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Abstract Coastal marshes take up atmospheric CO2 while emitting CO2, CH4, and N2O. This ability
to sequester carbon (C) is much greater for wetlands on a per area basis than from most ecosystems,
facilitating scientific, political, and economic interest in their value as greenhouse gas sinks. However, the
greenhouse gas balance of Gulf of Mexico wetlands is particularly understudied. We describe the net
ecosystem exchange (NEEc) of CO2 and CH4 using eddy covariance (EC) in comparison with fluxes of CO2,
CH4, and N2O using chambers from brackish and freshwater marshes in Louisiana, USA. From EC, we found
that 182 g Cm�2 yr�1 was lost through NEEc from the brackish marsh. Of this, 11 g Cm�2 yr�1 resulted from
net CH4 emissions and the remaining 171 g Cm�2 yr�1 resulted from net CO2 emissions. In contrast,
�290 g Cm2 yr�1 was taken up through NEEc by the freshwater marsh, with 47 g Cm�2 yr�1 emitted as CH4

and �337 g Cm�2 yr�1 taken up as CO2. From chambers, we discovered that neither site had large fluxes
of N2O. Sustained-flux greenhouse gas accounting metrics indicated that both marshes had a positive
(warming) radiative balance, with the brackish marsh having a substantially greater warming effect than the
freshwater marsh. That net respiratory emissions of CO2 and CH4 as estimated through chamber techniques
were 2–4 times different from emissions estimated through EC requires additional understanding of the
artifacts created by different spatial and temporal sampling footprints between techniques.

1. Introduction

CO2 is currently building in the atmosphere at a rate of approximately 1.9 ppmyr�1, representing roughly
45% (4 of 8.6 Pg C yr�1) [Ciais et al., 2013] of the CO2 being emitted from anthropogenic activities such as
fossil fuel combustion, cement production, and land use change [Ciais et al., 2013]. CO2 is responsible for
the majority of the current global warming trend [Archer, 2010], and overall, approximately 68 PgC yr�1

results from global soil CO2 emissions [Raich and Schlesinger, 1992]. Similarly, CH4 concentrations have risen
at roughly 0.013 PgC yr�1 [Ciais et al., 2013], with this increase accounting for approximately 25% of the
current global warming trend [Archer, 2010], due in large part to the high radiative efficiency of CH4.

A discussion of wetland processes has long been germane to climate issues because wetlands emit 20–25%
of CH4 globally to the atmosphere [Whalen, 2005], but wetlands are also particularly efficient CO2 sinks.
Peatlands alone store approximately 16–33% of the terrestrial soil carbon pool yet occupy only about
3% of the Earth’s surface [Gorham, 1991; Bridgham et al., 2006]. However, the climatic influence of a par-
ticular wetland (i.e., does a site have a net warming or cooling effect?) depends on the rate and direction
of greenhouse gas fluxes as well as the time frame of interest. The radiative balance of a site may be posi-
tive (i.e., net warming) over a defined time period, but wetlands that sequester C will eventually become
net radiative sinks, with that time frame ranging from decades to thousands of years depending on the
ratio of net CO2 uptake to emissions of CH4 and N2O [Frolking et al., 2006; Neubauer, 2014]. Greenhouse
gas fluxes and climatic influences for specific wetlands could change rapidly with shifts in the oxidation of
soil C stores, acute emissions from storms or human activity, increased microbial respiration, and increased
root respiration [Hanson et al., 2000]. Furthermore, ecosystem respiration (from both CO2 and CH4) often
intensifies as atmospheric CO2 concentrations rise [Megonigal and Schlesinger, 1997; Schlesinger and
Andrews, 2000].
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How we assess C sequestration relative to the climatic influence of wetland ecosystems is critical. Many
techniques developed for measuring greenhouse gas emissions are more useful in upland systems, where
CO2 flux from soil and organic matter provides a major component of the radiative C flux [Raich and
Schlesinger, 1992]. Even in upland systems, rates of greenhouse gas fluxes vary widely among location and
among the technique used [e.g., Edwards and Sollins, 1973; Cropper et al., 1985; Raich et al., 1990; Knoepp
and Vose, 2002; Rochette et al., 1992, 1997]; variability in the assessment of greenhouse gas flux is indeed
inherent to the process. Accurately assessing spatial variation in greenhouse gas emissions is particularly pro-
blematic in wetlands, where diverse biogeochemical conditions (i.e., anoxic to suboxic soils) and hydrological
regimes (i.e., seasonally, permanently, and tidally flooded) produce not only CO2 emissions but also CH4 emis-
sions in appreciable quantities. The majority of wetland greenhouse gas studies also use single techniques,
which limit assessments to a specific scale.

However, comparisons of greenhouse gas fluxes at different spatial scales, e.g., hundreds of square meters or
greater with eddy covariance methods versus ~1m2 with chambers [Christensen et al., 1996; Norman et al.,
1997; Teh et al., 2011; Budishchev et al., 2014], are particularly valuable, can provide insight into which com-
ponents of the ecosystem might be contributing to specific gas emissions, may differ considerably, and
are scarce in wetlands [Meijide et al., 2011]. For example, CH4 emissions are often routed through vegetation
[Garnet et al., 2005; Pangala et al., 2013], a process discernable only at small spatial scales. Yet the cumulative
balance of CO2:CH4 exchange across an entire wetland (per hectare) and net ecosystem exchange of carbon
(NEEc) are best determined through larger scale approaches, such as eddy covariance. We often use cham-
bers to represent components of NEEc across large spatial scales. Although other studies have assessed
NEEc of CO2 in natural tidal, restored, and agricultural wetlands through eddy covariance techniques
[Kathilankal et al., 2008; Rocha and Goulden, 2009; Moffett et al., 2010; Hatala et al., 2012; Schäfer et al.,
2014; Artigas et al., 2015; Anderson et al., 2016], there are limited studies from the northern Gulf Coast region
that can be drawn upon to understand C sequestration of coastal wetlands versus the influence that those
wetlands might have on the climate by releasing greenhouse gases. The existing greenhouse gas flux data
for the northern Gulf Coast region are from chamber studies, and it is uncertain whether these studies are
representative of broad-area fluxes from brackish and freshwater marshes.

In this study, we measured NEEc of CO2 and CH4 using eddy covariance (hereafter, eddy covariance (EC))
techniques for two marsh types in coastal Louisiana. Simultaneously, we measured and modeled rates of
respiratory CO2, CH4, and N2O fluxes through small chambers. We wanted to explore three questions relative
to brackish and freshwater marshes. First, how do rates and patterns of NEEc and soil/vegetation respiratory
fluxes of C and N2O differ seasonally to influence carbon dynamics for eachmarsh? Second, how do estimates
of CH4 and CO2 emissions differ between EC and chamber techniques? Third, how do these marshes
contribute to radiative forcing through suppressing or enhancing greenhouse gas emissions when assessed
over broad spatial scales?

2. Methods
2.1. Study Sites

This study focuses on two marsh sites in coastal Louisiana (Figure 1). Both sites were selected with three
primary criteria in mind. First, both sites needed to be representative of similar marsh types in Louisiana.
The coastal zone of Louisiana has approximately 2144 km2 of brackish marsh and approximately 2837 km2

of freshwater marsh [Enwright et al., 2015], and both sites have vegetation assemblages and hydrological
signatures consistent with these wetland types. Many brackish marshes in Louisiana dominated by
Spartina patens (Aiton) Muhl. are undergoing stress and peat collapse from persistent submergence and salt-
water intrusion [DeLaune et al., 1994], and our brackish marsh is representative of such deterioration. Second,
marsh coverage needed to be fairly continuous within a circular radius of approximately 200m (12.5 ha) to
attempt EC measurements and avoid open water. Third, sites needed to be accessible both in the physical
and legal sense.

The first site (hereafter referred to as “brackish marsh”) is adjacent to Pointe-aux-Chenes Wildlife Management
Area (WMA), approximately 24 km southeast of Houma (29°30′04.77″N; 90°26′41.65″W; Coastwide Reference
Monitoring System (CRMS-Wetlands) site 2825). Soils are organic (40–70% organic content) with low bulk density
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(<0.2 g cm�3) and have a live rooting depth≤ 30 cm (G. Holm, unpublished data, 2012). The site is characterized
as mesohaline (salinity of 9.15±1.5 SE practical salinity unit (psu) during the period of study). Our study was
conducted in a fairly intact marsh area dominated by S. patens; small areas of open water between vegetation
patches are common for P. patens marshes in Louisiana (see Figure 1a).

The second site (hereafter referred to as “freshwater marsh”) is on Salvador WMA, which is approximately 19 km
southeast of New Orleans (29°51′31.29″N; 90°17′12.80″W; CRMS-Wetlands site 3166). The freshwater marsh (sali-
nity of 0.23±0.1 SEpsu during the period of study) is typical of freshwater deltaic plain wetlands [Swarzenski et al.,
1991; Sasser et al., 1996] which have semibuoyant mats capable of adjusting to moderate changes in water level.

Figure 1. (a) Location of the brackish marsh study site adjacent to Pointe-aux-Chenes Wildlife Management Area (WMA)
and (b) location of the freshwater marsh study site at Salvador WMA, Louisiana, USA. (left column) Aerial images depict
actual marsh distribution within a 12.5 ha area (yellow circle), the location of the EC tower (orange dot), region corresponding
to 30% accumulated fluxes of CO2 and CH4 (red polygon), and the location of static flux chambers (blue dots) within the
EC footprint. For the (right column) footprint diagram, yellow shading and blue shading correspond to 30% and 70%,
respectively, of accumulated NEEc calculated over the duration of EC measurements.
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The dominant species are Sagittaria
lancifolia and Leersia oryzoides, with
patchy areas of Typha domingensis.
The soils are >75% organic matter
with a bulk density of <0.10g cm�3,
live rooting depth of up to 60 cm (G.
Holm, unpublished data, 2012), and
basal peats as deep as 2–4m [Kosters
et al., 1987]. This site is also within the
receiving basin of a freshwater diver-
sion (Davis Pond) from the Mississippi
River, which is designed to reintroduce
seasonal pulses of fresh water, nutri-
ents, and sediments from the river to
the Barataria estuary. Our study was
conducted in a healthy freshwater
marsh with near-continuous vegeta-
tion coverage (see Figure 1b).

Both sites are microtidal (ran-
ge< 30cm) with major wind events
influencing duration of flooding
(Figure 2). Mean annual temperature
for coastal Louisiana (Houma) is 20.8°C,
with annual means ranging from 15.6
to 26.0°C, and a mean annual rainfall
of 1580mm [U.S. Climate Data, 2016].

2.2. Static Flux Measurements

We used static flux chambers (in the sense of Livingston and Hutchinson [1995]) (hereafter referred to as
“chambers”) to measure respiratory fluxes of greenhouse gases (CO2, CH4, and/or N2O) from the soil and
through vegetation within 40m of EC systems operating on the same sites (Figure 1). Two elevated board-
walks were constructed approximately 0.7m above the marsh surface at each site to prevent investigator
disturbance during sampling. A set of three chambers was installed along the two separate boardwalks,
for a total of six chambers per site split between two replicate areas (n= 3 per replicate; n= 2 replicates).
Chambers were placed as far from the boardwalk as possible. The square chambers (29.4 × 29.4 cm or
864 cm2) were made of white plastic material to reflect sunlight and limit heating during sampling, and
inserted 5 cm into the soil by cutting through the marsh and sealing edges by pressing cut soils. Chambers
were installed and left to settle for 1month before the first set of measurements were made and left in place
between 9 (brackish marsh) and 21months (freshwater marsh) for a total of 5 and 11 sampling periods,
respectively. The chambers were 30.5 cm tall and remained opened when measurements were not
underway. Each chamber had small ports (0.64 cm) on each of the four sides just at the soil surface to allow
for natural water exchange during tidal cycles when chambers were not being sampled. The holes were
plugged with Nalgene stoppers during sampling.

During sampling, portable 27 cm tall tops were placed on the chambers, increasing sample chamber height
to approximately 57 cm above the soil. Chamber tops simulate dark conditions allowing little to no light into
the chamber. All chambers included existing vegetation on sites; while no vegetation was removed, at times
larger plants had to be bent slightly, folded, or cut (infrequently). The top of each chamber base was outfitted
with a trough that held water during sampling. Chamber tops were inserted into the water trough to prevent
significant egress of gases and were not otherwise vented. Chamber tops were fitted with two brass, 0.9 cm
inlets with rubber septa from which gases were collected with a needle and syringe and injected into 5mL
vacuum-evacuated vials. Tygon tubing was attached to each septum and suspended into the chamber at
15 cm below the chamber top. The volume of air in the head space (including tubing) of each chamber
wasmixedmanually by sucking air into a 30mL syringe and forcefully injecting that air back into the chamber

Figure 2. Hydrologic characteristics of the (a) brackishmarsh and (b) freshwater
marsh for periods where hydrology data overlap with EC and chamber mea-
surements, including hydroperiod summaries (flood frequency and duration).
Shaded areas represent water levels below the soil surface, depicting a static
surface for the brackish marsh and a dynamic surface for the semibuoyant
freshwater marsh, both to approximately NAVD 88. The interval where shading
is omitted from the freshwater marsh corresponds to missing vertical motion
data for the floating mat (G. Holm, unpublished data, 2012).
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at the tubing depth of 15 cm at least 3 times prior to each gas extraction to ensure a well-mixed chamber
volume. Initial samples were collected seconds before tops were emplaced by lowering the syringe directly
to the center of the open chamber approximately 5–10 cm above ground and at intervals of 30 and 60min
thereafter from the chamber inlets. All samples were taken during daylight hours between 1000 and 1600.
Samples were transported back to the U.S. Geological Survey (USGS) Wetland and Aquatic Research Center
in Lafayette, Louisiana, and analyzed within 24 h for CO2, CH4, and N2O with a multicolumn gas chromato-
graph (model CP-3800, Varian, Inc., Palo Alto, CA, USA) calibrated using certified standards (Scott Specialty
Gases, Inc., Plumsteadville, PA, USA). Rates of flux were determined from the linear portion of fit saturation
curves contrasting time with volume-adjusted gas concentrations.

2.3. EC Data Collection and Processing

We used EC techniques to determine NEEc in the form of CO2 and CH4 above the wetland surface. Elevated
tripods comprising a Li-Cor closed path CO2/H2O sensor (LI-7200), Li-Cor open path CH4 sensor (LI-7700,
Li-Cor Biosciences, Nebraska, USA), and a sonic anemometer (Gill Windmaster Pro, Gill Instruments Ltd,
Lymington, England) were installed on both sites. The EC systems were located on 3 × 3m platforms
elevated 1.0m above the soil surface within uniform wetland areas of similar roughness and a 200m fetch
where wind directions could be accessed in all directions to maximize data capture (Figure 1). Both sites
had herbaceous canopy heights of 0.5 to 1.2m. EC data were collected from 3.4m and 3.6m above the
soil for the brackish and freshwater marsh sites, respectively; EC system heights were chosen to limit
the flux footprint to ≤200m (70% of the footprint contribution) (Figure 1). EC sensor height was selected
with a footprint estimator using the following assumptions: the standard deviation of vertical velocity
fluctuations was 0.3m s�1; surface friction velocity was 0.3m s�1; planetary boundary layer height was
1000m; and roughness length was 0.1m [Kljun et al., 2004].

For EC systems, we report data from 8 October 2011 to 5 December 2012 for the brackish marsh and 15
December 2011 to 18 November 2013 for the freshwater marsh. Raw data were collected at 10Hz frequency,
binned in 30min data files and downloaded monthly when serviced. All instruments (CO2/H2O sensor, CH4

sensor, and sonic anemometer) were factory calibrated prior to initial deployment and cleaned at 4–6week
intervals. Given the remote nature of the sites, gas quantities needed for the calibration shroud, and ade-
quate environmental stability in the field, the CH4 sensors were retrieved after 6months and checked for zero
and span in the laboratory using zero grade and 10 ppm CH4 primary standard gases (MESA Specialty Gases
and Equipment, Santa Ana, CA, USA). The CO2 sensors were checked approximately every 8weeks in the field
with zero certified standard gas and then checked/calibrated for zero and span in the laboratory with zero
grade and 500 ppm CO2 primary standard gases, after 6months in the field. After 8weeks, drift due to con-
tamination was biased on the order of ≤35 ppm CO2. The freshwater site CO2 sensor malfunctioned and was
replaced with a new factory calibrated sensor, resulting in a data gap from 25 July to 9 August 2012. Sensors
at both sites were removed from the field prior to Hurricane Isaac resulting in a data gap from 26 August to 5
September 2012. Other intermittent gaps in data for CH4 and CO2 were due to data removal when instru-
ments malfunctioned, lost power, were contaminated, or were subjected to poor atmospheric conditions
(see below).

Fluxes of CO2 and CH4 were determined by incorporating mean air density, mean covariance of instantaneous
deviations of vertical wind velocity, and the mixing ratio of CO2 or CH4 in the air:

f CO2=CH4 ¼ paw ′s′
� �

(1)

where

fCO2/CH4 = CO2 or CH4 flux (μmolm�2 s�1);
pa =mean air density (μmol airm�3);
w ′s′ =mean covariance of instantaneous vertical wind velocity and mixing ratio of CO2 or CH4 in air;
w′= instantaneous vertical wind velocity (m s�1);
s′= instantaneous mixing ratio of CO2 or CH4 in air (μmol gas (μmol air)�1).

We used open source, Eddy Pro 4.0 software [Li-Cor Biosciences, 2012], to process data from EC systems. Data
were preconditioned and corrected, and quality control tests were run according to the processing options
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defined in Table 1 [see also Holm et al., 2016]. Data were subjected to two quality control tests for steady state
and turbulence (based on Foken and Wichura [1996], Foken et al. [2004], andMauder and Foken [2006]), which
determines if the assumptions of the EC method are not strongly violated for a particular half hour. Thus,
under this scheme, we retained only data that were flagged “0” (excellent) and “1” (suitable for general
budget estimation), while poor quality data not satisfying these assumptions were discarded. The processed
30min data resulted in mean CO2 and CH4 fluxes, which were filtered further, to eliminate potentially
spurious values based on the following thresholds: CH4<�0.1 and >0.5μmolm�2 s�1; CO2<�25 and
>20μmolm�2 s�1; sensible heat<�100 and >500Wm�2; and latent heat<�100 and >600Wm�2. Half-
hourly fluxes were also removed during periods of heavy precipitation, sensor contamination (<15% signal
strength for CH4 and automatic gain control >70% CO2/H2O), and extreme friction velocity events
(0.05> u*> 1.5m s�1). Most of the data that were retained for analysis (i.e., >80%) had a friction
velocity> 0.1m s�1. Other studies, with level terrain and short canopy (e.g., prairie, pasture, and grassland)
similar to our study, have demonstrated that flux data were considered reliable also during relatively low
friction velocity (u*< 0.1m s�1) compared to other sites (e.g., forested and tall canopy) [Gu et al., 2005;
Papale et al., 2006; Meijide et al., 2011; Wolf et al., 2011; Galvagno et al., 2013].

To develop daily integrated CO2 estimates, missing 30min data were gap filled with an algorithm [Reichstein
et al., 2005], which used the covariance of meteorological variables and the covariance of fluxes to provide an
estimate of CO2 flux based on similar meteorological conditions for those 30min periods. All algorithm
calculations based on Reichstein et al. [2005] were processed using the eddy covariance gap-filling and flux-
partitioning tool (Max Planck Institute for Biogeochemistry, http://www.bgc-jena.mpg.de/~MDIwork/eddyproc/,
accessed 4 April 2016). The algorithm provided estimates of ecosystem respiration (Reco) and gross ecosystem
production (GEP) based on the short-term temperature sensitivity of respiration in order to extrapolate respira-
tion from nighttime to daytime periods. We selected air temperature from the EC tower (Ta-tower) as the input
for flux partitioning instead of water/soil temperature given the more complete data stream of Ta-tower.

The gap-filled data were assigned a Quality of A, B, or C (high, medium, and low, respectively) based on
availability of meteorological data and the time window of extrapolation. Further description of the flux-
partitioning and gap-filling method is described by Reichstein et al. [2005]. For the brackish marsh there were
a total of 20,399 half-hourly CO2 measurements, of which 10,931 were gap filled, resulting in 53.6% rejected.
Of these gap-filled data, 64%, 16%, and 20% were categorized as Filling Quality A, B, and C, respectively. For
the CO2 data from the freshwater marsh, there were a total of 35,328 half-hourly measurements, of which
16,986 fluxes were gap filled, resulting in 48.1% rejected. Of these gap-filled data, 65%, 20%, and 15% were
categorized as Filling Quality A, B, and C, respectively. We rejected 10–18% more CO2 and CH4 half-hourly
measurements at night than during the day for the brackish marsh and 21–23%more measurements at night
than during the day for the freshwater marsh.

Uncertainties were estimated for gap-filled data based on average standard deviations by simulating gaps
and applying gap-filling procedures in comparison to actual data retained using online algorithms.
Uncertainty for NEEc is provided for each 30min interval, and overall annual model uncertainty for actual
versus gap-filled data was calculated using a derivation of Shoemaker et al. [2015], assuming random uncertainty
is part of the 30min uncertainty term provided by the eddy covariance gap-filling and flux-partitioning tool:

U ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXyear

t¼0
SE2
� �q

: (2)

Table 1. Methods Used for Conditioning and Correcting 30min Eddy Covariance Flux Measurements in Eddy Pro
Software for Determining CH4 and CO2 Fluxes From Brackish and Freshwater Marshes in Louisiana, USA

Data Conditioning, Corrections, and Quality Control Selection/Method

Compensation for air density fluctuations Webb et al. [1980] and Ibrom et al. [2007]
Correction for frequency response Moncrieff et al. [1997, 2004]
Axis rotation for sonic anemometer tilt correction Double rotation
Detrending of raw time series Block averaging
Time lag compensation between wind and gas terms Time lag optimization and maximum covariance
Statistical control tests for fluxes Vickers and Mahrt [1997]
Quality control tests for fluxes Foken et al. [2004] and Göckede et al. [2008]
Flux footprint estimation Kljun et al. [2004] and Kormann and Meixner [2001]
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where U is annual uncertainty in NEEc (g Cm
2 yr�1) and SE (g Cm2 d�1) is the average of 30min uncertainty

values (error) scaled to daily values. For the brackish marsh, maximum U was 67.9 g CO2-Cm
2 yr�1 for 2011

and 2012, ranging from 11.8 to 13.2% of NEEc. For the freshwater marsh, maximum U was
43.4 g CO2-Cm2 yr�1 for 2012 and 2013, ranging from 10.5 to 13.2% of NEEc.

Given the complications of developing subdaily CH4 correlations with hydrometeorological data [Shoemaker
et al., 2015], 30min CH4 fluxes were averaged by day to estimate daily flux. To gap fill missing days, stepwise
regression analysis was performed using meteorological and environmental covariates to predict daily CH4

flux (see Statistical Analysis) [Holm et al., 2016]. Of the 30min CH4 samples collected using EC, we retained
38% from the brackish marsh and 55% from the freshwater marsh. Predicted to observed error based on
daily CH4 fluxes equated to 14.3% (or 1.5 g CH4-Cm

2 yr�1) of NEEc of CH4 for the brackish marsh and 19.5%
(or 9.1 g CH4-Cm

2 yr�1) of NEEc of CH4 for the freshwater marsh [Holm et al., 2016].

2.4. Meteorological and Environmental Measurements

In addition to Ta-tower, we installed two combination air and soil temperature probes. Air temperature was
also measured just at the top of the marsh grass (Ta-marsh) and soil temperature (Ts) was measured just below
the soil surface (10 cm) near each boardwalk at 15min intervals using a data logger (model HOBO Pro v.2,
Onset Computer Corp., Bourne, MA, USA). Water vapor mole fraction and relative humidity was measured
with the LI-7200. Vapor pressure deficit (D) was then calculated as the difference between ambient water
vapor partial pressure (derived from the ideal gas law, using ambient water vapor mass density, the water
vapor gas constant, and temperature) and the water vapor partial pressure at saturation. On-site water table
depth (WTD) was measured at hourly intervals on each site using a continuous water level recorder (model
#138, Infinities USA Inc., Port Orange, FL, USA) inserted into a 7.6 cm diameter PVC pipe to a soil depth of
approximately 0.8m. Continuous in-stream salinity, water temperature (Tw), and supplemental water level
data (water elevation) from the brackish marsh were acquired from CRMS-Wetlands Station 2825 and from
the freshwater marsh were acquired from CRMS-Wetlands Station 3166. All elevations relative to North
American Vertical Datum (NAVD 88) were acquired from CRMS-adjusted water levels. Discharge data from
the Davis Pond Mississippi River diversion, which influences the freshwater marsh at Salvador WMA, came
from U.S. Geological Survey Station 295501090190400 near Boutte, Louisiana. Photosynthetically active
radiation (PAR) data were derived from the nearest UV-B Monitoring and Research Program (UVMRP) site
in Baton Rouge, Louisiana.

2.5. Analyses
2.5.1. Statistical Analyses
All data were analyzed using SAS (Version 9.1, SAS Institute, Cary, North Carolina, USA). For chamber data,
differences by site in instantaneous elemental fluxes (gC or N) of CO2, CH4, and N2O over timewere determined
(n=6 per day) at hourly intervals (e.g., g Cm2h�1) using a repeated measures analysis of variance. Chamber
data were then converted to daily flux rates through summation and analyzed as elemental flux rates per unit
area at daily intervals (e.g., g Cm�2 d�1).

For EC measurements, gap filling 30min CO2 data produced a continuous data set for all days. Specifically,
the meteorological variables sensible heat, latent heat, PAR, Ta-tower, Ts, relative humidity, and D were used
in combination to gap fill. For days with no acceptable CH4 data, missing data were estimated by interpola-
tion based upon statistically significant relationships between daily CH4 flux and measured meteorological or
environmental variables [Holm et al., 2016]. Daily CH4 fluxes exhibited the strongest correlation (p< 0.001 for
all) with Tw, Ts, salinity, and Ta-tower for the brackish marsh, and with Tw, Ts, salinity, Ta-tower, and discharge
from the freshwater diversion at Davis Pond for the freshwater marsh. The residuals of the models selected
were then tested for normality and homogeneity of variance (α= 0.01) and further tested for autocorrelation,
and then an appropriate autoregressive integrated moving average model was fit (α=0.01).
2.5.2. Formulation for Daily Gas Flux Determinations From Chambers
To scale chamber fluxes, linear correlation analyses were first conducted on daily fluxes versus average Ts, Ta-marsh,
Ta-tower, and WTD. Linear correlations were retained and further tested using square root and natural
logarithmic transformations of these variables, along with salinity, discharge, and Tw data when applicable,
over quarterly time intervals (Q) to improve model fit using stepwise multiple regression procedures
(Proc GLMSelect). Q was defined as March to May, June to August, September to November, or December
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to February. Groupings for Q corresponded to time periods when fluxes were similar, reflecting seasonal
activity in these fluxes. When significant, multifactorial models were used to predict chamber fluxes of
CO2, CH4, and N2O on an annual basis. Otherwise, hourly flux data were summed to yield daily fluxes.

Q and Ts were useful for predicting CO2 fluxes from the brackish marsh:

CO2 ¼ �37555:41þ Qþ 12001:18� ln Ts þ 1ð Þ½ �=1000; (3)

where CO2 is in g Cm�2 d�1, Ts is in °C, and Q equals 2567.29 for predictions from March to May and 0.00 for
predictions from June to August for the period sampled (R2 = 0.83; p= 0.002). No significant equations were
identified for CH4 or N2O from the brackish marsh so we were not able to predict these fluxes for days not
sampled.

For the freshwater marsh, the following predictive equation was developed:

CO2 ¼ �990:09þ 4:15 Tsð Þ2–123:62 WTDð Þ
h i

=1000; (4)

where CO2 is in g Cm�2 d�1 and WTD is in centimeters (R2 = 0.79; p< 0.001). Q was not significant such that
equation (4) can be used for prediction throughout the year. In contrast, fluxes of CH4 from the freshwater
marsh were affected by Q and mean WTD:

CH4 ¼ 211:67þ 14:297 WTDð Þ þ Q½ �=1000; (5)

where CH4 is in g Cm�2 d�1 andQ describes a step function equating to 156.25 for predictions fromMarch to
May, �68.56 for predictions from June to August, �12.36 for predictions from September to November, and
0.00 for predictions from December to February (R2 = 0.79; p< 0.001). No significant predictive equations
were identified for N2O from the freshwater marsh, so we were not able to predict these fluxes for days
not sampled.

3. Results
3.1. Hydrological Characterization

Available hydrologic records over the study period indicated that major pulses of high water transcended the
coastline to affect both brackish and freshwater marsh sites simultaneously, especially during a southern
swell (June) and tropical storm event in late August (Hurricane Isaac) of 2012 (Figure 2). For the southern swell
event, water levels increased by about 20 cm on both sites and persisted for approximately 1month without
dewatering, while the surge from Hurricane Isaac caused approximately 70–100 cm of flooding, gradually
decreasing over the following week. While sites differed considerably in salinity regime—<0.5 versus 9 psu
—mean flood frequency differed by only nine events per year. The freshwatermarsh influenced by a freshwater
diversion at Salvador WMA was flooded for only 81 h yr�1 more than the brackish marsh at Pointe-aux-Chenes
WMA, which had no diversion. An additional difference was that the surface of the freshwater marsh was
semibuoyant (Figure 2), a common condition of this marsh type in Louisiana. While these sites are characterized
as tidal (micro-), diurnal fluctuations are more obvious for the brackish marsh than for the freshwater marsh,
which was dominated by wind tides. On-site, realized tidal range was extremely low for both sites (Figure 2).

3.2. Instantaneous CO2, CH4, and N2O Fluxes From Chambers

Instantaneous fluxes of CO2 ranged from 0.027 to 0.188 g Cm�2 h�1 among fivemeasurement periods for the
brackish marsh and from �0.065 to 0.135 g Cm�2 h�1 among 11 measurement periods for the freshwater
marsh (Figure 3). Fluxes of CO2 differed significantly over time for both the brackish (F= 17.35; p=0.002)
and freshwater marsh (F= 32.13; p< 0.001), highlighting a net efflux of CO2 from chambers most prominently
in April–June. In fact, only once was CO2 taken up during dark chamber measurements (freshwater marsh in
March 2012), perhaps related to site flooding.

Neither fluxes of CH4 (p= 0.094) nor fluxes of N2O (p= 0.166) differed significantly over time for the brackish
marsh. Measurements for both weremost variable in May 2012 (Figure 3) whenmarsh vegetation established
high biomass for the first time that season and flooding was persistent. Fluxes of CH4 (F= 14.35; p< 0.001),
but not N2O (p> 0.05), differed over time for the freshwater marsh and were highest in March and April of
2012. Fluxes of CH4 ranged from 0.001 to 0.026 g Cm�2 h�1 for the brackish marsh and from 0.002 to
0.029 g Cm�2 h�1 for the freshwater marsh, while fluxes of N2O ranged from �32.0 to 54.5μgNm�2 h�1
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for the brackish marsh and from �13.7 to 17.9μgNm�2 h�1 for the freshwater marsh (Figure 3). While CH4

fluxes were consistently positive and vectored out of the soil, N2O fluxes were bidirectional.

Correlation analysis was used to identify the meteorological and environmental variables influencing CO2,
CH4, and N2O fluxes through chambers. For the brackish marsh, two meteorological variables were autocor-
related, Ta-marsh related to both Ts and Ta-tower (Table 2). Of the three greenhouse gases measured by cham-
bers, CO2 was the only gas that correlated linearly to a meteorological or environmental variable, in this case
WTD. More exposed soils (i.e., lower WTD) gave rise to greater fluxes of CO2. CH4 and N2O correlated to noth-
ing for the brackish marsh site (Table 2). For the freshwater marsh, the same meteorological variables that
autocorrelated for the brackish marsh were observed, as well as two additional variables (Table 2), where
Ta-tower also correlated with Ts. In addition, WTD correlated positively to CH4 fluxes and negatively to CO2

fluxes (Table 2), indicating that lower water tables give rise to greater CO2 fluxes relative to CH4 fluxes from
chambers as soils became more exposed. Fluxes of N2O did not correlate to any meteorological or
environmental variable.

3.3. Daily Fluxes of CO2, CH4, and N2O From Chambers

Over the record of chamber measurements, modeled daily CO2 fluxes from the brackish marsh mirrored sea-
sonal patterns from instantaneous measurements in being highest in May–June, ranging from �1.78 to
5.11 g Cm�2 d�1. We were not able to determine CH4 fluxes throughmodeling. However, based on individual
hourly samples summed (Figure 3), CH4 fluxes from the brackish marsh averaged 0.14 g Cm�2 d�1; this
includes the exclusion of two outlier values (>3 standard deviation of mean) from individual chambers over
time. From the freshwater marsh, modeled CO2 fluxes ranged from�5.38 to 3.83 g Cm�2 d�1 and CH4 fluxes
ranged from �0.02 to 0.95 g Cm�2 d�1 through chambers.

N2O fluxes through chambers were very low for both marshes and also had to be estimated based on indi-
vidual hourly samples summed. Despite fewer samples for the brackish marsh than for the freshwater marsh,

Figure 3. Mean instantaneous, hourly elemental chamber fluxes (±1 SE) of gaseous carbon (CO2 and CH4) and nitrogen
(N2O) from (a) brackish marsh and (b) freshwater marsh study sites in Louisiana. Negative CO2, CH4, or N2O flux values
signify uptake by the marsh; positive values signify emissions from the marsh.
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N2O fluxes ranged more broadly from the brackish marsh (�420 to 1310μgNm�2 d�1 versus �330 to
430μgNm�2 d�1 for the freshwater marsh). N2O fluxes did not differ significantly from 0 on individual sam-
pling days for either the brackish marsh (t test, n= 10; p= 0.359) or the freshwater marsh (n=20; p=0.596).

3.4. Daily Fluxes of CO2 and CH4 From EC

Over the record of EC measurements, CO2 fluxes ranged from �0.91 to 3.15 g Cm�2 d�1 and CH4 fluxes ran-
ged from �0.01 to 0.15 g Cm�2 d�1 from the brackish marsh (Figure 4). Patterns depict some interannual
variability. First, CO2 emissions were higher in October–November of 2011 than in the same months in
2012. Second, CH4 emissions were generally highest when CO2 emissions were lowest, corresponding to per-
iods of low salinity in April–October of 2012 not as prevalent in 2011. Third, Reco gradually increased from
October 2011 to mid-February 2012 and decreased until March 2012. Then, Ts and Ta-tower increased to an
apparent threshold level when rates of Reco nearly doubled rapidly over the ensuing 8 days to reach growing
season values in April and into the summer.

Accordingly, CO2 fluxes ranged from �5.92 to 2.39 g Cm�2 d�1 and CH4 fluxes ranged from �0.06 to
0.42 g Cm�2 d�1 from the freshwater marsh (Figure 5). Patterns were fairly consistent between years. CO2

uptake was highest in April–August during the active growing season, which did tend to occur slightly before
major CH4 emissions in June–September of 2012. CO2 uptake and CH4 efflux coincided much better in 2013.
Higher rates of Reco tended to coincide with greater CO2 uptake and higher Ts and Ta-tower. NEEc of CO2 and
Reco balanced during winter months, concomitant also with near zero CH4 fluxes. Furthermore, CH4 emissions
tended to be inversely related to discharge from the Davis Pond diversion, although this is confounded
somewhat by the correspondingly lower Ts and Ta-tower during higher winter discharge periods (Figure 5).
However, discharge and WTD were not strongly connected for the freshwater marsh site [Holm et al., 2016].

Specific drivers of CH4 and CO2 flux are highlighted through univariate analyses (Figure 6). Emissions of CH4

from both marshes increased exponentially with increasing Ts, while CO2 uptake increased with increased Ts,
reflecting increased photosynthetic activity by plants on both sites. D had no influence on CH4 emissions or
CO2 flux from the brackish marsh; however, increasing D yielded greater CH4 emissions and CO2 uptake from
the freshwater marsh (Figure 6), highlighting the relative health of the freshwater marsh versus the brackish
marsh. Increasing salinity from ~2 to 16 psu decreased CH4 flux from the brackish marsh, as well as from the
freshwater marsh, even though salinity from the freshwater marsh ranged to only 0.41 psu. The relationship
between salinity and CO2 flux was either highly variable without obvious pattern (brackish marsh) or not
significant (freshwater marsh). Finally, increased water elevation stimulated CH4 emissions and CO2 uptake
on both sites, although an inflection from higher to lower CO2 uptake at water elevations of >0.6m
(NAVD 88) for both sites was observed, highlighting potentially greater flood stress on marsh vegetation
growing on both sites.

Table 2. Pearson Correlation Coefficients and p Values for Daily Averaged Soil Greenhouse Gas Fluxes of CO2, CH4, and N2O Collected From Static Flux Chambers
Versus Mean Daily Soil Temperature (Ts), Air Temperature Measured Just Above the Marsh (Ta-marsh), Air Temperature at the Eddy Covariance Tower (Ta-tower), and
Water Table Depth (WTD) for (A) a Brackish Marsh Adjacent to Pointe-Aux-Chene WMA and (B) a Freshwater Marsh on Salvador WMA, Louisiana, USAa

(A) Brackish Marsh (B) Freshwater Marsh

CH4 CO2 N2O Ts Ta-marsh Ta-tower WTD CH4 CO2 N2O Ts Ta-marsh Ta-tower WTD

CH4 1.0000 -- -- -- -- -- -- 1.0000 -- -- -- -- -- --
CO2 0.2059 1.0000 -- -- -- -- -- �0.4253 1.0000 -- -- -- -- --

0.568 0.062
N2O 0.4553 0.2130 1.0000 -- -- -- -- �0.0046 0.0669 1.0000 -- -- -- --

0.186 0.555 0.985 0.779
Ts 0.1955 0.3897 0.4698 1.0000 -- -- -- 0.3227 0.3204 0.3232 1.0000 -- -- --

0.588 0.266 0.171 0.165 0.168 0.165
Ta-marsh 0.3036 0.4352 0.3608 0.7832 1.0000 -- -- 0.3306 0.2917 0.3359 0.9368 1.0000 -- --

0.394 0.209 0.306 0.007 0.155 0.212 0.148 <0.001
Ta-tower 0.3149 0.5807 0.3225 0.6299 0.9427 1.0000 -- 0.3853 0.3327 0.2629 0.9405 0.9794 1.0000 --

0.376 0.078 0.364 0.051 <0.001 0.093 0.152 0.263 <0.001 <0.001
WTD �0.5573 �0.7148 �0.4784 �0.5320 �0.4510 �0.4301 1.0000 0.7867 �0.6706 0.2214 0.3169 0.3214 0.2828 1.0000

0.094 0.020 0.162 0.114 0.191 0.215 <0.001 0.001 0.348 0.174 0.167 0.227

aBold font indicates significant correlations
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3.5. Annual NEEc From EC Versus
Chamber Fluxes

Daily fluxes from EC and chambers
were summed separately over the
period of record and annualized.
Using EC, the brackish marsh lost
181.7 g Cm�2 yr�1 and the freshwater
marsh took up �289.9 gCm�2 yr�1

(Table 3). Of the NEEc of
181.7 g Cm�2 yr�1 for the brackish
marsh, 11.1 g Cm�2 yr�1 is from CH4

emissions and the remaining
170.6 g Cm�2 yr�1 is from CO2

emissions. Reco emissions of CO2

were 434.4 gCm�2 yr�1, suggesting
that plant photosynthetic uptake
(or ~GEP) accounts for approximately
�263.8 gCm�2 yr�1 on the brackish
marsh despite marsh deterioration.
In contrast, respiratory CO2 emissions
as estimated from chambers equated
to an even higher C emissions rate
of 1011.0 gCm�2 yr�1 from the
brackish marsh. Respiratory CH4 fluxes
through chambers were estimated at
49.6 gCm�2 yr�1 or <5% of chamber
CO2 fluxes of elemental C. Together,
CO2 and CH4 emissions from chambers
equated to 1060.6 gCm�2 yr�1 from
the brackish marsh and were
approximately 2.4 times higher than
the combined respiratory emissions
of CO2 (434.4 g Cm�2 yr�1) plus CH4

(11.1 gCm�2 yr�1) through EC
(Table 3). N2O emissions were estimated
from chambers as 0.12gNm�2 yr�1 for
the brackish marsh.

Of the NEEc of �289.9 g Cm�2 yr�1 taken up by the freshwater marsh, 47.1 g Cm�2 yr�1 was lost from CH4

emissions and�337.0 g Cm�2 yr�1 of CO2 was taken up. Reco emissions of CO2 were 893.0 g Cm
�2yr�1, sug-

gesting that plant photosynthetic uptake (or ~GEP) accounts for approximately �1230.0 g Cm�2 yr�1 from
the freshwater marsh. Respiratory CH4 fluxes from chambers were 91.9 g Cm�2 yr�1 or 26% of chamber
CO2 fluxes of elemental C. Together, CO2 and CH4 emissions from chambers equated to 449.9 g Cm�2 yr�1

from the freshwater marsh and represented only 48% of the combined respiratory emissions of CO2

(893.0 g Cm�2 yr�1) plus CH4 (47.1 g Cm
�2 yr�1) through EC (Table 3). N2O uptake rate was estimated from

chambers as �0.02 gNm�2 yr�1 for the freshwater marsh.

4. Discussion
4.1. EC Fluxes of Gaseous C From Coastal Louisiana Marshes and Other Locations

Carbon was emitted to the atmosphere at a rate of 182 g Cm�2 yr�1 from the brackish marsh, comparing
favorably with EC-based C emissions assessments from grazed degraded peatlands (178–302 g Cm�2 yr�1)
[Hatala et al., 2012] and drained agricultural wetlands in the Sacramento-San Joaquin Delta of California

Figure 4. Overview of NEEc (from EC techniques) for the brackish marsh,
Louisiana, USA, including (a) daily elemental fluxes of carbon from CH4
and CO2, along with ecosystem respiration of CO2 (Reco), and (b) daily
summary of relevant meteorological and/or environmental variables,
including soil temperature (Ts), air temperature measured from the EC
tower (Ta-tower), and salinity. Negative CO2 or CH4 flux values signify
uptake by the marsh; positive values signify emissions from the marsh.
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(up to 352 g Cm�2 yr�1) [Knox et al.,
2014]. However, C emissions from
our brackish marsh were much lower
than emissions of 984 g Cm2 yr�1

registered for a single year from a
managed urban tidal marsh in New
Jersey [Schäfer et al., 2014]. In contrast,
net C uptake from the atmosphere by
our healthy freshwater marsh was
�290gCm�2 yr�1. From other EC
tower-based annual estimates of C
uptake, the natural freshwater marsh
in Louisiana compared similarly to
other natural and restored tidal
wetlands. For example, C was taken
up at a rate of �130gCm�2 yr�1 in a
Spartina alterniflora marsh in Virginia
[Kathilankal et al., 2008], �65 to
�310gCm�2 yr�1 for 2 of 3 years in
a managed urban tidal marsh in New
Jersey [Schäfer et al., 2014], and
�231gCm�2 yr�1 in a restored
Spartina patens marsh in New
Jersey [Artigas et al., 2015].
However, uptake rates of up to
�397 to �804 g Cm�2 yr�1 were
reported from restored coastal wet-
lands in California [Knox et al., 2014;
Anderson et al., 2016], suggesting
that the potential for wetland C
uptake is much higher than what
we documented in Louisiana.

Interestingly, the brackish marsh in
Louisiana represented among the
highest flux ratio of CO2 to CH4 on
an elemental basis (EC ratio: 171 g C

from CO2 emitted to 11 g C from CH4 emitted) among those marshes reported by Mitsch et al. [2013], while
on the flip side, this ratio was also fairly low (EC ratio:�337 g C from CO2 taken up to 47 g C from CH4 emitted)
for the freshwater marsh. These ratios are likely related to a combination of degradation of the brackishmarsh
facilitating organic matter mineralization and erosion and low salinity in the freshwater marsh facilitating high
productivity with appreciable CH4 emissions. In more saline marshes, especially at salinity concentrations above
18psu [Poffenbarger et al., 2011], CH4 emissions are universally suppressed. For example, C emissions from CH4

were only 0.02–0.11% of C emissions from CO2 in a Canadian tidal salt marsh [Chmura et al., 2011].

Even short-term experimental additions of salinity to freshwater marshes can change the balance of CO2 ver-
sus CH4 fluxes; CH4 emissions were reduced from 53 to 37 g Cm�2 yr�1 in a tidal freshwater marsh where the
salinity was experimentally raised from freshwater to oligohaline levels for over 18months [Neubauer, 2013].
Thus, fluctuating short-term salinity concentrations from 1.8 to 16.6 psu was likely responsible for reducing
the respiratory emissions of CH4 in our brackish marsh (Figure 6), an observation expected by past results
in marshes developing along salinity gradients [Bartlett et al., 1987; DeLaune et al., 1983; Magenheimer
et al., 1996; Poffenbarger et al., 2011]. Emissions of CH4 along our salinity gradient at the ecosystem level
mirrored a statistical relationship developed from chamber-based studies [Poffenbarger et al., 2011; Holm
et al., 2016], suggesting that the greater availability of sulfate (SO4

2�) as salinity concentrations increase also
suppress CH4 emissions at the spatial scale measured by EC (Figure 6).

Figure 5. Overview of NEEc (from EC techniques) for the freshwater marsh,
Louisiana, USA, including (a) daily elemental fluxes of carbon from CH4 and
CO2, along with ecosystem respiration of CO2 (Reco), and (b) daily summary
of relevant meteorological and/or environmental variables, including soil
temperature (Ts), air temperature measured from the EC tower (Ta-tower),
salinity, and discharge from the Davis Pond freshwater diversion. Negative
CO2 or CH4 flux values signify uptake by the marsh; positive values signify
emissions from the marsh.
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Crozier and DeLaune [1996] showed that the most important factors for predicting CH4 emissions in these
microtidal systems in Louisiana were temperature, labile C availability, and SO4

2� concentration. With the
greater availability of SO4

2� with seawater, SO4
2� reduction becomes the dominant pathway for organic

matter oxidation prompting increases in CO2 fluxes [Weston et al., 2006] and forcing the depletion of soil
organic C stores [Weston et al., 2011]. Surprisingly, salinity also affected CH4 emissions in the freshwater marsh
even though salinity remained below 0.5 psu (Figure 6). In this case, perhaps CH4 emissions were responding

Figure 6. Mean daily NEEc of CH4 and CO2 as measured from EC techniques for the (a) brackish marsh and (b) freshwater marsh in Louisiana, USA, versus soil tem-
perature (Ts), vapor pressure deficit (D), salinity, and water elevation. Negative CO2 or CH4 flux values signify uptake by the marsh; positive values signify emissions
from the marsh.
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more to differences in specific con-
ductivity from the river diversion in
lieu of salinity per se; there is no
direct evidence that such a low sali-
nity range would influence CH4

emissions appreciably.

4.2. Comparing EC Versus
Chamber Techniques

We expected emissions of CH4 to be
similar among techniques since both
techniques measure mostly the net
loss of CH4 from wetland ecosystems;
plants do not take up CH4. That CH4

fluxes were 2–4 times higher when
measured by chambers versus EC in
our study is important to note, espe-
cially when reviewing the literature.
Other studies have also documented

greater CH4 emissions when assessed by chambers versus EC. For example, CH4 emissions ranged from 18
to 91% higher (mean, 30% higher) as assessed by small chambers versus EC from a rice field in Northern
Italy [Meijide et al., 2011]. Since CH4 has an atmospheric lifetime of approximately 12 years [Myhre et al.,
2013], CH4 released from the soil would not oxidize to CO2 appreciably before reaching the EC sensor at
3.4–3.6m. However, at least three other explanations for the disparate values between EC and chamber tech-
niques can be proposed. First, along with CH4 emitted directly from the soil surface, wetland plants vector CH4

to the atmosphere from deeper soils [Whiting and Chanton, 1993; Vann and Megonigal, 2003; Gauci et al., 2010;
Pangala et al., 2013]. In locations with a prominent methanotrophic bacterial community, such as strongly tidal
freshwater wetlands, up to 52–81% of CH4 produced in situ undergoes re oxidation back to CO2 prior to being
released from the soil [Megonigal and Schlesinger, 2002]. Both of our marshes were tidal, but with smaller lunar
tides, larger wind tides, and longer flood durations than is typical of Atlantic coastal tidal freshwater marshes,
with some exception. The use of dark chambers might influence the role of the plant in vectoring CH4 from
deeper soils to the atmosphere by bypassing zones of bacterially mediated methanotrophy; however, one
would hypothesize that the effect would be to further reduce fluxes of CH4 from chambers (in the sense of
Magenheimer et al. [1996]) relative to EC techniques, not enhance them as we show here.

Second, the spatial footprint of EC and chambers are vastly different. This should be noted since the majority
of CH4 (and CO2) assessments are point based using chambers that are rarely replicated well over time,
including our current study [see also Neubauer et al., 2000]. We used six chambers per site for each measure-
ment period as our sample unit, which represents a total area of 0.52m2 (0.0864m2 per chamber), and only
measured fluxes 5–11 times. While chambers include some exposed water associated with culms of
vegetation, the percentage of open water, bare soils, and vegetation differs greatly over larger spatial scales
targeted by the EC system [e.g., Budishchev et al., 2014]. Likewise, only a fraction of the temporal environmental
variability is included in chamber studies.

Third, and related, chamber data were collected exclusively during midday (1000–1600) when CH4 fluxes are
inherently higher overall. For example, respiratory CH4 emissions were at least twice as high during the day as
compared to night emissions in a tidal freshwater marsh in Virginia, USA [Neubauer et al., 2000]. EC calcula-
tions integrate night and day. Issues associated with spatial and temporal sampling resolution are also quite
prevalent when comparing Reco data from EC with respiratory CO2 emissions from chambers for both sites
(Table 3); yet applying chambers as we did to estimate soil CO2 emissions is common (Livingston and
Hutchinson [1995], Yu et al. [2008], Moseman-Valtierra et al. [2011], Krauss and Whitbeck [2012], Olsson et al.
[2015], etc.). With chamber estimates of respiratory CO2 emissions ranging from less than half to more than
twice as high as EC estimation of Reco, disparities may be quite difficult to reconcile in the literature if these
results are repeated. Greater replication of chamber measurements from our sites over time may have closed

Table 3. Summary of Elemental Fluxes of C or N From CO2, CH4, and N2O
Separated by Ecosystem Contribution Using Eddy Covariance (NEEc) and
Static Chambers for a Brackish Marsh Adjacent to Pointe-aux-Chene WMA
and a Freshwater Marsh on Salvador WMA, Louisiana, USAa

Spatial Scale Flux

Elemental Fluxes (g C or Nm�2 yr�1)

Brackish Marsh Freshwater Marsh

NEEc CH4 11.1 47.1
CO2 170.6 �337.0

Net C fluxb 181.7 �289.9
Reco 434.4 893.0
GEPc �263.8 �1230.0

Chamber CH4 49.6 91.9
CO2 1011.0 357.9

Net soil C fluxb 1060.6 449.9
N2O 0.12 �0.02

aNegative values correspond to net uptake.
bNet C flux is calculated as the sum of CH4 emissions and CO2 uptake/

release.
cGross ecosystem productivity (GEP) is calculated as NEEc of CO2 minus

Reco.

Journal of Geophysical Research: Biogeosciences 10.1002/2015JG003224

KRAUSS ET AL. GAS FLUXES FROM LOUISIANA MARSHES 14

https://www.researchgate.net/publication/235460350_Carbon_cycling_in_a_tidal_freshwater_marsh_ecosystem_A_carbon_gas_flux_study?el=1_x_8&enrichId=rgreq-96a422321216a468d8366385606f8b91-XXX&enrichSource=Y292ZXJQYWdlOzMwMzUwMDkxNDtBUzozNzg3NTc2ODk5NTQzMDRAMTQ2NzMxNDI3ODQxOQ==
https://www.researchgate.net/publication/241062310_Methane-limited_methanotrophy_in_tidal_freshwater_swamps?el=1_x_8&enrichId=rgreq-96a422321216a468d8366385606f8b91-XXX&enrichSource=Y292ZXJQYWdlOzMwMzUwMDkxNDtBUzozNzg3NTc2ODk5NTQzMDRAMTQ2NzMxNDI3ODQxOQ==
https://www.researchgate.net/publication/223650062_Seasonal_trends_and_environmental_controls_of_methane_emissions_in_a_rice_paddy_field_in_Northern_Italy?el=1_x_8&enrichId=rgreq-96a422321216a468d8366385606f8b91-XXX&enrichSource=Y292ZXJQYWdlOzMwMzUwMDkxNDtBUzozNzg3NTc2ODk5NTQzMDRAMTQ2NzMxNDI3ODQxOQ==
https://www.researchgate.net/publication/222690877_Woody_stem_methane_emission_in_mature_wetland_alder_trees?el=1_x_8&enrichId=rgreq-96a422321216a468d8366385606f8b91-XXX&enrichSource=Y292ZXJQYWdlOzMwMzUwMDkxNDtBUzozNzg3NTc2ODk5NTQzMDRAMTQ2NzMxNDI3ODQxOQ==
https://www.researchgate.net/publication/233956906_Trees_are_major_conduits_for_methane_egress_from_tropical_forested_wetlands?el=1_x_8&enrichId=rgreq-96a422321216a468d8366385606f8b91-XXX&enrichSource=Y292ZXJQYWdlOzMwMzUwMDkxNDtBUzozNzg3NTc2ODk5NTQzMDRAMTQ2NzMxNDI3ODQxOQ==
https://www.researchgate.net/publication/265259271_Evaluation_of_a_plot-scale_methane_emission_model_using_eddy_covariance_observations_and_footprint_modelling?el=1_x_8&enrichId=rgreq-96a422321216a468d8366385606f8b91-XXX&enrichSource=Y292ZXJQYWdlOzMwMzUwMDkxNDtBUzozNzg3NTc2ODk5NTQzMDRAMTQ2NzMxNDI3ODQxOQ==
https://www.researchgate.net/publication/4683322_Primary_production_control_of_methane_emission_from_Wetlands?el=1_x_8&enrichId=rgreq-96a422321216a468d8366385606f8b91-XXX&enrichSource=Y292ZXJQYWdlOzMwMzUwMDkxNDtBUzozNzg3NTc2ODk5NTQzMDRAMTQ2NzMxNDI3ODQxOQ==


the gap in CH4 and Reco (CO2 emissions) estimates from chambers versus EC (as inMeijide et al. [2011]). Part of
the issue for our brackish marsh, where the EC versus chamber fluxes varied the greatest, was certainly related
to fairly limited temporal sampling from chambers (n=5). More studies that compare these techniques are cri-
tical; however, good discussion of spatial sampling variability is already becoming more and more the focus of
greenhouse gas emissions research [e.g., Forbrich et al., 2011; Meijide et al., 2011; Budishchev et al., 2014].

4.3. Relating Greenhouse Gas Fluxes to the Process of Marsh Degradation

Brackish and freshwater marshes in Louisiana have inherently different capacities for regulating fluxes of CO2

and CH4, as we document here. Earlier studies showed that brackish marshes of the Barataria Basin, Louisiana,
emitted 73 g Cm�2 yr�1 as CH4, while freshwater marshes emitted 160 g Cm�2 yr�1 as CH4 [DeLaune et al.,
1983]; these rates were about 1.5–1.7 times higher than our chamber fluxes and much higher than our EC
fluxes (Table 3). On the other hand, CO2 emissions were lower from cores collected from brackish marshes
(228 g Cm�2 yr�1) versus freshwater marshes (780 g Cm�2 yr�1) in past study [Nyman and DeLaune, 1991],
better echoing our Reco results from EC towers than from chambers. It is uncertain exactly why our chamber
data were opposite to this trend (Table 3), but we suspect that it has to do with the observation that our
brackish marsh was not healthy with tremendous spatial variability in response. Nyman and DeLaune
[1991] related differences between their marsh types to plant species composition and to the quality of soil
organic matter, where the latter is most applicable to our results.

We also determined GEP (or gross photosynthetic uptake) of CO2 from EC. The brackish marsh took up
�264 g Cm�2 yr�1 as GEP (Table 3). This is considerably lower than chamber-based estimates of GEP (uptake
of �650 to �1000 g Cm�2 yr�1) in mesohaline and polyhaline marshes along the Atlantic and Gulf coasts of
the U.S. [Miller et al., 2001; Weston et al., 2014; Wilson et al., 2015]. Technique disparity aside, reduced GEP
from the Louisiana brackish marsh suggests that reductions in ecosystem carbon fixation is an important
factor in the net emissions of C (182 g Cm�2 yr�1) as our brackish marsh site is challenged to keep up with
land submergence. Deposition of vegetative debris (wrack) from storms onto a brackish marsh caused a
similar reduction in GEP (to �280 g Cm�2 yr�1) and led to net C emissions of 222 g Cm�2 yr�1 in coastal
Virginia [Miller et al., 2001]. However, it is important to note that net emissions of C to the atmosphere do
not necessarily mean that a site is deteriorating. In healthy tidal marshes in Alabama and Virginia, Reco
exceeded gross production due to high inputs of allochthonous carbon that subsequently was mineralized
in the marsh [Neubauer et al., 2000; Wilson et al., 2015].

In contrast to the brackish marsh, the plant community of the freshwater marsh took up �1230 g Cm�2 yr�1

as GEP as estimated using EC (Table 3). This rate is typical of tidal freshwater marshes from New Jersey to
Alabama, which had GEP rates of �750 to �1500 g Cm�2 yr�1 [Neubauer et al., 2000; Neubauer, 2013;
Weston et al., 2014; Wilson et al., 2015]. Instead of losing C to the atmosphere, the freshwater marsh at
Salvador WMA is taking up �290 g Cm�2 yr�1, a rate that is similar to long-term rates of soil C sequestration
in tidal freshwater marshes (typically ~100–300 g Cm�2 yr�1 as calculated from Neubauer [2008]). Therefore,
our freshwater marsh was taking up atmospheric C at a high rate fed by amuch higher rate of photosynthesis
than observed at the brackish marsh to facilitate net C sequestration.

As tidal marshes deteriorate, they can experience reduced primary production, enhanced carbon emissions, net
loss of surface elevation, and subsurface changes. A deteriorating saltmarsh in New York was found to have less
root and rhizome biomass, larger diameter rhizomes, reduced soil consolidation, and, like our brackish marsh,
higher soil CO2 emissions than a nearby stable marsh [Wigand et al., 2014]. Stability of the deteriorating marsh
was attributed to a balance among surface accretion of sediments, enhanced individual rhizome diameters, and
swelling of surficial peats to facilitate greater soil volume expansion to survive submergence in the New York
marsh system. Indeed, the root production for brackish S. patens marsh at Pointe-aux-Chenes probably was
contracting as the plants formed shrinking clumps with bare areas between clumps, although aboveground
tissue was still relatively prolific. This growth pattern may be a negative belowground response of this species
to inundation [Snedden et al., 2015], driving an overall loss of C to the atmosphere, and, while unmeasured in
this study, perhaps even greater losses to dissolved organic C through export [Bergamaschi et al., 2012].

4.4. Perspectives on Radiative Forcing From Louisiana Deltaic Marshes

In the simplest terms, the climatic role of ecosystems is determined using global warming potentials (GWPs) to
convert rates of greenhouse gas uptake and emissions to a common currency (gCO2 equivalents). CH4 and N2O
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are greenhouse gases with 100year GWP values 30 times and 265 times greater than CO2, respectively [Myhre
et al., 2013]. Using these GWPs and applying them to EC data, we calculate that the brackish marsh is contributing
the equivalent of 1161gCO2-eqm

�2 yr�1 to the atmosphere and the freshwatermarsh is contributing the equiva-
lent of 813gCO2-eqm

�2 yr�1 to the atmosphere (that is, both are contributing to net warming, not cooling)
(Table 4). However, the application of GWPs assumes that greenhouse gas emissions involve simple pulses that
are not sustained annually, that uptake and emissions contribute similarly to radiative forcing with opposite signs,
and that forcing occurs over specified time frames [Frolking et al., 2006; Neubauer and Megonigal, 2015].

In contrast, Neubauer and Megonigal [2015] proposed the use of the sustained-flux global warming potential
(SGWP) [see also Fuglestvedt et al., 1996] for gas emissions and the sustained-flux global cooling potential
(SGCP) for gas uptake. These metrics consider persistent greenhouse gas fluxes (rather than a single pulse)
and account for asymmetry in radiative behavior between uptake and emissions fluxes. Over a 100 year period
at our freshwater marsh site, the sustained-flux metrics indicate that this site emits the equivalent of
1752gCO2-eqm

�2 yr�1 to the atmosphere (net warming) whereas the GWP suggested that this influence is
54% less (Table 4), a disparity driven by CH4 accounting. In a qualitative sense, both sets of metrics also indicated
that the brackish marsh had a strong net warming effect, although the strength of that warming differed by
roughly 19% depending on the choice of sustained-flux (1384gCO2-eqm

�2 yr�1) versus pulse metrics
(1161gCO2-eqm

�2 yr�1). Both marshes were net radiative sources over a 100 year period (Table 4), despite
appreciable rates of GEP in both systems and net C sequestration in the freshwater marsh (Table 3).

In the longer term, the warming from wetland greenhouse gas emissions eventually will be offset by long-
term C sequestration [Neubauer, 2014; Petrescu et al., 2015]. The time when the marsh switches from having
a lifetime net warming effect to a net cooling effect is known as the radiative forcing switchover time (in the
sense of Frolking et al. [2006]), which happens because CH4 and N2O burdens will eventually reach steady
state in the atmosphere, whereas the cumulative C storage in wetlands will increase from year to year. The
switchover time for our freshwater marsh site is 376 years (calculated following the model in Neubauer
[2014], as updated in Neubauer and Megonigal [2015]). Since the age of Holocene basal peat depths in the
upper Barataria Basin exceeds this switchover time (>2250 years B.P. versus 376 years) [Kosters et al., 1987],
we conclude that over the lifetime of the freshwater marsh, the cooling effect due to its C sequestration
and N2O uptake has exceeded the warming due to its CH4 emissions. A switchover time could not be
calculated for the brackish marsh since there was no net uptake for any of the three greenhouse gases we
considered. In other words, unless processes change in the brackishmarsh such that there is net C sequestration,
this site will continue to have a positive (warming) radiative effect.

5. Conclusions

When scaled, emissions of C to the atmosphere equated to 1817 kg C ha�1 yr�1 from the brackish marsh, and
uptake of C equated to 2899 kg C ha�1 yr�1 from the freshwater marsh. Partitioning between uptake of CO2

and emissions of CO2 and CH4 was quite different between these two marsh types, driven by much greater
GEP from the freshwater versus brackish marsh. We also discovered that net fluxes of CH4 and of respiratory

Table 4. The Radiative Balance of the Brackish and Freshwater Marsh Sites Based on Ecosystem CH4, Net C Fluxes, and
Soil N2O Fluxes (Table 3)a

Flux (g CO2-eqm
�2 yr�1)

Radiative Fluxes (GWP) Radiative Fluxes (SGWP/SGCP)

Brackish Freshwater Brackish Freshwater

CH4 444.0 1885.2 666.0 2827.8
Net C flux 666.2 �1063.0 666.2 �1063.0
N2O 50.4 �9.6 51.3 �12.6
Net radiative balance 1160.6 812.7 1383.6 1752.2

aWe first calculated radiative fluxes with the older approach of using global warming potentials (GWPs), which assumes
that gases are emitted only as a single pulse at the beginning of the period of interest. We used 100 year GWP values of 30
and 265 for CH4 and N2O, respectively [Myhre et al., 2013]. Positive numbers indicate a net warming effect; negative num-
bers indicate net cooling. For comparison, radiative fluxes (g CO2-eqm

�2 yr�1) were also calculated using sustained-flux
global warming and global cooling potentials (SGWP and SGCP), which are basedmore appropriately on continuous fluxes
of gases over a 100 year period [Neubauer and Megonigal, 2015].
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CO2 emissions as estimated through EC differed from emissions as estimated with chamber techniques,
identifying a potentially prominent source of variation in greenhouse gas flux estimation within the wetland
literature. Emissions of N2O were insignificant from both marshes. As calculated using sustained-flux green-
house gas metrics, the radiative balance over a 100 year time frame was positive (net warming) for both
marshes but was considerably larger from the brackish marsh. Assuming that the fluxes described herein
were maintained over time, the freshwater marsh would switch to having a net cooling effect after 376 years,
implying that there are climatic benefits associated with preserving healthy wetlands.
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