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“Life in the delta South, where land is so dear a commodity, is inextricably tied to water. 

The certain rhythms of life that identify and characterize this region do not travel or translate 

well, for fed from the north, blown violently from the South, the passage of time in Louisiana 

reflects the whim and mood of water. The flooding of swollen spring washes away the sins of 

Mardi Gras, one year ruthlessly taking whole towns and the next benevolently granting crawfish 

season, followed by the true, vibrating heat to slowly lure in the hurricanes that drown suddenly 

from the South. Then, if allowed, we celebrate continued existence with redfish to see us through 

winter and round the corner, once more among the masks and brass bands, doing our best to 

make our Lenten seafood mean something. Continually bickering twins, land and water squabble 

over ownership of every square inch, and the ubiquity of this struggle colors all.” 

 

-Anna Michael 
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ABSTRACT 

 Freshwater diversions are a relatively recently utilized tool in wetland loss 

mitigation that stimulate an organic accretion response in marsh vegetation, which is based in 

root production and thus belowground biomass.  The effectiveness of freshwater diversions in 

slowing marsh loss probably varies across a gradient of the factors they supply: decreased 

salinity, increased nutrient concentrations, and increased inundation.  Flooding stress is 

commonly thought to be the overriding factor limiting wetland vegetation growth, however its 

influence may vary across salinity and nutrients.  Therefore, plugs of Spartina patens were 

planted in four “marsh organs” consisting each of 36 sediment-filled PVC pipes of incremental 

heights that created a range of growth elevation and thus flooding stress.  The organs were 

located in mean salinities from 2.6-14.7 ppt and two of them fertilized at 22 g N m-2, 11 g P m-2, 

and 5.5 g K m-2.  Twice during the growing season below- and aboveground biomass was 

harvested, sorted, dried, weighed, and analyzed for relationships between variables.  Flooding 

stress was found to be primary, with a secondary interactive effect between salinity and 

fertilization that suggests fertilization may help plants resist relatively higher salinity levels.  

Variations in salinity and nutrient concentrations associated with freshwater diversions, which 

can differ in intensity and extent, might also be linked to increased nutria herbivory.  Therefore, 

nutria preference for fertilized versus unfertilized vegetation was also tested in a controlled 

setting on Panicum hemitomon, Sagittaria lancifolia, and S. patens, representative dominant 

plant species of fresh, fresh-brackish, and brackish marsh.  Nutria showed a significant 

preference for fertilized vegetation within species. It is therefore possible that benefits derived 

from nutrient-rich fresh floodwater could potentially be negatively impacted by increased 

preferential herbivory. 
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GENERAL INTRODUCTION 

Background 

Coastal marshes provide valuable ecosystem services, protection from natural disasters, and vast 

opportunities for traditional livelihoods and recreation.  Louisiana marshes experience the 

highest rate of land loss in the United States (CWPPRA 1994).  Characterized by their 

impermanence (Coleman 1988), the wetlands of the Mississippi River delta are part of a dynamic 

system in which accretion (the creation of land, by multiple mechanisms) must actively occur in 

order to counter the ongoing natural subsidence of previously deposited alluvial mud (Nyman et 

al. 1993).  Vertical accretion is maintained by two main processes.  We define mineral accretion 

as the accumulation of matter through physical deposition of mineral sediment on the landscape 

and organic accretion as the accumulation of matter through the stimulation of plant growth, 

specifically belowground plant growth, by fresh water and associated nutrients (Nyman et al. 

1990, 1993).   

Defined in part by their self-regulating nature, coastal wetlands in an efficiently 

functioning state are eminently sustainable.  Where marsh elevation is lower relative to sea-level, 

more frequent flooding introduces necessary limiting factors such as suspended sediments, fresh 

water and associated nutrients, and stimulates accretion through mineral deposition and abundant 

vegetation growth (Nyman et al. 1993).  Where the elevation of the marsh is higher relative to 

sea level, flooding is less frequent, and accretion slows (Nyman et al. 1993).  In the case of 

Mississippi River alluvial marshes, the source of necessary limiting factors for both mineral and 

organic accretion is the Mississippi River (Kesel et al. 1992).  Although seasonal storms do 

provide a source of surge-driven sediment and nutrients (Reed 1989), much of Louisiana’s 



	

2 

wetlands are located inland, out of the direct influence of hurricanes, and are therefore reliant on 

the Mississippi River (Kesel et al. 1992).  Traditionally, snow-melt far upriver coupled with 

seasonal rains caused the Mississippi to flood its banks in spring, depositing vast amounts of 

nutrient-rich sediments on outlying areas as well as quantities of fresh water which reduced 

salinity stress to vegetation growth in adjacent coastal plains (Kesel 1989). 

However, over the course of the last century widespread human manipulation of historic 

hydrologic processes has not only increased the rate of land subsidence (Turner 2004), but also 

reduced the ability of the Mississippi River to meet the requirements for accretion in affected 

outlying wetlands (Coleman 1988). The amount of suspended sediment transported by river 

water is greatly reduced (Coleman 1988, Kesel 1989) and levees flanking the Mississippi River 

channel the remaining sediment out into the Gulf of Mexico instead of into outlying marshes 

(Britsch and Dunbar 1993, McFalls et al. 2010), which has subsequently reduced mineral 

accretion rates (Day and Templet 1989).  Natural flooding has been rendered virtually 

nonexistent (Kesel 1988) which has reduced rates of organic accretion (Delaune et al. 2003), 

resulting in combined effect of widespread net land loss (Gagliano 1981).  Combined with 

climate driven global sea-level rise, accretion is increasingly insufficient, as coastal land 

submergence potential subsequently grows (Rybczyk and Cahoon 2002). 

Consequently, recent studies have focused on reconnecting the river to its floodplain to 

both actively create land and mitigate existing land loss.  Given the reduced amounts of sediment 

contained by the Mississippi River (Kesel 1988), much research has focused on organic accretion 

and the possibility of maintaining surface elevation through vegetative growth (Bricker-Urso et 

al. 1989, Craft et al. 1990, 1993, Nyman et al. 1990, 1993, Neubauer 2008).  Results suggest that 

accretion may benefit from increased fresh water and associated nutrients in river water 
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reintroductions (Nyman 1990, 1993), as reducing salinity stress may thereby stimulate vegetative 

growth through increased nutrient uptake and may slow wetland loss in areas where adequate 

mineral sediment is not available (Patrick and Delaune 1976, Foret 2001, Delaune et al 2003, 

2005, Merino 2010).  Belowground biomass is of particular important to organic accretion, as 

fibrous roots effectively trap available mineral sediment as well as increase relative elevation via 

vegetative growth (McCaffrey and Thomson 1980).   

Although vertical accretion is also reliant on significant sediment input, evidence of 

organic accretion’s role in maintaining wetlands is clear.  In assessing certain remnant zones of 

deltaic formation that have not received Mississippi River sediment in hundreds of years, such as 

Barataria Bay, Terrebonne Bay and the Mississippi River birds-foot, it is evident that these 

specific wetlands have persisted in some form long since the river shifted course and localized 

sediment input ceased (Coleman 1988).  Regardless of the sedimentary driving forces behind 

deltaic construction, as a river’s sediment load naturally decreases over time, the disappearance 

of wetlands associated with that river is not necessarily instantaneous.  Therefore, as the 

contributions of a river shift away from high loads of suspended sediments, the mechanism of 

marsh maintenance must also shift; even with greatly reduced sediment input, although the 

river/wetland system is not accreting enough via direct sediment accumulation to grow new land, 

it is in fact functioning to adequately counter subsidence via an organically governed system of 

accretion (McCaffrey and Thomson 1980, Hatton at al. 1983, Coleman 1988, Bricker-Urso et al. 

1989, Nyman et al 1993). 

Brackish marsh has the highest land loss rates of all marsh types in Louisiana (Foret 

2001) and is consequently targeted by the most proposed hydrologic restoration projects in 

coastal regions (Foret 2001).  It also represents the transition from fresh marsh, which is able to 
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regenerate vegetatively following disturbance (Van der Valk 1981), to salt marsh which lacks 

that regenerative ability (Koch et al. 1990).  Spartina patens, a dominant species in Atlantic and 

Gulf coast brackish marshes, can survive a wide range of salinity (Visser et al. 2000, Merino et 

al. 2010), and makes up over 50% of brackish marsh vegetation and 25% of total marsh 

vegetation in Louisiana (Chabreck 1970).  Its hardiness, wide salinity range, and prominence in 

restoration proposals therefore make it an excellent candidate for wetland research related to 

subsidence and organic accretion. 

To more completely assess wetland health and viable means for restoration, we must also 

examine another potential factor influencing marsh loss.  Herbivory in Louisiana coastal 

wetlands plays a large role in limiting marsh growth; muskrat (Ondatra zibethicus), wild boar 

(Sus scrofa), snow goose (Chens caerulescens), and swamp rabbit (Sylvilagus sp.) all feed on 

vegetation, but the invasive nutria’s (Myocastor coypus) ravenous diet accounts for a great bulk 

of wetland plant loss (Carter et al. 1999, Baroch and Hafner 2002).  The nutria negatively affects 

fresh and brackish Louisiana marsh as it feeds almost entirely on vegetation, consuming 25% of 

its body weight daily (Baroch and Hafner 2002).  Such voracious and unchecked feeding habits 

lead to loss of habitat for native species, increased subsidence due to denudation of organic 

growth within the marsh, and the subsequent creation of open water (Carter et al. 1999, Baroch 

and Hafner 2002, Jojola et al. 2005).  Since the 1970s’, the nutria numbers have ballooned within 

the Gulf of Mexico region (Baroch and Hafner 2002, Jojola et al. 2005, 2006).   

There is evidence that marsh herbivores such as nutria, muskrats, and snow geese prefer 

lower salinity habitats over higher salinity habitats (Chabreck and Nyman 2005), although nutria 

do feed on brackish marsh S. patens in certain circumstances (Wilsey et al. 1991).  Studies also 

show wetland herbivores prefer vegetation with higher nitrogen content over vegetation with 
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lower nitrogen content ( Alisauskas et al. 1988, Wilsey et al. 1991).  Thus, it is possible that 

selective herbivory is likely to affect marsh similar in makeup to that which is produced by 

proposed large-scale water reintroduction wetland loss mitigation projects, which effectively 

provide a gradient of salinities and nutrients, converging on low salinity and high nutrient 

concentrations at the diversion’s source (Lane et al. 1999).   

 

 

Research Objectives 

 (1) To study the effect of limiting factors on plant growth, specifically to address the question: 

how do flooding stress, salinity stress, and nutrient availability interact to affect the growth of 

belowground biomass in S. patens?  

(2)  To test the hypothesis that nutria select vegetation of one of three representative species 

(Panicum hemitomon, Sagittaria lancifolia, and S. patens) grown in higher nutrient 

concentrations over vegetation within that species grown in lower nutrient concentrations. 
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CHAPTER 1 
EFFECTS OF FLOODING STRESS ACROSS NUTRIENT AND SALINITY LEVELS 

ON BELOWGROUND BIOMASS OF SPARTINA PATENS 

 

Introduction 

The rate of land loss in coastal Louisiana is estimated at 42.9 km2 yr-1 and is predicted to 

continue (Couvillion et al 2013).  The causes range widely; compaction of previously deposited 

alluvial sediment leads to natural subsidence (Penland and Ramsey 1990), saltwater 

encroachment reduces brackish marsh vegetation (Britsch and Dunbar 1993, Wilson 2004), and 

river control through the modern levee system, first effectively employed following the flood of 

1927, causes additional negative effects.  For instance, the current levee system separates the 

river from its floodplain and greatly diminishes the flow of river water through the surrounding 

marsh (Kesel 1988, 1989, Mossa 1996).  Reduced overbank flooding removes not only a historic 

source of freshwater, but also associated valuable sediments and nutrients, which are instead 

funneled offshore by flanking levees (Britsch and Dunbar 1993, McFalls et al 2010).  Loss of 

sediments and nutrients reduces vertical accretion, a process that would normally offset natural 

wetland subsidence (Kennish 2001).  By example, despite a controlled flow of only 30% of total 

capacity, the relatively un-leveed Atchafalaya River delta is one of the few areas in coastal 

Louisiana currently experiencing land growth despite constant natural subsidence (Randall and 

Foote 2005, Ford and Nyman 2011). 

The wetlands of the Mississippi River delta are part of a dynamic system in which 

accretion must actively occur in order to counter the ongoing natural subsidence of previously 

deposited alluvial mud (Nyman et al 1993).  Accretion is defined as the vertical accumulation of 

material on the wetland surface, measured using various defined markers (Callaway et al. 1996).  
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Vertical accretion is maintained by two main processes.  We define mineral accretion as the 

accumulation of matter through physical deposition of sediment on the landscape and organic 

accretion as the accumulation of matter through the stimulation of plant growth, specifically 

belowground plant growth, by fresh water and associated nutrients (Nyman et al. 1990, 1993).   

The role of mineral sediment in coastal marsh accretion has been widely studied 

(Baumann et al. 1984, Nyman et al. 1990, Reed 1990, Temmerman et al. 2004).  Past research 

has described a system of vertical accretion in which mineral sediment is the primary limiting 

factor, and in situ restoration approaches have been proposed that identified and addressed that 

issue (Morris and Bowden 1986, Rybczyk and Cahoon 2002).  However, research in many areas 

has shown that vertical accretion is more directly affected by the rate of production of organic 

matter by marsh plants (Hatton et al. 1983, Bricker-Urso 1989, Nyman et al. 1993, Turner 1997, 

Morris 2007).  Turner et al. (2004) found that vegetative productivity, specifically belowground 

productivity, is vital to the maintenance of relative marsh elevation in Louisiana wetlands, while 

Nyman et al. (1993, 2006) reviewed the relative importance of organic matter and mineral matter 

to vertical accretion in various coastal Louisiana brackish and saline marsh sites, and found that 

variation in vertical accretion was significantly related to variation in organic accumulation rate.  

Similar data were reported in the Farm River salt marsh of Connecticut (McCaffrey and 

Thomson 1980), Louisiana’s Barataria Bay (Hatton et al. 1983),  Rhode Island’s Narragansett 

Bay (Bricker-Urso et al. 1989), and the Bay of Fundy in Nova Scotia (Chmura and Hung 2004). 

  With the recent focus on the role of organic accretion in maintaining marsh elevation, 

there has been a subsequent emphasis on approximating and restoring some of the original 

connectivity between the Mississippi River and its floodplain by means of freshwater diversions 

(Lane et al. 1999, Lane et al. 2006, Hyfield et al. 2008).   Freshwater diversions, which conduct 
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water from the river into the surrounding marsh through manipulated channels, are increasingly 

used to slow wetland loss (Army US Corps of Engineers (USACE) and Louisiana Department of 

Natural Resources (LDNR) 2004).    Given the highly manipulated form of the modern 

Mississippi river (Coleman 1988), it is assumed that freshwater diversions approximate what 

would be the most natural possible condition of the Mississippi River in its current state. 

Freshwater diversions are increasingly employed in areas of brackish marsh (Foret 2001) 

where hydrological disruption has reduced freshwater inflow (Frazier 1967), increased salinity 

(Day et al. 1995), and shifted the brackish marsh zone further inland (Bristch and Dunbar 2004, 

Wilson 2004).  Brackish marsh is a crucial zone in restoration, the demarcation between resilient 

freshwater marsh, able to re-establish vegetatively in the wake of disturbance (Van der Valk 

1981), and fragile salt marsh, which is limited in that ability (Mendelssohn et al. 1981, Delaune 

et al. 1983, Morris and Dacey 1984).  As opposed to sediment diversions, which draw from the 

lower part of the river’s water column, introduce significant amounts of suspended sediment to 

affected marsh, and are intended to actively grow land (Allison and Meselhe 2010), freshwater 

diversions draw from the top of the water column and are designed primarily to stem saltwater 

intrusion and slow wetland loss (CWPPRA 2010).  Therefore, the prevailing immediate effects 

of freshwater diversions are nutrient addition and salinity reduction (Lane 1999), both achieved 

through increased water flow and periodic flooding (Snedden et al. 2007).   

Organic accretion, which is affected by restoring river-floodplain connectivity (Lane et 

al. 1999, Lane et al. 2006, Hyfield et al. 2008), is influenced by the effect of nutrient and salinity 

management on vegetation growth (McCaffrey and Thomson 1980, Nyman et al. 2006).  Some 

research indicates that increasing nutrients negatively affects vegetation.  For example, 

Swarzenski et al. (2008) found that the influx of nutrient-rich water did not increase standing 
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biomass, while Darby and Turner (2008) reported a decrease in the belowground biomass of 12 

of 14 fertilized sites.  However, Darby and Turner’s (2008) experimental nutrient doses reached 

372 g N m-2 and 425 g S m-2, a much higher amount than the levels prescribed (14 g N m-2) by 

agricultural rice standards (Salassi and Deliberto 2011), and S exists as the powerful phytotoxin 

sulfide in typically reduced wetland soils (Koch et al. 1990).  The ability of high nutrient 

concentrations to reduce growth is also reported by Merino et al. (2010), who show that, at 

relatively lower salinities, biomass experienced the greatest increase at moderate fertilization 

levels and underwent a slight decrease from moderate to high nutrient levels. 

In contrast, root proliferation within nutrient-rich environments has also been extensively 

documented (Valiela and Teal 1976, Drew 1979, Robinson 1994, Casper and Jackson 1997, 

Hodge 1998, Robinson 1999).  As freshwater diversions create varying nutrient and salinity 

conditions in the marsh, much recent research has focused on the role of nutrients as limiting 

growth factors as related to salinity (Foret 2001, Delaune et al. 2003, 2005, Nyman et al. 2006, 

Crain 2007, Merino et al. 2010, Tobias et al. 2010).  In some experiments, high salinity was the 

overriding factor limiting growth in the brackish marsh plant Spartina patens, as maximum 

experimental biomass occurred when plants were treated with high nutrient and low salinity 

concentrations (Foret 2001, Merino 2010).   Foret (2001) found that vegetation that received 

nutrient additions in high salinity showed no significant effect, while Delaune et al. (2005) 

showed that the fertilizer+salinity treatment resulted in higher mean biomass than the control in 

S. patens. 

Flooding stress may also be a significant limiting factor in the growth of wetland 

vegetation (Gleason and Zieman 1981, Gleason and Dunn 1982, Delaune 1987, Naidoo et al. 

1992, Spalding and Hester 2007, Tobias et al. 2010).  Webb et al. (1995) found that growth of S. 
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patens in Louisiana marshes was correlated to elevation and thus submergence, as opposed to 

salinity stress, while Broome et al. (1995) showed that S. patens was more productive in lower 

salinity, however at relatively higher elevations.  Spalding and Hester (2007) reported that 

increases in flooding depth were detrimental to S. patens. 

Thus, while salinity and nutrient have a demonstrated effect vegetation growth (Foret 

2001, Delaune 2003, 2005, Merino 2010, Tobias 2010), interactions among flooding, salinity, 

and nutrients are unclear.  Therefore, it is in the context of a freshwater diversion’s influence and 

its purpose that we frame our research question.  Do flooding stress, salinity stress, and nutrient 

availability interact to affect the growth of belowground biomass in S. patens? 

 

Methods 

We employed previously existing “marsh organs” to test six levels of flooding (Morris 2007) on 

the belowground biomass growth of S. patens.  So named because they resemble a pipe organ, 

marsh organs are constructed by bolting together thirty-six 15.2 cm diameter PVC longitudinally 

for structural soundness.  Pipes were cut to lengths of 122, 107, 91, 76, 61, and 46 cm.  Each 

organ consists of six rows and six columns of pipes, such that “row one” was the tallest and least 

likely to be flooded, “row six” was the shortest and most likely to be flooded, and each column 

consisted of a set of pipes bracketing the entire range of elevations.  Columns were identified 

“A” through “F”, such that “A” was oriented toward the west and “F” to the east.   

In the summer of 2007 organs were placed in four field sites, two at Marsh Island 

Wildlife Refuge (29⁰34’47 N, 92⁰00’40” W and 29⁰34’42” N, 91⁰49’29” W) and two at 

Rockefeller Wildlife Refuge (29⁰37’54” N, 92⁰38’18” W and 29⁰37’12” N, 92⁰34’11” W), 
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chosen to represent a range of conditions experienced by S. patens in Louisiana coastal wetlands 

(Tobias 2010).   Following Penfound and Hathaway’s (1938) classification system, one organ 

was placed at each location in a saline area where the surrounding marsh was dominated by 

Spartina alterniflora, and the other organ was placed in an intermediate marsh where the 

surrounding marsh was largely dominated by S. patens (Tobias 2010).  The two organs located at 

Marsh Island are within the Atchafalaya River watershed and therefore receive a high loading of 

riverine nutrients, while the two organs were located within Rockefeller Wildlife Refuge are out 

of the Atchafalaya basin and its associated influence.   

Organs were set in shallow ponds and oriented such that the tallest pipes were to the 

north for maximum sunlight exposure to all pipes.  Organs were set in soil so that the fourth row 

was approximately level with the surrounding marsh, resulting in the elevation of row 1 being 

approximately 46 cm above surrounding marsh and the elevation of row 6 being approximately 

30 cm below local marsh (Tobias 2010).  Travel to all field sites was accomplished by airboat. 

 Prior to the growing season, all pipes at each organ were cleared of any pre-existing 

vegetation and filled completely with sediment from the surrounding pond, such that organs 

pipes of different heights received different amounts of sediment.  At the next visit to both the 

Rockefeller Refuge and Marsh Island sites (April 12, 2013 and April 19, 2013, respectively), all 

organ pipes were topped off with additional local mineral sediment and planted with 

approximate 10 culms each of S. patens, harvested from surrounding marsh.  As past research 

had failed to detect a nutrient effect caused by the Atchafalaya River (Tobias 2010), all organ 

pipes at Marsh Island were fertilized with 2.00 grams of pulverized Forestry Suppliers (Jackson 

MS) 20-10-5 (total nitrogen, phosphate, potash) planting tablets, which gave concentrations of 

22 g N m-2, 11 g P m-2, and 5.5 g K m-2.  Pulverized fertilizer was wrapped in nonreactive coffee 
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filters, sealed with a rubber band, and pushed approximately 10 cm into the sediment surface.  

All organ pipes at Rockefeller Refuge were treated with a control of identical amounts of 

Pavestone paving sand (Grapevine, TX) that had been washed in a 5% HCl/H2O solution to 

remove any bound nutrients, packaged identically, and also placed at a depth of 10cm in the 

sediment.   

 Approximately halfway through the growing season, above- and belowground vegetation 

from half of each organ (columns A, C, and E) was harvested.  The organs in Rockefeller Refuge 

were harvested on August 3, 2012, while the Marsh Island organs were harvested on August 7, 

2012.  Prior to vegetation harvest, distances from the top of each row of pipes to water level were 

recorded, as were distances of contained sediment to the top of the pipes.  Hourly water level and 

salinity for the month preceding each harvest was obtained by accessing the closest Coastwide 

Monitoring Reference System (CRMS) sites (0523, 0530, 0608, 0610).   Distances between the 

CRMS sites and the organs ranged from .2 - 6.9 km.  Using field measurements in conjunction 

with data from the CRMS sites, a percentage of time flooded over the preceding month was 

calculated for each biomass sample retrieved.  In describing water levels relative to vegetation 

samples, we use “flooded” to mean submerged.   

As each entire core of above- and belowground biomass was removed from its pipe, the 

aboveground portion was removed with a sharp serrated saw and placed in a large plastic bag, 

and the belowground mass placed in a separate large plastic bag.  After transport to Louisiana 

State University’s School of Renewable Natural Resources, all samples were placed in a walk-in 

cooler to retard decomposition.  This harvest process was then repeated for all remaining organ 

pipes (columns B, D, and F) at approximately the conclusion of the growing season; Rockefeller 
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Refuge organs were harvested for the second time on October 29, 2012 and the Marsh Island 

organs harvested on November 15, 2012.   

 Aboveground biomass was sorted by live or dead status.  Aboveground vegetation that 

had any trace of living tissue, signified by green color, was termed “live aboveground” while 

aboveground vegetation that lacked any trace of living tissue was termed “dead aboveground”.  

Live and dead aboveground vegetation was then sorted by species, using a dichotomous key.  All 

categories were placed in separately labeled paper bags, dried to constant weight at 60 ⁰ C, and 

weighed. 

Belowground biomass was first washed with water to remove mud, in a 2 mm standard 

laboratory test sieve (Fisher Scientific no. 10).  Following protocol from an earlier study, roots 

were considered clean when water passing through them ran clear (Tobias 2010).  Once cleaned, 

roots were sorted into live and dead categories.  “Live roots” consisted of roots that were turgid, 

had attached root hairs, and were light orange to white in color (Tobias 2010).  “Dead roots” 

consisted of roots that had no root hairs, were easily crushed, and grey in color (Tobias 2010).  

Because of difficulty in identification, live roots were not sorted by species.  Live samples were 

dried to a constant weight at 60⁰ C and then weighed using an Ohaus Adventurer Pro 

(Parsippany NJ) scale to the nearest 0.01 g.  Belowground and aboveground samples of living S. 

patens were macerated and sent to the Louisiana State University Agronomy Department for 

elemental testing. 

The data were tested for associations among elemental levels, belowground and 

aboveground biomass, and flooding stress as quantified by percent time flooded.  Initial analysis 

of residuals in the raw data indicated that the biomass and elemental data were not normally 
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distributed, after which a log transformation was used to greatly improved normality. Using 

PROC GLMSELECT, full mixed effect models were reduced to the most parsimonious version 

through stepwise model selection, which was verified through forward and backward model 

selection.  All analyses were conducted using the Statistical Analysis System (Cary, NC). 

 

Results 

At the Marsh Island organs, mean salinity at the relatively fresh site for the month preceding the 

second harvest was 11.3 ppt (1.5), while the corresponding mean salinity for the more saline site 

was 13.8 ppt (0.5).  At the unfertilized organs in Rockefeller Refuge, the mean salinity of the 

relatively fresh site for the month preceding the second harvest was 2.6 ppt (0.5), while the 

corresponding mean salinity for the more saline site was 14.7 ppt (6.4).   

Total mean belowground biomass measurements ranged from 30-52 g (Table 1).  The log 

transformed dependent variable belowground biomass was significantly and negatively affected 

by percent flooding (P<0.0001, Fig. 1).  With increasing percentage of time flooded over the 

preceding month, belowground biomass correspondingly decreased.  This trend persisted across 

harvests, and did not vary between fertilization regimes.  Interactions between flooding and 

fertilization, as well as between flooding and salinity, were not significant. 
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TABLE 1. Below- and aboveground biomass measurements from all organs, presented in grams 
followed by standard deviations  

 

  

FIGURE 1.  Response of log transformed belowground biomass to percent flooding over the 
month preceding harvest; both harvests.  

  

Belowground biomass also was significantly affected by an interaction between salinity 

and fertilization (P<0.0001, Fig. 2).  Fertilized belowground biomass was greater than 

			*First	harvest	only
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unfertilized belowground biomass, with a greater biomass difference between fertilization 

regimes at higher salinities.  This overall trend persisted across harvests, although the effect was 

greater at the first harvest.   

 

FIGURE 2.  Response of log transformed belowground biomass to change in salinity, plotted by 
fertilization regimes; both harvests. 

 

Total mean aboveground biomass measurements ranged from 21 to 30 g (Table 1).  

Aboveground biomass showed a three-way interaction between salinity, percent flooding, and 
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fertilization (P<0.0001).  At the first harvest, aboveground biomass showed the same interaction 

of salinity and fertilization as belowground biomass; fertilized samples had greater biomass at 

higher salinities, with a greater effect between fertilization regimes shown at higher salinities 

(Fig. 3).  By the second harvest, the aboveground vegetation of the fresher Marsh Island organ 

was eaten by muskrat; consequently there is no corresponding aboveground data for the second 

harvest at this site. 

  

FIGURE 3.  Response of log transformed aboveground biomass to change in salinity, plotted by 
fertilization regimes; first harvest. 
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Belowground C:N was reduced by fertilization (P<.0001, Fig. 4).  Throughout both 

harvests, belowground C:N in organs at fertilized sites was significantly lower than the 

unfertilized sites, and was not significantly affected by salinity.  Total mean C:N for fertilized 

belowground biomass was 44 (12.6), while total mean C:N for unfertilized belowground was 57 

(13.0). 

FIGURE 4.  Response of belowground C:N to fertilization regimes; both harvests. 

Belowground Na content showed a significant salinity by fertilization interaction (Fig. 5).  

Fertilized and unfertilized belowground biomass contained more Na at the more saline organs 
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than the more fresh organs.  Fertilized belowground biomass also contained significantly higher 

levels of Na (P<0.0001) than unfertilized samples, with the difference increasing with salinity.  

This trend persisted across harvests, with a difference in fertilization regimes being more 

pronounced in the second harvest.  Total mean belowground Na (ppm) for fertilized samples was 

5,086 (8,254), while total mean Na for unfertilized samples was 3,906 (6,998). 

 

FIGURE 5.  Response of log transformed belowground Na content to salinity, plotted by 
fertilization regimes; both harvests. 
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Fertilized aboveground biomass samples contained significantly higher levels of Na 

(P<0.0001) than unfertilized samples, with this difference increasing with a corresponding 

increase in salinity.  Total mean aboveground Na (ppm) for fertilized samples was 11,296 

(10,110), while total mean Na for unfertilized samples was 8,900 (6,578).  Throughout both 

harvests, C:N in organs at fertilized sites was significantly lower than the unfertilized sites, and 

was not significantly affected by salinity.  Total mean aboveground C:N for fertilized samples 

was 55 (24), while total mean aboveground C:N for unfertilized samples was 65 (18). 

  

Discussion 

Vegetation studies located on the Gulf of Mexico have found that the productivity of wetland 

vegetation decreases with increased flooding stress (Delaune 1987, Spalding and Hester 2007, 

Darby and Turner 2008, Tobias et al. 2010).  Our results agree with such previous research, 

indicating a decreasing trend in belowground biomass with increasing percentage of time 

flooded.  Other research, for example that of Morris et al. (1990), has shown that in a macro-tidal 

Atlantic tidal system, increased and intermittent flooding increased primary and secondary 

productivity, as it reduces hypersaline accumulation to oceanic levels. Our research found no 

interaction between percentage of time flooded with either fertilization or salinity, suggesting 

that within our experiment flooding influence was of primary importance, independent across all 

organs, and likely caused similar waterlogging stresses of vegetation as reported by Delaune et 

al. (1983).  Tobias (2010) likewise concluded that flooding stress operated independently from 

salinity stress and nutrient availability. 
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Secondary to the primary influence of flooding stress was an interactive effect between 

fertilization and salinity. Fertilized belowground biomass was greater than unfertilized 

belowground biomass, and the difference increased as salinity increased.  This interaction 

potentially indicates that fertilized S. patens belowground biomass may be affected by salinity 

differently than unfertilized belowground biomass (Fig. 2, Fig. 3).  Previous research has also 

noted the interaction of salinity and fertilization.  In reporting the interactive effects of nutrients 

and salinity on S. patens, Merino et al. (2010) employed 4 levels of nutrients, 4 levels of salinity 

(the highest of which was stressful at 36 ppt) and illustrated (Fig.1) that only the highest non-

stressfull salinity (18 ppt) showed a steadily increasing trend in mean biomass from low to high 

nutrient concentrations, while lower salinities (2 ppt and 6 ppt) showed declining trends in mean 

biomass from medium to high nutrient treatments.  Crain (2007) also reported that with N 

addition alone biomass more than doubled at higher salinities.  In other words, it appeared that 

high nutrient levels were not harmful to vegetation already stressed by high salinity in the way 

they were to vegetation with greater growth potential because of lower salinity stress; 

fertilization appeared to affect vegetation at different salinities differently.   

While past studies corroborate a positive relationship between N-addition and increased 

biomass (Patrick and Delaune 1976, Foret 2001, Delaune et al 2003, 2005, Merino 2010), 

extreme levels of fertilization appear to be deleterious to the production of biomass (Darby and 

Turner 2008, Merino et al 2010).  While our results do show an overall slowing of production 

with increasing salinity, one interpretation is that increasing nutrient availability enabled 

vegetation to better withstand higher salinities. Correspondingly, our mean fertilized 

belowground biomass totals were significantly higher than our unfertilized belowground biomass 
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totals, both in relatively higher and lower salinities and across both harvests, with the difference 

between nutrient treatments increasing as salinity increases. 

Theoretical support for these findings may lie in the cellular mechanisms for 

osmoregulation within plant tissue.  The movement of water and therefore nutrients within a 

plant follows a system of water pressure potential (Jefferies 1981).  Pure water has a potential of 

zero, while seawater, for example, has a lower potential of -25 bars (Jefferies 1981).  Following 

the laws of osmosis, a substance flows from an area of high pressure to an area of lower 

pressure; therefore, to effect an upward flow of nutrients and water in a saline environment, 

vegetation must manufacture increasingly lower (i.e. more negative) water potential in each 

progressively higher cell.  This is achieved by incorporating small amounts of dissolved salt 

solids into cells, where these ions contribute to lowering the water potential of the cell as a whole 

and maintaining the necessary overall pressure gradient within the plant (Jefferies 1981).  As 

they would otherwise damage internal cell structure and disrupt metabolic processes, ionic 

compounds are sequestered within the cell vacuole (Cavalieri 1981).  To counter the resulting 

osmotic potential within the cell, compatible osmolytes are produced in the cytoplasm (Boscaiu 

2013), the most common of which is the nitrogen-based free amino acid proline (Cavalieri 1981, 

Hester 1994), which maintain cellular equilibrium while also serving to directly stabilize cellular 

organelles under dehydrated conditions (Cavalieri 1981, Jefferies 1981, Li et al. 2013). 

Research has shown that with increasing salinity, the corresponding plant demand for 

available internal N to maintain growth also increases (Bradley and Morris 1992).  The presence 

of lower C:N ratios in both fertilized organs indicates increased N uptake at those sites, and 

therefore an underlying relative N limitation across salinities.  Although it is a common 

perception that more saline marsh conditions are N-limited (Valiela and Teal 1976, Jefferies and 
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Perkins 1977, Osgood and Zieman 1998, van Wijnen and Bakker 1999), this limitation may also 

stem from increased needs of the vegetation itself of N for maintenance of growth in increased 

salinity (Jefferies 1981, Crain 2007), as the necessary production of proline possibly creates an 

additional cellular N demand.  Similarly, Crain (2007) found that S. patens N content declined in 

fresher marshes, where it should have theoretically been easier to acquire, suggesting that N 

tissue content may be driven more by internal N requirements than by N availability.  Proline 

levels have been shown to be correlated positively with increasing salinity (Jampeetong and Brix 

2009, Naidoo et al. 2012, Baciau et al 2013, Li et al. 2013), increasing growth (Cavalieri 1981), 

and Na content (Jampeetong; Fig. 3; b,f), potentially due to an increased ability of plants cells to 

sequester more Na ions with increased levels of proline. 

While other research has detected an interactive effect of salinity and fertilization as 

mentioned earlier, it should be noted that those overall trends diverged from ours.  For example, 

Merino et al. (2010) found that the difference between biomass of fertilized and unfertilized 

samples decreased with increasing salinity.  Differences in salinity among our sites were not as 

anticipated; initially, relatively fresh and saline organ sites were chosen based upon Penfound 

and Hathaway’s (1938) classification of marsh type by predominant vegetation.  However, the 

Gulf of Mexico coast is defined in part by wind-driven and therefore sometimes extremely 

prolonged tides (Reid 1954), as well as relatively small land spatial variation (Childers and Day 

1990), which can greatly affect the relative salinity of a specific location (Morey et al. 2003).  

Consequently, for the month preceding the second harvest at the fertilized Marsh Island site, the 

mean salinity of the relatively fresh site differed from the corresponding mean of the relatively 

saline site by less than 3 ppt.  Therefore relatively higher salinities were potentially 

underrepresented in assessing the production of biomass at our unfertilized sites, while relatively 
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lower salinities were potentially underrepresented in assessing the production of biomass at our 

fertilized sites.  For this reason we did not use salinity as a categorical variable and instead 

analyzed continuous data.  Therefore, it is possible that the apparent effect of the fertilization on 

vegetation at higher salinities is a reflection of these underrepresentations. 

As previously noted, the first harvest of aboveground biomass showed the same trend as 

the overall belowground trend.  We believe this trend failed to continue through the second 

harvest because of a muskrat eat-out that included all but two pipes of aboveground biomass in 

our fertilized, low salinity organ.  We attribute this to previous research which shows that 

mammalian wetland herbivores prefer fertilized, lower salinity vegetation (Ialeggio and Nyman, 

in press). We also contend that the correlation of production trends between above- and 

belowground biomass shown by Gross et al. (1991) paired with our mean first harvest 

aboveground biomass figures suggest that the first aboveground harvest is probably 

representative of a predominant trend across harvests. 

We believe our results should be interpreted cautiously.  We did not test levels of any 

osmolytes in our sample vegetation, and therefore cannot directly correlate them to our observed 

data.  We also failed to collect accurate oxidation-reduction data, which because Eh levels can 

affect nitrate reduction and therefore N availability (Patrick et al 1974), as well as the solubility 

of substances available for uptake (Gambrell and Patrick 1978), could have greatly informed our 

analysis.  It should also be noted that in light of the effects of freshwater diversions, it is 

relatively unlikely that an increase of nutrients would not be accompanied by a reduction in 

salinity (Lane 1999), in which case previous studies showing the effect of elevated nutrient 

levels on low salinity vegetation would be more informative.  However, we observed the 

presence of fertilized S. patens which showed lower C:N ratios and thus less N limitation, 
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produced more below- and aboveground biomass at higher relative salinities as compared to 

unfertilized samples, and greater plant tissue concentration of Na than unfertilized vegetation.  

This leads us to conclude that we may potentially approach our observed data as part of a known 

system in which fertilization resulted in greater N-limited osmolyte production, thereby lowering 

cellular water potentials and allowing for improved vegetative growth in higher salinities 

(Cavalieri, 1981). 
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CHAPTER 2 
NUTRIA GRAZING PREFERENCE AS A FUNCTION OF FERTILIZATION 

 

Introduction 

Since their introduction to Louisiana in the 1930s, nutria have significantly affected coastal 

vegetation (Shaffer et al. 1992, Grace and Ford 1996, Evers et al.1998, Shaffer et al. 2009).  

They are voracious grazers (Baroch and Hafner 2002) and reports of private and public land 

damages are widespread (LDWF 2007).  Nutria populations in coastal Louisiana are limited 

neither by the seasonal droughts or extended frosts of their indigenous South American steppe 

habitat (Ehrlich 1967), nor constrained by a fixed breeding season (Atwood 1950).  

Consequently, the species is capable of extremely rapid population growth and by the early 

1950s the statewide population estimate was 20 million animals (Carter et al. 1999, Baroch and 

Hafner 2002, Jojola et al. 2005, LDWF 2007).  Although a viable commercial trapping industry 

historically took advantage of large nutria populations, by the 1980s pelt prices were greatly 

reduced and trapping diminished (Jojola et al. 2005).  Coastal land damage increased as nutria 

populations exploded in the wake of weakened controlling pressures, with an aerial survey in 

2001 estimating more than 83,000 acres damaged by nutria (Marx et al. 2003, Jojola et al. 2005).  

In 2002, the Louisiana Department of Wildlife and Fisheries instituted the Coastwide Nutria 

Control Program (CNCP) (Marx et al. 2003, Jojola et al. 2005, Dedah et al. 2010), a 

geographically targeted harvest incentive program, offering US$4/nutria tail (US$5/tail 

beginning in 2006) (Dedah et al. 2010).  Within 5 years of the CNCP implementation, herbivory 

damage decreased by 50% statewide and annual nutria harvests increased from 24,683 to 

375,683 animals (Scarborough and Mouton 2007); after the 2011-2012 trapping season, 354,354 
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nutria were harvested and vegetation surveys found affected coastal marsh reduced to 1,129 

acres (Hogue and Mouton 2012).   

Robust wetland systems are vital to the sustainability of coastal human populations 

because they provide habitat to numerous wildlife and plant species, support an economically 

valuable recreation industry, and render important ecological functions such as storm surge 

protection and wastewater filtration (Day et al. 1995, Spalding and Hester 2007).  Although the 

CNCP has increased control over herbivory and its associated wetland destruction, marsh loss is 

estimated at 42.9 km2 yr-1 and predicted to continue (Couvillion et al. 2013), thus remaining an 

important issue in coastal Louisiana.  Therefore it is of interest that certain wetland management 

practices may affect vegetation palatability to herbivores, thus altering risk of herbivory.   

For example, there currently is an increasing emphasis on restoration methods which 

include re-establishing connectivity between the Mississippi River and its floodplain by diverting 

water from the river into the surrounding marsh (Lane et al. 1999, Lane et al. 2006, Hyfield et al. 

2008).  In addition to beneficial fresh water and mineral sediments, Mississippi River water also 

contains nutrients from such anthropogenic sources as upstream agricultural runoff of animal 

manure, eroded soils, pesticides and fertilizers (Goolsby et al. 1999).  Although levels of 

suspended nutrients are relatively low, high river volume transports a correspondingly high 

nutrient load to affected wetlands.  For example, while nitrate levels passing through the 

Caernarvon diversion into Breton Sound range from 1-2 mg N L-1, maximum allowable flow is 

280 m 3 s-1, and yearly total N loads are approximately 10 g N m-2 yr-1 (Lane et al. 1999, 2004, 

Mitsch et al. 2005). 
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Many emergent wetlands offset local subsidence and global sea-level rise with vertical 

accretion via vegetative production (Nyman et al. 2006), and vegetative production in wetland 

systems may be positively affected by nutrient input and lowered salinity (Merino et al. 2010, 

Morris et al. 2013).  However, there also is evidence that marsh herbivores prefer lower salinity 

habitats over higher salinity habitats (Nyman et al. 1993) and that wetland herbivores prefer 

vegetation with higher nitrogen content over vegetation with lower nitrogen content (Alisauskas 

et al. 1988).  Thus, herbivory may have a greater effect on marshes within the low salinity, 

nutrient-rich end of the spectrum. 

Wetlands directly northwest of Lake Cataouatche, Louisiana, have received nutrient-rich 

Mississippi River water via the Davis Pond diversion since 2002, and Four Mile Marsh, within 

the Joyce Wildlife Management Area, has been the site of secondarily treated municipal effluent 

from the city of Hammond, Louisiana, since fall 2006.  Both sites are examples of nutrient 

enriched wetlands that support nutria populations which have affected surrounding marsh since 

nutrient inputs began (Lundberg et al. 2011, Baker, personal communication 2012).  

Consequently, we sought to test the hypothesis that nutria selected vegetation within a species 

grown in higher nutrient concentrations over vegetation within that species grown in lower 

nutrient concentrations.  The ex situ implication of this research is that if the presence of high 

nutrient levels potentially influences the feeding habits of nutria, it is then possible that increased 

herbivory may in turn degrade wetlands most affected by river diversions and assimilation 

wetlands.  
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Methods 

We collected Panicum hemitomon Schult., Sagittaria lancifolia L., and Spartina patens (Aiton) 

Muhl, plants that are all identified as dominant species within their marsh type, eaten by nutria in 

the wild and representative of nutria habitat across a salinity range.  P. hemitomon, which 

historically made up over 25% of freshwater marsh vegetation and 9% of total Louisiana 

wetlands (Chabreck 1970), was grazed considerably by nutria in exclosures in Terrebonne Parish 

(Holm et al. 2011).  We gathered it from an unnamed freshwater marsh outside Houma, LA.  S. 

lancifolia is the most widespread fresh-brackish marsh plant in the northern Gulf of Mexico, can 

constitute a large part of nutria diet (Linscombe et al. 1997) and was gathered along the northern 

shore of Lake Cataouache, east of the Davis Pond diversion outflow and outside of its influence.  

S. patens, widely dominant in brackish marshes within the brackish marsh salinity limit of nutria 

habitat (Baroch and Hafner 2002, Jojola et al. 2005), is palatable to nutria under certain 

circumstances (Chabreck 1981, Wilsey and Chabreck 1991) and was gathered within Rockefeller 

Wildlife Refuge in Chenier, LA. 

Plant samples were transported to the Louisiana State University greenhouse, where they 

were transplanted immediately into 15 cm, open-flow plastic pots using landscaping sand 

substrate.  Potted plant samples were placed within 6 individual 2 m diameter plastic wading 

pools, such that each pool contained 30 pots, and each plant species occupied two pools.  In 

determining appropriate nutrient fertilization rates, it was decided that the importance of 

maximizing difference in treatments outweighed that of approximating previously established 

loading rates.  One pool of each plant species was then fertilized at 0.9 g N m-2 d-1 with Miracle-

Gro All Purpose Plant Food (Scotts Miracle-Gro Products, Marysville, OH) for a period of 68 d 

with a final total loading of 61.9 g N m-2, resulting in 30 fertilized and 30 non-fertilized samples 
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of each species.  Samples were observed daily for yellowing leaves, browning of leaf margins, 

excessive algal blooms, or other indications that nutrient concentrations were approaching toxic 

levels. We temporarily suspended nutrient additions when nutrients appeared to be causing 

toxicity.  We supplied all pools with municipally sourced fresh water, maintained at just below 

sediment level and constantly circulated by Mini-jet 404 submersible pumps (Marineland United 

Pet Group, Blacksburg, VA) to ensure homogeneity of nutrient concentrations. 

From 10 June 2010 to 27 June 2012, seven adult nutria were live-trapped in the artificial 

ponds of the Louisiana State University aquaculture center with 3 Havahart large one-door easy 

set traps (Woodstream  Corporation Lititz, PA) using sweet potato fragments as bait in obviously 

nutria-grazed areas.  The nutria were housed in two 4 m x 2.5 m pens in the Louisiana State 

University Veterinary Medicine Center and fed a diet of sweet potatoes and commercial rodent 

chow by employees of the Veterinary Medicine Center.  Individual nutria were identified by 

colored plastic neck collars and medical attention was administered on an as-needed basis.   

Feeding trials were conducted nightly when nutria are believed to feed most often.   

Individual plant-pot samples were removed from growing pools 24 h prior to the trial and 

weighed 24, 12 and 0 h before the trial to account for water loss.  One fertilized and non-

fertilized sample of that particular trial’s target species was placed in a 4 m x 2.5 m trial pen, the 

15 cm pots set 0.5 m away from three walls and each other at the end of the trial pen.  The 15 cm 

pots were set within standard concrete blocks to prevent overturning but still allow nutria to 

mimic natural foraging.  An individual nutria was then removed from the holding pens, 

introduced into the trial pen and left overnight for a period of 12 h, after which the plant-pot 

samples were immediately weighed again.  The nutria were not starved before the trials, and the 

location of the fertilized and unfertilized pots was alternated randomly before each trial to 
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minimize habitual feeding.  Pre- and post-trial plant mass was used as an indicator of damage; 

actual material ingested was not measured because potential marsh damage could include 

indirect vegetative destruction as well as consumption.  Pre- and post-trial plant mass loss was 

calculated as percent mass lost in an effort to reduce bias; for example, larger plants might lose 

more raw mass than smaller plants.  One nutria died in captivity after only two trials, and those 

trials were discarded.  Five remaining nutria were each offered a choice of fertilized and 

unfertilized samples of each plant species 3 times over 54 d, from July 27 to September 21, 2012.  

One remaining nutria was offered the same choice of fertilized and unfertilized S. lancifolia and 

S. patens over the same time period but not P. hemitomon because by this time, our P. 

hemitomon samples had become senescent and no longer useable. 

Initial analysis of residuals in the raw data indicated that the data were not normally 

distributed, which we attribute to a small sample size.  A log transformation greatly improved 

normality, and we then modeled percent plant loss as a function of the fixed effects of 

fertilization and plant species, measured in percent mass lost over the course of each trial, 

analyzed as a two-way ANOVA using nutria as a random effect in PROC MIXED (SAS 

Institute, Inc., Cary, NC).  Results were then back-transformed and presented with the 95% 

lower confidence interval (LCI) and upper confidence interval (UCI) in parentheses.  All 

research was conducted in accordance with Animal Welfare Act regulations, the United States 

Department of Agriculture, Animal and Plant Health Inspection Service, and the Louisiana State 

University Agricultural Center.  The Louisiana State University Division of Laboratory Animal 

Medicine’s Institutional Animal Care and Use Committee approved the study protocols, under 

which the animals were ultimately euthanized. 
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Results 

Fertilization had a significant effect on the percent mass of vegetation lost through nutria 

herbivory (F1,4 = 36.8, P<0.0001) in all plant species (Fig. 1). Across the three plant species, 

fertilized vegetation experienced an overall mean mass loss of 79.4% (LCI 63.1, UCI 100.0), as 

compared to 9.3% (LCI 7.4, UCI 11.7) in unfertilized vegetation.  The mean carbon content of 

fertilized plant samples was 42.9% (0.6), the mean nitrogen content was 2.2% (0.2), and the 

mean C:N was 19.8.  The mean carbon content of unfertilized plant samples was 44.4% (0.3), the 

mean nitrogen content was 0.91% (0.1), and the mean C:N was 48.8.   

FIGURE 1. Mean percent mass loss of fertilized and unfertilized plant samples with one 
standard error of the mean, plotted by species. 
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Species also had a significant effect on the percent mass of vegetation consumed by 

nutria (F2, 3 = 9.5, P = 0.0008).  The mean percent mass lost by S. patens was significantly less 

than the other two species (Fig. 1).  S. lancifolia, which had a mean C:N of 18.0, experienced the 

greatest consumption with a mean mass loss of 50% (LCI 39.8, UCI 63.1).  This was followed 

by P. hemitomon, which had a mean C:N of 35.3 and had a mean mass loss of 31.6% (LCI 25.1, 

UCI 39.8).  S. patens, which had a mean C:N of 41.1,  experienced the least reduction and had a 

mean mass loss of 10% (LCI 7.9, UCI 12.6).  In our fertilized samples, nutria did not greatly 

differentiate between S. lancifolia and P. hemitomon, but there was significant difference in 

percent mass lost between these species and S. patens.  Nutria consumed more S. lancifolia and 

P. hemitomon than fertilized S. patens, even as fertilization lowered the mean C:N of S. patens to 

slightly below that of P. hemitomon.  As the mean C:N was quite close in fertilized samples of P. 

hemitomon and S. patens (25.3 and 24.8, respectively), the distinction between the two species 

may lie in N:P ratios of 7.4 and 5.7, respectively (Table 1). 

In the log transformed model, the species-fertilization interaction term was not significant 

(F2, 3 = 1.5, P = 0.24).  In non-transformed raw data, fertilized P. hemitomon was reduced by a 

mean of 11.1% (3.4) and unfertilized by 0.9% (3.0).  Fertilized S. lancifolia was reduced by a 

mean of 12.0% (2.8) and unfertilized was reduced by 3.0% (2.7).  Fertilized S. patens was 

reduced by 5.8% (2.9) and unfertilized was reduced by 0.19% (3.1).  Order of preference of 

plants consumed, in both fertilized and unfertilized samples, was S. lancifolia, P. hemitomon, 

and S. patens. 
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TABLE 1. Mean nutrient concentrations of fertilized and unfertilized plant species reported 
in percent content of carbon, nitrogen, and phosphorous with respective sample standard 
deviations of the mean included in parentheses. 

 

 

 

Discussion 

Animals require nitrogen and phosphorous to maintain growth, reproduce, and survive (White 

1978, Mattson 1980); therefore grazing animals select vegetation containing the highest relative 

source of these elements within a fixed intake (Gurchinoff 1972, Westoby 1974, White 1978, 

Mattson 1980).  Our experimental results, in which nutria caused significantly greater percent 

mass loss to fertilized versus unfertilized samples of P. hemitomon, S. lancifolia, and S. patens, 

are consistent with previously researched behavior.  By increasing the concentration of 

biologically available nutrients in the tissues of fertilized plants, the ratio of carbon to nitrogen 

and carbon to phosphorus dropped significantly and the palatability of those plants to nutria rose.  

Fertilized Unfertilized 

Species C N P C:N N:P C N P C:N N:P 

P. hemitomon 44.98% 

(1.26) 

1.78% 

(.69) 

.24% 

(.06) 

25.27 7.42 44.7% 

(.87) 

.75% 

(.17) 

.09% 

(.03) 

59.60 8.33 

S. lancifolia 38.23% 

(1.11) 

2.88% 

(.53) 

.51% 

(.08) 

13.27 5.65 41.9% 

(.06) 

1.58% 

(.19) 

.24% 

(.03) 

26.54 6.58 

S. patens 43.38% 

(1.20) 

1.83% 

(.13) 

.32% 

(.12) 

24.80 5.72 46.7% 

(1.28) 

.41% 

(.06) 

.05% 

(.02) 

113.90 8.2 
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As carbon is generally in excess in terrestrial systems (Elser et al. 2000) and N and P limit 

consumers bodily homeostasis (Anderson et al. 2005), these ratios may provide a means of 

assessing the relative desirability of varied vegetation.   

 As noted earlier, nutria consumed more S. lancifolia and P. hemitomon than fertilized S. 

patens, even as fertilization lowered the mean C:N of S. patens to slightly below that of P. 

hemitomon.  Higher N:P is typical of the fresher marsh (Baroch and Hafner 2002, Ngai and 

Jefferies 2004) that makes up the majority of nutria habitat, and observed lack of interest in S. 

patens despite relatively high N levels may reflect a lesser relative nutritional importance of P to 

N in our controlled trials. 

 Percent mass lost in unfertilized samples followed similar C:N and C:P trends.  While 

nutria inhabit and feed extensively in both fresh and fresh-brackish marsh (Linscombe et al. 

1997, Holm et al. 2011), abundance data indicate their general preference is for fresher marsh 

vegetation over more saline (Kinler et al. 1998).  Preference is defined as the selection of certain 

habitats independent of availability (Silvy 2012), and this preference is potentially due to the 

decreasing availability of biologically accessible N in saline environments (Baroch and Hafner 

2002, Ngai and Jeffries 2004).  As in fertilized samples, S. lancifolia had both the lowest C:N 

and C:P; nutria may have consumed more of it because it supplied necessary nutrients most 

efficiently. 

 Our findings are supported by previous research showing that the palatability of certain 

food sources to various grazing herbivores can be affected nutrient addition.  In examining the 

interactions of plant carbon, nutrient balance, and herbivory, Bryant (1987) observed that 

snowshoe hares (Lepus americanus) prefer fertilized over unfertilized feltleaf willow (Salix 
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alaxensis).  Similar results also were observed by Hartley et al. (1995), in which Orkney voles 

preferentially grazed Sitka spruce (Picea sitchensis) seedlings with increased N concentrations.  

Morris et al. (2002) found that Spartina alterniflora that had been treated with additional N was 

preferentially consumed by rice rats (Oryzomys palustris).   

Shaffer et al. (2009) and McFalls et al. (2010) observed that nutria significantly reduced 

biomass of fertilized plots in which herbivory was allowed, and Lundberg et al. (2011) observed 

nutria first and in large numbers in zones nearest the nitrogen-rich effluent inflow while 

examining a wastewater treatment wetland.  However, because Lundberg et al. (2011) did not 

ascertain whether nutria presence nearest the nutrient source was merely a result of increased 

vegetation growth and did not include an unfertilized control, their observations, while 

informative, are inconclusive.  Similarly, Shaffer et al. (2009) and McFalls et al. (2010) noted 

that, with fertilization, vegetation biomass increased only in exclosures where herbivory was 

absent, suggesting but not isolating the effects of nutrient addition to nutria feeding preference.  

Wilsey and Chabreck (1991) concluded that N content affected nutria preference among plant 

species, while our research extends their conclusions to address nutria preference within plant 

species as well. 

 We believe the distinction that the nutria made among our samples was based on the 

chemical content.  Because chemical content of vegetation can change with factors such as 

season and plant life stage, both at the stand and individual plant level, it is possible that 

associated herbivory also would vary.  For example, research shows that while vegetation 

incorporates N at higher levels early in the growing season (Harper 1971, Valiela 1976, Tobias 

2011), by maximum growth the C:N ratios began to increase, regardless of previous nutrient 

input or the ultimate size of the plant; C:N ratios of fully grown fertilized and unfertilized plants 
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trend toward comparable concentrations (Patrick and Delaune, 1976).  Additionally, as water 

volume is greatly seasonally variable (Hyfield et al. 2008), elemental ratios within diversion-

managed marsh vegetation are likely in constant flux.  Tobias (2011) also showed that C:N, 

within fixed nutrient supplies, can vary with salinity.  Therefore, depending on localized pre-

existing background conditions, herbivory may be asymmetrically distributed within an affected 

area. 

 In practical terms, our nutrient loading fell between the rates of secondarily treated 

municipal wastewater (0.21 g-2 d-1) entering the Joyce Wildlife Management Area in Hammond, 

La, (Lundberg et al. 2011) and the most nutrient-rich Santa Ana river water (5.75 g N m-2 d-1) 

entering a treatment wetland in the Prado Basin CA, prior to groundwater recharge (Reilly et al. 

2000).  Therefore, our experimental nutrient levels reflect current conditions in some areas and 

so are useful for inferring effects in the wild. 

 Nutria herbivory is a widely studied problem in the Mississippi Delta, and as such, 

successful measures have recently been enacted to minimize it (Scarborough and Mouton 2007, 

Hogue and Mouton 2012).  However, a correlation between increased fertilizer concentrations 

and preferential feeding habits has implications for both current nutria management and wetland 

restoration efforts.  For example, the nutria harvest program currently limits the area in which 

hunters can take advantage  of financial incentive to keep animal numbers low; an awareness of 

the connection between nutrient influx and increased herbivory might necessitate a re-

examination of the geographical targets of the program.  Additionally, a more complete 

assessment of the risks and benefits of treating wetlands with nutrient infused water might 

further inform current commentary on wetland restoration methods.  For example, in assessing 

the efficacy of three Mississippi River diversions in post-Katrina restoration, Kearney et al. 
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(2011) noted that vegetation disturbance in zones closest to the diversions was noticeably greater 

than reference areas, however they did not include the possibility of nutrient-induced herbivory 

in their analysis.  By identifying areas at greater risk of a nutrient-induced herbivory, such as 

sites of agricultural runoff, sewage treatment outflows, and river diversion sources, selective 

assessment and management can better address a restrictive hindrance to restoration efforts. 
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GENERAL CONCLUSION 

 In this thesis, I have shown that fertilization may affect the growth of vegetation 

differently at different salinities while flooding stress is a primary limiting factor, and that nutria, 

an invasive marsh herbivore, may potentially select vegetation based on increased nutrient 

content.  Although relationships between factors limiting growth have been previously 

researched, the importance of belowground biomass as it is affected by these three major limiting 

factors has been largely ignored.  Similarly, while many studies peripherally implied a causality 

between increased nutria herbivory and increased fertilization, I was able to quantify that 

relationship in a controlled environment. 

When considered together, the commonalities between these two experiments revolve 

around currently employed wetland restoration techniques, which locally manipulate hydrology 

and create varying levels nutrients, salinity, and flooding.  As flooding appears to be the primary 

cause of loss of vegetative biomass, while fertilization appears to both increase growth at higher 

salinities and potentially increase herbivory in vegetation of a range of salinities, the implications 

of the relationships between these two studies may serve to inform future restoration projects.   

That the introduction of nutrient-rich water to lower salinity wetland may have a 

threshold of positive influence on the growth of biomass, while simultaneously accruing 

additional risk of increased herbivory should likely factor into decisions regarding the location 

and utilization of  wetland loss mitigation systems.  Similarly, information showing that a 

freshwater diversion may potentially have a significant effect on saline marsh through nutrient 

addition as well as gradual freshening may imply that, over time, the way in which a diversion 

benefits affected wetlands may change.  For example, it is possible that an initial beneficial 

response to additional nutrients in minimizing vegetation loss could give way over time to a 
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controlled, longer term benefit from localized salinity reduction.  If nutrient levels within the 

introduced water source could be managed selectively, such a stepped approach to wetland loss 

mitigation might prove successful. 

These studies suggest several paths for future study.  Based on our results, research on 

the possible relationship between levels of so-called osmolytes and levels of nutrients, across a 

range of salinities, would possibly further clarify the role that fertilization plays in influencing 

the growth of S. patens in relatively higher salinities.  The proposed mechanism which I have 

described, by which our fertilized sample biomass experienced less reduction of biomass at 

relatively higher salinities could also be greatly informed by studying associated oxidation-

reduction potentials, as oxygen availability, which can change with degree and duration of 

flooding, can affect the uptake of contained beneficial matter. 

Additionally, as both of these studies are closely tied to the effect of nutrient uptake by 

vegetation, I recommend further research into causes of variations within that uptake.  For 

example, N utilization by vegetation, and thus C:N ratios within vegetation tissue, may change 

over time due to availability, cellular demand, and  seasonality.  If those changes could be 

quantified, C:N ratios’ might be a more useful metric by which to gauge such dependent 

variables as likelihood of grazing by herbivores and potential cellular osmolyte production, both 

of which indirectly affect the rate of vegetation growth and consequently the mitigation of 

wetland loss.  
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