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Abstract We mapped tidal wetland gross primary production (GPP) with unprecedented detail for
multiple wetland types across the continental United States (CONUS) at 16‐day intervals for the years
2000–2019. To accomplish this task, we developed the spatially explicit Blue Carbon (BC) model, which
combined tidal wetland cover and field‐based eddy covariance tower data into a single Bayesian framework,
and used a super computer network and remote sensing imagery (Moderate Resolution Imaging
Spectroradiometer Enhanced Vegetation Index). We found a strong fit between the BC model and eddy
covariance data from 10 different towers (r2 = 0.83, p < 0.001, root‐mean‐square error = 1.22 g C/m2/day,
average error was 7% with a mean bias of nearly zero). When compared with NASA's MOD17 GPP product,
which uses a generalized terrestrial algorithm, the BC model reduced error by approximately half (MOD17
had r2 = 0.45, p < 0.001, root‐mean‐square error of 3.38 g C/m2/day, average error of 15%). The BC model
also included mixed pixels in areas not covered by MOD17, which comprised approximately 16.8% of
CONUS tidal wetland GPP. Results showed that across CONUS between 2000 and 2019, the average daily
GPP per m2 was 4.32 ± 2.45 g C/m2/day. The total annual GPP for the CONUS was 39.65 ± 0.89 Tg C/year.
GPP for the Gulf Coast was nearly double that of the Atlantic and Pacific Coasts combined. Louisiana alone
accounted for 15.78 ± 0.75 Tg C/year, with its Atchafalaya/Vermillion Bay basin at 4.72 ± 0.14 Tg C/year.
The BC model provides a robust platform for integrating data from disparate sources and exploring regional
trends in GPP across tidal wetlands.

1. Introduction

Tidal wetlands are a critical component of global climate regulation. Producers (primarily plant commu-
nities) in these ecosystems acquire carbon dioxide (CO2) from the atmosphere and assimilate the carbon into
organic tissues (Taiz & Zeiger, 2002). The assimilated carbon in these ecosystems is often referred to as “blue
carbon,” as it is oceanic‐ or wetland‐related (Lovelock & Duarte, 2018; Mcleod et al., 2011; Windham‐Myers
et al., 2018, and references therein). A rough estimate is that these ecosystems may offset between 0.9% and
2.6% of total anthropogenic CO2 emissions globally (Murray et al., 2011).

After first undergoing respiration and decomposition (Bond‐Lamberty et al., 2018; Hopkinson et al., 2012), a
portion of this producer‐assimilated carbon is then sequestered into deep soil horizons (Chmura, 2013;
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Chmura et al., 2003; Duarte et al., 2005) along with allochthonous sources (Bianchi et al., 1999, 2011; Bianchi
et al., 2019). With continuous accretion of this material over time, soil carbon storage rates in some tidal wet-
lands are estimated to be 50 times greater than rainforests of a similar area, where the forest carbon storage
occurs largely aboveground (Bridgham et al., 2006; Nelleman et al., 2009). To properly assess regional and
continental United States (CONUS) carbon budgets and their blue carbon potential (Hayes et al., 2018),
the atmospheric CO2 assimilation by tidal wetlands must be more accurately quantified.

The gross primary production (GPP) of a tidal wetland represents the total photosynthetic flux of CO2

between the atmosphere and the surface on a per land area basis before any respiratory fluxes back to the
atmosphere are removed. This flux can be empirically modelled from direct site‐specific eddy covariance
(EC) measurements that record the net ecosystem exchange (NEE) of CO2, and GPP can be estimated from
these measurements (Lasslop et al., 2010; Reichstein et al., 2005). Conceptually, one way to estimate GPP is
to find the difference of ecosystem respiration (RE) from measured NEE as follows:

GPP ¼ −NEE þ RE (1)

While ECmeasurements provide invaluable information for measuring GPP and understanding functioning
of an ecosystem, their spatial representation is limited from a few hundred meters to several kilometers. If
we assume that the response functions observed in EC data sets are representative of larger landscapes,
we can use those functions in spatial models to map GPP over broader spatial and temporal scales.
Several radiation‐based models have been based on the conceptual logic of light use efficiency (LUE; e.g.,
Monteith, 1972), which suggests that GPP can be quantified as a function of how plants intercept and con-
vert solar radiation into biomass, within the context of other climatic variables such as temperature and
water availability. The most basic elements of the GPP relationship include

GPP ¼ ε*iPAR*fPAR (2)

where iPAR is the incident photosynthetically active radiation (PAR) that arrives above the plant canopy,
fPAR is the PAR fraction intercepted by plant leaf surfaces (often modelled as a function of vegetation
indices), and ε is a multiplicative LUE coefficient that determines the efficiency of converting light photons
into biomass for a given plant type. The automated framework of Heinsch et al. (2003, 2006), Running et al.
(2004), and Zhao et al. (2005) set the groundwork for mapping GPP at global scales using this basic formula
with NASA's Moderate Resolution Imaging Spectroradiometer (MODIS) imagery providing the fPAR input
(e.g., producing NASA's MOD17 as a GPP output product at 500‐m or 1‐km resolution).

While NASA's MOD17 product estimates GPP in some areas occupied by tidal wetlands, it suffers from several
limitations, including (1) ε and fPAR are not specific for tidal wetland plants. Tidal wetlands are either classified
as “water” or designated as a terrestrial ecosystem, though they may act differently (Rocha & Goulden, 2009).
For example, water inundation can affect both CO2 exchange (Forbrich & Giblin, 2015; Kathilankal et al.,
2008; Malone et al., 2013; Zhao et al., 2019) and surface reflectance in short‐vegetation wetlands, which is used
to estimate vegetation indices and thus fPAR (O'Connell et al., 2017); (2) iPAR is derived using older meteoro-
logical products interpolated to relatively coarse resolutions (such as National Centers for Environmental
Prediction [NCEP] II reanalysis), and moreover, these do not incorporate sea‐based weather station and buoy
meteorological measurements that would be useful along coastal areas (Saha et al., 2014); and (3) the majority
of tidal wetlands are distributed in narrow strips along the coastal boundary (Hardisky et al., 1986; Klemas,
2011) at scales much finer than the resolution of the land cover classification algorithm/layer used by
MOD17. This problem results in fPAR values that are mixed amongmultiple terrestrial plant cover types, yield-
ing mixed GPP values, or alternately providing no GPP values in areas incorrectly classified as water.

The overgeneralization of ε can be resolved by creating a set of equations that better describe LUE for tidal
wetlands. In particular, Barr et al. (2013) used a Bayesian framework that described LUE as a function of
temperature, light saturation, salinity, and calibrated fPAR values using the Enhanced Vegetation Index
(EVI) band of MODIS. Similar LUEmodels have been created for individual EC tower sites, often using cali-
brated Normalized Difference Vegetation Index or other similar metrics for fPAR (Ghosh et al., 2016; Schile
et al., 2013). Still other LUE models have taken into account salinity (Heinsch et al., 2004) or tidal inunda-
tion (Kathilankal et al., 2008; O'Connell et al., 2017; Tao et al., 2018). The uniqueness of the Barr et al. (2013)
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approach lies in the optimization of the LUE inputs that combine to
define ε through the use of Bayesian statistics. This procedure makes it
more suitable for a large‐scale extrapolation. Still, no other method has
combined this statistical approach with the flexibility to model GPP across
other plant physiological types at both a fine spatial resolution and across
the large spatial extent occupied by tidal wetland vegetation.

Our overall objective was to model tidal wetland GPP at 250‐m scale,
while also accounting for wetlands smaller than this area, across the
entire CONUS. We quantified GPP and created maps at 16‐day averages
for the years 2000–2019. To accomplish this task, we built the Blue
Carbon (BC) model, which modeled GPP in a spatially explicit environ-
ment. The model was parameterized in a Bayesian framework using tidal
wetland cover and EC tower data across a wide range of sites and then was
validated by comparing its output with additional EC tower data sets.
Finally, we compared its output against NASA's MOD17 products and
other GPP estimates from the literature and summarized key findings
about GPP distribution.

2. Methods
2.1. BC Model Overview

We built the BC model using Google Earth Engine (Gorelick et al., 2017).
To compute estimates of tidal wetland GPP at a given location and date,
our approach with the BC model required an input for each of the vari-
ables outlined in equation (2). The model approach applied seven basic
steps, resulting in GPP spatial map output and comparisons with other
products (Figure 1).

First, specific types of wetlands were defined based on mapping data and
EC‐tower data availability (section 2.2).

Second, for modeling LUE, ε required extensive parameterization within a
hierarchical Bayesian statistical framework (section 2.3). This framework
required us to develop LUE equations specific to tidal wetlands and then
find the optimal values of a set of characteristics that quantify the controls
of light and temperature on EC‐derived GPP. This framework used EC
tower data sets at several wetland sites, with data sets spanning multiple

years across all seasons (and thus the full range of possible light and temperature controls).

Third, using the results from the Bayesian framework as the BCmodel inputs, the BCmodel then calculated
equation (2) (section 2.4). The iPAR inputs were derived frommeteorological data sets. The fPAR inputs were
derived from MODIS EVI data sets (MOD13Q1) at 16‐day time intervals and at 250‐m spatial resolution
across the continental United States.

Fourth, we developed a unique spatial algorithm to solve the problem of “mixed pixels” (section 2.5).

Fifth, we assessed the validity of the BCmodel by comparing its GPP predictions with field‐derived EC tower
GPP (section 2.6).

Sixth, wemapped tidal wetland GPP over the relevant spatiotemporal extent and summarized the results sta-
tistically (section 2.7).

Finally, we compared the BC model with NASA's MOD17 product (section 2.8).

2.2. Tidal Wetland Classes: Maps and Flux Data Availability and Processing

We first identified the location of all tidal wetlands in CONUS and grouped them into four separate classes:
(1) woody mangroves, (2) woody freshwater swamps, (3) herbaceous salt marshes, and (4) herbaceous fresh-
water wetlands. These four classes form a full factorial that includes all tidal wetlands. Our resulting high‐

Figure 1. Overview of the input data sets, processes, and products of the BC
model.
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resolution, vector‐based data set was composed of polygonal delineations. Hinson et al. (2017) contain more
details on the underlying data set (downloadable from bluecarbon.tamu.edu), which is itself a refinement of
the National Wetlands Inventory and as such its classification is based on the Cowardin system (Cowardin
et al., 1979). In short, the definition of a tidal wetland in this data set is based on hydrologic considerations
which are listed as specific modifiers (e.g., semipermanently flooded tidal freshwater wetland; Federal
Geographic Data Committee, 2019).

We then overlayed a MODIS grid on top of this vector data set and found the area of each tidal wetland class
within a 250‐m pixel size. This step allowed us to identify the class affiliation and the percent of each pixel
occupied by each class, at the 250‐m scale.

Using typical wetlands at sites that represented these tidal wetland types (Table 1), atmospheric fluxes of
NEE were determined using the eddy covariance technique (Baldocchi et al., 1988; Heilman et al., 1999).
The calculated fluxes were either downloaded directly from Ameriflux or provided by site principal investi-
gators. With the exception of US‐NC4, all sites experienced tidal hydrology (the hydrology of US‐NC4 is clas-
sified as “seasonally flooded” in National Wetlands Inventory). In the absence of Ameriflux data associated
with tidal freshwater environments, we approximated these classes with EC data sets representing similar
species structure. Specifically, we used US‐NC4 as a woody freshwater swamp class, but also US‐SRR as
an herbaceous freshwater wetland class despite its higher salinity range (channel salinity of <2–10 ppt;
e.g., Knox et al., 2018; tidal freshwater typically refers to <2 ppt).

Table 1
Summary of Flux Data Sets Used During Parameterization and Validation of the Bayesian Framework and BC Model

EC tower site ID,
name (state)

Location
(lat, lon) Example reference

Instrumentation,
partitioning

Dominant plant
species

BC model
class Datesa

US‐SKR, Shark River Slough
Everglades (Florida)

25.363293,
−81.077544

Barr et al. (2013) CSAT, LI7500, Site
Specific

Rhizophora mangle,
Avicennia germinans,
Laguncularia
racemosa

Woody
(Mangroves)

P 2007–2008
V 2009–2010
N 2004–2006;
2011

US‐NC4, Alligator River
(North Carolina)

35.787717,
−75.903952

Miao et al. (2017) Windmaster, LI‐
7500A, LI‐7200,
Site Specific

Taxodium distichum,
Nyssa aquatica, Acer
rubrum

Woody
(Freshwater
Swamp)

P 2013–2014
V 2015–2016

US‐PHM, Plum Island High
Marsh (Massachusetts)

42.742443,
−70.830219

Forbrich et al.
(2018)

CSAT, EC155,
Reichstein et al.
(2005)

Spartina patens,
Spartina alterniflora,
Distichlis
spicata

Herbaceous
(Salt Marsh)

P 2013–2014
V 2015–2016
N 2017

US‐SRR, Suisun Marsh ‐

Rush Ranch (California)
38.200556,
−122.02635

Knox et al. (2018) Gill, LI7500A, Site
Specific

Schoenoplectus spp.,
Typha spp., Lepidium
latifolium L.

Herbaceous
(Freshwater
Wetland)

P 2014–2015
V 2016–2017

US‐PLM, Plum Island Low
Marsh (Massachusetts)

42.734463,
−70.838231

N/A CSAT, EC155
Reichstein et al.
(2005)

Spartina alterniflora Herbaceous
(Salt Marsh)

O 2015–2017

US‐HPY, Hawk Property
(New Jersey)

40.769173,
−74.085318

Duman and
Schäfer (2018)

CSAT, LI7500A,
Site Specific

Spartina patens,
Phragmites australis

Herbaceous
(Salt Marsh)

O 2014–2017

US‐STJ, St. Jones Reserve
(Delaware)

39.088225,
−75.437210

Capooci et al.
(2019)

Gill,
LI7200Reichstei-
n
et al. (2005)

Spartina alterniflora,
Spartina cynosuroides

Herbaceous
(Salt Marsh)

O 2016–2017

US‐VFP, Virginia Coast Res.
Following Point (Virginia)

37.411065,
−75.833208

N/A Gill, LI7500A
Reichstein et al.
(2005)

Spartina alterniflora Herbaceous
(Salt Marsh)

O 2015–2017

GCE, Georgia Coastal
Ecosystems LTER
(Georgia)

31.444094,
−81.283444

Tao et al. (2018) CSAT, LI7200, Site
Specific

Spartina alterniflora Herbaceous
(Salt Marsh)

O 2013–2015

US‐LA1, Pointe‐aux‐Chenes
Brackish Marsh
(Louisiana)

29.501303,
−90.444897

Krauss et al. (2016) Gill, LI7200
Reichstein et al.
(2005)

Spartina patens Herbaceous
(Freshwater
Wetland)

O 2012

aCodes denote how each year of EC tower field‐derived data was used for the final two class model (woody and herbaceous classes): P = parameterization of
Bayesian framework only; V = validation for Bayesian framework and BC model; N = validation for BC model use only; O = “offsite” validation for BC model
use only.
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NEE fluxes were first filtered for periods of instrument malfunctioning, insufficient turbulence (Foken et al.,
2004; class 0,1), and outliers, as described in Papale et al. (2006). They were next partitioned into GPP and RE,
following equation (2). While nighttime RE was detected directly by the EC technique, daytime RE was
entangled with GPP, requiring the choice of a partitioning algorithm. We used the nighttime partitioning
approach by Reichstein et al. (2005) as implemented in REddyProc (Wutzler et al., 2018) to estimate GPP.
We review the implications of this choice in section 4.

2.3. Bayesian Framework for Light Use Efficiency

The Bayesian framework was developed to statistically quantify the efficiency of a given tidal wetland plant
to convert light photons into biomass. The goal was to quantify the relevant biophysical relationships that
underlie equation (2) and develop “look‐up tables” for each unique wetland class that could be used later
by the BC model. The basic concept of our Bayesian framework was to identify the prior probability distri-
bution of values for a given set of parameters (light and temperature conditions) that were most likely to
have resulted in a known posterior distribution (GPP values from field‐based EC tower data sets). The code
was developed in Matlab and WinBUGS (code available on bluecarbon.tamu.edu).
2.3.1. Biophysical Relationships
From equation (2), LUE can be determined as follows (Barr et al., 2013):

GPP
iPAR

¼ ε*fPAR (3)

Contrary to other approaches, fPARwas incorporated into the fitting and we utilize GPP
iPAR instead of

GPP
APAR as the

target (where APAR is absorbed PAR), which limits the number of assumptions that must be made and
reduces uncertainty. The purpose of this approach was to match the fPAR data stream that the BCmodel will
have available to it, as described in sections below.

The mathematical form of the LUE equations and their key input parameters (ε0, Tmin, Tmax, Topt,mPAR, and
mEVI) were defined as follows, with a more detailed explanation and rationale for model structure provided
in Barr et al. (2013):

ε ¼ ε0*f temperature*f saturation (4)

where ε0 is the maximum LUE value under optimum growing conditions, and

f temperature ¼
Ta−Tminð Þ* Ta−Tmaxð Þ

Ta−Tminð Þ* Ta−Tmaxð Þ½ �− Ta−Topt
� �2 (5)

where Ta is the temperature at a given location and time, Tmin, Tmax, and Topt are the minimum, maximum,
and optimal temperatures at which the plant type converts light into biomass and

f saturation ¼ 1−mPAR*PAR (6)

where mPAR describes the rate at which the plant class's ability to convert energy into biomass saturates as
the light intensity increases. This parameter was used by Barr et al. (2013) because they observed a decrease
in LUE with increase in PAR in woody plants, but this behavior also occurs in herbaceous plants as well
(Kathilankal et al., 2008). In addition,

fPAR ¼ 1−e −mEVI *EVIð Þ (7)

where mEVI details how EVI values increase as a function of the plant type's canopy structure. This para-
meter is valuable particularly in the case of a woody ecosystem, such as mangroves or woody freshwater
swamps, as it provides a fit between the apparent reflectance of the canopy surfaces seen at nadir and the
actual quantity of photosynthetic surfaces throughout the vertical structure. This improves the accuracy of
EVI as a predictor of changes in leaf area in tropical or forested regions, as compared with Normalized
Difference Vegetation Index (Barr et al., 2012). In testing, we found that it improved the fit for herbaceous
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plants as well, though not as greatly as for woody. Equation (7) has the desired properties of being
constrained between 0 and 1 such that the fraction of PAR absorbed by vegetation cannot exceed 100%.
2.3.2. Look‐Up Tables
Look‐up tables were produced by finding the optimal fit for the key input parameters (ε0, Tmin, Tmax, Topt,
mPAR, and mEVI) that fed into equations (3)–(7) to predict the posterior distribution of GPP. Four EC tower
sites (Table 1) were used for parameterizing the Bayesian framework and producing look‐up tables: US‐SKR
(representing mangroves), US‐NC4 (woody freshwater swamps), US‐PHM (salt marshes), and US‐SRR (her-
baceous freshwater wetlands). All other tower sites were not used at this stage of our work. The data from
each of these four sites were segregated into parameterization versus validation data sets (Table 1). Once a
look‐up table was parameterized using several years of data, we validated it using the data from other years.

Performance of the look‐up tables was evaluated using the linear relationship between field‐derived GPP
from the tower sites and that modelled by the Bayesian framework (slope and intercept), the coefficient of
determination (r2), and the root‐mean‐square error (RMSE). It is important to note that at this stage of
the framework, the Bayesian approach utilized the EC tower‐recorded iPAR and temperature records as
inputs to the equations (as opposed to the BC model described below, which used remotely sensed or mod-
elled inputs for these parameters). To find the best look‐up tables for later use by the BC model, we tested
using two tidal wetland classes (woody and herbaceous) versus the four wetland classes.

This test involved grouping the four classes into only two: woody (to include both woody mangroves and
woody freshwater swamps) versus herbaceous (to include both herbaceous salt marshes and herbaceous
freshwater wetlands). For each tower site in the four‐class test, we randomly excluded one year of data for
validation; the rest was used for parameterization. For the two‐class set up, we randomly excluded 2 years
of data for validation; the rest was used for parameterization. The reason behind this difference was that
when grouping into two classes, there are more available data in each class and therefore more records
are saved for validation while maintaining statistical robustness during parameterization.

We found that the two‐class woody versus herbaceous parameterization was more efficient and parsimo-
nious than using the four wetland classes (Table 2). For both the woody and herbaceous class, the statistical
fit and errors were approximately halfway between those of the more specific classes that comprised each
group when they were run separately. This result suggests the appropriateness of grouping tidal wetlands
based on similarities in anatomy. Further reasoning for using the two‐class woody versus herbaceous group-
ing is that the sample size increased for both parameterization and validation data sets, and the fact that
more of the additional “offsite” validation data sets also became applicable to each grouping (as described
in sections further below).

We also tested groupings based on subtropical (US‐SKR) versus temperate (US‐SRR, US‐PHM, US‐NC4)
wetlands, mixed across anatomical categories, but the statistical relationships were weaker; in this case,

Table 2
Bayesian Framework Validation, for Two‐Class (Woody vs. Herbaceous) and Four‐Class (Woody Mangrove, Woody Swamp, Herbaceous Salt Marsh, and Herbaceous
Freshwater) Parameterizations, and When Including or Excluding Light Saturation Coefficients

Including light saturation coefficient Excluding light saturation coefficient

Tidal Woody Tidal Herbaceous Tidal Woody Tidal Herbaceous

r2 0.74 0.93 0.08 0.93
Slope 0.68 0.89 0.26 0.89
Offset 0.13 0.01 0.31 0.01
RMSE 0.08 0.07 0.17 0.07
n 136 84 136 84

Woody
Mangrove

Woody
Swamp

Herbaceous Salt
Marsh

Herbaceous
Freshwater

Woody
Mangrove

Woody
Swamp

Herbaceous Salt
Marsh

Herbaceous
Freshwater

r2 0.65 0.83 0.96 0.87 0.21 0.80 0.96 0.84
Slope 0.46 0.97 1.04 0.94 0.35 1.01 1.00 0.90
Offset 0.25 0.01 0.01 0.03 0.30 0.01 0.01 0.04
RMSE 0.05 0.1 0.04 0.09 0.09 0.11 0.04 0.10
n 46 22 21 22 46 22 21 22
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the temperate group performed roughly similar in r2 to its three con-
stituent class sites, but the subtropical group matched the lower r2

values shown for this mangrove site in Table 2 (~0.65) as US‐SKR
was the only representative. The greatest uncertainty in LUE among
all combinations of sites and classes was for the mangrove class,
which was interesting given that the Bayesian approach has been
refined by both the present study and Barr et al. (2013), and in addi-
tion, this site has the largest number of observations among all EC
tower sites. The fact that US‐SKR was consistently lower in r2 sug-
gests that tropical wetlands outside of the CONUS and outside the
scope of this study, with still more consistent green leaf cover year
round, could prove even more difficult to model for GPP.

1. Including a light saturation coefficient in the look‐up tables

We tested for and found a large benefit to quantifying the effect of light saturation in woody canopies, par-
ticularly for mangroves, when including the mPAR parameter (Table 2). Canopy light saturation to photo-
synthesis was not strongly observable in any herbaceous class or group, though including this parameter
slightly increased the r2 values. To maintain consistency of the table structure across groupings and to pro-
tect against the possibility that light saturation could still occur at unparameterized sites (neither of the para-
meterized sites US‐SRR and US‐PHM are in the southern part of the US, where there is consistently higher
PAR), we decided to move forward with using the mPAR parameter for all classes.

2. Using the median of the distribution from the look‐up table

When investigating the distribution of ε0, we found it to be skewed to the right. Moreover, we found that the
performance of the tables increased when using the median value of the Bayesian‐derived distribution for
the other parameters as well, as opposed to using the mean for these parameters; this was particularly true
for the mangrove cover class and accordingly, the woody grouping (Table 3). We thus chose to move forward
with the median look‐up table values, as was done in Barr et al. (2013).

3. Excluding salinity and tidal inundation

Salinity and tidal inundation depth were not included as parameters in the final framework, though we
tested and constrained their potential contribution to improving accuracy. Both of these variables vary at
fine spatial and temporal scales, complicating their inclusion. For example, inundation frequency and dura-

tion were different for each site, depending on site elevation, vegetation
height, and tidal amplitude, and they cycled at higher frequencies than
the 16 days of constraining MODIS data sets. Similarly, salinity can spa-
tially vary greatly over a few meters and fluctuate quickly with rainfall
or the tidal cycle. No standardized approach has been developed to parti-
tion the contribution of these variables to NEE fluxes in tidal wetlands,
and no input streams currently exist that can provide mapped inundation
or salinity at the scale of the other parameters, at least for a manner
applicable across broad spatial scales.

To estimate the effect of salinity and the error induced by excluding it
from the BC model, we assessed the differences in the parameterization
at the US‐SKR site (Barr et al., 2013) and the US‐PHM site (Forbrich
et al., 2018). We found no added measurable benefit to including salinity
into the framework when predicting GPP (Table 3; only US‐SKR data
shown). This finding was somewhat surprising and led us to ask why
excluding it did not make an important difference, which we review
further in section 4.

2.4. Running the BC Model

To calculate ε in equation (3) across all tidal wetlands in the CONUS,
the BC model used the final optimized look‐up table values (Table 4).

Table 3
Bayesian Framework Validation for the Mangrove Class, With and Without
Salinity, and When Using the Median Versus the Mean of the Bayesian
Distribution for Each Parameterized Value

Excluding salinity coefficient Including salinity coefficient

Value Mean Median Median

r2 0.34 0.65 0.65
Slope 0.73 0.46 0.47
Offset 0.16 0.25 0.25
RMSE 0.12 0.05 0.05
n 92 46 46

Table 4
Final Bayesian Distribution Framework Look‐Up Tables Used by the BC
Model for the Woody and Herbaceous Tidal Wetland Classes

Woody Tidal Wetlands

mean std. dev. 2.5% median 50% 97.5%

ε0 39.63 21.23 24.38 31.21 109.3
mEVI 2.81 1.15 0.6 2.99 4.79
Tmin (°C) 0.11 2.75 −7.07 1.04 3.01
Tmax (°C) 33.99 1.9 30.82 33.68 38.81
Topt (°C) 28.95 1.77 27.09 28.43 34.38
mPAR 0.0098 0.0007 0.0083 0.0098 0.011

Herbaceous Tidal Wetlands
mean std. dev. 2.5% median 50% 97.5%

ε0 23.34 9.5 12.54 21.03 48.19
mEVI 3.03 1.05 1.11 3.1 5.06
Tmin (°C) −0.16 2.31 −5.71 0.4 2.75
Tmax (°C) 33.46 2.22 28.19 33.47 38.35
Topt (°C) 27.74 2.47 22.52 27.74 33.93
mPAR −0.002 0.004 −0.012 ‐0.002 0.004

Note. Units for ε0 are mmol C/mol photons. mPAR and mEVI are
dimensionless.

10.1029/2019GB006349Global Biogeochemical Cycles

FEAGIN ET AL. 7 of 25



The optimal LUE model defined only two tidal wetland classes (woody and herbaceous), used the median
values from the Bayesian‐derived distribution, and fed them into equations (3)–(7). These two classes
were quite similar in mEVI and temperature‐related variables, though the LUE coefficient ε0 varied
greatly. This result emphasizes that the primary difference among the woody and herbaceous classes
was LUE; this is of benefit for modelers because there is relatively high confidence in the ability to deline-
ate woody versus herbaceous plant cover using imagery (as opposed to lower confidence in the case of the
four‐class parameterization, where one must sort various classes based on salinity which can be more dif-
ficult to map).

For iPAR in equation (3), we used the NCEP Climate Forecast System Version 2 6‐hourly products (CFSV2).
These products were created in 2011 and contain improvements on the NCEP Reanalysis II products used by
MOD17 and Barr et al. (2013). These improvements are primarily due to the integration of terrestrial and
marine data sets (Saha et al., 2014). We obtained the downward solar radiation flux at 6‐hr intervals (imagery
layer name in Google Earth Engine: Downward_Short‐Wave_Radiation_Flux_surface_6_Hour_Average),
summed them for each 24‐hr period and divided by 4, and then found the proportion that is available in
the visible portion of the spectrum as PAR (*0.45) to obtain the daily light integral in Watts m−2, and finally
converted values into units of mol m−2 day−1 (*4.57*106*86400). We also obtained the temperature at 2 m of
height above the ground for each day (Temperature_height_above_ground). The CFSV2 data set inputs were
then interpolated to match the grain size of the imagery discussed below, following methods similar to Zhao
and Running (2005).

To find fPAR in equation (3), which is specific to each location and time across the CONUS, we chose the
EVI band of the MOD13Q1 16‐day MODIS‐satellite product as this was available at 250‐m resolution
(Didan et al., 2015) and, thus, was best able to resolve relatively fine‐scale wetlands. Following Zhang and
Running (2005), we identified the pixels that were obscured by clouds, smoke, or ice using the Pixel
Reliability band. We then removed those pixels and gap filled them by using the average of values from
the preceding and following dates. Some areas of wetlands fell outside of the MOD13Q1 extent, due to usage
of the MODIS water mask product upstream in NASA's MODIS processing suite of products. We noted that
this phenomenon appeared to be primarily limited to the southern Atlantic Coast wetlands, such as in
Georgia or South Carolina, and varied with time in the MOD13Q1 product, in that a single pixel would be
included for almost all imagery dates, and yet would drop out on a particular date. In these cases, we resolved
this issue using the approach described below in the section on pixel purity. Similarly, the MOD13Q1 pro-
duct can present abnormally low or high EVI for a pixel, presumably because of abnormal reflectance from
the ground or from sensor or algorithmic error, captured by the upstream NASA product MOD09Q1 and
then inherited by MOD13Q1. In these cases, the abnormal values are constrained and minimized by the
functional limits provided by equation (7) for fPAR.

2.5. Pixel Purity and Spatial Interpolation

Tidal wetlands are often linear in their areal geometry, arranged parallel to the coast, and many are smaller
than a single 250‐m pixel. The result is that a pixel can be spectrally mixed, with multiple plant or land cover
types interspersed with one another. For example, within a single 250‐m pixel, there could be a small wet-
land, a road, some cropland, and some impervious surface. To correctly calculate GPP, one would prefer that
this pixel be homogeneous because each of the cover types has a different set of biophysical responses for
equations (3)–(7). One approach is to exclusively use homogeneous pixels, but this would not capture the
majority of the tidal wetland areas within the United States. The disadvantage to calculating GPP in mixed
pixels is that one degrades the accuracy of the estimate, while the disadvantage to using only homogenous
pixels is that one loses the ability to account for the total GPP across all wetlands.

To address this challenge, the BC model was optimized at a level of “pixel purity” for which these two com-
peting interests were balanced. Pixel purity is defined as the percent of a pixel that was covered by a given
tidal wetland class (accomplished by overlaying the 250‐m MODIS footprint with the vector‐based Hinson
et al., 2017 data set described earlier). All work on the pixel purity portion of the BC model was performed
for the two classes separately, woody and herbaceous. At a later stage as described below, the resulting GPP
from the entire procedure was combined for the two classes based on their proportional coverage within
each pixel.
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We found the optimal pixel purity level to be greater than or equal to 80%. We then ran the BCmodel to find
GPP using only those pixels that exceeded the purity test (≥80%) and then spatially interpolated the GPP
results across the remaining pixels of similar class (<80%). The purpose was to optimize the accuracy of
the GPP estimate using high quality tidal wetland pixels and transfer these values across distance to lower
quality pixels, while also not overextending the ability of those transfers to be valid. The inverse distance
weighted method was used with a power of 2, to minimize the required assumptions (Issaks & Srivastava,
1989). However, before finally settling on the 80% threshold, we performed several tests across multiple
levels of purity (every 10% from 0 to 100) and estimated the assumptions and errors of each. These tests
sought to identify the spatial distances across which interpolation could optimize the GPP while
minimizing errors.

Our primary goal here was to obtain quality estimates of GPP from relatively pure tidal wetland pixels and
interpolate those values into mixed‐class pixels that contain smaller fractions of wetlands. However, we also
wanted to know the cost in terms of accuracy of conducting this interpolation. For the woody and herbac-
eous classes separately, we used semivariograms to quantify the spatial variability of GPP across distance.
A semivariogram is a geostatistical tool often used to identify spatial autocorrelation, to test Tobler's law
of geography that “things that are closer together are more related than things that are farther apart,” or
to detail the spatial structure of variance (Issaks & Srivastava, 1989). In this instance, a semivariogram
can clarify the distances over which interpolation is most valid, and the mean error induced by conducting
the interpolation. The standard equation is as follows:

bγ hð Þ ¼ 1
2 N hð Þj j ∑

i;jð ÞϵN hð Þ
zi−zj
�� ��2 (8)

where bγ is the semivariance at scale bin h, z denotes the GPP value for two points in a pair of points i and j
that are separated by a distance that falls within scale bin h, and N(h) is the number of all possible pairs
within h. For a given scale of inquiry, equation (8) finds the squared differences between all paired values
and standardizes them by the number of pairs times two; this provides a measure of data set variance at mul-
tiple spatial scales. We performed this analysis using all pixels on 12 July 2018 across CONUS, as this time of
year coincided with the average annual peak in GPP at a national scale and would provide the greatest
amount of variance in the data set.

We found that the woody class was the limiting class, with aminimum semivariogram range at ~12 km and a
secondary range at ~65 km (Figure 2a). From here forward for all subsequent tests, we only describe the
woody class test results at the 80% threshold and on 12 July 2018. Interpolating GPP from the ≥80% pixels
to the <80% pixels across distances less than 12 km provides ~3 times more accurate results than randomly
drawing a GPP value from the ≥80% pixels (sill of ~0.012 is ~3 times larger than nugget of ~0.004). At dis-
tances greater than 12 km but less than 65 km, the interpolation provides ~2 times more accurate results (sill
of ~0.020 and nugget at 12 km of ~0.012).

It is important to point out that even if an interpolation were to occur across distances greater than 65 km,
the GPP value would still be constructed and arrive from pixels that were ≥80% tidal wetland. This situation
would be far preferable to using a GPP estimate when the majority of the area of the pixel was of a nontidal
wetland class (e.g., incorrectly assuming the GPP is a valid prediction when in fact the majority of the pixel is
of water or an urban area).

1. The distribution of the low purity pixels as a function of distance from high purity pixels

The large majority of low purity pixels are within a relatively close distance to high purity pixels (Figure 2b),
suggesting that in most cases interpolation only need to occur across short distances. For example, in
the case of the woody class using the 80% threshold, over 89% of the <80% pixels had a nearest neighbor
≥80% pixel of less than 12 km. Over 98% had a nearest neighbor of less than 65 km. Moreover, the
few pixels that were forced to accept interpolated values from a relatively far distance were quite low in their
percent cover of tidal wetlands (Figure 2b); in other words, the total quantity of GPP at a national scale that
had to be interpolated over distances greater than the secondary range of confidence (~65 km) was quite
small.

2. The relative correction in GPP afforded by interpolation
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Figure 2. Pixel purity and interpolation analysis, including: (a) semivariogram for woody and herbaceous tidal wetlands, showing 12 km as the limiting distance
over which interpolation is optimized for the woody class, (b) distribution of the <80% purity pixels across distance from ≥80% purity pixels, showing that
over 89% are less than 12 km away, and (c) GPP of ≥80% purity nearest neighbor, for <80% purity pixels, showing potential correction afforded by interpolation.
Dotted lines in (c) denotes 1:1 line.
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For pixels <80% purity, the nearest neighbor that is ≥80% often has a relatively higher GPP in most cases
(Figure 2c). In some pixels with <80% purity, there are some abnormally high GPP estimates as compared
with their nearest neighbor that is of higher purity (circles on the upper left side of the 1:1 line and those
on the far left side in Figure 2c; interpolation would presumably correct these overestimates. Other <80%
purity pixels appear abnormally low (circles on the lower right side of the 1:1 line and along the bottom of
the graphic in Figure 2c), though in these cases we cannot discern whether this relatively lower value is
due to the percent cover of the wetlands also being lower or the actual GPP estimate itself.

We next sought to identify the extent to which the final interpolated product improved the GPP estimates.
Because there were no additional validation data sets available outside of the 10 EC tower sites, and rela-
tively few of those sites resided in pixels with <80% purity, we had to develop an alternative method to quan-
tify the effect of the interpolation on relatively isolated or low purity pixels. Thus, we removed all GPP
predictions by the BC model within a 12‐km buffer of the latitude and longitude of each of the 10 tower sites
(as noted above, 12 km was the limiting distance for the woody class to obtain benefit from interpolation,
wherein we obtained a 3 times better estimate than a random draw from the rest of the ≥80% GPP data
set greater than this distance). After removing all pixels within 12 km, we then reimplemented the 80%
threshold interpolation procedure.

Whether spatial interpolation was performed by the BC model in the standard case or performed after
removing all pixels within 12 km of each EC tower site, the predicted GPP by class was multiplied by the
percent cover of each class in the pixel for the woody and herbaceous classes separately, and then the two
were summed to find the GPP in each pixel.

2.6. Validation

The BC model output was validated by comparing its predicted GPP with field‐derived GPP from the 10 EC
tower sites (Table 1). For four of the tower locations, some years were used during parameterization of the
Bayesian model (designated P in Table 1), while other years were used for validation (designated V and N).
For the other six “offsite” locations, all data was used only at the validation stage (designated O). The BC
model performance was evaluated using linear regression and standard metrics for goodness of fit.

This comparison occurred using a single BC model pixel that covered the latitude and longitude position of
the EC tower. We tested the effect of using multipixel footprints and at distances varying from 250 to 50,000
m in radius, using the US‐SKR site as a test case. To generalize, the cost was spatial accuracy when using a
larger number of pixels across a wide radius and averaging the GPP values for comparison, but the benefit
was to smooth temporal spikes or slight errors by leveraging the power of a larger set of pixels from which
to obtain the estimate. However, the true differences among the various tests was quite small. Based on these
tests, we used the single pixel approach as it was the most parsimonious.

2.7. Summaries of GPP

After validation of the BCmodel, GPP was mapped across the CONUS at 16‐day intervals for the years 2000–
2019. Daily average per m2 GPP and total annual GPP were calculated within individual tidal wetland pixels,
across the entire CONUS.

In addition, the quantities within the tidal wetland pixels were summarized for three oceanic coasts (Gulf of
Mexico, East Atlantic, and West Pacific), individual states, and for 291 estuaries (EDAs) and coastal drai-
nages (CDAs) in NOAA's Coastal Assessment Framework (NOAA, 2018). The daily average per m2 GPP
was derived by averaging all of the tidal wetlands' pixel values contained within the given area of a
coast/state/EDA/CDA, whereas the total annual GPP quantity was found by summing all of these values
in the given area.

Importantly, the values reported for a geographic unit are not averaged relative to the total area of each unit
but rather only for the tidal wetlands area within each unit. Further, the extrapolation of pixel values across
the geographic unit plays no part in this process. As an example, if the average tidal wetland GPP in a given
state was reported as 5 g C/m2/day, this was simply the average for the tidal wetlands that were found within
the state. The same procedure applies to the sum of GPP—the GPP sum is not extrapolated to the unit extent
under an assumption that all of the area within the unit would be tidal wetlands—rather, the value is simply
the sum of the tidal wetland GPP that exists in the unit. The coasts/states/EDAs/CDAs are solely geographic
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areas wherein we can talk about the tidal wetlands within them—the entirety of each is not composed of
tidal wetlands. We summarized these values and reported statistical quantities such as the means and
standard deviations.

2.8. Comparison With Other Products

The BC model was compared against the most up‐to‐date NASA MOD17 GPP product, MOD17A2H.006.
The goodness of fit between the MOD17 product and the EC tower data was evaluated using linear regres-
sion and standard metrics.

3. Results
3.1. Validation

For validation of the BCmodel, it made little difference whether the field‐derived EC tower data was limited
to only the six “offsite” towers (n = 260 unique 16‐day periods linearly regressed among all combined sites
for r2 = 0.79, p < 0.001, RMSE = 1.23 g C, with average error 19% off true value; group O in Figure 3a) or
included all 10 tower sites (n = 522, r2 = 0.83, p < 0.001, RMSE = 1.22 g C, average error was 7% off true
value; groups “O,” “V,” and “N” in Figure 3b). The strong fit in the former case suggested that the BC model
described the variance in GPP quite well for new locations. In the latter case, validation data were included
from the original four sites but came from separate years in the record and was not used during parameter-
ization of the Bayesian framework. If the validation effort included all data available to us (even those data
used during parameterization of the Bayesian framework, for the purpose of developing the look‐up tables
that were later used by the BC model—importantly, this data is not equivalent and has differing inputs gen-
erating it for the framework versus the model, as described in section 2.3.2), the result was generally the
same (n = 692, r2 = 0.83, p < 0.001, RMSE = 1.20 g C, average error was 6% off true value; groups “O,”
“V,” “N,” and “P” in Figure 3c).

Given the consistent fit between BCmodelled and field‐derived EC GPP in each instance, the BC model was
considered relatively robust across differing tidal wetlands. Still, it was clear that the model captured the
behavior of particular class types and tower locations better than others after further inspection of the second
case mentioned above (using all validation data only, i.e., “O,” “V,” and “N”). For the woody class in parti-
cular, the model tended to match well at lower levels of GPP, overpredict GPP at moderate levels of GPP, and
underpredict at higher levels (Figure 4a).

Figure 3. BC model predicted GPP versus field‐derived EC tower GPP, using (a) only validation data from the six “offsite” tower locations, (b) all validation data
from the 10 tower locations excluding, and (c) including the dates also used in the parameterization of the Bayesian framework.

10.1029/2019GB006349Global Biogeochemical Cycles

FEAGIN ET AL. 12 of 25



The model also performed slightly different for each tower (Figures 4b and 5). Most notably, all observations
at the US‐LA1 tower in Louisiana were overpredicted. If we removed the US‐LA1 tower from the data set,
then the r2 values increased an additional ~0.05 and the average error was approximately halved, for each
of the statistical tests described above. Several observations at the GCE tower in Georgia and the US‐SRR
tower in California were overpredicted at their respective higher GPP levels, and observations at US‐VFP
in Virginia and US‐STJ in Delaware (in one year) were underpredicted. The reasons are likely unique in each
case. For example, US‐LA1 is eroding relatively quickly and US‐SRR contains nonwetlands in its footprint
depending on wind direction. Or, in the example of US‐STJ, the BC model does better in some years than
others. An extensive assessment of the specific details for each tower are outside the scope of the present
study but may prove fruitful ground for future study. In sum, the BC model tended to overpredict GPP
slightly at high GPP levels yet underpredict GPP slightly at low GPP levels. Still, the slope of the linear regres-
sion of the BC modelled versus field‐derived EC GPP was relatively close to 1:1 (0.97 slope with intercept of
0.24, using “O,” “V,” and “N” only), demonstrating low bias in either direction.

Whenwe intentionally removed all pixels within 12 km of an EC tower and interpolated across that distance,
the fit decreased (n = 478, r2 = 0.76, p < 0.001, RMSE = 1.47, average error was 7% off true value; using
groups “O,” “V,” and “N” only; Figures S1 and S2). There was a decrease in internal model precision (r2

decreased) and the magnitude of the difference from the EC tower data was larger (RMSE increased), but
since the data set was slightly different (the US‐NC4 data set was not included due to a practical issue),
the average error was not substantially different. The BCmodel also overpredicted more strongly in this case
(slope of 0.89).

Interpolation also provided an additional correction for CONUS‐scale work. While the BC model included
all tidal wetlands mapped by Hinson et al. (2017), the MODIS EVI 250‐m resolution product did not provide
data for all of them. The upstream NASA product MOD09Q1 removed many pixels where there were indeed
tidal wetlands, designating them as “water” in its masking procedure, and this issue was then inherited by
MOD13Q1. Approximately 24.5% of the available tidal wetland pixels are incorrectly removed by the NASA
MODIS products (often containing the smaller sized wetlands with less average GPP than the rest of the data
set), and this results in a 16.8% underestimation of GPP at the CONUS scale (in addition to the more general
errors introduced by the MOD17 algorithm). We arrived at this value by comparing a summarization of the

Figure 4. BC model predicted versus field‐derived EC tower GPP for (a) tidal woody versus herbaceous wetlands and (b) the various towers used for validation.
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Figure 5. BC model GPP, MOD17 model GPP, and field‐derived EC tower GPP at the 10 sites.
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GPP for the interpolated maps versus the noninterpolated maps. Our interpolation procedure solved this
problem by populating these pixels.

3.2. Summaries of GPP

The BC model analysis found that between 2000 and 2019, the average daily GPP per m2 of tidal wetland
cover across all CONUS locations and dates was 4.32 ± 2.45 g C/m2/day (Figures 6 and 7; values represent
the mean ± standard deviation among the 16‐day periods). The average maximum across all CONUS loca-
tions (i.e., the max among 16‐day periods, across a given year) was 7.92 ± 0.32 g C/m2/day, reaching maxi-
mum values in June or July every year, except for 2011 when it peaked in late May. The average minimum
across all CONUS locations (i.e., the min among 16‐day periods, across a given year) was 1.00 ± 0.12 g C/m2/
day, and lowest in late December or early January every year.

The total annual tidal wetland GPP for the entire continental US was 39.65 ± 0.89 Tg/year (Figure 8; mean ±
standard deviation among the years). The total annual GPP for the Gulf, East and West Coasts was 25.75 ±
1.14, 13.28 ± 0.64, and 0.62 ± 0.04 Tg/year respectively. The quantity of GPP in the Gulf Coast was nearly
double that of the East and West Coasts combined.

The state of Louisiana alone accounted for 15.78 ± 0.75 Tg/year. Florida was second at 7.27 ± 0.24 Tg/year.
All other CONUS states, excepting Florida, added up to 16.60 ± 0.84 Tg/year, a value nearly equivalent to
Louisiana. In fact, in 2004, the estimated total annual GPP in Louisiana alone was more than that for the rest
of CONUS excepting Florida. The relatively high quantities for Louisiana and Florida were due to both the
large areal coverage of tidal wetlands and higher average daily GPP per m2 (both can be seen in Figure 6).

The Atchafalaya/Vermillion Bay estuarine basin had the highest total annual GPP at 4.72 ± 0.14 Tg/year
(Table 5 and Figure 7a) out of the 291 total EDAs/CDAs in NOAA's CAF framework. Ranking these in

Figure 6. Average daily GPP per m2 across the continental United States, 2000–2019. Data constructed from averaging all 16‐day periods. As an example of spatial
resolution, zoom boxes detail the North and South Ten Thousand Islands in the Florida Everglades.
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order going from the highest total annual GPP to the lowest, several other bays in Louisiana, Chesapeake
Bay on the U.S. mid‐Atlantic, and the North and South Ten Thousand Islands region in the Florida
Everglades also ranked in the top 20. Thirteen of the top 20 on the list were on the Gulf Coast, and the
other seven were on the East Coast. The West Coast was not represented until San Francisco Bay, number
35 out of all 291 basins.

3.3. Comparison With NASA's MOD17

As compared to NASA's MOD17 GPP product, the BC model provided a better fit to the observed GPP at all
tower sites (Figure 5). The BC model explained the variation in GPP about twice as well as MOD17; the

Figure 7. The average daily GPP per m2, shown at 16‐day intervals across all tidal wetlands in the continental US from 2000 to 2019. The map details the averages
within individual estuarine and coastal drainage basins (EDAs/CDAs).

Figure 8. The total annual GPP, shown at annual intervals across all tidal wetlands in the continental United States from 2000 to 2019. The map details the sum
totals within individual estuarine and coastal drainage basins (EDAs/CDAs).
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MOD17 fit was relatively weak (n= 692, r2 = 0.45, p< 0.001, RMSE = 3.38 g C, and its average error was 15%
off true value). The slope of the relationship deviated further from a 1:1 line (0.93) and the model intercept
was quite a bit larger (1.02). The MOD17 product exhibited abnormal positive spikes in GPP at several sites,
particularly in summer months when GPP was relatively high (Figure 5). The BC model avoided these
spikes, likely because of the functional limits on GPP provided by the mPAR and mEVI parameters.
(MOD17 does not include these parameters.) MOD17 occasionally presented abnormally low values, which
the BC model avoided as well. The BC model worked much better at the US‐SKR woody mangrove site
in Florida.

Perhaps most notably, the BC model was able to capture the trend at the GCE herbaceous salt marsh site in
Georgia and the US‐LA1 herbaceous salt marsh site in Louisiana reasonably well, while the MOD17 model
predicted zero GPP due to its lower resolution and inability to adequately resolve the spatial nature of fring-
ing tidal wetlands (NB: Tao et al., 2018 show a MOD17 value for the GCE site, though it is actually acquired
from another pixel within the tower footprint that was more homogeneous in wetland cover). These two
instances highlight the problems with MOD17 and other products that do not account for mixed pixels or
small wetlands.

MOD17 estimated the average daily GPP per m2 as 7.96 ± 3.93 g C/m2/day (as compared to 4.32 ± 2.45 by the
BC model). However, because it also incorrectly removed 24.5% of the available tidal wetland pixels, it cal-
culated the total annual GPP for the entire CONUS as 50.04 ± 3.94 Tg/year (versus 39.65 ± 0.89 Tg/year for
the BC model). In other words, MOD17 appeared to get a somewhat reasonable answer but only because
these two factors counteracted each other numerically. Across each of the metrics that we tested, MOD17
results had much greater variance and mean bias than that of the BC model.

4. Discussion
4.1. Comparisons With Other Studies

There have been no previous studies that have calculated GPP across all tidal wetlands in the continental
United States. However, Najjar et al. (2018) found a rough estimate for net uptake by tidal wetlands, for
the East Coast and Canadian portions of the Gulf of Maine, to be 5.3 ± 1.5 Tg/year. The BCmodel calculated
GPP as 13.28 ± 0.64 Tg/year for ~98% of this tidal wetland area (excluding the Canadian portions). Assuming
the difference is due to respiration and lateral flux of dissolved inorganic carbon (DIC) into the water column

Table 5
Top 20 Estuaries, Ranked in the Order of Total Annual GPP

Estuary Name State Area (km2) GPP per m2 (g C/m2/d) Total GPP (Tg C/year)

1. Atchafalaya/Vermilion Bays LA 2,465 5.24 4.72 ± 0.14
2. Chesapeake Bay MD, VA, DC, PA 1,651 3.56 2.15 ± 0.11
3. Breton/Chandeleur Sound LA 1,247 4.35 1.98 ± 0.12
4. North Ten Thousand Islands FL 925 5.82 1.97 ± 0.07
5. South Ten Thousand Islands FL 894 5.83 1.90 ± 0.07
6. Barataria Bay LA 1,151 3.96 1.66 ± 0.06
7. Mermentau River LA 777 5.56 1.58 ± 0.10
8. Terrebonne/Timbalier Bays LA 1,156 3.43 1.45 ± 0.07
9. West Mississippi Sound LA 780 4.78 1.36 ± 0.05
10. Calcasieu Lake LA 667 4.64 1.13 ± 0.10
11. Sabine Lake LA, TX 593 5.01 1.08 ± 0.06
12. Pamlico Sound NC 648 4.18 0.99 ± 0.04
13. Delaware Bay DE, NJ 699 3.46 0.88 ± 0.05
14. St. Andrew/St. Simons Sounds GA 552 4.10 0.83 ± 0.03
15. St. Catherines/Sapelo Sounds GA 532 3.35 0.65 ± 0.03
16. Florida Bay FL 330 5.36 0.64 ± 0.03
17. Winyah Bay SC 340 5.19 0.64 ± 0.03
18. Galveston Bay TX 347 4.68 0.59 ± 0.03
19. Albemarle Sound NC, VA 357 4.48 0.58 ± 0.03
20. Mississippi River LA 423 3.40 0.52 ± 0.03

Note. Statistics based on average over 2000–2019. GPP per m2 is the average for the tidal wetlands only within each estuary.
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((13.28 × 0.98) – 5.3 = 7.7), this would require RE plus the lateral flux to be on the order of 58% of GPP for this
area (7.7/13.28 = 58%). Average annual RE is likely higher based on our experience, closer to 80% of GPP, and
the lateral flux is largely unknown (though some ranges are available in Bianchi et al., 2019). The difference
suggests that the Najjar et al. (2018) value is too high, which could be due to the mass‐balance, literature‐
review approach used in Najjar et al. (2018).

In the future, the BC model output could be compared with aboveground biomass data sets, particularly
those using calibration‐grade, national level data sets such as Byrd et al. (2018). It could also be compared
with belowground carbon burial estimates (see Figure S3 for an example), made for the purposes of the U.
S. National Greenhouse Gas Inventory (Crooks et al., 2018; Hinson et al., 2017; Holmquist et al., 2018).
Regional studies could also provide fertile ground for cross comparison (Ghosh et al., 2016).

Due to the absence of other CONUS‐scale GPP studies to compare against, we developed a heuristic calcula-
tion. This calculation is essentially a first‐order, Tier 1 approach (EPA, 2017; Hiraishi et al., 2014), where we
assumed that a central value is appropriately representative (e.g., Holmquist et al., 2018). We first found the
average GPP from the observed EC tower data sets that we had combined at 16‐day intervals, obtaining 3.80
g C/m2/day (n= 709), a value below that of the BCmodel (4.32 g C/m2/day). We thenmultiplied this average
by the total area of the tidal wetlands, or 24,946 to 26,818 km2, and the number of days. The first value for
area is from Hinson et al. (2017) and is the quantity for all tidal wetlands used by the BC model, and the sec-
ond is from Windham‐Myers et al. (2018), both of which are similar to Bridgham et al. (2007).

This resulting 34.63 to 37.23 Tg/year was ~10% below that of the BC model value, because the heuristic cal-
culation used the average from 10 sites to calculate the GPP alone, and these values were not appropriately
area‐weighted for CONUS‐scale work. For example, 54.6% of CONUS tidal wetlands are in Florida and
Louisiana (data from Hinson et al.'s (2007) Table S2), yet only 26.5% of the EC tower data set values came
from these states. One would have to find a quite large number of EC tower sites to appropriately represent
the productivity across areal coverage of CONUS wetlands, in order to begin to make a reasonable heuristic
calculation. The BCmodel eschews the heuristic and extrapolative approach and rather identifies the unique
LUE and GPP response for each pixel independently, only using the EC tower data to build an understand-
ing of LUE through the Bayesian framework. Moreover, the BC model has the advantage of allowing one to
visualize the variance in spatial and temporal patterning at finer scales.

Maps of the spatial and temporal variability are required to understand how GPP responds in a changing
environmental context (Figure 9). Stressors such as tropical cyclones, relative sea level rise, freezes, and
drought do not occur continuously in space or time. With detail, the BCmodel can detect the effects of these
stressors on tidal wetlands, over a large range of dates. For example, one could explore the effect of tropical
cyclones on tidal wetlands using an “economy‐of‐scale,” “big data” style approach by mapping the changing
GPP before and after these storms. Due to the voluminous nature of the final product, GPP for any tidal wet-
land at 16‐day intervals, the BC model products allow scientists to formulate hypotheses and ask new ques-
tions in ways that were not formerly possible.

4.2. Optimizing the Choice of Wetland Classes

One direction for BC model improvement is to further optimize the choice of wetland classes. As more EC
tower sites become available for and from the research community, the statistical benefit to creating more
specific biophysical classes increases. A drawback to our current validation efforts was that we could not
validate with “offsite” towers for the woody class but rather were limited to cross‐year validation, though
across both herbaceous and woody classes we had six of these “offsite” tower locations. The situation became
even more limited when considering the four‐class system of woody mangroves, woody freshwater swamps,
herbaceous salt marshes, and herbaceous freshwater wetlands. However, at least initially, our results show
that the primary behavior of tidal wetlands was adequately captured by herbaceous versus woody
categories alone.

The reality is that more towers are required to more finely parse the biophysical classes or to build geogra-
phically dependent classes. In particular, more EC towers are needed in tidal freshwater swamps, as they
compose a fair quantity of tidal wetlands and are unique in physiology. Other interesting options include
unvegetated and wind tidal‐influenced salt flats or salt pans, and mud flats. With more EC tower data sets,
C4 grasses and C3 succulents/rushes could be parsed into separate categories. We initially tried to include a
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succulent class based on Batis maritima from an EC tower in Texas, US‐TX9, but the data set was not
workable due to a low number of observations.

In terms of geography, the GPP in the three southernmost herbaceous sites (US‐VFP in Virginia, GCE in
Georgia, and US‐LA1 in Louisiana) was not modelled as well as the other herbaceous sites; US‐VFP was
underpredicted and GCE and US‐LA1 were overpredicted (Figures 4 and 5). The look‐up table produced
by the Bayesian framework for the herbaceous class was determined based on wetlands from differing cli-
mate zones (US‐PHM in New England and US‐SRR in California) and parameters like the optimum tem-
perature may not have been well described. However, the fact that one site is underpredicted and the
other two overpredicted speaks against physiological constraints as the reason for the mismatch between
EC tower data and the BC model. Another possible factor could be the difference in reflectance from the
more northern sites versus the more southern sites (Bartlett et al., 1988), such that fPAR was not well
described in southern marshes in our model. We also noticed that the seasonality (in both EVI and GPP)
was pronounced in US‐PHM and US‐SRR, which were used for our parametrization, while the peak values
in the southern marshes were lower. Thus, a lower signal to noise ratio in these input variables may lead to a
larger uncertainty at these sites.

4.3. Standardizing EC Tower Measurements for Modelling Purposes

It should be pointed out that field‐derived EC tower data should not be considered the “gold standard” for
validation efforts, as they are not directly empirical. EC tower data is modelled based on empirical measure-
ments. Thus, the variance and error described in the “validation” procedure is not solely due to the BC
model. The EC tower measurements and data manipulation also may be responsible.

Figure 9. Examples of spatial patterns in the distribution of average daily GPP per m2 across selected regions of the continental United States. The apparent pat-
terns could be related to freshwater inflow gradients on the SE Atlantic Coast (left), oceanic influences on barrier island marshes versus internal Chesapeake Bay
marshes (middle), and hydrologic or other types of management on the Louisiana Chenier Plain (right, rotated). Data constructed from averaging all 16‐day periods.
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Although some standardized approaches have been adopted within the EC community, there is still no con-
sensus about the “best” way to measure NEE. The instruments used to measure often vary from one site to
the next, and the integrity of the data depends on calibrations, maintenance, and user error. The footprint of
each tower can also vary both spatially and temporally with wind speed, direction, and surface properties.
Each tower site has a different percent cover of tidal wetland plants, a different mix of additional cover types,
and a different degree of spatial heterogeneity among these cover types.

Moreover, the modelling of the measurements taken from a tower are only reliable under a set of predeter-
mined conditions. The choices made by the investigators about how to adjust for more complex conditions
can vary for each EC tower site. For example, assumptions can fail during daytime unstable conditions when
wind speeds are very low or during nighttime stable conditions where low or zero turbulent transport occurs
but where other processes are often present (e.g., mesoscale contributions and flow meandering). Filtering
the data series can remove these types of events, but if then replaced by estimates from windier conditions,
the fluxes can be underestimated. Investigators must decide whether to include or discard data acquired
from the times surrounding sunrise and sunset, and they must also decide how to handle data from the back
of the tower.

The choice of how to partition NEE is also critical. We chose the partitioning nighttime partitioning
approach by Reichstein et al. (2005) as implemented in REddyProc (Wutzler et al., 2018) for all “offsite” loca-
tions with the exception of US‐HPY (which we obtained already partitioned), but there are other possible
approaches. Other methods use light response curves to fit daytime data, and the RE can be estimated as
the offset (Lasslop et al., 2010). In the future, the overall fit between the EC tower data and BC model could
be improved by using such methods since the Bayesian look‐up tables are also tuned for LUE. In this sense,
the variation due to partitioning the RE component likely contributes the greatest uncertainty to our field‐
derived EC tower GPP (Richardson et al., 2008; Wehr et al., 2016).

To extend the BC model to include Net Primary Productivity, it would be necessary to add an autotrophic
respiration module, possibly using a similar framework as for GPP. This would need to be added and then
the remaining parameters in equation (1) would be spatially modelled, including RE, –NEE, and Net
Primary Productivity. A standardized approach focusing on the adequate representation of all sources of
respiration would be valuable (e.g., Barba et al., 2018; Keenan et al., 2019) and improve both EC tower
and BC model data sets.

An integrative approach such as the present study demonstrates the importance of standardizing EC mea-
surements and modelling. Efforts toward such standardization will ultimately benefit the
scientific community.

4.4. Improving the Bayesian Framework

Additional variables could also be included into the Bayesian framework. These could include water inun-
dation level similar to O'Connell et al. (2017) or salinity similar to Barr et al. (2013). At least based on the tests
that we conducted herein, these parameters are likely to provide minimal improvement, relative to the effort
required to create national‐level mapping products that could accurately express these values at 16‐day
temporal resolution.

We found no added measurable benefit to including salinity into the Bayesian framework when predicting
GPP (see the section on look‐up tables). This finding was somewhat surprising and led us to ask why exclud-
ing it did not make an important difference. A possible explanation is that salinity covaries with another fac-
tor, for example, leaf area index and fPAR, such that salinity does not add explanatory power to the model.
Alternately, the salinity effect is delayed in time beyond the 16‐day window used to drive the BC model. At
US‐SRR, Knox et al. (2018) showed no instantaneous effect of an increase in salinity on daily LUE, and simi-
lar findings have been seen at US‐STJ. However, at US‐PHM, US‐SRR, US‐SKR, and GCE, variation in sali-
nity appears to drive interannual variation in GPP (e.g., Wieski & Pennings, 2014). At these sites, EVI varies
accordingly between years, with higher values in more productive years.

Tidal inundation can result in the lateral export of DIC into the water column (Wang et al., 2018), thereby
suppressing the full estimate of RE when using EC measurement methods alone (Knox et al., 2018). This
situation creates uncertainty in a GPP estimate. For example, Troxler et al. (2015) report an increase in

10.1029/2019GB006349Global Biogeochemical Cycles

FEAGIN ET AL. 20 of 25



pCO2 concentrations in the flood water in a mangrove forest, indicating ongoing respiration under submer-
gence. These studies highlight the need to incorporate DIC flux estimates into both the carbon budget and
partitioning approaches. In herbaceous salt marshes that experience little tidal inundation, the observed
suppression is reported to be small (Artigas et al., 2015; Forbrich & Giblin, 2015; Schaefer et al., 2019), but
this may not be the case for fully tidal systems or different plant classes. Although no standardized approach
currently exists, an incorporation of this lateral flux could improve our ability to model carbon fluxes.

Even though the BCmodel did not utilize tidal inundation or salinity data sets, it provided a better or similar
fit to the observed EC flux tower data than studies that did at specific locations. For example, for the GCE site
only, Tao et al. (2018) obtained an r2 = ~0.46 and RMSE of ~20% of the range. Their tide‐corrected MODIS
data set marginally improved the statistical model as compared to NASA's MOD17 product (model RMSE of
6.98 vs. MODIS 7.46 GPP m−2). For the US‐PLM site, Forbrich and Giblin (2015) took tidal inundation into
account, finding that GPP was overestimated by an average of less than 10%; their final model estimate was
similar to the BC model for this site (Figure S4). Schäfer et al. (2019) found that inclusion of tidal inundation
resolved an additional 10 g C/m2/year out of ~1,800 g C/m2/year, though the site was in a high marsh. The
BC model achieved relatively similar or better improvements while aggregating biophysical parameteriza-
tion across 10 different sites. The Bayesian approach likely accounted for some of these improvements.
Ultimately for the BC model or other CONUS‐wide efforts, the limiting factor is that the input data does
not exist. There are currently no inundation maps at the spatial or temporal scales required.

Meteorological variables that are available as layers in Google Earth Engine may hold better promise, such
as vapor pressure deficit as used by MOD17, or better yet, precipitation from the same CFSV2 product that
the BC model used for temperature and iPAR solar radiation. Rainfall and freshwater input are among the
most important factors that drive tidal wetland productivity (Chu et al., 2018; Feher et al., 2017; Heinsch
et al., 2004; Mendelssohn & Morris, 2002), so the addition of these factors could provide improvements.

One advantage of utilizing the Bayesian framework is that any remaining variance in the posterior distribu-
tion of GPP is potentially captured by the remaining variables, namely, by fPAR and its inputsmEVI and EVI.
For example, if rising salinity cannot be measured onsite, its effect on LUE and GPP can still be captured by
observing the response of the plants in terms of reduced greenness with remotely sensed images. The lack of
an explicit parameter does not mean that the variance it induced is not accounted for by the fPAR imagery
inputs. Generally, the strength of an indirect capture of the variance by a parameter is most evident when
relatively long‐term data are available for parametrization, so that a wide variation of environmental condi-
tions can be used to model the response in the posterior distribution. For example, soil salinity as measured
by Barr et al. (2013) at the mangrove site is available for more than a decade and is also available at some
locations that are proximate to other sites such as US‐LA1 (Coastal Protection and Restoration Authority,
2019), but often such data do not exist at other tower sites. Thus, by compensating for missing input para-
meters indirectly, the Bayesian framework is relatively flexible, robust, and suited to broad scale analyses.

4.5. Reducing BC Model Uncertainty

Static wetland boundaries were used as an input stream for the BC model. Yet, we know that these ecosys-
tems evolve dynamically over time. Generally, when a tidal wetland erodes into water, the EVI is reduced.
The BC model can capture this phenomenon.

However, tidal wetlands also migrate landward due to relative sea level change. The BC model did not cal-
culate GPP landward of the static boundaries. Thus, newly forming wetlands outside of these areas were not
considered. Our maps also did not include wetlands that were restored or developed, unless they were
already within the boundaries and the EVI detected the change. The net sum of these possibilities was that
a noninterpolated version of the BC model likely underestimated the CONUS GPP of tidal wetlands, as time
moved forward from the date of the static wetland map.

However, the interpolation procedure gap‐filled some eroding wetlands, particularly those that were small.
As an example, the US‐LA1 tower site was rapidly eroding and the BC model overestimated its GPP. Land
losses were ~4.1% for coastal Louisiana from 2000 to 2016 (Couvillion et al., 2017). In additional work outside
the scope of the present study, we have noted that the CONUS‐wide GPP appeared to be increasing over the
2000–2019 time period, although this result camewith uncertainty. An initial investigation showed that ~1/3
of the apparent GPP increase from 2000 to 2019 was due to interpolation. We are currently investigating this
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topic further, as other work has found increasing GPP over time for mangroves in Mexico (Vázquez‐Lule
et al., 2019). One potential future avenue is to use data from NOAA's Coastal Change Analysis Program to
map dynamic changes (Windham‐Myers et al., 2018), although this approach could coarsen the spatial reso-
lution and bring greater wetland classification errors.

The interpolation procedure introduced uncertainty into the GPP estimates at regional and CONUS‐wide
scales, but it also avoided severely undercounting GPP. For mixed pixels with <80% purity, there was a
net benefit to interpolation. Interpolating across the 12‐km distance was not particularly costly (the fit
and r2 dropped ~0.07, although the average error as a percentage of the true value remained the same).
Using a back‐of‐the‐envelope calculation, the uncertainty due to interpolation across a 12‐km distance
was on the order of 20% (RMSE 1.47 g C interpolation across 12 km/RMSE 1.22 g C not across 12 km =
20%, comparing in absolute terms). The semivariogram analysis showed a somewhat similar result, with a
threefold better estimate than using a random draw from all other GPP pixels. However, only ~11% of pixels
required interpolation across the 12‐km distance or more. If we assume that the number and distances of the
<80% purity pixels follow Figure 5b, the uncertainty caused by the interpolation procedure was on the order
of ~2.2% for our CONUS‐wide GPP estimate (or 20% * 11% = 2.2%).

However more importantly, 24.5% of the CONUS tidal wetland area was missing fromMODIS EVI data sets
and, thus, would otherwise be missing in calculated fPAR and GPP estimates. The interpolation procedure
gap filled these small wetland, mixed‐pixel locations and obtained a more accurate estimate across the
entirety of the CONUS. The cost was ~2.2% uncertainty.

5. Conclusions

The BCmodel mapped tidal wetland GPP in a robust manner, matching field‐derived EC tower observations
with relatively low bias and error. Between 2000 and 2019, the average daily per m2 GPP across all tidal wet-
lands and dates was 4.32 ± 2.45 g C/m2/day. The total annual GPP for the entire continental United States
was 39.65 ± 0.89 Tg/year. The BC model provided GPP predictions at specific locations, as well as mapped
the spatial arrangement of tidal wetland GPP across the continental United States. The BC model provided
improvements over NASA's MOD17 product by reducing error by approximately half when using the same
EC flux tower data to compare (r2 of 0.83 versus 0.45, RMSE of 1.22 vs. 3.38 g C/m2/day, average error 6%
versus 15% off true value). Additionally, the BC model addressed the spatial issues associated with the rela-
tively fine‐scale tidal wetlands and their distribution across the broad extent of the entire United States. It
accounted for 24.5% of tidal wetland area, at the minimum, that was neglected by MOD17. The BC model
accounted for over 16.8% of GPP that would still be neglected by other models that might use a similar
250‐m resolution, by interpolating and accounting for MOD13Q1 EVI data that was otherwise missing for
known wetland areas. The uncertainty due to interpolation was estimated at an average of 2.2%. The 16‐
day raster maps are publically available at daac.ornl.gov and www.data.gov, and summary raster data sets,
codes, and other files are publically available at bluecarbon.tamu.edu. We encourage other scientists to
explore and use the BC model and maps to make new discoveries about tidal wetland GPP.
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