval (right).  
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Figure 4.11. 2017-2019 Imagery classified with 1.5 SD change detection approach. For the full 

above bankfull depth high tide classified imagery, agreement between estimated water level and 

classified inundation products was 84/110 (76.4%). 
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Figure 4.12. High tide optical surface water/inundation products at Kirkpatrick Marsh creek tidal 

stage >= 1.106 m. JRC maximum surface water extent from Landsat 5-8 record (1985-2019) 

Pekel et al. (2016) on left. No sensors that detected inundation were classified as inundated by 

the JRC product. USGS DSWE product on right features a more complex classification with 

wetland classification in addition to surface water. DSWE product achieves accuracy of 3/11. 

 

 The VV/VH change detection products were validated over a range of high tide imagery. 

This validation yielded a 78.5% accuracy. Comparatively, existing high tide optical inundation 

products were also validated against water level sensors. Although the Sentinel-1 C-band 

products did not yield high accuracies, those of optical surface water/inundation products 

accuracies were far lower for the Kirkpatrick Marsh high marsh site. 

 The performance of the Kirkpatrick Marsh change detection approach in Figures 4.10 and 

4.11 is contrasted by a similar change detection approach incorporated over Wheeler Marsh in 

Figure 4.13. A key distinction between these approaches is that the Wheeler Marsh inundation 

product is produced with both VV/VH and VH channel change detection layers. 
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Figure 4.13. Sentinel-1 change detection classified inundation combining VV/VH and VH 

change detection at a 1.5 SD level. Low tide VV/VH and VH layers were computed for all 

Sentinel-1 imagery from 2016-2019 below 0.3048 meters time-adjusted Bridgeport NOAA 

station tidal stage. Classified inundation is validated directly by water level sensors during 2018 

deployment. Overall accuracy for tidal series, including low tide classifications (not shown in 

figure) was 87.5% (71/80) from 8 total Sentinel-1 scenes. 
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Figure 4.14. High tide optical surface water/inundation products at Wheeler Marsh (tidal stage 

>= 2.124 m. JRC maximum surface water extent from Landsat 5-8 record (1985-2019) Pekel et 

al. (2016) on left. 4/10 sensors detected inundation from the JRC product. USGS DSWE product 

on right features a more complex classification with wetland classification in addition to surface 

water. DSWE product achieves accuracy of 5/10 if considering only inundation classification, 

but 9/10 if also considering wetland classification as inundated. 

 

 Overall, both the C-band SAR inundation products and optical inundation products 

performed much better over the Wheeler Marsh site compared to Kirkpatrick Marsh in terms of 

inundation detection. This is expected given that the Spartina alterniflora, the dominant species 

of vegetation at Wheeler Marsh, has much more open canopy than the high marsh species of 

Kirkpatrick Marsh. It is possible that the degree of canopy closure combined with the larger 

degree of canopy submergence during high tide combines in a manner such that both optical/IR 

reflectance and C-band SAR backscatter respond to marsh hydrologic state. If comparative 

performance is any indication, the lack of inundation detection at Kirkpatrick Marsh suggests 

that optical/IR products do not perform well in densely vegetated marsh. High tide L-band 

imagery did not exist for Kirkpatrick Marsh, but did for Wheeler Marsh where performance is 

assessed in Figure 4.15.  
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Figure 4.15. PALSAR/PALSASR-2 threshold-based inundation products over Wheeler Marsh. 

90% classification accuracy comparing SAR inundation products to in situ water level sensor 

inundation state (54/60). 
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 Comparing the C-band change detection-based inundation product development to the L-

band threshold-based inundation product development over the Wheeler Marsh site yielded 

similar performance in total classification accuracy (87.5% vs. 90%). However, a key distinction 

needs to be drawn based on the fact that the L-band thresholding approach does not require prior 

satellite-based assessment of the site (i.e. calculating a normal range of low tidal marsh 

variability) as the C-band change detection approaches did. This difference was due to the fact 

that L-band backscatter showed a completely separable distribution change between high and 

low tide, while C-band did not exhibit this separability. Thus, even when inundation 

classification performance may be comparable, the threshold-based approaches prove a more 

effective method with broader applicability outside of a given study region. The USGS DSWE 

product performed well in inundation mapping at Wheeler Marsh. Although we were not able to 

test an extensive set of DSWE products, it should be noted that nadir-view optical products do 

provide potential capabilities in assessing inundation state provided that vegetated canopies 

retain some degree of openness. However, in tidal marsh systems that lack some degree of 

canopy openness, like Kirkpatrick Marsh, optical/IR products cannot detect sub-canopy 

hydrologic state as SAR does. Further, a more extensive validation of DSWE performance at the 

Wheeler Marsh site is needed, especially considering multiple DSWE classes need to be merged 

to provide an inundation mapping performance accuracy comparable to L-band SAR at 90% 

accuracy. 

 The fact that L-band SAR imagery provided more clearly defined responses to marsh 

inundation state than C-band SAR is consistent with previous literature (Ramsey et al. 2013; 

Kim et al. 2014). This difference is likely attributable to C-band backscatter being most 

responsive to marsh vegetation variability. This is evidenced by variability in C-band 
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polarimetric response comparing Kirkpatrick Marsh and Wheeler Marsh. The Kirkpatrick Marsh 

site showed a strong positive correlation between VV backscatter and tidal stage, compared to 

Wheeler Marsh that showed a strong negative correlation between VH backscatter and tidal 

stage. Fairly consistent decreases in VV/VH ratio was observed over both sites which motivated 

the use of the VV/VH ratio change detection for both Kirkpatrick Marsh and Wheeler Marsh for 

inundation mapping. However, Wheeler Marsh also required the use of the VH channel to map 

inundation regimes accurately. These differences in backscatter responses at the varying C-band 

polarizations may be attributed to vegetation differences at the two sites (a high elevation marsh 

vs. low elevation marsh). In the next section we implement radiometric modeling efforts to help 

elucidate casual factors leading to differing polarimetric and frequency-based response to tidal 

inundation. Namely the role that marsh vegetation, hydrologic state, and SAR sensor attributes 

play in influencing observed backscatter responses. 

 

4.3.2 Radiometric Modeling Results 

 It is critical to establish mechanistic understanding of SAR scattering mechanisms in 

being able to produce and interpret wetland inundation products. In previous efforts by Lamb et 

al. (2019) inundation products were established using empirical methods that had not been 

validated or tested against theoretical analyses (i.e. radiometric modeling efforts). The following 

results from our MIMICS simulations show backscatter response for a range of vegetation 

canopy heights and marsh surface hydrologic states and assesses whether the backscatter range 

for the HH channel < -13.5 to -14 dB and HV channel < -23 is sufficient for detecting sub-

canopy inundation state. Figures 4.16-4.18 represent changes in starting canopy height at 0.5, 

1.0, and 2.0 meters with growing season vegetation water contents (66.57%). 
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Figure 4.16. MIMICS simulated scattering response for PALSAR and Sentinel-1 for a 0.5 meter 

vegetated canopy during growing season. Negative x-axis values correspond to % soil moisture 

(-1.0 = 0.0% soil moisture, 0.0 = 100% soil moisture). Note the step function between wet soil 

and standing water shows distinct break in backscatter for both Sentinel-1 and PALSAR for HH 

channel, while VV shows a less distinct break. Defined PALSAR HH inundation classification 

threshold (-14 dB) shows effective separation only at soil moisture values greater than 20%. 

Sentinel-1 VV shows less sensitivity to soil moisture variability than PALSAR, but does show a 

backscatter decrease when inundated that completely separates between moist soil and standing 

water, albeit at a less drastic backscatter decrease than HH. Note that Sentinel-1 HH polarization 

provides the best performance in inundation detection, although we obtained no Sentinel-1 HH 

imagery over our study sites. 

 

 

 

 

 

 

 

Figure 4.17. MIMICS simulated scattering response for PALSAR and Sentinel-1 for a 1.0 meter 

vegetated canopy during growing season. Like the 0.5 meter canopy simulation in the preceding 

figure, PALSAR HH backscatter step function decrease was drastic comparing wet soil to 

standing water. However, non-inundated soils could only be distinguished from standing water at 

values above 20% for PALSAR.  
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Figure 4.18. MIMICS simulated scattering response for PALSAR and Sentinel-1 for a 2.0 meter 

vegetated canopy during growing season. Sentinel-1 VV backscatter has almost no sensitivity to 

changes in soil moisture or water level until canopy was submerged up 1.5 meters. This 

demonstrates that C-band VV backscatter saturates in vertically-structured higher biomass marsh 

canopies and is far less effective than Sentinel-1 VH or L-band channels for assessing marsh 

hydrologic state. 

 

 The previous three figures demonstrate that with co-polarized backscatter, L-band 

produces drastic backscatter decreases in response to change in inundation state for a growing 

season vertically structured canopy of various total heights. As expected with the longer 

wavelength L-band signals, there is more sensitivity to sub-canopy hydrologic state than for C-

band signals. Importantly, simulated Sentinel-1 C-band HH signals had a far greater degree of 

sensitivity to hydrologic state change than VV signals. This is an important finding when 

considering SAR polarimetric operating mode for wetland studies. Unfortunately, the Sentinel-1 

satellite has only acquired VV and VH imagery over our Mid-Atlantic study sites. In the 

following three figures we evaluate backscatter response from a growing season canopy with 

simulated cross-polarimetric signals and evaluate backscatter responses from non-growing 

season canopies.  
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Figure 4.19. MIMICS simulated scattering response for PALSAR HV and Sentinel-1 VH for a 

2.0 meter vegetated canopy. For the PALSAR HV channel, in order to distinguish between soil 

and inundation, a soil moisture value greater than 25% was needed to separate between 

hydrologic states with the threshold of -23 dB (black horizontal line). The Sentinel-1 VH channel 

shows a much greater sensitivity to the change in hydrologic state than the VV channel shown in 

the preceding figure. However, the step change in backscatter is not nearly as drastic as the L-

band HV response. 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.20. MIMICS simulated scattering response for PALSAR and Sentinel-1 for a 2.0 meter 

dry vegetated canopy (non-growing season). Compared to the case of growing season canopy in 

figure 4.18, the Sentinel-1 and PALSAR VV and HH channels show backscatter decrease as a 

function of hydrologic state change. Like previous figures, L-band only shows separation beyond 

20% soil moisture. 
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Figure 4.21. MIMICS simulated scattering response for PALSAR HV and Sentinel-1 VH for a 

2.0 meter dry vegetated canopy (non-growing season). For the PALSAR HV channel, in order to 

distinguish between soil and inundation, a soil moisture value greater than 30% was needed to 

separate between hydrologic states with the threshold of -23 dB (black horizontal line). The 

Sentinel-1 VH channel shows comparable sensitivity to the change in hydrologic state compared 

to the VV channel shown in the preceding figure. The simulated inundated backscatter values 

were not observed in any imagery and are near or lower than the noise floor of most SAR 

sensors. 

 

 

 The results from the MIMICS simulations demonstrate that in general both C-band and 

L-band SAR backscatter responds to sub-canopy hydrologic state. For both 0.5 meter and 1.0 

meter growing season canopies, Sentinel-1 and PALSAR simulations both showed backscatter 

step change decrease that was responsive to change between saturated soil and an inundated 

surface. In terms of the MIMICS model’s representation of reality, this step change essentially 

represents a change from a rough water surface (at a soil moisture of 100%) to a smooth water 

surface. This calls attention to the importance of water’s roughness impacting backscatter. Under 

marsh canopies, water surfaces are generally smooth as a result of stems and leaves attenuating 

water’s movement from wind, waves, and tides (Leonard and Luther 1995). Thus, the general 

form of this model’s hydrologic change does approximate marsh hydrologic conditions fairly 
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well. Although this abrupt backscatter step change is in reality slightly more continuous as soils 

saturate and partially inundate transitioning from a surface of high roughness to moderate surface 

to low roughness. 

 The differences in C-band and L-band response are most apparent in the 2.0 meter 

canopy simulations. With the Sentinel-1 VV channel, there was very little response to increasing 

soil moisture and inundation depth. The Sentinel-1 VH channel in contrast showed fairly well-

defined response to the moist soil-inundation transition for all canopy heights during the growing 

season and non-growing season. According to these simulations, Sentinel-1 VH channel would 

ideally present a more ideal form of imagery for inundation detection than PALSAR HH or HV 

channels. However, it was apparent in all MIMICS simulations that the greater magnitude of step 

change for the L-band PALSAR simulations was likely necessary for separating moist soils from 

inundated states unambiguously as there are likely uncertainties and errors in attempting to 

simulate marsh canopy structure and hydrologic state with this modeling effort. The greater step 

change for the L-band signals was likely drastic enough to negate modeling errors and 

uncertainties and is likely why a comparison to the empirical L-band image analysis shows 

similarly well-defined backscatter decreases in response to inundation. The radiometric modeling 

effort findings were corroborated by the empirical findings in Figures 4.5 and 4.6 comparing 

PALSAR HH and HV tidal series to Sentinel-1 VH tidal series, where the +/- 1 standard 

deviation backscatter distributions were separable for the PALSAR images comparing low tide 

and high tide, while this was not true for Sentinel-1 VH images. It should be noted, however, that 

in spite of the general correspondence between the MIMICS modeling efforts and L-band 

empirical assessments in earlier sections, that threshold-based approaches may have limited 

utility in marshes that have lower soil moisture values (< 20-30%). However, these lower 
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moisture conditions are somewhat atypical for tidal marshes, for instance Moffett et al. (2015) 

reported average soil volumetric moisture contents of 0.83 (sd = 0.15) in San Francisco tidal 

marshes. Nonetheless, this is still an important limitation of the threshold-based classification 

approach that must be clarified. Up to this point, we have discussed total backscatter response to 

various marsh vegetation and hydrologic states, in the following section we provide a separation 

of the scattering mechanisms associated with the MIMICS simulations for C-band VV, HH, VH 

and L-band HH, VV, HV responses. In the figures that follow, backscatter contributions are 

shown in values of σ rather than dB. In the following plots, total backscatter includes scattering 

contributions from surface backscatter, direct crown backscatter, crown-ground-crown 

backscatter, and crown-grown backscatter as described earlier in equation 1. The crown-ground 

term used in the following plots represents the additions of both crown-ground and ground-

crown scattering. 
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Figure 4.22. MIMICS simulated Sentinel-1 C-band VV scattering contributions from tidal 

marsh. This includes total backscatter, direct crown scattering, crown-ground scattering, crown-

ground-crown scattering, and ground scattering. Note that crown-ground scattering and crown-

ground-crown scattering overlap at ~0.00 σ. Direct crown scattering dominates total scattering 

response. σ scaled between 0.00 to 0.10. 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.23. MIMICS simulated Sentinel-1 C-band HH scattering contributions from tidal 

marsh. This includes total backscatter, direct crown scattering, crown-ground scattering, crown-

ground-crown scattering, and ground scattering. Note that ground scattering and crown scattering 

dominate total scattering response when soil is moist, and crown scattering dominates total 

scattering when marsh surface is inundated. σ scaled between 0.00 to 0.45. 
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Figure 4.24. MIMICS simulated PALSAR L-band VV scattering contributions from tidal marsh. 

This includes total backscatter, direct crown scattering, crown-ground scattering, crown-ground-

crown scattering, and ground scattering. Note that majority of total scattering response is from 

ground scattering with lesser amounts of crown-ground scattering when soil is moist. Crown-

ground scattering dominates total scattering when marsh surface is inundated. σ scaled between 

0.00 to 0.15. 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.25. MIMICS simulated PALSAR L-band HH scattering contributions from tidal marsh. 

This includes total backscatter, direct crown scattering, crown-ground scattering, crown-ground-

crown scattering, and ground scattering. Note that majority of total scattering response is from 

ground scattering with lesser amounts of crown-ground scattering when soil is moist. Crown-

ground scattering dominates total scattering when marsh surface is inundated. σ scaled between 

0.00 to 0.10. 
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Figure 4.26. MIMICS simulated Sentinel-1 C-band VH scattering contributions from tidal 

marsh. This includes total backscatter, direct crown scattering, crown-ground scattering, crown-

ground-crown scattering, and ground scattering. Note that direct crown and ground scattering 

dominate total scattering response. Direct crown scattering dominates total scattering response 

when marsh surface is inundated. σ scaled between 0.00 to 0.020. 

 

 

 

  

 

 

 

 

Figure 4.27. MIMICS simulated PALSAR L-band HV scattering contributions from tidal marsh. 

This includes total backscatter, direct crown scattering, crown-ground scattering, crown-ground-

crown scattering, and ground scattering. Note that majority of total scattering response is from 

ground scattering and crown-ground scattering when soil is moist. Crown-ground scattering 

dominates total scattering when marsh surface is inundated. σ scaled between 0.00 to 0.020. 
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 One of the general findings from the MIMICS efforts was that double bounce scattering 

was not a dominant form of scattering in terms contribution to total backscatter intensity in 

response to hydrologic state change. This was evidenced by the fact that in all MIMICS 

simulations (SAR wavelengths, SAR polarizations, canopy heights, vegetation moistures, etc.), 

total backscatter decreased in response to change from saturated soil to an inundated surface, and 

further decreased in response to increasing inundation depth. If the double bounce mechanism 

were dominating total backscatter response compared to volume and surface scattering 

variability, an increase in backscatter intensity in response to inundation would be expected. This 

is especially true considering the MIMICS radiometric model was parameterized with a smooth 

inundated surface that would have theoretically led to maximization of double corner scattering 

from the water surface and vegetation. Figures 4.16-4.21 all showed decreases in total 

backscatter intensity when transitioning to an inundated state. This decrease was especially 

prominent for L-band signals showing large decreases in backscatter, indicating that the 

combination of the surface roughness and dielectric properties have a strong influence on 

backscatter intensity. 

 Assessment of individual scattering mechanisms in Figures 4.22-4.27 provided important 

insights on differences between tidal marsh scattering mechanisms comparing C-band and L-

band signals. A very prominent distinction between C-band and L-band signals was the fact that 

direct crown scattering dominated the total scattering response from inundated marshes at C-

band frequencies (Figures 4.22 and 4.23) while crown-ground (and ground-crown) responses 

dominated total scattering at L-band frequencies (Figures 4.24 and 4.25). This finding suggests 

that even when marsh vegetation canopies are relatively high biomass, L-band signals still 

effectively interact with the underlying surface. Additionally, the dominance of the crown-
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ground scattering demonstrates that double bounce scattering provides a substantial contribution 

to total scattering at L-band frequencies when marshes inundate. This is a crucial point; while 

total backscatter intensity may decrease as marshes become inundated due to reductions in 

surface and volume scattering, double bounce scattering may remain, or become, the primarily 

mechanism contributing to total backscatter. These findings highlight a key technical advantage 

of using a radiometric modeling to identify different scattering contributions and highlights a key 

technical weakness of performing analyses using only SAR backscatter imagery to assess tidal 

marsh inundation state. While one could surmise reasons for backscatter decrease in response to 

inundation state change in an empirical image analysis, the MIMICS simulations were essential 

for resolving changes in scattering contributions.  

 These radiometric modeling efforts helped point to the fact that multiple scattering 

beyond double bounce is generally negligible in terms of total backscatter contributions. This is 

demonstrated by the fact that crown-ground-crown scattering is negligible compared to crown-

ground scattering. Volume scattering from vegetated canopies was not a dominant form of 

backscatter at L-band frequencies. This was evidenced by the fact that L-band HV channel 

crown-ground backscatter response shown in Figure 4.27 is approximately three times lower 

than the L-band HH backscatter response shown in Figure 4.25 indicates that the depolarizing 

impact of crown volume scattering is not playing a significant role in total scattering response. 

These findings point to the fact that double bounce scattering mechanism is dominant at L-band 

frequencies when marshes inundate. In the next section we assess the presence of double bounce 

scattering in inundated tidal marshes utilizing SAR image polarimetric phase information, guided 

by the findings of the modeling effort that help elucidate expected physical responses.   
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4.3.3 Polarimetric Decompositions and Threshold-Based Classifications Comparisons 

 In the following section we perform van Zyl polarimetric decompositions on quad-

polarimetric PALSAR-2 imagery acquired over Wheeler Marsh at high tide (2.582 m) and over 

Blackwater NWR at high tide (0.777 m) and low tide (0.302 m). The van Zyl decomposition 

utilizes polarimetric phase information in the coherency matrix to derive scattering intensity for 

odd-bounce scattering (which single bounce surface scattering dominates), even-bounce 

scattering (which double bounce scattering dominates), and volume scattering intensity. From 

this information, dominant scattering processes can be directly inferred. The findings from the 

MIMICS modeling effort indicate that as marshes inundate, they should exhibit lower total 

backscatter intensity, while the double bounce mechanism becomes more prominent than surface 

and volume scattering in a relative sense. When marshes reach near submergence, all backscatter 

should be reduced substantially. For the three PALSAR-2 images we performed polarimetric 

decompositions on, we also compare to the threshold-based backscatter products that utilize the 

HH backscatter and HV backscatter intensity. Utilization of the same imagery provides a direct 

performance comparison between polarimetric decomposition and thresholding approaches. 

Further, the three PALSAR-2 images we selected cover a range of tidal stages as previously 

stated. Because the tidal marsh canopies at Wheeler Marsh often nearly or completely submerge 

during high tide while Blackwater NWR tidal marshes do not, this comparative assessment of 

scattering mechanisms with the polarimetric decompositions serves to highlight potential 

differences in scattering response. 

 Figure 4.28 provides direct evidence that when marshes are sufficiently submerged, L-

band scattering may be nearly identical to that of open water. Note that the Long Island Sound 

estuary in the southern most portion of the image and tidal marshes have nearly identical 
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scattering contributions from each channel. The very dark polarimetric decomposition image 

indicates that surface, double bounce, and volume scattering are all minimal. Likely because 

specular forward scattering is dominating total scattering response. In Figure 4.29 that follows, 

the scattering contributions over Blackwater NWR differ greatly due to lack of canopy 

submergence compared to Wheeler Marsh. However, the high tide images still show successful 

classification of inundation extent using threshold-based approaches at both Blackwater NWR 

and Wheeler Marsh. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.28. Wheeler Marsh high tide (2.582 m) comparison between van Vyl polarimetric 

decomposition (left) and threshold-based inundation classification (right). In van Zyl RGB 

channels correspond to double bounce, volume, and surface scattering, respectively, with all 

channels scaled between -4 to -20 dB. Note that nearly all tidal marsh dominated areas including 

the Great Meadows system to the southwest and the Housatonic River wetlands to the north of 

Wheeler Marsh show majority inundated in the threshold-based classification. The van Zyl 

decomposition shows nearly identical scattering between inundated marshes and permanent open 

water. 
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Figure 4.29. Comparison of van Zyl decompositions for low tide image over Blackwater NWR 

(left) and high tide (right). Vertically descending panels correspond to van Zyl decomposition, 

HH backscatter, and classified inundation extent from top to bottom. van Zyl RGB channels 

correspond to double bounce, volume scattering, and surface scattering, respectively. All SAR 

images scaled between -20 and -4 dB. Note that tidal marsh inundated area increases greatly 

comparing the low tide classification (left) to the high tide classification (right). In the van Zyl 

decompositions surface scattering dominates at low tide indicating a primary backscatter 

response from a rough, moist soil surface. While high tide shows a decrease in total backscatter 

magnitude for all scattering types and a relative shift from surface scattering (cyan) to a 

combination of volume and double bounce (brown) consistent with greater inundated area. 
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4.3.4 Development of UAVSAR Inundation Products 

 We selected scenes from the UAVSAR AM/PM Campaign from 2019 that captured 

hydrologic variability over Gulf Coast study sites. CRMS station wetland water level 

observations were used to assess the ability of UAVSAR imagery and classified UAVSAR 

inundation products in effectively capturing variability in inundation extent. The three Gulf 

Coast study sites we selected are associated with large river systems, and thus, influenced 

strongly by freshwater hydrologic variability in addition to tidal influence. Below we provide 

comparisons of classified wetlands from Lamb et al. (2020) and overlay UAVSAR imagery and 

classified inundation products using the approach of thresholding imagery where HH < -14.0 dB 

and HV < -23.0 dB. 

 

 

 

 

 

 

 

 

Figure 4.30. Sabine River region classified wetlands within UAVSAR image and CRMS sites 

with water level height on left. UAVSAR image with HH-HV-VV RGB false-color composite 

on right. HH and VV channels scaled between -4.0 and -20.0 dB, HV channel scaled between -

10.0 and -30.0 dB.  
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Figure 4.31. Sabine River region August 12th 2019 UAVSAR Image (HH = Red, HV = Green, 

VV = Blue) (left) and classified inundation extent (includes surface waters and inundated 

wetlands) (right). Note that CRMS water level values (feet) associated with each station are 

relatively low and inundation is not detected over marsh areas. 6/12 CRMS stations are classified 

as majority inundated. 

 

 

 

 

 

 

 

Figure 4.32. Sabine River region September 23rd 2019 UAVSAR Image (HH = Red, HV = 

Green, VV = Blue) (left) and classified inundation extent (includes surface waters and inundated 

wetlands) (right). Note that CRMS water level values (feet) associated with each station are high 

and classified inundation extends into marsh dominated regions. 10/12 CRMS stations are 

classified as majority inundated. 
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Figure 4.33. Sabine River region September 30th 2019 UAVSAR Image (HH = Red, HV = 

Green, VV = Blue) (left) and classified inundation extent (includes surface waters and inundated 

wetlands) (right). Note that CRMS water level values (feet) associated with each station are 

relatively high and classified inundation extends into marsh dominated regions. 8/12 CRMS 

stations are classified as majority inundated. 

 

 Comparing the three classified inundation products above shows that they effectively 

capture variability in marsh inundation extent and provide a stable classification over open water. 

However, it is somewhat challenging to robustly validate these products. The CRMS stations 

marsh water level values showed varying water levels between stations in the August image that 

did not coincide with differences in classified inundation. These station differences may be 

problematic in providing direct inundation product performance assessment. However, the 

CRMS stations do provide the important indication that every station that was classified as 

inundation in the low water image was also classified as inundated in the moderate water level 

image. The same was true comparing the moderate water level image to the high water level 

image. This demonstrates that the inundation product is responding accurately to hydrological 

change. 
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Figure 4.34. White Lake region classified wetlands within UAVSAR image and CRMS sites 

(upper panel). UAVSAR image with HH-HV-VV RGB false-color composite (middle panel). 

HH and VV channels scaled between -4.0 and -20.0 dB, HV channel scaled between -10.0 and -

30.0 dB. Classified inundation extent shown in lower panel for July 1st 2019. 9/20 CRMS 

stations inundated. 



194 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.35. White Lake region July 16th 2019 classified inundation product. 13/20 CRMS 

stations showed classified inundation. 
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Figure 4.36. White Lake region July 25th 2019 classified UAVSAR inundation image. 10/20 

CRMS stations show detected inundation.  

 

 The results from the White Lake area did not show substantial variations in inundated 

extent as the Sabine River analysis did. A key exception was in the July 16th 2019 image which 

showed increased inundation in the eastern portion of the image. This increased inundation area 

largely agrees with the NOAA tidal gauge observations from the Freshwater Canal Locks station 

that observed a very high water event two days prior. It is highly plausible that the marshes 

surrounding this area remained inundated after this high water event. All of the White Lake 

images showed that the inundation classification was not effective for the open water in the near 



196 
 

range portion of the UAVSAR images. All three images showed a lack of proper classification in 

the northern portion of the image along the near range swath.  

 

4.4. Discussion and Conclusions 

 The inundation products that were previously developed in Lamb et al. (2019) for the 

Chesapeake Bay and expanded to sites in the Long Island Sound in this effort, were validated 

against in situ water level sensors. The C-band based inundation product accuracy for a high 

marsh system with a low tidal range at Kirkpatrick Marsh was 76.4% when using a VV/VH ratio 

change detection-based approach. C-band inundation product classification accuracy improved 

when using both VV/VH and VH imagery in a change detection-based approach for the Wheeler 

Marsh site where inundation classification had an 87.5% accuracy. Use of L-band imagery 

showed the greatest inundation classification accuracy at 90%. The ability of Sentinel-1 C-band 

imagery and PALSAR/PALSAR-2 L-band imagery to detect tidal inundation state was also 

assessed through radiometric modeling efforts. One of the clear distinctions between C-band and 

L-band response was the fact that during a transition from moist soil to an inundated surface, L-

band backscatter decreases were much more drastic. Our modeling efforts also indicate that L-

band signals produce a much stronger ground response from tidal marshes, and overall more 

effective characterization of marsh surface hydrologic state. This was especially true for the HH 

channel which was used to derive inundation products over the VV channel. Although the 

findings from our radiometric modeling efforts indicated that Sentinel-1 VH and HH channels 

would be effective for detecting a moist soil to inundated surface transition, a sufficiently 

separable change in backscatter distribution was not observed for the VH channel at Wheeler 

Marsh in our empirical image analysis. This finding highlights the importance of the magnitude 
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of backscatter decrease when using L-band imagery for characterizing tidal marsh inundation 

state which showed a much more pronounced decrease in backscatter. 

 The findings that backscatter decreased in response to the presence of tidal marsh 

inundation in both the theoretical modeling efforts and empirical image analysis largely agree 

with previous literature (Tannis et al. 1994; Kaiskchke and Bougier-Chavez 1997; Slatton et al. 

2008). These results point the fact that the backscatter response is dominated by a shift to 

forward scattering in tidal marshes as water levels rise. Our radiometric modeling efforts point to 

the fact that the double bounce scattering mechanism is still present, and is likely the dominant 

scattering mechanism when marshes are inundated, but is best characterized by polarimetric 

phase information as opposed to backscatter intensity information. This is also highlighted by 

studies like Brisco et al. (2017), Kim et al. (2014), and Hong et al. (2013) that found that phase 

information, whether used in InSAR-based coherence or polarimetric analyses, provided the best 

isolation of this scattering mechanism characterizing wetland inundation state. However, the 

findings in this research effort illustrate that identification of specific scattering mechanisms may 

not be necessary to classify marsh inundation state effectively. Our radiometric modeling efforts 

clearly demonstrated that at L-band frequencies, backscatter intensity unambiguously decreases 

as marshes inundate. Our threshold-based inundation products, which leverage this backscatter 

decrease, produced relatively high accuracies in mapping inundation with L-band imagery. An 

additional advantage of this threshold approach is the fact that when wetlands are nearly 

submerged, only forward scattering dominates, yet threshold-based approaches still provide 

effective assessments of hydrologic state as they would for open water. An example of this was 

shown in the polarimetric decomposition analysis in this effort where a high tide image from 

Wheeler Marsh showed minimal double bounce, surface, and volume scattering, whereas a high 
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tide image from Blackwater NWR showed moderate amounts of double bounce scattering when 

inundated. Given the Wheeler Marsh vegetation has been observed to completely submerge at 

high tide, whereas Blackwater NWR does not, this difference in response is expected. However, 

in spite of these differences in scattering mechanisms, the threshold-based inundation 

classification proved effective in both systems. 

 The findings in this analysis demonstrate that backscatter intensity and phase information 

provide complementary information when assessing tidal marsh inundation state. And that one 

approach may serve as a useful support for the other. The UAVSAR analysis showed promising 

capabilities in classifying tidal marsh inundation when using backscatter threshold approaches 

with multiple polarimetric channels. This has promising implications for the NISAR satellite as 

well. One of the biggest flaws of the UAVSAR inundation product development was a lack of 

capability in classifying inundation at incidence angles of 25-27 degrees off-nadir. Because 

NISAR will operate with an off-nadir view angle ranging from 32 to 47 degrees, this is unlikely 

to be an issue. A larger technical challenge that emerges with the NISAR satellite is the fact that 

the quasi-quad polarimetric nature of the instrument makes it so the phase in each polarimetric 

channel is not readily comparable. This means that true quad-polarimetric decompositions like 

the van Zyl decomposition used here will not be possible. This means that single date image 

inundation product development will most likely rely on backscatter-based approaches for multi-

polarimetric analyses. However, the NISAR satellite is designed with robust InSAR capabilities, 

meaning that phase in multiple images with the same polarization can be computed to derive 

interferograms with associated coherence estimates. With a coherence layer computed between 

two high tide images, the high coherence areas represent the minimum area that both images 

where experiencing coherent scattering. In tidal marshes, this coherent scattering would 
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primarily be due to the double bounce effect. In either case, InSAR coherence layers serve as a 

conservative estimate of total inundated area. These conservative inundated area estimates can be 

combined with the less restrictive threshold-based inundation products to develop robust fused 

inundation products for both backscatter intensity and phase information. In Chapter 5, the 

concluding chapter of this thesis, more details on the NISAR mission are discussed. 
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CHAPTER 5 

SUMMARY OF RESEARCH AND FUTURE DIRECTIONS 

 

5.1. Summary of Findings 

 Chapters 2-4 each cover a unique concept in the field of remote sensing-based wetland 

observation and characterization. Chapter 2 highlights the importance of technological 

evaluation and empirical assessments of remote sensing imagery. This chapter illustrates that 

empirical assessments often serve as starting points in remote sensing-based research efforts, 

with observations (i.e. satellite imagery) leading scientific investigations. The findings from 

Chapter 2 yielded some unanticipated results. One especially surprising finding was how varied 

C-band backscatter responses were between different wetland sites with only slightly different 

vegetation communities and hydrological characteristics. Chapter 2’s thematic coverage of the 

importance of empirical analysis ties into another thematically important concept of 

technological assessment of satellite sensor/platform capabilities. The Sentinel-1 SAR that was 

used extensively in Chapter 2 was a relatively new satellite at the time this thesis research began 

(2014 launch). Using empirical image analyses to assess Sentinel-1 image capabilities indicated 

that the technological advancement of a 12-day revisit time provided unprecedented capabilities 

in wetland monitoring, with the most comparable operational C-band satellite, RADARSAT-2, 

having a 24-day revisit. Sentinel-1’s 12-day repeat observations also featured a very consistent 

dual polarization operating mode (VV, VH) that provided a dense timeseries for tidal wetland 

inundation assessment. The primary challenge in characterizing hydrologic variability in tidal 

wetlands is the fact that inundated areas can change significantly on even minutely timescales 

with approximately six hours between high and low tide. Although no polar orbiting satellite can 
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directly resolve hydrologic change during a single tidal cycle, the more frequently a tidal wetland 

can be observed (or sampled), the more likely a given satellite is to resolve the dominant modes 

of tidal variability through a sufficient number of observations. This was a clear technical 

advance provided by the Sentinel-1 satellite which acquired imagery over a narrow interval and 

wide range of tidal stages. The advantages of a 12-day revisit are also apparent in characterizing 

the hydrology of wetlands dominated by seasonal hydrologic variability as this variability can be 

resolved directly with 12-day repeat imagery. In addition to tidal inundation assessment, the 

frequent revisit of Sentinel-1 provided an accurate characterization of wetland vegetation 

senescence and identified different forms of senescence comparing persistent and non-persistent 

emergent vegetation. This technological assessment of Chapter 2 findings served as the 

foundation for Chapter 3.  

 The ecological science theme in Chapter 3 built on many of the technological 

assessments and empirical findings of Chapter 2. Chapter 3’s expansion of wetlands mapping 

and vegetation characterization approaches to larger regional scales outside of the Chesapeake 

Bay to the Mid-Atlantic and Gulf Coast regions yielded similar, but slightly improved accuracies 

for the mapping of emergent wetlands, including tidal marshes. This indicated that SAR-

optical/IR fusion may be an effective approach for mapping emergent wetlands globally. The 

addition of invasive Phragmites australis to the expanded classification effort for the Mid-

Atlantic region did not greatly impact the accuracy of the mapping of tidal marshes and 

freshwater marshes with native vegetation as all three classes were mapped with greater than 

80% accuracy. The approaches used for this mapping effort present a potentially useful tool for 

natural resource managers in monitoring the spread of this invasive species. A random forest-

based classification experiment in Chapter 2 demonstrated that Sentinel-1 C-band SAR annual 
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backscatter variability (i.e. standard deviation) was one of the most statistically important layers 

for mapping non-persistent marsh vegetation. Building on the findings from Chapter 2 with a 

Sentinel-1 C-band backscatter analysis covering 2016-2017, we expanded these efforts to include 

2017-2019 in Chapter 3. All four years of the Sentinel-1a timeseries showed very consistent 

tracking of vegetation phenological change. We leveraged these findings and utilized Sentinel-1 

standard deviation layers to map non-persistent emergent marsh vegetation with an accuracy 

greater than 93%. An unexpected direction of this research was the finding that the invasive 

water chestnut (Trapa natans) which is extremely prolific in the Hudson River, was classified 

similarly as rooted native non-persistent emergent wetland species initially. While carrying out 

the research effort in Chapter 3, it became apparent that separation between invasive Trapa 

natans and native non-persistent marsh vegetation was critical for assessing wetland and 

deepwater ecological status. To accomplish this objective, we employed a decision-tree approach 

that provided a straightforward separation between Trapa natans and rooted non-persistent 

emergents which were mapped with >93% accuracy and >96% accuracy, respectively. The 

development of this split between these vegetation types was critically dependent on Sentinel-1’s 

frequent 12-day revisit time, as a short time period in spring was used to distinguish the 

phenology of Trapa natans from other non-persistent species. Linking to the theme of Chapter 2, 

this technical improvement (e.g. more frequent imagery) likely provides improved capabilities 

for any number of wetland observation and characterization studies that require the detection of 

short timescale processes.  

 In Chapter 3, specific Gulf Coast emergent wetland classes were not classified as 

accurately as they were in the Mid-Atlantic, likely because complex salinity gradients, which 

influence wetland vegetation community composition, made the split between freshwater 
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marshes and tidal marshes difficult. However, the combined emergent wetland class was mapped 

with greater than 91% accuracy. Combined with the fact that open water was mapped with 

greater than 93% accuracy, this presents an important tool for natural resource managers in the 

Gulf Coast tracking conversion of emergent wetlands to permanent open water, which is a 

continued issue in the region as a result of sea level rise and sediment budget deficits. 

 Chapter 4 also builds on several of the findings in Chapter 2 that evaluated tidal 

inundation mapping capabilities. This chapter thematically carries an engineering focus as 

inundation detection algorithm development was the primary objective. A number of the 

inundation products that were developed over study sites in Chapter 2 (Kirkpatrick Marsh, 

Wheeler Marsh, and Blackwater NWR) were assessed rigorously in Chapter 4 through both in 

situ validation and radiometric modeling efforts. As Chapter 1.5 had illustrated, the degree to 

which SAR surface scattering, double bounce scattering, and volume scattering respond to 

emergent wetland inundation state is somewhat debated. Part of the motivation behind the 

radiometric modeling effort was to evaluate the presence of these scattering mechanisms in 

marshes with varying hydrologic conditions. In all radiometric modeling runs, C-band and L-

band backscatter decreases were observed in response to inundation for simulated marshes with 

vertically oriented vegetation. This indicates that the variability in total backscatter intensity may 

not be dominated by double bounce scattering, which would increase backscatter, but instead 

dominated by decreases in surface and volume scattering contributions to total backscatter. 

Polarimetric decompositions that make use of the multi-polarization and relative phase 

information in SAR imagery showed pronounced differences in dominant scattering mechanisms 

comparing images acquired at low tide and high tide. For example, for the Blackwater NWR site 

there was a relative shift from surface scattering to double bounce scattering as tidal stage 
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increased, even though total backscatter intensity decreased. It should be noted that backscatter 

intensity may decrease as marshes inundate, as forward surface scattering away from the sensor 

dominates total scattering response, while double bounce scattering still has the primary impact 

on backscattered signal returning to the sensor. This means that phase information (polarimetric 

phase differences or repeat pass interferometry) may provide alternative and complementary 

information on wetland inundation state compared to approaches that utilize backscatter intensity 

information. Some of the most high-quality SAR wetland inundation assessment studies rely on 

phase-based approaches (Brisco et al. 2017; Schmitt and Brisco 2013; Hong and Wdowinski 

2013; Kim et al. 2014). However, in the findings of Chapter 4, we clearly demonstrate that L-

band backscatter intensity thresholding can be applied to imagery for accurate inundation 

mapping, especially over a range of tidal stages. Further, our polarimetric decomposition results 

largely corroborated backscatter thresholding results with respect to detecting inundation over 

similar spatial extents. It should also be noted that when marsh vegetation is not of excessively 

high biomass, the backscatter thresholding approaches we developed may work more effectively 

than polarimetric decompositions which may show varying scattering mechanism classifications 

as a function of vegetation submergence level, while backscatter thresholding shows consistent 

detection of inundation. Further, the thresholding approaches developed in this thesis are not 

dependent on multi-pass interferometric information which requires two or more SAR images of 

the similar tidal stage for accurate assessment of inundation extent. Obtaining multiple images of 

a similar tidal stage can be very challenging when also considering the need to maintain short 

temporal and perpendicular image baselines when implementing InSAR approaches. 

Alternatively, the threshold-based approaches we developed here can be applied to single-date 

imagery. Further, it is much more common for SAR satellites to operate in dual-polarimetric 
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mode than true quad-polarimetric mode. A central focus of Chapter 4 was to provide tidal marsh 

inundation mapping approaches relevant to the upcoming NISAR satellite mission. Because this 

mission will generally operate in L-band dual-polarimetric mode (HH, HV) and quasi-quad-

polarimetric mode (without fully comparable polarimetric phase channels), the use of a dual-

polarimetric backscatter intensity threshold-based approaches for tidal marsh inundation 

mapping presents an alternative to true polarimetric decomposition-based approaches which are 

not feasible.  

 

5.2. Future Directions 

 

 The launch of the Sentinel-1a satellite in 2014 proved invaluable to this thesis research 

effort. Ongoing measurements from Sentinel-1a and the recently launched Sentinel-1b satellite 

will only continue to improve wetland observation and characterization with C-band SAR 

imagery. Landsat 8 imagery also served as a foundation for this research effort. This is especially 

true considering that Chapters 2-3 clearly demonstrate just how important the fusion of SAR and 

optical/IR imagery are for the accurate mapping of wetlands and characterizing wetland 

vegetation. It’s clear that Landsat 8 and Sentinel-1 imagery provide highly complementary 

observations due to similar spatial resolutions, revisit times, and radiometric quality, while also 

offering distinct spectral and polarimetric capabilities. Landsat 8’s radiometric quality is 

noticeably higher than its predecessors Landsat 5 and Landsat 7. Seldom were striping patterns 

or artifacts observed in Landsat 8 imagery over wetlands sites. This was critical for effectively 

computing vegetation and water indices which often rely on visible, near infrared (NIR), and 

shortwave infrared (SWIR) bands. SWIR bands are especially prone to artifacts due to sensor 

design limitations in achieving ample signal to noise ratios in the SWIR EM region. Of all the 
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higher spatial resolution optical sensors operating (30-m or finer), Landsat 8 has some of the 

highest signal to noise ratios (SNRs). Landsat 8 has been widely regarded as the first high 

resolution optical satellite with SNR values capable of acquiring science-quality imagery for 

aquatic/ocean color remote sensing studies (Franz et al. 2015; Pahlevan et al. 2017). Wetland 

remote sensing may not have the strict SNR requirements of ocean color remote sensing, but 

having higher SNRs are always advantageous, especially for improving the accuracy of 

atmospheric correction and cloud masking. The recent launch of Sentinel-2a and Sentinel-2b 

optical/IR satellites provides comparable observations to Landsat 8, albeit at a higher spatial 

resolution and slightly lower radiometric quality (Pahlevan et al. 2019; Kuhn et al. 2019).  Still, 

the radiometric quality is more than sufficient for wetland-based studies. The terrestrial remote 

sensing community has even developed products that harmonize Landsat 8 and Sentinel-2 (HLS) 

observations, producing a combined product with common spectral properties, but at improved 

temporal resolutions (Claverie et al. 2017). With the anticipated launch of Landsat 9 in 2021, 

which will have spectral bands almost identical to Landsat 8, but with slightly higher SNRs, 

optical/IR image temporal revisit continues to improve. Although cloud cover always remains an 

issue for optical/IR imagery, the virtual constellation of two Landsat and two Sentinel-2 satellites 

will provide far greater potential in matching the effective revisit of Sentinel-1 C-band SAR 

imagery, and will far exceed the effective revisit of Sentinel-1 SAR in areas that are not 

significantly impacted by cloud cover. Chapters 2-3 largely found that optical/IR vegetation and 

water indices were much more useful in multitemporal wetlands classifications than the use of 

individual spectral bands, and improved classification accuracies to a much greater extent in 

initial testing. Further, these spectral indices proved far more parsimonious in achieving accurate 

wetlands classifications with as input layers as possible compared to classifications with 
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individual spectral bands. This finding was likely attributed to the fact that temporal compositing 

of Landsat 8 may have produced higher levels of variability in individual band reflectance within 

seasonal temporal windows compared to the spectral indices which are often normalized by 

several spectral bands, and thus, likely provide more stability. When considering issues with 

spatially and temporally varying cloud cover, this stability becomes even more important. The 

fact that Landsat 8 was the only optical/IR imagery used in this thesis research is certainly a 

limitation, and while use of vegetation and water indices do prove advantageous over individual 

bands in terms of performing wetlands classifications over large scales, this may not be true in 

all cases. For instance, several wetlands mapping studies have found that individual spectral 

bands are very useful when utilizing single date imagery, or individual image scenes that are not 

temporally composited (Hurd et al. 2005; Klemas 2013; Campbell et al. 2015). With more 

frequent high spatial resolution optical/IR observations from Landsat and Sentinel-2, wetlands 

classifications incorporating multitemporal optical/IR imagery will likely improve, whether 

utilizing indices or individual bands.  

 Another technical area of optical/IR wetland remote sensing where capabilities are 

expected to greatly improve is in terms of spectral resolution. The upcoming Surface Biology 

and Geology (SBG) Designated Observable will provide high-spatial resolution hyperspectral 

imagery, which will greatly aid in wetland remote sensing, especially in accurately classifying 

vegetation (NAS 2017). Utilization of this imagery allows for matching of satellite spectra to 

known spectra measured in the field or laboratory, providing far greater opportunities for 

classifying vegetation at the species level, which is somewhat challenging with multispectral 

imagery. Hyperspectral imagery also presents the opportunity to not only classify dominant 

vegetation in a single image pixel but classify relative percentages of different species in an 
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image pixel by utilizing spectral unmixing techniques. Although hyperspectral imagery is most 

useful for vegetation classification, it also presents additional opportunities for assessing 

inundation state and potentially even soil moisture state with hyperspectral NIR and SWIR 

imagery. Thesis Chapters 2 and 4 demonstrated that water indices like the mNDWI and 

optically-based surface water products like the USGS DWSE perform relatively well for 

assessing tidal marsh inundation state in sparsely vegetation low marsh regions. Yet these indices 

and products still rely on spectrally coarse multispectral imagery. Being able to assess changes in 

NIR-SWIR spectral slope, rather than spectral angles, provides improved opportunities in 

optically-based tidal marsh hydrologic assessments. 

 The current and anticipated technological advancements in optical/IR remote sensing will 

enhance wetland observation in terms of temporal resolution (revisit) and spectral resolution. 

However, Landsat, Sentinel-2, and SBG satellites are all polar-orbiting. These polar-orbiting 

satellites cannot directly resolve variability in inundation state over a tidal cycle. The anticipated 

launch of the Geosynchronous Littoral Imaging and Monitoring Radiometer (GLIMR) 

instrument in 2026-2027 will however provide this capability for multiple measurements per day 

while acquiring hyperspectral imagery. Although the exact mission and instrument specifications 

are still under development, GLIMR’s geosynchronous orbit will undoubtedly acquire imagery at 

a temporal resolution far finer than is currently capable with polar orbiting satellites. Combined 

with hyperspectral capabilities, and at 300-350 m resolution, this instrument will provide 

potential inundation extent assessments throughout a given tidal cycle, which will be critical in 

directly assessing tidal marsh hydrologic variability. GLIMR will focus primarily over the Gulf 

of Mexico region of the United States (with more than 7 primary science scans per day) but will 

also cover (with fewer scans per day) other coastal regions of the United States (e.g., 2 scans per 
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day over the Caribbean Sea, East/West CONUS, Amazon plume, and Equatorial Pacific). This is 

a necessary trade-off consideration with satellite specifications, you can have high temporal 

resolution, high spatial resolution, and global coverage, but never all three together. 

 The NISAR satellite, which has already been discussed in Chapter 4, will produce high 

spatial resolution L-band imagery with near-global coverage. While NISAR will not acquire 

imagery as frequently as GLIMR, it will do so with a 12-day revisit time, that is unprecedented 

by spaceborne L-band SAR with similar spatial resolutions. Comparatively, PALSAR/PALSAR-

2 have a 46-day revisit. NISAR’s projected acquisition scheme will feature primarily dual-

polarimetric (HH, HV) and some quasi-quad polarimetric (HH, HV, VH, VV) observations over 

coastal regions of the United States (and globally) according to the NASA-ISRO SAR (NISAR) 

Mission Science Users’ Handbook (NASA 2018). The dual-polarimetric and quasi-quad 

polarimetric modes are projected to be fairly stable as an acquisition scheme, meaning NISAR 

will acquire comparable observations every 12 days, which is very similar to Sentinel-1, but with 

more optimal frequency and polarizations for tidal marsh inundation mapping. The expanded 

possibilities that exist with this acquisition scheme at an L-band frequency are great. If there is a 

single point that this thesis has hopefully demonstrated, it is that Sentinel-1’s frequent revisit 

time was absolutely critical in tidal marsh mapping, monitoring, and characterization. The 

findings in Chapter 4, however, found that difficulties can exist with C-band imagery in 

accurately assessing tidal marsh inundation state with single date imagery. L-band imagery in 

contrast had improved performance and allowed the use of single date image inundation 

classifications when using PALSAR/PALSAR-2 and UAVSAR imagery. Having L-band 

inundation products at a 12-day repeat would represent a significant advance in characterizing 

tidal marsh hydrology, especially as it relates to the study of coastal processes including carbon 
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cycling, biogeochemistry, and sedimentology. NISAR’s 12-day repeat L-band imagery provides 

the potential for great improvements in mapping tidal marsh inundation patterns with single date 

L-band imagery, but also in combining this global coverage L-band imagery with NISAR S-band 

image acquisitions over India and globally distributed calibration/validation sites. Further, the 

combination of NISAR L-band imagery and Sentinel-1 C-band imagery may present a highly 

effective tool for assessing tidal marsh inundation state and for mapping tidal marshes at the 

global scale. The empirical findings in Chapters 2 and 4, and the radiometric modeling findings 

in Chapter 4 clearly demonstrate that C-band scattering responds primarily to marsh vegetation 

structure while L-band scattering responds to sub-canopy inundation state. Fusing C-band and L-

band observations presents a tool of tremendous potential utility in tidal marsh mapping and 

monitoring. In regions where C-band, S-band, and L-band imagery are acquired this presents 

further improvements in assessing wetlands characteristics and great opportunities for improving 

radar-based ecological science in general. 

 The recent and anticipated advances in remote sensing technologies relevant to the 

monitoring and characterization of wetlands should be cause for optimism, especially in the 

context of characterization of wetland hydrology as well as vegetation phenology and 

community composition within wetlands systems. However, this optimism should be tempered 

by the fact that defining the extent of wetlands and effectively mapping them at large scales 

remains challenging. It is quite feasible that the science of wetland process studies has advanced 

well beyond the science of wetland distribution studies. There are several examples in previous 

research, and this thesis, that illustrate that very point. It’s helpful to again highlight two 

important datasets that are used to define tidal marsh distributions, the Mcowen et al. (2017) 

product which aggregates national-scale tidal marsh inventories into a global inventory and the 
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National Wetlands Inventory (NWI) which attempts to map all wetlands and deepwaters of the 

United States. In the United States, wetlands are defined legally and scientifically as areas 

possessing hydric soils, hydrophilic vegetation, and unique hydrology. This wetland definition 

and the origination of the term “hydric soils” comes from the Cowardin classification, upon 

which the NWI is based (Cowardin et al. 1979; Tiner 1997). However, actual development of the 

NWI is carried out via photo interpretation of aerial imagery with visible and NIR bands which 

makes the assessment of soil hydrologic characteristics challenging, especially compared to 

SWIR and microwave-based approaches. Further, vegetation community composition simply 

cannot be assessed by aerial photography at the class or species level, especially with single date 

aerial photography. Perhaps identification of hydrology is the only wetland definitional criterion 

that can be effectively assessed with visible and NIR aerial photography (provided vegetated 

canopies remain open). These technical limitations need to be viewed in the context of the 

NWI’s original intended purpose, which is to serve as a reasonably accurate reference dataset for 

resource managers, landowners, regulatory agencies, and scientists needing information on 

wetlands distributions in the United States (Tiner 1997). In the United States, wetlands that are 

considered jurisdictional (subject to federal regulation) need to be defined by highly 

scientifically rigorous field studies that require species-level hydrophilic vegetation 

identifications, sub-surface hydric soil indicators, and evidence of a water table at or near the soil 

surface. Neither the NWI, nor any other remote sensing-based dataset, can assess these 

requirements, and the intended purpose of the NWI was never to provide an inventory of 

jurisdictional wetlands (Tiner 1997). Although the NWI is intended to map all probable 

wetlands, not just legally defined jurisdictional wetlands, it still underestimates total wetland 

extent, as it errs on the side of omission rather than commission. Another limitation with the 
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NWI dataset is that wetlands classes are often classified incorrectly in addition to the fact that 

NWI accuracy has not been rigorously assessed. A limited number of independent field surveys 

have suggested good accuracy (> 90%) for NWI mapping of inland wetlands (Nichols 1994; 

Kudray and Gale 2000; Handley and Wells 2009). However, it is unclear what accuracy can be 

expected for coastal wetlands as almost no validation studies exist, and the accuracy of this NWI 

class is noted as “considered approximate based on available reports or limited checking” (Tiner 

1997). Considering that the NWI serves as the U.S. tidal marsh survey used in the Mcowen et al. 

(2017) global tidal marsh product, these limitations need to be noted. 

 In this thesis research effort, we noted several cases where NWI errors were present over 

coastal wetland study sites. For instance, at Jug Bay, a low marsh system with non-persistent 

vegetation was incorrectly identified as a mix of low marsh with persistent vegetation and non-

persistent aquatic beds. In this system, use of radar imagery proved much more useful than aerial 

photography in assessing wetland vegetation. At the Wheeler Marsh site, a high marsh system 

with herbaceous vegetation was defined scrub-shrub by the NWI. Although the NWI’s spatial 

delineation of this system was highly accurate, the classification was incorrect, which suggest a 

limitation of the photointerpretation approach. When this system was classified with a SAR-

optical remote sensing approach in thesis Chapter 3, the high marsh was correctly classified as 

tidal marsh. The inclusion of multitemporal SAR imagery was likely critical for the accurate 

classification of high marsh at the Wheeler Marsh because the Jug Bay site indicated fairly 

temporally invariant C-band scattering for ground verified scrub-shrub wetland while emergent 

herbaceous species all showed significant amounts of backscatter variability. It is important to 

note these areas where NWI inaccuracies exist as they will inventively be ingested into the 

Mcowen tidal marsh product that integrates NWI and data from other national surveys. However, 
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the findings in this thesis should call into question how accurate any number of those surveys 

truly are. 

 The overarching objective of this thesis was to improve the monitoring and 

characterization of tidal marshes with remote sensing observations. While a number of new 

approaches were developed that vastly improved characterization of wetland vegetation and 

wetland hydrology, the goal of achieving more accurate tidal marsh assessments was only carried 

out for two regions of the United States, the Mid-Atlantic and the Gulf Coast. Clearly much more 

research is needed to reach a point of having an accurate tidal marsh inventory for the United 

States let alone globally. For the United States, it’s clear that satellite remote sensing datasets 

and the NWI have relative strengths that can be leveraged to produce an improved synergized 

wetlands product. The NWI’s strengths clearly lie in the spatial detail. Seldom in this thesis 

research effort did we encounter a wetlands system that was not digitized in a highly accurate 

manner. The spatial accuracy of the NWI delineations is unmatched by publicly available 

satellite imagery with resolutions at 10-m or coarser. The weaknesses of the NWI are 

classification accuracy and its static nature, which in contrast are strengths of satellite imagery 

which more accurately detects wetland biophysical properties and is collected much more 

frequently than NWI updates. Satellite capabilities will continue to improve in this way as more 

frequent multispectral imagery, hyperspectral imagery, and L-band SAR imagery become more 

available. A suggested initial research effort would be a validation of NWI polygons with a 

simplified satellite-based classification that separating open water, vegetated deepwaters, 

emergent tidal marsh, palustrine marsh, forested wetlands, and upland forest, and even specific 

vegetation types where possible. This would be similar to the classification developed in 

Chapters 2 and 3, but could feature a decision tree-based classification rather than a mixed 
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machine learning-decision tree classification. Critical to this effort would be the inclusion of L-

band NISAR imagery which would much better allow the distinction between forested wetlands 

and upland forest. Although this satellite wetlands product would be less spatially detailed than 

the NWI polygons, it would serve as an accuracy check by using the classified pixels lying 

within the NWI polygons bounds as a validation. NWI classes could be re-assigned if the 

satellite product and NWI did not correspond throughout the majority of the NWI polygon. The 

identification of non-correspondence between the satellite product and NWI would also be 

critical for identifying wetlands that may have been lost due to human modification, sea level 

rise, or other factors.  

 Rigorous and informative satellite-based wetland monitoring is now clearly feasible at an 

annual or sub-annual resolution. One of the keys for these types of research efforts would be the 

identification of training sites where wetlands were known to be classified accurately by the 

NWI and additional studies, such as those that were identified in Chapter 3 of this thesis. These 

sites would allow for the development of both decision tree and machine learning-based satellite 

wetlands products, which in turn could be used to validate the NWI in areas where additional 

ground validation studies do not exist. At this point, such recommendations are general, but the 

approaches used in each of these thesis chapters represents a piece of the roadmap that arrives at 

more accurate wetlands mapping efforts in general, and for tidal marshes in particular. The 

capabilities that satellites provide in characterization of wetland processes also need to be 

leveraged for wetlands identification and mapping, even if it’s for validating existing products 

like NWI. After all, it is the wetland processes that provide the very definition of wetlands. The 

evolving satellite capabilities that continue to improve in assessing wetlands vegetation and 

hydrologic state present a way forward in wetlands mapping as well. Although the satellites may 
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never characterize sub-surface soil redox state, the characterization of hydrology with SAR and 

vegetation mapping at the species level with hyperspectral imagery will greatly advance wetland 

science at a scale unrivaled by field studies. 
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