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Chapter 1: General Introduction 

Wetlands and Coastal Louisiana 

Wetlands are some of the most indispensable ecosystems on the planet. The unique 

environments are widely recognized for supporting fish and wildlife production and 

maintaining biodiversity. Wetlands are also the filters and regulators of water on the 

landscape because they are the downstream receivers that absorb pollution, temporarily store 

floodwaters, and recharge groundwater aquifers (Mitsch & Gosselink 2015). Carbon 

sequestration in wetlands is also an essential function to mitigate effects of greenhouse gases 

and global climate change. Although wetlands cover only 5-8% of terrestrial environments, 

they contain 20-30% of the earth’s soil pool of carbon (Mitsch et al. 2013). Wetlands benefit 

many organisms but also many other habitats. They are transition zones between aquatic and 

terrestrial environments, otherwise known as an ecotone, that help regulate water quality, 

exchange nutrients, and protect shorelines.  

 Coastal estuaries and marshes provide economic and societal benefits like buffering 

storm impacts, supporting commercial fisheries, and promoting recreation and tourism 

(Barbier et al. 2011). In 2010, 39% of Americans (123 million people) lived in coastal 

counties which comprise less than 10% of the total land area in the United States (Crosset et 

al. 2013). And this was expected to increase 8% (10 million people) by 2020. Coastal 

societies and economies need healthy intact wetlands to protect valuable fisheries, port 

facilities, tourist destinations, and fossil fuel resources. Coastal wetlands in the U.S. were 

calculated to contribute $23.2 billion per year in storm protection and a loss of 1 hectare of 

wetland can lead to a $33,000 increase in damage from individual storms (Costanza et al. 

2008). Despite some marshes showing signs of resiliency, many coastal wetlands are facing 
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major global threats as a result of man’s activities and climate related impacts (Millennium 

Ecosystem Assessment 2005).  

 Louisiana’s coast is an important natural resource that supports cultures, businesses, 

and ecosystems. Marshes make up much of the coastal habitat but are disappearing rapidly. 

Louisiana’s coastal zone has lost approximately 4,830 square kilometers of wetlands from 

the 1930’s to 2016 (Couvillion et al. 2017). Since roughly 40% of coastal wetlands in the 

U.S. are found in Louisiana, this loss accounts for 80% of the national reduction in wetlands 

in the last century (Boesch et al. 1994). The accelerated loss in Louisiana, however, is caused 

by a combination of factors including Mississippi River levees, oil and gas exploration, 

channel construction, subsidence, and sea level rise.  

 Remote sensing is the science of monitoring an area or phenomena from a distance, 

commonly using aircrafts or satellites, and its practice has been critical for quantifying 

Louisiana’s land loss. Couvillion et al. 2011 analyzed coastal changes over an 80-year period 

by conducting land and water classifications with survey data, aerial photographs, and 

Landsat satellite imagery to determine overall land change. Historic rates and trends 

calculated from land loss maps have been used to estimate future losses and strategize 

restoration planning (Barras et al. 2003). Remote sensing has also been used to assess coastal 

damage from major events like hurricanes and oil spills (Barras 2007; Mishra et al. 2012). 

These techniques are essential since marsh losses are occurring at a coastwide scale and field 

measurements alone would be logistically impractical.  

Due to the rapid loss of these valuable areas, the state is conducting $50 billion worth 

of restoration projects to create new habitats and rehabilitate degraded ones (CPRA 2017). A 

variety of techniques have been employed, such as marsh creation, barrier island restoration, 
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shoreline protection, terracing, diversions, and hydrologic restoration. The Coastal Protection 

and Restoration Authority’s (CPRA) 2017 Coastal Master Plan currently includes the 

nation’s largest investment in marsh creation at $17.8 billion over the next 50 years. Since 

this technique typically consists of creating a new wetland out of a shallow water area, rather 

than rehabilitating a degraded one, understanding how these areas function as wetland 

habitats is critical to implementing better restoration techniques in the future.  

Research Approach 

Off-the-shelf unmanned aircraft systems (UASs), commonly referred to as drones, are 

being increasingly utilized in environmental assessments. The technology offers monitoring 

solutions for areas that are difficult to access and greatly benefit from high-resolution maps, 

like restored coastal wetlands. Traditional methods for monitoring restored wetlands are time 

and labor intensive and often fail to provide holistic site assessments. Data captured by 

regular RGB cameras standard with most modern drones can significantly improve our 

understanding of restoration progress and the development of a site over time. Multispectral, 

LiDAR, and other precision sensors or cameras are highly beneficial for landscape and 

vegetation analysis but are not widely available to everyone (Colomina & Molina 2014). 

Although many studies have used drones and remote sensing to assess wetlands, few have 

used them specifically for understanding wetland restoration (Zweig et al. 2015; Boon et al. 

2016; Husson et al. 2016; Kalacksa et al. 2017; Pande-Chhetri et al. 2017; Broussard et al. 

2018; Doughty & Cavanaugh 2019). Drones fill a niche in remote sensing with higher 

resolutions and greater operational flexibility than manned aircrafts or satellites at a much 

lower cost, albeit with greatly reduced areal coverage (Klemas 2015). Processing techniques 

like structure from motion (SfM) photogrammetry can create multiple data types from drone 
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images, including 3-layer RGB mosaics and digital surface models (DSMs), that can be used 

to make accurate site maps and vegetation classifications (Husson et al. 2017). The 

technology is a powerful tool for restoration managers and ultimately provides better 

knowledge of site development than most traditional surveys.  

Field surveys are an essential part of restoration monitoring. They are also necessary 

to ground truth remote sensing data. Field measurements for restoration monitoring in 

Louisiana typically include variables like species composition, percent cover, and vegetation 

height (Folse et al. 2014). Plant identities inform managers on patterns of succession and 

rates of community change that in theory should ultimately reach some stable, climax 

ecosystem with a desired suite of plant types. And restoration projects aim to mimic a natural 

reference area or a pre-existing state using species compositions as a critical metric to 

determine success. Visual cover estimates, however, are subjective and are often conducted 

at random stations or along transects that can fail to fully capture a site (Broussard et al. 

2018). This ground data, however, can be paired with remote sensing data and used to train 

software to identify these species at much broader scales.  

By combining field surveys and drone imagery, researchers can use holistic site 

assessments to understand ecological progression and restored function in wetlands. Doughty 

& Cavanaugh (2019) integrated the two approaches to estimate aboveground biomass in 

saltmarshes and monitor seasonal changes in productivity. In a restoration context, vegetation 

classifications and site assessments using principles of landscape ecology will inform 

development over time. Accurate mapping and spatial analysis of water bodies will help 

researchers understand site evolution since tidal drainage and channels are important marsh 

landscape components (Weinstein et al. 2001). Hydrology is also considered the master 
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variable in structuring plant communities and contributing to overall restoration success and 

spatial resolution has an impact on mapping of smaller water bodies (Enwright et al. 2014; 

Mitsch & Gosselink 2015).  

Objectives 

I combined drone flights and field surveys to understand the ecological sequence of 

restoration, specifically marsh creation, and integrate more modern tools into coastal wetland 

evaluation and monitoring. My study area was within the Sabine National Wildlife Refuge in 

southwest Louisiana. I chose four neighboring restoration projects completed from 2002 – 

2015 using a space for time substitution to understand developmental rates. I also picked two 

natural marshes for reference comparisons. The primary goals of the study were: (1) Develop 

a workflow to analyze wetland restoration using drones. (2) Understand the sequence of 

restoration progression and development of wetland plant species. (3) Evaluate the results in 

terms of the ecology of the sites and compare them to natural reference marshes. (4) Assess 

the effectiveness of restoration.  

Species compositions, land/water ratios, and landscape metrics like edge and 

fragmentation indices are widely used in remote sensing studies, but their ecological meaning 

isn’t always straightforward and their contribution towards understanding restoration success 

must be taken into context. A core component of the study was to develop methods to 

improve wetland restoration assessments and provide managers additional ways to document 

successes and failures. Based on previous studies, I hypothesized the more mature restoration 

sites, > 10 years old, would be equivalent to or surpass the reference marshes for percent 

vegetated cover, species richness, and landscape fragmentation indices. The specific 

objectives to achieve project goals were as follows: (1) Classify vegetation types at restored 
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and natural marshes using high-resolution maps, surface models, and field surveys. (2) 

Evaluate wetland conditions using landscape ecology metrics and integrate structural analysis 

with vegetation communities and site “age”. (3) Compare the results across sites and with 

previous assessments. The cost of restoration itself is high; therefore, it is critical to develop 

more cost-effective and comprehensive monitoring tools to ensure success and effectively 

communicate results to stakeholders and policy makers.  
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Chapter 2: Evaluating Coastal Wetland Restoration in Louisiana Using Drones 

Introduction 

Restoration is the practice of returning a degraded or destroyed habitat to a previously 

existing condition or its original state (Bradshaw 1996). Efforts to reach the target state range 

from rehabilitating specific ecosystem functions or increasing an animal’s population to 

restoring an entire ecosystem (Lake 2001). Ecological restoration implies the intent to restore 

organisms and the interactions with themselves and the physical environment (Jackson et al. 

1995). The approach aims to create the environment necessary for recovery so the plants, 

animals, and microorganisms can conduct much of the recovery themselves and create a 

balanced system (Gann et al. 2019). The holistic ecosystem approach has developed over 

time and relies on self-sustaining populations that require minimal or no additional human 

intervention. Wetland restoration depends heavily on this concept of self-design and the 

interactions of specific biotic and abiotic factors like surface elevations, flooding regimes, 

and plant community structure.  

Ecological theory is central to restoration success and can help predict outcomes and 

track development over time (Zedler 2000). Restoration science is underpinned by several 

conceptual subdisciplines of ecology like the community assembly theory which suggests 

that initial restoration success and vegetation establishment can depend on the order of 

arrival and be guided by structured planting routines (Palmer et al. 1997). Succession is also 

a key component because a greater understanding of shifting biological communities 

following restoration actions will inform timelines of site maturity (Young et al. 2001). 

Disturbances like flooding or fires can alter site trajectory and impact species composition 

(Middleton 1999). Landscape ecology and the spatial arrangement of a site influences 
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dispersal of organisms and connectivity to larger habitat blocks minimizes fragmentation 

(Bell et al. 1997). Guiding principles and theories of ecology apply to small-scale (e.g. bank 

stabilization plantings) and large-scale restoration projects (e.g. the Everglades and coastal 

Louisiana wetlands) (Simenstad et al. 2006). Wetland restoration ecologists must have cross 

disciplinary training to properly design and evaluate projects and there is never one 

straightforward approach; any methods or tools that can help practitioners streamline the 

process will greatly benefit the field.  

Traditional methods for monitoring wetland restoration in coastal Louisiana are costly 

and labor intensive. They usually consist of vegetation plots, elevation surveys, areal extent 

estimates, and other measurements depending on the project’s specific goals. Aerial 

photographs via airplanes might be taken every few years to analyze land and water changes. 

While these current protocols are the industry standard, rapid technological advancements 

may soon reduce the burden of collection. Technologies such as drones could replace the use 

of airboats and manned aircrafts in some circumstances. Drones provide significantly lower 

costs and improved human safety when compared to manned aircraft surveys, although the 

amount of areal coverage is greatly reduced (Christie et al. 2016). Because of the current 

costly methodology, many projects receive inadequate long-term monitoring.  

Drones, or unmanned aircraft systems (UASs), offer a unique data stream that can 

help restoration practitioners understand the current state and potential future trajectory of a 

site. The technology has witnessed a rapid increase in ecological applications and a decrease 

in costs (Anderson & Gaston 2013; Klemas 2013; Pajares 2015). The resolution and variety 

of products that can be created from one drone survey hold powerful implications for short 

and long-term site assessments. Fine-scale site maps can help address gaps in monitoring and 



11 
 

provide a more ecological approach for essential principles like landscape context and 

position, comparison to natural habitats, and response to disturbance. UAS-derived maps 

provide managers a complete representation of the site with an accuracy of several 

centimeters. Although many studies have used remote sensing to assess restoration, few have 

capitalized on the use of drones specifically for monitoring and evaluation (Shuman & 

Ambrose 2003; Tuxen et al 2008; Klemas 2013; Knoth et al. 2013; Ridge & Johnston 2020). 

There is, however, a bottleneck of turning UAS data into meaningful products but 

advancements in software packages and analytic pipelines are continually progressing.  

Processing methods for UAS datasets are frequently evolving (Woodget et al. 2017). 

Post-flight analysis is the most time-consuming aspect of drone work but advancements in 

methodologies are accelerating final product outputs. Structure from motion (SfM) 

photogrammetry and object-based image analysis (OBIA) allow for more in-depth 

information to be extracted from these records than with satellites or aerial photography. 

OBIA is a classification approach that has experienced a sharp increase in usage because of 

its capabilities to create accurate land cover and vegetation maps from high-resolution 

imagery (Blaschke 2009). The process consists of grouping similar pixels together into 

shapes using segmentation algorithms and assigning classifications based on spectral, 

textural, geometric, and contextual information (Laliberte & Rango 2009; Hossain & Chen 

2019). Object-based methods utilize an interactive approach by letting the user build a set of 

rules that trains the software to identify objects based on certain criteria and essentially 

becomes a customized algorithm. The method has been used to conduct wetland plant 

classifications and map the spread of the invasive species like roseau cane (Phragmites 

australis) (Dronova 2015; Husson et al. 2016; Samiappan et al. 2016; Pande-Chhetri et al. 
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2017). These products can then be used to calculate landscape metrics like the aggregation 

index (AI) and assess fragmentation and habitat connectivity (McGarigal 2015).  

Landscape metrics are useful for understanding restoration development and 

trajectory, however, it is not always straightforward what the results mean in terms of the 

ecology of a site (Kelly et al. 2011). Landscape ecology is based on the understanding of 

spatial arrangements within habitat mosaics and its influence on ecological phenomena 

(Turner 1989; Wiens et al. 1993). Advancements in sensors and software have led to an 

increased use of landscape metrics for assessing wetland configuration, fragmentation, and 

response to disturbance (Liu & Cameron 2001; Suir et al. 2013). Applying this type of study 

to wetland restoration benefits developmental analysis by informing local and regional 

habitat structure, providing guidance for selection of reference sites, and improving 

knowledge of wetland configuration and variation based on scale (Bell et al. 1997; Taddeo & 

Dronova 2019). Several studies have calculated landscape metrics from remote sensing data 

along the gulf coast and Louisiana (Suir et al. 2013; Couvillion et al. 2016; Stagg et al. 

2019).  

The Sabine National Wildlife Refuge (SNWR) is the largest coastal marsh refuge on 

the gulf coast. Located in southwestern Louisiana within the Calcasieu-Sabine Basin of the 

Chenier Plain, the refuge encompasses 50,586 ha (about 500 km2) of primarily wetlands. The 

area is essential for resident, migratory, and wintering bird populations as more than 200 

species of birds can be spotted in the refuge. American alligators, river otters, and many other 

wildlife species rely on this region that straddles the two major water bodies in the area (Lake 

Sabine and Lake Calcasieu). Marshes deteriorated rapidly in the 20th century following 
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channel construction for mineral extracting and shipping purposes. The Chenier Plain region 

has lost approximately 900 km2 of land from 1956 – 2006 (Barras 2008; Bernier et al. 2011).  

Historically, the marshes were dominated by saw grass (Cladium jamaicense) and 

other intermediate to fresh species but shifted to more brackish water plants like saltmeadow 

cordgrass (Spartina patens) and saltmarsh bulrush (Schoenoplectus robustus) during the 

latter part of the 20th century (Miller 2014). Due to the persistent interior wetland loss, the 

area was chosen as a Coastal Wetlands Planning, Protection and Restoration Act (CWPPRA) 

project with construction beginning in 2001.  

The SNWR Marsh Creation Project (CS-28) is a coastal wetland restoration plan that 

consisted of five separate dredge & fill cycles completed between 2002 and 2015. The goal 

was to create approximately 453 ha of new marsh habitat (Sharp 2011). Material was 

dredged from the Calcasieu Ship Channel by the Army Corps of Engineers to maintain 

navigation access and then pumped into containment areas to increase elevations and create 

new marsh. The primary objectives were to: (1) create new vegetated marsh and (2) enhance 

and protect existing surrounding marsh vegetation. Long-term monitoring consisted of three 

main criteria for which the sites would be evaluated: aerial photography for land and water 

analysis, vegetation plots, and elevation transect surveys. The area was chosen for this study 

because of the availability of pre-existing data and the proximity of sites to one another 

provided a unique opportunity for using drones to study neighboring restoration projects that 

range in maturity.  

The goal of restoration is ultimately to restore wetland function but current methods 

for calculating success are inefficient and expensive. Drones are especially useful in places 

like the SNWR because sites are close together, results fulfill several aspects of monitoring 
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criteria, and methods are much less invasive than typical airboat surveys. Previous studies 

have used high-resolution datasets to monitor restoration progress but generally required 

manned aircraft flights or commercial satellites to achieve sub-meter pixel size which are 

both very high in price (Tuxen et al. 2008; Chapple & Dronova 2017). Stagg et al. (2019) 

used drone-based land and water maps, fragmentation/aggregation indices, and elevation 

surveys to determine flooding stress and hydrologic controls on healthy versus degrading 

marshes but few studies have looked at this in a restoration context. The detail of drone 

imagery has the potential to help managers translate success across sites and communicate 

results more effectively. My goal was to develop and apply methods for evaluating coastal 

wetland restoration using an off-the-shelf drone equipped with a regular RGB camera and 

integrate the results with traditional assessments.  

Methods 

Study sites. The study area is a mixture of natural and restored brackish marsh and 

shallow open water that experienced significant land loss due to canal building and altered 

hydrology, saltwater intrusion, and hurricanes (Louisiana Coastal Wetlands Conservation and 

Restoration Task Force 2012) (Figure 2.1). The Louisiana Coastal Protection and Restoration 

Authority (CPRA), U.S. Army Corps of Engineers, and U.S. Fish and Wildlife Service 

partnered to carry out restoration efforts. Construction practices for each project were 

generally consistent, but some variation in techniques allowed for comparisons of how 

different methods affected final outcomes. Dredged material from the shipping channel was 

pumped into containment dikes with the goal of a maximum initial elevation of 70 cm 

(NAVD88 Geoid 12A) and expected settlement to 9 cm after five years. Each site had a 

sediment “overflow” component where the containment dike was breached along the 
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lakeside levee to allow extra dredge material to flow out into open water and create 

additional marsh, but the technique only worked on one site (Cycle 2). Typically, tall stands 

of smooth cordgrass (Spartina alterniflora) expanded in the first few years taking each site 

about 3 – 4 years to become >70% vegetated (Miller 2014).  

Project phases were completed from 2002 – 2015. Managers refer to the physical sites 

as cycles, so the term “cycle” is synonymous with site in this study. The timeline is as 

follows: Cycle 1 was finished in 2002, Cycle 3 in 2007 (note Cycle 3 was completed before 

Cycle 2), Cycle 2 in 2010, and Cycle 5 in 2015. Unfortunately, one site (Cycle 4) was 

excluded from this study due to complications with the imagery.  

Cycle 1 had an original containment of 87 ha and was completed in February 2002. It 

is the oldest restoration site in this study (17 years). The site was pumped to an elevation of 

55 – 67 cm (Sharp 2011), mean surface elevation was 14 cm after eight years (Miller 2014), 

and has been accreting at a rate of 0.4 cm/y since 2010 with the most recent average 

elevation reading at 22 cm (CPRA 2020). Cycle 1 was the only site planted and had trenasses 

(small man-made channels) manually dug during construction. Thirty-six thousand S. 

alterniflora sprouts were planted along the perimeter and trenasses. The site was 86% 

vegetated land after about eight years and 94% land after 14 years, surpassing its goal of 

creating 50 ha of marsh (Miller 2014; Beck et al. 2019). S. alterniflora was the dominant 

species until approximately seven years after construction when the community diversified to 

include seashore saltgrass (Distichlis spicata), saltmarsh bulrush, bulrush (Schoenoplectus 

americanus), and saltmeadow cordgrass. Monitoring was conducted by CPRA until a 

coastwide reference monitoring station (CRMS 6301) was established in 2009.  
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Cycle 3 was initially 93 ha and completed in May of 2007. It was pumped to an initial 

elevation of 12 – 61 cm. Pumping errors caused the site to be higher in the south and lower in 

the north with a wide range of surface elevations. Levees were breached every 150 m on the 

northwest side for the overflow technique, but it failed. Settled elevations were surveyed 

between -62 – 24 cm after six years with the majority of transects below targets, however, 

most transects were above the 9 cm goal after 11 years. The project area was 4.5% vegetated 

land after two years and 97.8% land after eight years (Miller et al. 2019; Beck et al. 2019). S. 

alterniflora was the dominant plant during early colonization, like Cycle 1, and Virginia 

glasswort (Salicornia depresa) established some stands initially but disappeared after a few 

years. Vegetation diversified eight years after construction with the emergence of D. spicata, 

S. robustus, and others but S. alterniflora remained dominant through 2018.  

Cycle 2 had a containment area of 93 ha and was completed in May 2010. There is 

limited construction and historical monitoring data because it was converted to a state only 

project with no monitoring budget. The only available data is aerial imagery from 2015 and 

Suir et al. in revision satellite imagery. Unlike other sites, the “overflow” component was 

successful and created more than 40 additional ha of marsh outside the levees. This area will 

be referred to as Cycle 2 overflow (Figure 2.1). The site took longer to vegetate than other 

projects because unlike other sites, the levees were not breached until a few years after 

construction thus limiting tidal and hydrologic influence. Cycle 2 has been a S. alterniflora 

monoculture and it was 77% land in 2015 (Beck et al. 2019; Suir et al. in revision).  

Cycle 5 was 94 ha and was finished in March 2015 with no initial elevation reported 

(Pontiff & White 2017). Three years after construction in 2018 the elevation settled to 

between -12 – 26 cm (Miller et al. 2019). Vegetation expanded rapidly post-construction and 
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the site was 64% vegetated land within 9 months. S. alterniflora was the dominant species 

with nominal percentages of other plants. The containment dike along the western edge has 

several major gaps, more than other sites, possibly resulting from erosion or initial 

construction practices (Pontiff & White 2017).  

I used two nearby natural marshes as reference areas for comparisons. I chose them 

because they have been previously monitored by restoration agencies and are the largest 

stretches of marsh in the area. Reference North is a 50 ha marsh dominated by Spartina 

patens with swathes of Spartina alterniflora along its larger tidal sections and smaller 

amounts of Schoenoplectus robustus, Schoenoplectus americanus, and Eleocharis spp. across 

the site. Reference South is a 66 ha Spartina patens dominated marsh with pockets of water 

scattered across the interior of the site.  

Planning and field work. All flights were conducted using a multi-rotor platform 

(Yuneec H520) due to vertical takeoff and landing capability. This hexacopter aircraft was 

designed for commercial use and chosen for my study because of high wind resistance, 

stability, and flight time (28 min). The H520 was equipped with an integrated autopilot 

system accessed through Yuneec’s mission planning software (DataPilot). An important 

feature of the drone and software combination was the ability to seamlessly create, save, and 

load autonomous missions using satellite maps. The internal Global Positioning System 

(GPS) module geotagged images with an accuracy of 5 m horizontal and 8 m vertical. The 

hover accuracy of the aircraft was 1.5 m horizontal and 0.5 m vertical. The batteries are 

lithium polymer with an output power of 304 W and a capacity of 5250 Mah. Six drone 

batteries and a DuraCell deep cycle charging battery with a 12 V plug and terminal clamps 

were utilized to maximize survey coverage each day. On average, actual flight times ranged 
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from 15 – 23 minutes. The remote controller (Yuneec ST16S) was an Android-based all-

inclusive transmitter with an 18 cm screen, joystick controls, and mapping and flight 

planning capabilities. The remote link transmission range is up to 1.6 km and video link 

resolution is HD 720p.  

The sensor used to record images was a Yuneec E90 RGB camera. The dimensions 

are 115 x 80 x 130 mm and it weighs 350 g. Its 23 mm lens provides wide angle views with 

low distortion and increased sensitivity in low-light conditions and the diagonal field of view 

is 91°. The camera has a 2.5 cm CMOS sensor and its rolling shutter operates at 1/8000 – 4 s. 

Photo resolution was 3:2 (5472 x 3648) and effective pixels were 20 MP. The 3-axis gimble 

combined with the stability of the drone itself provided very stable camera positioning. The 

stability and gimble were important to avoid motion blur and create high-resolution 

orthomosaics from thousands of images, especially in windy coastal environments. Photo 

format is 10 – 12 MB JPEG files and the coordinate reference system was WGS84 UTM 

Zone 15N.  

Flight plans were developed using Yuneec DataPilot desktop mission planning 

software. All flights were conducted at 68 m altitude above ground level using consecutive 

transects to cover the survey areas with an image overlap of 80% (frontlap and sidelap) and 

speed of 5 m/s. This altitude was chosen to maximize field of view while achieving < 2.5 cm 

GSD (ground sample distance) or pixel resolution in the final maps for a precise analysis of 

vegetation classes and to minimize possible blurred portions (Broussard et al. 2018). The 

angle of the transects was manipulated for each site to determine optimum battery efficiency. 

An east to west flight pattern was the most efficient for nearly all sites except Cycle 1 

because its latitudinal distance put the aircraft out of range of the controller.  
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I installed ground control points (GCPs) around each site with one near approximate 

site center in addition to random checkpoints. GCPs are used to georeference the model and 

checkpoints are used to assess the final absolute accuracy. In general, six GCPs and three 

checkpoints were used at each site based on software manufacturer recommendations (Pix4D 

Mapper) and previous studies (Oniga et al. 2018; Manfreda et al. 2019). Coordinates were 

measured with a Trimble R10 GPS unit to ensure precise geolocation of GCPs and final 

products. Horizontal error of the GPS ranged from 1 – 15 cm and vertical error between 1 – 

25 cm. The x, y, and z coordinates of 69 points were taken with an overall mean error of 1.2 

cm horizontal and 2.1 cm vertical. In total, 46 targets were used as control points for 

georeferencing the imagery and 23 targets were reserved as horizontal and vertical 

checkpoints to help assess accuracy of the data. Point data were compiled into .CSV files at 

each site for processing within the Pix4D photogrammetry software.  

Drone flights were conducted in the summer of 2019 from late June – mid-July 

between approximately 9:30am – 1:30pm Central Daylight Time (equipment malfunctions 

caused delays in some cases). All flights were conducted from a watercraft (6.5 m SeaArk 

bay boat) with a 1.5 x 1.2 m front deck area for landing and takeoff due to site conditions. 

Surveys were mostly automated, but I determined when to recall the drone at low battery and 

manually landed on the bow. On average, five batteries were used at each site. Seven sites 

were surveyed over a three-week period (June 26 – July 18) but only six were used in this 

study. In total, 37 flights were conducted.  

Field surveys were conducted to verify the remotely sensed data and compare the 

sites using traditional monitoring methods (Figure 2.2). Nine total 2 x 2 m quadrats were 

surveyed at each site for species composition, plant height, and percent cover of vegetated 
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and unvegetated surface. The methodology was chosen based on the Braun-Blanquet cover 

scale used by the USGS Coastwide Reference Monitoring System (CRMS) and CPRA 

protocols that have been used to monitor these sites in the past (Folse et al. 2014; Miller 

2014). Most cycles are bounded by remnant containment dikes from restoration that form the 

edges of the site, however, in some cases marshes have expanded outside them and additional 

plots were measured along these transects to capture the edge and dike plant communities. A 

full list of species is included in Table 2.1.  

Processing and analysis. The flight images were mosaicked within the software 

Pix4D Mapper (version 4.4.12) to create orthomosaics and 3D digital surface models (DSMs) 

using structure from motion (SfM) algorithms. Orthomosaics are detailed and georeferenced 

photo representations of the area, essentially high-resolution maps, constructed from multiple 

images (several thousand per site in our case) and DSMs are representations of the surface 

and the tallest objects like vegetation or structures, like a digital elevation model (Figure 2.3). 

The SfM technique has revolutionized analyzing surface structure in ecology and is perhaps 

the most practical and affordable alternative to LiDAR (Forsmoo et al. 2019). Algorithms use 

overlapping, geotagged 2-dimensional images to model the surface of an area and recreate it 

into a 3-dimensional model. The geolocation details and image overlap allows software to 

match images and reconstruct the scene.  

Once images were uploaded, the software detected camera parameters, image 

coordinate system, and altitude and location details for each picture. The coordinate system 

output for the orthomosaics was WGS84 UTM zone 15N. I used the 3D maps processing 

template in Pix4D to create an orthomosaic, point cloud, and DSM. GCP and checkpoint 

measurements were uploaded with x, y, and z coordinates and horizontal and vertical 
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precision error values and the targets were verified using the ray cloud editor. Manual tie 

points (MTPs) were also added in the ray cloud to improve reconstruction accuracy and 

clarity in the final orthomosaic. MTPs are points created after initial processing by marking 

or clicking the exact same point at a site in multiple images. Processing was conducted on a 

Dell Precision Tower 5810 desktop with 32 GB of RAM (random-access memory), an Intel 

Xeon CPU E5-1603 v3 @ 2.80GHz, and a NVIDIA Quadro M2000 GPU. Processing times 

ranged from 18 – 48 hours per site. A total of 20,515 raw images were processed to create 

686 ha of mapped area with an average pixel size of 2.2 cm (excluding Cycle 4).  

Two products were created by combining the orthomosaics and DSMs: (1) land and 

water maps and (2) vegetation species/dominant group classifications (Figure 2.3). Classes 

were assigned based on the ground reference data. Land and water classes were delineated 

based on rules developed by Cowardin et al. (1979) where land was considered all vegetation 

including marsh, scrub/shrub, emergent vegetation, and exposed bare ground on the 

containment dikes (which is higher elevation and does not flood). Water was considered open 

water, nonvegetated mud flats, floating aquatics, and submerged aquatic vegetation.  

The restoration sites all contained the following six classes: bare ground, D. 

spicata/S. patens, Phragmites australis, Spartina alterniflora, scrub shrub, and water. Bare 

ground was considered exposed, unvegetated bare soil on containment dikes. The D. 

spicata/S. patens class represented vegetation stands where Distichlis spicata or Spartina 

patens were the dominant species. These two vegetation types were difficult to distinguish at 

the restored sites so the species were grouped, although D. spicata was more common based 

on field surveys. Often these stands were mixed with smaller percentages of Schoenoplectus 

robustus or Schoenoplectus americanus with nominal percentages of other species. The 
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Phragmites australis class represents roseau cane or common reed which is a grass that 

forms dense stands reaching heights of 1 – 6 m. From here on, it will also be referred to as 

Phragmites. Spartina alterniflora represents vegetation stands where smooth cordgrass was 

the dominant species. S. alterniflora was sometimes mixed with S. robustus and other 

species. Scrub shrub primarily consisted of Jesuit’s bark (Iva frutescens). The reference sites 

contained similar classes, but both had a Spartina patens category because it is the dominant 

species at both sites. Reference North also had an Eleocharis spp. class because it contained 

a few dense stands of the vegetation.  

An object-based image analysis approach was used to conduct vegetation mapping 

with the software eCognition Developer (Figure 2.4) (v. 9.5, Trimble Germany GmbH, 

Munich, Germany). Orthomosaics and digital surface models (DSMs) provided four layers to 

use in image analysis (Red, Green, Blue, & DSM). Individual “rulesets” were developed for 

each site using similar approaches and parameters to assign classes to cover types. Rulesets 

are a step by step process of segmentation (grouping pixels into meaningful shapes e.g. water 

bodies or trees) to create objects and classification of those objects based on attributes or 

“features”. Cycles 3 and 5 and Reference South were completely automated using ruleset 

development which included a supervised classification as the last step to separate grass 

species (after other classes had been identified using threshold values of various features) and 

no manual editing was performed. The other three sites were initially classified into grass, 

Phragmites, bare ground, and water using basic rules and manual editing. From these initial 

classifications water, Phragmites, and bare ground were preserved, and the grass class was 

segmented and classified following methods for the other sites. Although the techniques 
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varied slightly, comparisons across sites were valid because spatial resolutions are identical 

(~2.2 cm GSD) and overall accuracies were similar.  

The three automated sites (Cycle 3, Cycle 5, and Reference South) were analyzed by 

running segmentation algorithms for each class of interest. Segmentation is a key step 

because its outcomes have a significant impact on accuracy (Dronova 2015). It was a 

subjective process of trial and error to find the right combination of scale, color/shape, and 

compactness/smoothness within the “Multiresolution Segmentation” algorithm which is a 

common problem in OBIA (Baatz & Shaape 2000). All sites began with the classification of 

water. A multiresolution algorithm using scale parameter of 30, shape 0.3, and compactness 

0.75 (with only red, green, and blue layers) followed by a spectral difference segmentation 

using a scale of 5 (using all layers, including DSM) yielded the best results for separating 

water from vegetated marsh. The addition of the spectral difference algorithm helped 

increase the object size for larger water bodies, making classification easier with fewer 

objects, while still capturing small pockets and channels that were important for fine scale 

analysis. The texture feature grey-level co-occurrence matrix (GLCM) homogeneity: all 

directions and the spectral features normalized difference index (NDI) Green – Blue and 

mean brightness were the most useful for initially classifying water (Laliberte & Rango 

2011; Husson et al. 2016). The normalized difference index is calculated using the mean 

values of the two bands (Hunt et al. 2005).  

 

NDI values for other band combinations were used to identify vegetation later in the 

process. Bare ground was occasionally misclassified as water but could typically be 

separated using high mean brightness values, sometimes texture, and distance to scene border 
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because the only bare ground was along the containment dikes. Remaining unclassified 

objects were merged and segmented for the next class. Phragmites was next because it could 

typically be identified using the mean DSM values. Phragmites was generally much taller 

than surrounding plants in these marshes. Objects with a mean DSM value of greater than or 

equal to 1-2 meters were usually assigned to the Phragmites class. A multiresolution 

algorithm with a scale parameter of between 100 - 150, shape 0.3, and compactness 0.75 

produced the best results for segmenting Phragmites. One major issue with the use of DSM 

values was that several of the sites had flaws in the surface models (Figure 2.3b). This was 

overcome by using x and y distance to scene borders for target areas. It is possible that 

smoothing or resampling the surface models to a lower resolution would help overcome this 

issue, but our method was quick and effective for reducing misclassifications. Rules used to 

refine initial classifications for Phragmites included relative border to Phragmites, a mean 

DSM value of around 1.5 meters, and mean brightness. Scrub shrub was next, and in some 

cases, the same segmentation for Phragmites was used. Otherwise objects were merged and 

segmented with another multiresolution algorithm using scale parameter of 50, shape 0.3, 

and compactness 0.75. Objects with a mean DSM greater than 1 meter were initially 

classified as scrub shrub and refining rules utilized the mean difference to neighbors DSM 

and textural features. Lastly, a spectral difference algorithm with a maximum spectral 

difference of 3 - 10 was applied to segment and enlarge remaining unclassified objects. The 

last 2 classes analyzed were Spartina alterniflora and D. spicata/S. patens (Spartina patens 

and other for Reference South). Training samples of each were selected and a Nearest 

Neighbor supervised classification was run using the four features: NDI Green – Red, 

brightness, mean DSM, and area.  
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The first three sites that were analyzed (Cycle 1, Cycle 2, and Reference North) were 

done using one round of segmentation, basic rules to separate bare ground, marsh vegetation, 

water, and Phragmites, and additional manual editing. The parameters for the multiresolution 

segmentation were scale 150, shape 0.3, and compactness 0.75. Initial features used to define 

classes were mean brightness, mean red band, mean DSM, roundness, area, and position 

values for individual objects. Misclassified areas were identified through careful visual 

inspection and photo interpretation of the orthomosaic and classified layer then reclassified 

through additional thresholding of other parameters or manually edited into the appropriate 

cover type. Water, bare ground, and Phragmites classes were retained for these sites and the 

remaining vegetation was classified using the same methods for the automated sites.  

I exported classifications as vector layers with area (m2) and border length (m) 

included as attributes. Accuracy assessments consisted of approximately 500 stratified 

random sampling points per site using ArcMap (10.4.1). I created an error matrix for each 

site using orthomosaics as reference datasets for determining classification accuracy 

(Congalton 1991). All border length and area statistics were aggregated and analyzed in ‘R’ 

(v 3.5.1, R Development Core Team).  

Landscape metrics, otherwise known as spatial pattern metrics, quantify aspects of a 

habitat’s organization and structure and are commonly calculated using GIS data products. 

Class areas, percentage of landscape, number of patches, patch density, edge density, and 

aggregation index (AI) were calculated based on usage in previous studies (Broussard et al. 

2018). I used land and water classes for these metrics because I was interested in water body 

configuration and general, as opposed to class specific, vegetation dynamics. Image 

resolutions were resized to 5 cm resolution for calculations. Patch is a widely used term in 
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landscape ecology and was defined here as a habitat unit that differed from its surroundings 

based on the resolution of the files (e.g. a piece of land isolated by water). The ecological 

meaning of all spatial pattern metrics is scale dependent and in general, results are most 

relevant to a question or an organism. Meaning that I calculated these metrics at a high 

resolution to achieve the highest accuracy, but most humans or wildlife would not consider a 

5 x 5 cm patch of land an island. However, results can be recalculated using a larger scale to 

fit a research question or track an ecological process like fragmentation. For example, 

managers interested in a particular nesting bird with knowledge of its habitat size preferences 

can rescale the data to fit that species’ perspective of the environment.  

Aggregation index (AI) is a widely used metric for evaluating landscape structure and 

is the frequency with which patch types appear side by side and quantifies the tendency of a 

patch to appear in large, grouped distributions (He et al. 2000; McGarigal 2015: Couvillion et 

al. 2016). An example of two different pieces of marsh with corresponding AI values is 

shown in Figure 2.5. Number of patches is an indicator of the fragmentation of a class based 

on the total number of isolated patches present on the landscape. Patch density is the number 

of patches per unit area based on total landscape area in square meters. Edge habitat in this 

study was considered the marsh to water border. Since the sites were cropped to the marsh 

edge and no water was classified outside the boundaries, the border length of the water class 

was used as a proxy for interior edge habitat. Exterior edge habitat was then the total length 

of the land class minus the amount of interior. Portions where continuous habitat was cut off 

due to flight coverage were measured and subtracted from total edge calculations. Edge 

density was also calculated which is the amount of edge per unit area, standardized for 
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comparisons across areas of different sizes. All landscape configuration metrics were 

calculated in ‘R’ using the Landscapemetrics package (Hesselbarth et al. 2019).  

Floristic Quality Index (FQI) provides an estimate of wetland quality based on 

species composition and percent cover of a plant community (Gianopulos 2014). FQI is 

scored from 0 – 100 (following CRMS protocol) by combining coefficient of conservatism 

(CC) values assigned to specific plants by a panel of coastal vegetation experts and field-

based percent cover estimates. A high value means the site contains ideal species 

compositions for the region based on plant rankings and native species and a low value 

indicates less than ideal habitat likely containing invasive and disturbance prone species. 

Coefficient of conservatism values are regional or state specific and plants are also assigned 

to general classes: invasive species (CC = 0), disturbance species (CC = 1-3), less vigorous 

communities (CC = 4-6), common vigorous communities (CC = 7-8), and dominant species 

(CC = 9-10) (Suir & Sasser 2017). Scores used in this study were based on ones used in Suir 

et al. in revision. Modified Floristic Quality Index (FQImod) was calculated using field survey 

data to compare to CRMS and Coastal Wetlands Planning, Protection and Restoration Act 

(CWPPRA) metrics using the formula: 

FQI
mod 𝑡 = ( 

∑  (COVER𝑖𝑡 x CC𝑖)

100
 )  x 10, 

where COVERit is the percent cover for particular species I at a sample unit in a sample site 

at time t and CCi is the coefficient of conservatism value for species I (Cretini et al. 2011). 

The index has been shown to be useful for assessing wetland restoration maturation and 

detect plant community changes over time (Lopez & Fennessy 2002).  

 I compared my overall field and drone-based results with previous analysis of the 

sites conducted by monitoring agencies and Suir et al. in revision. Field monitoring data were 
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compared to information from CPRA surveys in 2018, CRMS data from 2018, and Suir et al. 

in revision data from 2015 that consisted of species composition, percent cover, and FQI 

calculations. CRMS is a statewide network of stations to provide data for restoration decision 

making. UAS data was compared to land water classifications of 1 m resolution aerial 

imagery (USGS) acquired in late 2015 and 0.31 – 1.2 m resolution WorldView-3 imagery 

(Suir et al. in revision) acquired in early 2016. UAS classifications of the restoration sites 

were masked to same extent as the satellite data using shapefiles from the previous study.  

Results 

The restoration sites were between 73 – 96% land based on summer 2019 drone-

based land and water classifications (Table 2.2; Figure 2.6). The youngest restoration site 

(Cycle 5) was the lowest at 73.2% land and the oldest site (Cycle 1) had the highest coverage 

at 95.5% land (Figure 2.7). The two middle aged sites (Cycles 2 & 3) were even at 86.5% 

and 86.4% land, respectively. The land and water analysis revealed that the marsh creation 

sites exhibited rapid expansion of vegetated land in the first four years post-construction (18 

%/y) and then gradually for the next 10 – 12 years (2.4 %/y) until sites surpassed proportions 

of reference marshes. These findings support previous remote sensing analysis of the 

restoration sites in regard to percentages and rates of expansion over time (Miller 2014; Beck 

et al. 2019; Suir et al. in revision). Cycle 2 created the most marsh out of all sites by 48 ha 

due to the success of the overflow technique. Cycle 2 was 86.5% land including the overflow 

area and 84.6% excluding the overflow (only inside the original containment dikes). The 

reference sites (North & South) were also close in configuration at 91% and 92% land, 

respectively (Figure 2.7).  
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The younger restoration sites were dominated by Spartina alterniflora while the older 

sites showed a pattern of more mixed vegetation types with higher amounts of D. spicata/S. 

patens (Figure 2.8). In general, the restored sites exhibited rapid invasion of Spartina 

alterniflora in the first 10 years followed by an expansion of Distichlis spicata, Spartina 

patens, and Schoenoplectus robustus with small percentages of other species. Figure 2.9 

shows the breakdown of percent cover values across sites. The two younger sites, Cycle 5 

(Figure 2.10) & Cycle 2 (Figure 2.11), were 64% and 76% Spartina alterniflora. The two 

older sites, Cycle 3 (Figure 2.12) & Cycle 1 (Figure 2.13), were 36% and 31% Spartina 

alterniflora. In contrast, the reference sites were dominated by Spartina patens; North was 

67% and South was 78% S. patens. Reference North had 14% Spartina alterniflora cover and 

Reference South did not have any (Table 2.7). Overall accuracies for the classifications were 

between 75 - 90% with a mean overall accuracy of 83%. Kappa values ranged 0.54 – 0.82 

with an overall mean of 0.68 (Tables 2.8 – 2.13). Kappa ranges from 0 – 1 with 0 indicating 

no agreement between the reference image and classified image and 1 indicating the highest 

level of agreeance. I achieved the highest accuracy, 90% overall, at the two youngest 

restoration sites probably because they had less diverse vegetation communities (Tables 2.8 

& 2.9). The least accurate classification was 75% at Cycle 1 which had the highest average 

species richness (Table 2.10, Figure 2.13).  

The field survey-based species assemblage of the restoration sites reflected the drone-

based dominant species classifications (Figure 2.15). Cycle 3 had a higher amount of S. 

patens than any other restoration area but this could be due to sampling location bias as a 

result of site accessibility. Previous studies found a higher percentage of D. spicata (Miller 

2014). Figure 2.16 shows a trend of increasing diversity and percent vegetated cover over 
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time with Cycle 1 containing a higher number of species on average than the reference 

locations. Cycle 2 created by far the most marsh but had the lowest species richness with one 

species per site on average (Figure 2.16). The group means are significantly different from 

one another for species richness (ANOVA, F 5,49 = 2.01, P = .0941) and percent cover 

(ANOVA, F 5,49 = 6.28, P = .0001) (Figure 2.16). The older restoration sites, Cycles 1 & 3, 

had Floristic Quality Index (FQI) scores close to that of Reference South; all between 71 and 

74 (Figure 2.17). The CRMS monitoring site for Cycle 1 calculated a score of 78 for 2019. 

Reference North had the highest FQI score of 85 and Cycle 2 had the lowest at 56. FQI is an 

index of wetland habitat quality based on scores assigned to plants thus ranking their value to 

the region. The reference sites had an average score of 79 which is close to the ideal score of 

80 for Chenier Plain brackish marsh (Cretini et al. 2011). The results of the restored sites 

indicate the marshes approach this ideal range after about 12 years.  

Comparisons to previous remote sensing data show the land and water interface 

calculations were the closest across sensors and years for the most mature restoration site, 

Cycle 1 (94 - 96% land) (Table 2.3). Prior to drone flights in 2019, the most recent remote 

sensing surveys of the area used 1 m resolution aerial imagery and 0.31 – 1.24 m satellite 

imagery from late 2015 and early 2016, respectively. The largest differences occurred with 

the youngest site, Cycle 5. There was a 35% difference in the amount of land between 

satellite (29%) and aerial photo (64%) calculations but this was likely caused by 

classification methods. Cycle 5 was 73% land by 2019 based on drone data (Table 2.3). The 

2019 drone assessments displayed higher percent land values than previous assessments for 

all sites except Cycle 3. Estimates decreased from 94 – 98% land in 2015/16 to 86% land in 

2019 (Table 2.3).  
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 The dominant species group was the same across sampling techniques at all sites 

except Cycle 3 (Figure 2.18). Agency field surveys from 2018 (both CRMS and CPRA) 

estimated Spartina alterniflora was the dominant cover type but 2019 drone classifications 

and personal field surveys estimated Distichlis spicata/Spartina patens was the dominant 

group. Overall, previous vegetation data collected by restoration monitoring agencies and 

field survey data collected at the same time as the drone flights support the assertion that as 

sites mature, low marsh Spartina alterniflora cover declines in these brackish marshes while 

high marsh Distichlis spicata/Spartina patens and other vegetation types expand (Figure 

2.18) (Miller 2014; Suir et al. in revision). Figure 2.18, however, highlights differences in 

results across sampling methods.  

 Cycle 2 had the highest amount of interior and exterior edge habitat, it was the largest 

site, but it had the most interior edge by 40 km due to success of the overflow technique 

(Table 2.4, Figure 2.11). Edge habitat was considered the marsh/water border in this study. 

Cycle 3 had the highest interior to exterior ratio of 7.9 calculated by dividing the amount of 

interior by the amount of exterior edge in kilometers (Table 2.4). The youngest sites had the 

three highest ratios and the oldest restoration site and references had the lowest ratios of 3 - 

4. Edge is a commonly used metric in landscape ecology and is an important driver of 

consumer biomass in saltmarshes (Minello et al. 1994). The high aggregation index values 

for our study sites indicate that land and water are very connected to one another and 

comprise a landscape characterized by low fragmentation (Table 2.5). Although the sites are 

characterized by mostly “intact” stands of connected marsh, these high AI values were 

surprising. Cycle 2 area within the original containment dikes had an AI score of 99.7 for 

water and the overflow analyzed separately had a score of 97.4 for water, making it the 
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lowest AI score out of all sites. The reference sites and oldest restoration site (Cycle 1) all 

have a low AI value of 98.8 for the water class meaning water bodies are more scattered 

across those sites. Cycle 1 had the lowest patch density for land (168 patches/100 ha) and 

water (435 patches/100 ha) classes indicating it was a more spatially connected site with less 

scattered patches of habitat even though the AI value for water (98.8) was slightly less than 

other restoration sites (99.1 – 99.7). Although Cycle 3 had the highest interior to exterior 

edge ratio (7.9), Cycle 2 had the highest edge density (954 m/ha) which is more 

representative of the number of small channels present on the landscape (Tables 2.4 & 2.5; 

Figure 2.11). Cycle 1 had the lowest edge density (423) (Table 2.5; Figure 2.13).  

Discussion 

My results demonstrate the use of an off-the-shelf drone as a tool to help understand 

the ecological sequence of restoration and ultimately project success. The high-resolution 

maps provide a more holistic perspective of sites than traditional surveys. Using these 

products, I quantified how much land was created, how plant community structure shifts as 

sites mature (using a space for time substitution), and how the hydrology and spatial 

arrangement of channel networks function as a result of construction practices thereby 

informing marsh development. However, determining the highest level of success is not 

entirely straightforward.  

Understanding success for a constructed wetland project is difficult due to a lack of 

standardized methods and because of uncertainty regarding when or if functional attributes of 

restored habitats should mimic those of natural systems (Morgan & Short 2002). All four 

restoration projects were successful in achieving the >70% land target based on manager 

goals. Classification results also confirm agency reports that dominant species compositions 
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shift over time from low marsh (S. alterniflora) to high marsh plants (D. spicata/S. patens) 

(Miller 2014). But none of the restored site communities mimic those of reference areas. And 

there are potential tradeoffs to structural configurations and biological characteristics, like 

less edge habitat but higher species richness with age. It should be noted that restoration 

results and community structure findings from these southwest Louisiana brackish marshes 

were driven by site specific factors like salinity, tidal range, dredge sediment composition, 

and other variables and development may differ in other regions. It is hard to draw absolute 

conclusions due to timeline and construction differences, but sites with more edge habitat and 

interior water in our study had more S. alterniflora. Although a possible function of time in 

this case, tidal influence does dictate zonation of herbaceous vegetation and S. alterniflora is 

generally more flood tolerant than S. patens (Broome et al. 2019; Bertness 1991).  

The expansion of high marsh species at restored sites can be partially explained by 

elevation accretion. In tidal settings, the range and relative marsh elevation is very important 

in controlling the frequency, duration, and depth of inundation which in turn influences 

community structure (Mitsch & Gosselink 2015). Cycle 1 has been accreting at a rate of 0.36 

cm/y since 2009 and shifted from a low marsh to a high marsh dominated site after 

approximately 10 years even though managers planted it with Spartina alterniflora (Miller 

2014; CPRA 2020). Cycle 3 was naturally colonized by low marsh during initial 

development but elevations increased from 2013 to 2018 and based on transect surveys, the 

site was higher in the southern end which coincided with drone-based classifications of high 

marsh species occurrence (Miller et al. 2019). The only major section of high marsh in Cycle 

5 was in the northern portion and the highest elevation transects were also in the site’s 

northern half based on 2018 survey results (Miller et al. 2019). Although most of the high 
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marsh habitat at the restored sites was D. spicata and the natural marshes were predominately 

S. patens, the community shift is a positive indicator for restoration development and 

elevation accretion.  

Vertical accretion in marshes comes from two main sources, flooding accompanied 

by sediment deposition and organic material accumulation from plant biomass (Morgan & 

Short 2002). The physical setting and hydrologic influence have a major effect on which 

species occupy certain spaces but the plants themselves also influence sediment trapping 

rates and organic matter buildup through stem densities and aboveground vs. belowground 

biomass. Together, these ecological interactions facilitate marsh development, vegetation 

survival, and future stability (Morris et al. 2002; Kirwan et al. 2016). Constructed marshes 

can attain similar aboveground production values to reference sites within the first few years, 

but soil organic matter may take decades (Craft et al. 1999; Suir et al. 2019). Elevation and 

frequency of inundation also impact aboveground biomass and soil organic matter with 

species specific effects (Craft et al. 2002). For example, in a brackish constructed North 

Carolina marsh, S. alterniflora developed similar biomass levels to natural marshes within 

three years but S. patens planted at higher elevations did not within 15 years (Craft et al. 

2002). At my sites, D. spicata was the primary high marsh species to expand with the 

increases in elevation and it will be interesting to see if this was a function of initial 

colonization that will be followed by more competitive interactions with the dominant 

reference species S. patens. Managers, in this case, were primarily concerned with creating 

vegetated marsh and not so much species compositions or ecological characteristics like soil 

organic matter. Drone surveys do not directly examine any functional attributes but do 
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provide excellent structural representations of sites with which future studies could pair these 

variables.  

Spatial pattern metrics indicate variable results for vegetation expansion and overall 

site configuration. Cycle 1 had the lowest number of patches, patch density, and edge density 

which means it was the most continuous and uniform marsh site in the study. It had the 

highest land percentage (96%) and most of the water within the site was connected by the 

man-made channels. Out of all the metrics, edge density was the most representative of site 

arrangement because it accurately portrayed the amount of interior water at each site and 

showed that Cycles 2 and 3 had more similar layouts to the reference marshes. Previous 

studies resampled resolutions to calculate landscape metrics and I think finding the 

appropriate thresholds and scale of interest would have made the patch results more 

meaningful in my study (Stagg et al. 2019). Although scaling metrics for a particular 

question or organism can provide greater ecological information, these measures may be 

more useful for tracking site changes over time (Kelly et al. 2011).  

 Drone-based estimates for amount of vegetated land aligned with other remote 

sensing calculations for the oldest restoration site, but other sites had significant differences. 

Most notably, Cycle 3 was the only restored site that showed a decline in the amount of 

marsh (98% in 2015 to 86% 2019). The northern portion of the cell was shallow open water 

for the first five to seven years while the rest of the site vegetated because of improper 

pumping (Miller et al. 2019). The entire site had vegetated by 2015 even though 2018 

elevation transects in the northern end were still below target goals (Beck et al. 2019; Miller 

et al. 2019). Drone imagery from 2019 showed the same area had returned to open water 

(Figure 2.12). Water surface elevation readings from the CRMS 6301 hydrologic station 
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revealed an 11 cm difference (NAVD88 Geoid 12A) for the two dates of imagery capture at 

26 cm (7 December 2015) and 37 cm (28 June 2019) (CPRA 2020). Perhaps flooding bias on 

imagery acquisition dates and variations in calculation methods or data resolution caused the 

difference, however, it is possible the low elevations and large tidal channel could have 

facilitated a loss of vegetation and return to open water.  

 Successes and shortcomings of construction practices were also highlighted by the 

resolution of drone imagery. Cycle 2 was the only site where the overflow technique was 

successful thus creating 45 ha of additional marsh but has little monitoring data (Figure 

2.14). Managers have attempted a similar approach at another location in the refuge by 

placing dredge material in a shoreline cove rather than use containment dikes (CS-81) 

(Louisiana Coastal Wetlands Conservation and Restoration Task Force 2018). Cycle 2 was 

the second youngest site (9 years old) but contained the most land by 30 ha, was within 5% 

of the reference marsh percent land values, and had the highest amount of interior edge by 40 

km (Tables 2.2 & 2.3). Although plant species diversity was the lowest, the site may be the 

most beneficial to aquatic organisms. Novel methods used to interpret energy production for 

white shrimp based on habitat cover demonstrated the importance of edge habitat in these 

areas as a driver for consumer biomass and abundance (Nelson et al. in review). Edge in 

coastal marshes can also support higher bird species richness than other habitat types (Patton 

et al. 2020). Cycle 2 was the most successful project based on manager goals for land 

creation and perhaps species diversity will develop as the site matures.  

 My primary objective was to develop a method using object-based image analysis to 

classify dominant marsh species (Figure 2.20) and develop a workflow that others can build 

upon to assess future restoration efforts. Further analysis to refine classification techniques 
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would improve results and likely lead to more in-depth species maps. I used RGB 

orthomosaics and elevation information from digital surface models to identify water, bare 

ground, Phragmites australis, and shrubs using threshold values and then applied a 

supervised nearest neighbor classification for the remaining vegetation using training 

samples. Methods were based on previous studies of wetlands and the general framework 

should apply to similar habitats but certain differences between my rulesets highlights the 

subjectivity of site-specific object-based classification approaches (Laliberte & Rango 2009; 

Dronova 2015; Husson et al 2016; Pande-Chhetri et al. 2017; Broussard et al 2018). For 

example, the spectral difference segmentation algorithm scale had to be reduced at one site 

because it grouped a large section of two different plant species together. This reduction 

made the object sizes smaller leading to an increased processing time of six to almost 24 

hours for the nearest neighbor classifier. Smaller objects also led to more misclassifications 

at some sites. For example, figure 2.13 shows the somewhat patchy classification results for 

Cycle 1 which possibly could have been improved with a higher scale.  

Object-based image analysis is a powerful technique and has many advantages over 

pixel-based approaches, but ruleset and feature selection can vary widely depending on the 

user, type of imagery, time of day, and many other factors. The DSM information was also 

critical in this study, especially for classifying Phragmites, however, some portions of the 

models were flawed and open water can create extreme high and low elevation values with 

drone imagery. I worked around these issues by targeting specific sections of each site when 

using height data to identify Phragmites. The issue may have been a product of our aircraft’s 

internal GPS vertical accuracy and perhaps the addition of more ground control points, 

especially around stands of Phragmites, would have improved our models.  
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 I demonstrated the use of an off-the-shelf multi-rotor aircraft for relatively large 90+ 

ha (~ 1 km2) site surveys from a boat. Although fixed-wing aircrafts are more suited for 

larger areas, wetlands may not have favorable landing ground; therefore, multi-rotor 

platforms are better suited for some marsh situations. Price ranges widely for drones but most 

quality multi-rotor aircrafts are significantly cheaper than similar quality fixed-wing models. 

There is also a lower barrier to entry with multi-rotor aircrafts for those interested in 

integrating drones into their research and my goal here was to demonstrate the accessibility 

of drones as a research tool. The ease of piloting, ability to hover, and improvements in flight 

planning software and automation make multi-rotors available to anyone willing to put in the 

training for coastal surveys.  

Advanced sensors, for example multispectral cameras that can capture near-infrared 

and rededge bands, have been widely used for vegetation studies and benefit analysis of 

wetland plant health through indices like the normalized difference vegetation index, but 

these are not always available to researchers (Boon & Tesfamichael 2017; Diaz-Delgado et 

al. 2019). Most multi-rotor drones come equipped with an integrated high-resolution RGB 

camera that, paired with modern SfM processing techniques, can generate powerful datasets 

for logistically difficult areas. The purpose of scientific study, primary research questions, 

and user experience should drive overall equipment choices. Multispectral data is hugely 

beneficial in more complex wetland environments where additional spectral information 

helps delineate species when 10 or maybe 20 types of plants are mixed; and it is necessary 

for vegetation health and stress analysis. But my research helps demonstrate the utility of 

regular RGB imagery for classifying dominant species and these techniques may be more 

appealing to small scale wetland scientists than the use of precision sensors. For example, 
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mitigation banks could easily incorporate an off-the-shelf drone into surveys so that wetlands 

are quickly inventoried and reported to permitting agencies without using specialized 

hardware and equipment.  

 By combining remote sensing and field surveys, I was able to better understand 

restoration success through accurate water and vegetation mapping, land creation analysis, 

and spatial arrangement metrics. All sites reached manager goals of 70% land composition 

but the sediment overflow technique made Cycle 2 the most successful. Restored wetlands 

displayed a general trend of increasing species diversity with age and a shift in dominant 

species after about 10 years. Spartina alterniflora dominated younger sites and was more 

common in flooded areas with more edge habitat at all sites. Although vegetation 

communities do not mimic those of reference marshes, spatial metrics and fragmentation 

indices indicate that restoration sites become equally or more aggregated than natural 

marshes after approximately 12-15 years. Drone imagery also revealed subtle differences in 

site development that were not captured by previous monitoring data. For example, the 

expansion of high marsh species D. spicata and S. patens in the northern portion of Cycle 5 

after just four years (Figure 2.10).  

 High-resolution drone imagery helps us understand ecosystem development because 

of the holistic site level data it provides. Field surveys are essential to determine species 

composition, but that same data can be used to create realistic habitat configurations by 

pairing it with drone surveys and training software instead of extrapolating from plot 

transects. The detail of the imagery gave me the ability to delineate dominant marsh species 

across sites and investigate how plant configurations were structured in relation to fine-scale 

water bodies and channels. I also accurately mapped the invasive species Phragmites 
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australis which was underrepresented in previous field surveys. Phragmites can help marshes 

persist by trapping sediment with its dense cane stands, but major die-offs have occurred in 

coastal LA because of an invasive scale insect from Asia and other reasons that have led to a 

significant increase in research. Samiappan et al. 2016 also demonstrated the utility of drones 

for mapping Phragmites. In general, processing methods were time consuming, but continual 

refinement will speed up the workflow and techniques could be improved and standardized 

for this region. The imagery also serves as a baseline for future research, because although 

previous remote sensing studies have been conducted at the sites, the resolution of the drone 

imagery is significantly higher than any other source.  

 Future studies using drones to survey marshes should consider a few changes to my 

approach. Project objectives and questions generally determine methodological parameters 

and there are tradeoffs to different approaches. For example, I would fly at a slightly higher 

altitude to reduce the number of images and speed up processing time, but you obviously lose 

resolution. I chose 68 m because our software calculated I would achieve a 2.2 cm pixel 

resolution on the ground; next time, I would aim for 2.5 cm or slightly higher. I would also 

fly earlier in the morning to make the classification of water easier. Lower wind and sun 

glare make the use of textural and spectral features more effective for using RGB imagery 

but can lead to more shadows if taller objects are present on the landscape. OBIA 

segmentation scale parameters and the combination of multiresolution and spectral difference 

algorithms worked very well for delineating water across sites, but scales were not as 

consistent for delineating marsh grasses. The maximum spectral difference scale of 10 

worked for some sites, but it had to be reduced for others so that different species were not 

grouped together. Unfortunately, this reduction led to a higher number of smaller objects and 
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more misclassifications. To speed up processing time, after classifying water, I would merge 

and segment remaining objects at a scale of 125 and eliminate a separate segmentation for 

shrubs. I would use DSM values and other features to identify Phragmites and then 

incorporate the scrub shrub class into the supervised nearest neighbor classification. Studies 

could also incorporate wildlife observations captured in drone imagery to add faunal 

components for more holistic observations.  

Drones have revolutionized spatial ecology and the technology’s use has rapidly 

increased across many scientific disciplines because its operational flexibility, high-

quality/low-cost data, and repeatability (Anderson & Gaston 2013). The current regulatory 

environment managed by the FAA and user-friendly flight planning software makes using 

drones a viable option for any researcher. No other remote sensing method offers such high 

detail for the price. The biggest caveat is processing time but methodological refinement and 

advancements in computing and software packages will continually reduce the time burden. 

Coastal research would significantly benefit from increased use of the technology and further 

efforts to improve automated processing techniques.  
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Tables 

Table 2.1  Plant species surveyed in restored and reference sites at the refuge 

Scientific Name Common Name 

Spartina alterniflora smooth cordgrass 

Spartina patens saltmeadow cordgrass 

Schoenoplectus robustus saltmarsh bulrush 

Distichlis spicata seashore saltgrass 

Paspalum vaginatum seashore paspalum 

Borrichia frutescens bushy seaside tansy 

Iva frutescens Jesuit’s bark 

Amaranthus australis southern amaranth 

Ipomoea sagittata saltmarsh morning glory 

Schoenoplectus americanus chairmaker’s bulrush 

Baccharis halimifolia eastern baccharis 

Symphyotrichum tenuifolium perennial saltmarsh aster 

Eleocharis spp. spikerush or spikesedge 

Vigna luteola hairypod cowpea 

Cladium mariscus Jamaica swamp sawgrass 

Setaria magna giant bristlegrass 

Salicornia depressa Virginia glasswort 

Cyperus odoratus rusty flatsedge 
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Table 2.2  Land and water interface results 

Site Years Land 

(ha) 

Water (ha) Total 

(ha) 

% Land % Water 

Cycle 5 4 67.6 24.7 92.3 73.2 26.8 

Cycle 2 9 119.3 18.7 138.0 86.5 13.5 

Cycle 3 12 80.9 12.7 93.6 86.4 13.6 

Cycle 1 17 102.9 4.9 107.7 95.5 4.5 

Reference North  44.8 4.5 49.2 91 9 

Reference South  61.0 5.4 66.4 91.8 8.2 
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Table 2.3  Land and water calculations from drone imagery (June/July 2019), color infrared 

aerial photographs (7 December 2015), and WorldView-3 satellite imagery (13 February 

2016) 

Site Total Area 

(ha) 

Land 

(ha) 

Water 

(ha) 

% Land % Water 

Cycle 5 UAS (2019) 91.3 66.6 24.7 73 27 

Cycle 5 Aerial Photo (2015) 93.9 59.9 34.0 63.8 36.2 

Cycle 5 Satellite (2016) 94.2 27.1 67.08 28.8 71.2 

Cycle 2 UAS (2019) 90.1 76.1 14.0 84.5 15.5 

Cycle 2 Aerial Photo (2015) 91.1 70.4 20.6 77.3 22.7 

Cycle 2 Satellite (2016) 92.6 74.5 18.1 80.4 19.6 

Cycle 3 UAS (2019) 90.5 77.9 12.6 86.1 13.9 

Cycle 3 Aerial Photo (2015) 90.2 88.2 2.0 97.8 2.2 

Cycle 3 Satellite (2016) 95.2 89.6 5.6 94.1 5.9 

Cycle 1 UAS (2019) 93.7 89.2 4.5 95.2 4.8 

Cycle 1 Aerial Photo (2015) 96.7 91.1 5.7 94.1 5.9 

Cycle 1 Satellite (2016) 94.4 90.1 4.2 95.5 4.5 
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Table 2.4  2019 Drone-based edge habitat calculations (marsh to water border) 

Site Years Total Edge 

(km) 

Interior 

(km) 

Exterior 

(km) 

Interior/Exterior 

Ratio 

Cycle 5 4 64.1 54.3 9.8 5.5 

Cycle 2 9 153.8 134.4 19.3 7 

Cycle 3 12 104 92.2 11.7 7.9 

Cycle 1 17 61.4 46.2 15.1 3.1 

Reference North  56.9 45.2 11.7 3.9 

Reference South  67.1 51.7 15.4 3.4 
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Table 2.5  Landscape metrics for land and water classes (water rows shown in gray) 

Site Class 

Class Area 

(ha) 

Percentage of 

Landscape 

Number 

of Patches 

Patch Density 

(#/100 ha) 

Edge Density 

(m/ha) 

Aggregation 

Index 

Cycle 5 Land 67.6 73.2 648 718 575 99.9 

Cycle 5 Water 24.7 26.8 795 880 575 99.7 

Cycle 2 Land 119.3 86.5 730 529 954 99.8 

Cycle 2 Water 18.7 13.5 4414 3199 954 99.1 

Cycle 3 Land 80.9 86.4 5812 6212 862 99.9 

Cycle 3 Water 12.7 13.6 723 773 862 99.2 

Cycle 1 Land 102.9 95.5 181 168 423 99.9 

Cycle 1 Water 4.9 4.5 469 435 423 98.8 

Reference North Land 44.8 91 659 1339 904 99.9 

Reference North Water 4.5 9 653 1327 904 98.8 

Reference South Land 61.0 91.8 1299 1957 768 99.9 

Reference South Water 5.4 8.2 342 515 768 98.8 
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Table 2.6  Landscape metrics for Cycle 2 run separately for the area within the original containment dikes and the overflow area (refer 

to figure 2.1 for delineation) 

Site Class 

Class Area 

(ha) 

Percentage of 

Landscape 

Number of 

Patches 

Patch 

Density 

Edge 

Density 

Aggregation 

Index 

Cycle 2 Land 78.4 84.6 106 114 447 99.9 

Cycle 2 Water 14.3 15.4 198 214 447 99.7 

Cycle 2 Overflow Land 41 90.5 652 1440 1993 99.7 

Cycle 2 Overflow Water 4.3 9.5 4200 9277 1993 97.4 
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Table 2.7  Class area statistics for 2019 drone-based classifications 

Site Class Class Area 

(m2) 

Class Area 

(ha) 

Total Area 

(ha) 

Percent 

Cover (%) 

Cycle 5 Bare ground 2588 0.3 92.3 0.3 

Cycle 5 D. spicata/S. patens 77215 7.7 92.3 8.4 

Cycle 5 Phragmites australis 3767 0.4 92.3 0.4 

Cycle 5 Spartina alterniflora 589498 58.9 92.3 63.9 

Cycle 5 Scrub shrub 2815 0.3 92.3 0.3 

Cycle 5 Water 247252 24.7 92.3 26.8 

Cycle 2 Bare ground 10935 1.1 137.9 0.8 

Cycle 2 D. spicata/S. patens 120696 12.1 137.9 8.8 

Cycle 2 Phragmites australis 3944 0.4 137.9 0.3 

Cycle 2 Spartina alterniflora 1046735 104.7 137.9 75.9 

Cycle 2 Scrub shrub 10263 1.0 137.9 0.7 

Cycle 2 Water 186413 18.6 137.9 13.5 

Cycle 3 Bare ground 1240 0.1 93.6 0.1 

Cycle 3 D. spicata/S. patens 499193 49.9 93.6 53.4 

Cycle 3 Phragmites australis 13996 1.4 93.6 1.5 

Cycle 3 Spartina alterniflora 288088 28.8 93.6 30.8 

Cycle 3 Scrub shrub 5922 0.6 93.6 0.6 

Cycle 3 Water 127140 12.7 93.6 13.6 

Cycle 1 Bare ground 6196 0.6 107.7 0.6 

Cycle 1 D. spicata/S. patens 571781 57.2 107.7 53.1 

Cycle 1 Phragmites australis 32161 3.2 107.7 3 

Cycle 1 Spartina alterniflora 392380 39.2 107.7 36.4 

Cycle 1 Scrub shrub 26280 2.6 107.7 2.4 

Cycle 1 Water 48445 4.8 107.7 4.5 

Reference North Eleocharis spp. 9832 1.0 49.2 2 

Reference North Other 22830 2.3 49.2 4.6 

Reference North Phragmites australis 7130 0.7 49.2 1.5 

Reference North Spartina alterniflora 68594 6.9 49.2 13.9 

Reference North Spartina patens 331615 33.2 49.2 67.4 

Reference North Scrub shrub 7640 0.8 49.2 1.6 

Reference North Water 44619 4.5 49.2 9.1 

Reference South Other  64972 6.5 66.4 9.8 

Reference South Phragmites australis 20326 2.0 66.4 3.1 

Reference South Spartina patens 519549 52.0 66.4 78.2 

Reference South Scrub shrub 4816 0.5 66.4 0.7 

Reference South Water 54252 5.4 66.4 8.2 
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Table 2.8  Cycle 5 accuracy assessment (confusion) matrix results 

Class 

Bare 

ground 

D. spicata 

/S. patens 

Phragmites 

australis 

Spartina 

alterniflora 

Scrub 

shrub Water Total U_Accuracy Kappa 

Bare ground 10 0 0 0 0 0 10 100% 0 

D. spicata/S. patens 0 23 0 19 1 0 43 53% 0 

Phragmites australis 0 0 10 0 0 0 10 100% 0 

Spartina alterniflora 0 19 0 307 0 0 326 94% 0 

Scrub shrub 0 0 0 6 4 0 10 40% 0 

Water 1 0 0 5 0 120 126 95% 0 

Total 11 42 10 337 5 120 525 0% 0 

P_Accuracy 91% 55% 100% 91% 80% 100% 0 90% 0 

Kappa 0 0 0 0 0 0 0 0 0.82 
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Table 2.9  Cycle 2 accuracy assessment (confusion) matrix results 

Class 

Bare 

ground 

D. spicata 

/S. patens 

Phragmites 

australis 

Spartina 

alterniflora 

Scrub 

shrub Water Total U_Accuracy Kappa 

Bare ground 10 0 0 0 0 0 10 100% 0 

D. spicata/S. patens 0 13 0 30 1 0 44 30% 0 

Phragmites australis 0 0 8 0 1 1 10 80% 0 

Spartina alterniflora 1 7 0 370 1 0 379 98% 0 

Scrub shrub 0 2 0 5 3 0 10 30% 0 

Water 0 0 0 4 0 64 68 94% 0 

Total 11 22 8 409 6 65 521 0% 0 

P_Accuracy 91% 59% 100% 90% 50% 98% 0 90% 0 

Kappa 0 0 0 0 0 0 0 0 0.75 
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Table 2.10  Cycle 3 accuracy assessment (confusion) matrix results 

Class 

Bare 

ground 

D. spicata 

/S. patens 

Phragmites 

australis 

Spartina 

alterniflora 

Scrub 

shrub Water Total U_Accuracy Kappa 

Bare ground 1 8 1 0 0 0 10 10% 0 

D. spicata/S. patens 0 239 0 28 0 0 267 90% 0 

Phragmites australis 0 1 7 1 1 0 10 70% 0 

Spartina alterniflora 0 20 0 134 0 0 154 87% 0 

Scrub shrub 0 2 1 0 7 0 10 70% 0 

Water 0 1 0 8 0 59 68 87% 0 

Total 1 271 9 171 8 59 519 0% 0 

P_Accuracy 100% 88% 78% 78% 88% 100% 0 86% 0 

Kappa 0 0 0 0 0 0 0 0 0.78 
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Table 2.11  Cycle 1 accuracy assessment (confusion) matrix results 

Class 

Bare 

ground 

D. spicata 

/S. patens 

Phragmites 

australis 

Spartina 

alterniflora 

Scrub 

shrub Water Total U_Accuracy Kappa 

Bare ground 9 0 1 0 0 0 10 90% 0 

D. spicata/S. patens 1 220 1 42 0 1 265 83% 0 

Phragmites australis 0 2 13 0 0 0 15 87% 0 

Spartina alterniflora 0 70 0 112 0 0 182 62% 0 

Scrub shrub 0 4 0 1 7 0 12 58% 0 

Water 0 0 0 2 0 20 22 91% 0 

Total 10 296 15 157 7 21 506 0% 0 

P_Accuracy 90% 74% 87% 71% 100% 95% 0 75% 0 

Kappa 0 0 0 0 0 0 0 0 0.57 
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Table 2.12  Reference North accuracy assessment (confusion) matrix results 

Class 

Eleocharis 

spp. Other  

Phragmites 

australis 

Spartina 

alterniflora 

Spartina 

patens 

Scrub 

shrub Water Total U_Accuracy Kappa 

Eleocharis spp. 2 0 0 4 4 0 0 10 20% 0 

Other  0 4 0 8 10 0 1 23 17% 0 

Phragmites australis 0 0 8 0 2 0 0 10 80% 0 

Spartina alterniflora 1 0 0 55 14 0 0 70 79% 0 

Spartina patens 3 0 0 38 294 0 2 337 87% 0 

Scrub shrub 0 0 0 3 7 0 0 10 0% 0 

Water 1 0 0 3 0 0 41 45 91% 0 

Total 7 4 8 111 331 0 44 505 0% 0 

P_Accuracy 29% 100% 100% 50% 89% 0% 93% 0 80% 0 

Kappa 0 0 0 0 0 0 0 0 0 0.62 
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Table 2.13  Reference South accuracy assessment (confusion) matrix results 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Class Other 

Phragmites 

australis 

Spartina 

patens 

Scrub 

shrub Water Total U_Accuracy Kappa 

Other 26 1 21 1 0 49 53% 0 

Phragmites australis 0 15 0 0 0 15 100% 0 

Spartina patens 74 0 312 2 3 391 80% 0 

Scrub shrub 5 0 1 4 0 10 40% 0 

Water 0 0 0 0 41 41 100% 0 

Total 105 16 334 7 44 506 0% 0 

P_Accuracy 25% 94% 93% 57% 93% 0 79% 0 

Kappa 0 0 0 0 0 0 0 0.54 
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Figures 

Figure 2.1  Location of study sites (Cycles) with final construction year in the Sabine 

National Wildlife Refuge (Bing 2017 base map) 
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Figure 2.2  Field sampling locations and flight areas covered by the Yuneec H520. Examples 

of vegetation include: a mixture of Spartina alterniflora, Schoenoplectus robustus, and 

Distichlis spicata in the foreground with taller Phragmites australis in the background (a) 

and Spartina alterniflora (b) 
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Figure 2.3  Data products from June 2019 drone imagery for Cycle 3 including: orthomosaic 

(a), digital surface model (b), land water interface (c), and vegetation classification (d)  
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Figure 2.4  Workflow for obtaining, processing, and analyzing drone imagery 



Figure 2.5  Example of Spartina patens marsh illustrating an aggregated piece of habitat (a) 

(AI = 100) and a less aggregated piece of habitat (b) (AI = 99) 
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Figure 2.6  Summer 2019 drone-based percent land cover for restored sites over time since 

restoration (gray area is 95% confidence interval for logarithmic line) 
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Figure 2.7  Summer 2019 drone-based land and water interface maps (years since 

construction as of 2019) (Bing 2017 base map) 
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Figure 2.8  Summer 2019 drone-based vegetation classification maps (years since 

construction as of 2019) (Bing 2017 base map) 
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Figure 2.9  Drone-based percent cover calculations by species and land cover class 
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Figure 2.10  July 2019 Cycle 5 (4 years old) orthomosaic (a) with zoomed in portions (b) 

and corresponding classifications (c) 
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Figure 2.11  July 2019 Cycle 2 (9 years old) orthomosaic (a) with zoomed in view of the 

overflow area (b) and corresponding classification (c) to highlight the detail of drone 

products and the tidal channels and edge habitat created by the overflow technique 
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Figure 2.12  June 2019 Cycle 3 (12 years old) orthomosaic (a) and classification (b) with 

zoomed in view of the flooded portion (c) and corresponding classification (d) 
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Figure 2.13  June 2019 Cycle 1 (17 years old) orthomosaic (a) and corresponding 

classification map (b) with zoomed in portions highlighting Phragmites australis (c) and 

portion of man-made channel filling in (d) 
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Figure 2.14  June 2019 Reference North orthomosaic (a) with corresponding classification 

(b) and Reference South orthomosaic (c) with corresponding classification (d)
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Figure 2.15  2019 field-based percent vegetation cover estimates 
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Figure 2.16  Field-based species richness (a) (# species per plot) (ANOVA, F 5,49 = 2.01, P = 

.0941) and average percent vegetated cover estimates (b) (ANOVA, F 5,49 = 6.28, P = .0001) 

 

  



71 

Figure 2.17  2019 field-based Floristic Quality Index (FQI) scores 
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Figure 2.18  Dominant cover type comparison of 2018 state agency field surveys (Agency) 

and 2019 drone-based classifications (Drone) and field surveys (Field). Classes grouped into 

high marsh (D. spicata and S. patens), low marsh (S. alterniflora), and other (all other 

species) for general comparison across data types. Agency and Field columns based on visual 

percent cover estimates from plot surveys 
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Figure 2.19  Standardized edge habitat comparison (edge considered marsh to water border) 
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Figure 2.20  Orthomosaic (left) and corresponding vegetation classification (right) at study 

sites: Cycle 3 (a), Cycle 2 (b), Reference North (c), and Reference South (d) 
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Abstract 

Coastal marsh ecosystems are disappearing rapidly in Louisiana. The state has 

undertaken massive wetland restoration efforts to preserve its coastal zone but traditional 

methods to monitor restoration success rely on labor intensive field measurements that are 

often short-term and underfunded. To address this, I developed methods using a 

commercially available drone with a high-resolution RGB camera to assess the effects of 

wetland restoration and integrate more modern tools into evaluation approaches. I conducted 

drone flights at restored brackish marshes of various ages using a space for time substitution 

to understand the ecological sequence of marsh creation. Created marshes had higher 

percentages of land than natural marshes after about 12 - 15 years and dominant species in 

created marshes shifted from Spartina alterniflora to Distichlis spicata, Spartina patens, and 

others after about 10 years while natural marshes were dominated by S. patens. Older sites 

were configured like reference areas based on some landscape metrics and indicators of 

fragmentation, but other indices reflected developmental differences possibly related to 

construction practices. Drone surveys offer low-cost, minimally invasive methods for 

evaluating restored wetlands and ultimately inform more about ecosystem development than 

traditional methods through the production of realistic site-level habitat configurations.  
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