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A B S T R A C T   

Irregularly flooded wetlands are found above the mean high water tidal datum and are exposed to tides and 
saltwater less frequently than daily. These wetlands provide important ecosystem services, such as providing 
habitat for fish and wildlife, enhancing water quality, ameliorating flooding impacts, supporting coastal food 
webs, and protecting upslope areas from erosion. Mapping irregularly flooded wetlands is challenging given their 
expansive coverage and dynamic nature. Furthermore, coastal wetlands are expected to change over the coming 
century due to sea-level rise and changes in the frequency and intensity of extreme storms. Consequently, coastal 
managers need baseline information on the spatial distribution of wetlands along with efficient and repeatable 
methods for observing changes. In this study, we used coastal wetlands from existing land use land cover data, 
best available lidar-derived digital elevation models, and Monte Carlo simulations to incorporate elevation un-
certainty to create a probabilistic map of irregularly flooded wetlands along the northern Gulf of Mexico coast 
(USA). Our approach integrated findings from a review of coastal wetland elevation error in lidar datasets and an 
analysis of spatial autocorrelations of wetland elevation. We found a positive correlation (r = 0.563, p < 0.0001) 
when comparing the probability estimated from a digital elevation model and in situ elevation observations. The 
differences in probability had a mean bias error of − 0.04 (i.e., digital elevation model-based probability tends to 
be slightly lower), a mean absolute error of 0.20, and a root mean square error of 0.26. Beyond this overall 
validation, we explored error metrics for land cover classes and lidar collection details. To quantify areal 
coverage of the probabilistic output, we classified the probability values into equal bins using an interval of 0.33. 
The areal coverage of the lowest probability bin (“unlikely”; probability ≤0.33) was separated into the upper and 
lower portions of the irregularly flooded wetland zone. Of the coastal wetlands along the northern Gulf of Mexico 
coast about 38% were classified as unlikely and low with the greatest coverage in south Louisiana and the Ev-
erglades and around 33% were classified as unlikely and high with the greatest coverage in the Everglades and 
Texas. The relative coverage within the highest probability bin (“likely”; probability >0.66) covered around 
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13%, with the greatest coverage in south Florida, south Louisiana, and Texas. The framework developed in this 
study can be transferred to other coastal wetland areas and updated to observe changes with sea-level rise.   

1. Introduction 

Coastal wetlands are dynamic ecosystems that have adapted to 
changing sea level and climate throughout history (Jennerjahn et al., 
2017; Saintilan et al., 2022). These wetlands provide habitat to 
numerous endemic species (Greenberg et al., 2006) along with many 
other valuable ecosystem services (Barbier et al., 2011). These systems 
are expected to experience widespread change in the future due to 
climate change and sea-level rise (Osland et al., 2022; Saintilan et al., 
2022). To better manage coastal environments, land managers need 
baseline information on the current spatial distribution of wetlands and 
efficient and repeatable methods for observing change over time from 
climate change and sea-level rise. 

Currently, there are several extensive mapping efforts in the United 
States that include coastal wetland information. These include the U.S. 
Fish and Wildlife Services' National Wetlands Inventory (U.S. Fish and 
Wildlife Service, 2022), the U.S. Geological Survey's (USGS) National 
Land Cover Database (NLCD), USGS' Land Change Monitoring, Assess-
ment, and Projection (LCMAP; Brown et al., 2020), and National 
Oceanic and Atmospheric Administration's (NOAA) Coastal Change 
Assessment Program (C-CAP; NOAA, 2016). While these regional maps 
provide valuable information on the distribution and coverage of gen-
eral land cover types, researchers and land managers often require 
additional, more detailed wetland information on coastal vegetation 
zones based on salinity (Enwright et al., 2015) or need the development 
or refinement of products with a focus on tidal wetland inundation 
(O'Connell et al., 2017; Enwright et al., 2018; Holmquist et al., 2018; 
Brophy et al., 2019; Lamb et al., 2019; Holmquist and Windham-Myers, 
2022; Narron et al., 2022). 

Irregularly flooded wetlands are found above the mean high water 
tidal datum and are exposed to tides and saltwater less frequently than 
daily. In addition to typical tides, perigean spring tides, wind-induced 
water level fluctuations, and storms can play a major role in regu-
lating flooding and salinity in coastal wetlands, especially in microtidal 
areas with frequent extreme storms, such as the northern Gulf of Mexico 
(USA; Stout, 1984). Maps with coastal wetland zonation based on 
salinity, such as those produced by Enwright et al. (2015), can be helpful 
because irregularly flooded wetlands can span a wide zone and can also 
include areas mapped as palustrine wetlands in existing National 
Wetland Inventory or C-CAP maps, especially along the palustrine and 
estuarine ecotone. Evident from the palustrine and estuarine definitions, 
exposure to saline water is an important abiotic factor regulating coastal 
wetland zonation. Identifying these wetlands, which include supratidal 
areas, requires use of a water level that is higher than a tidal datum. For 
example, Brophy et al. (2019) developed a model to delineate the upper 
boundary of estuaries along the West Coast of the United States using 
elevation data and NOAA's 50% exceedance values for extreme water 
levels (e.g., Zervas, 2013). A similar approach could make use of NOAA's 
high-tide flooding levels (Sweet et al., 2018), which include inundation 
associated with perigean spring tides, wind-induced water level fluctu-
ations, and storms. Land managers need observations of irregularly 
flooded wetlands because the frequency of contemporary high-tide 
flooding levels is expected to increase over the next several decades 
with accelerated sea-level rise (Sweet et al., 2018), and this increase is 
expected to have a high magnitude along the northern Gulf of Mexico in 
the 2030s (Thompson et al., 2021). In addition to sea-level rise, the 
magnitude and intensity of extreme storms have been predicted to in-
crease in the future with climate change (Knutson et al., 2010). 

Delineating areas under a specific water level requires addressing 
multiple sources of elevation uncertainty including general uncertainty 
in elevation data (ASPRS, 2015), elevation error in coastal wetlands (Su 

and Bork, 2006; Schmid et al., 2011; Medeiros et al., 2015; Buffington 
et al., 2016; Medeiros et al., 2022), and for coastal areas, vertical datum 
transformation (Tang et al., 2018). Statistical models can be developed 
to reduce error in elevation data in coastal wetlands (Medeiros et al., 
2015; Buffington et al., 2016; Cooper et al., 2019; Medeiros et al., 2022). 
While elevation data correction is optimal, in situ data availability issues 
can limit the ability to utilize this approach for spatially extensive 
regional studies. While accounting for lidar error, tidal datum uncer-
tainty, and random uncertainty, Holmquist and Windham-Myers (2022) 
calculated relative tidal elevation for the conterminous United States 
using partial derivatives. This product normalizes elevation to tidal 
amplitude at MHW. Their layer was constrained to estuarine wetlands or 
adjacent palustrine wetlands that had a >1% probability of being below 
an estimated mean higher high water spring (MHHWS) tide elevation 
layer (Holmquist et al., 2018) and any wetlands mapped as tidal in the 
National Wetland Inventory. In addition to relative tidal elevation, the 
study also included the development of a map of the probability of a 
wetland having an elevation below the MHW tidal datum (i.e., low 
marsh). 

Monte Carlo simulations can be used to propagate these sources of 
uncertainty while also incorporating actual or assumed spatial auto-
correlation of error using spatially explicit random fields (Wechsler and 
Kroll, 2006). This approach has been used to map intertidal areas 
(Enwright et al., 2018) and is commonly used for sea-level rise inun-
dation (Cooper et al., 2013; Gesch, 2018; Kulp and Strauss, 2019). In 
particular, Monte Carlo simulations may offer an alternative when sta-
tistical DEM correction is not feasible due to a regional study extent and 
limited in situ elevation data availability. 

As previously mentioned, the delineation of irregularly flooded 
wetlands along microtidal coasts with frequent storms and wind-driven 
events may require the use of a water level that exceeds tidal datums 
alone. The objective of this study was to build on the work of Enwright 
et al. (2018) and Holmquist and Windham-Myers (2022) to develop 
probabilistic maps for irregularly flooded wetlands along the northern 
Gulf of Mexico. The research questions for this study are: (1) How can 
elevation data and uncertainty information for wetland elevation, tidal 
datums, and high-tide flooding be used to map the probability of 
irregularly flooded wetlands (i.e., the probability that an area is an 
irregularly flooded wetland based on elevation)?; (2) How can spatial 
autocorrelation be integrated into the probabilistic mapping?; (3) How 
does this map compare to probability from in situ elevation observa-
tions?; and (4) How does irregularly flooded wetland coverage vary 
across the Gulf of Mexico? 

2. Methods 

2.1. Study area 

The study area was the northern Gulf of Mexico, which included five 
states — Texas, Louisiana, Mississippi, Alabama, and Florida (Fig. 1). 
Due to the gently sloping topography of the coastal plain, the region 
includes a substantial portion of the coastal wetlands in the contermi-
nous USA (Greenberg et al., 2006). The northern Gulf of Mexico is a 
microtidal system with a tidal amplitude from 0.5 to 1 m (NOAA, 2019c) 
and a high proportion of brackish wetlands (Greenberg et al., 2006). 
Coastal wetland zonation and species composition vary along the 
northern Gulf of Mexico due to differences in geomorphology, climate, 
and management of coastal lands (Gabler et al., 2017). For example, 
south Texas has expansive tidal flats due to hypersaline conditions from 
arid conditions (Osland et al., 2013). Additionally, due to less frequent 
severe freezes, scrub/shrub and forested wetlands dominated by 
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mangroves can be found in south Texas, the mid-coast of Texas, south-
eastern Louisiana, and south Florida, whereas coastal wetlands in other 
areas are often dominated by graminoid or succulent vegetation (Gabler 
et al., 2017). Regarding coastal wetland zonation and coverage, south 
Louisiana and south Florida have expansive coastal wetlands due to a 
low slope and spatially extensive low-lying lands (Reyer et al., 1988; 
Osland et al., 2022). 

Consequently, data processing was conducted at the watershed-level 
for subregions along the northern Gulf of Mexico (Fig. 1). We used 
estuarine drainage areas delineated by Dale et al. (2022) as watershed 
boundaries. These watersheds were combined to form subregions along 
the northern Gulf of Mexico, which included: (1) Laguna Madre; (2) 
Texas Mid-Coast; (3) Chenier Plain; (4) Mid-Deltaic Plain; (5) Deltaic 
Plain; (6) Mississippi Sound; (7) Florida Panhandle; (8) Florida Big Bend; 
(9) West Peninsula Florida; (10) Everglades; and (11) Florida Keys 
(Fig. 1). 

2.2. Coastal wetland mask 

Existing land cover data and elevation data were used to constrain 
the study area to coastal wetlands. Specifically, the study area included 
coastal wetlands that fell within a generalized 5-m contour (relative to 
the North American Vertical Datum of 1988 [NAVD88]) that was 
created from 1/3 arc-second seamless DEMs (10 m) from the USGS 3D 
Elevation Program (3DEP) (USGS, 2020). We used land cover to develop 
a coastal wetland mask from NOAA's, 2016 C-CAP 30-m dataset (NOAA, 
2016) and 10-m C-CAP BETA land cover dataset (NOAA, 2019). The 
coastal wetland mask included all estuarine emergent marsh, estuarine 
scrub/shrub wetlands, and estuarine forested wetlands. The coastal 
wetland mask also included adjacent wetlands that were connected to 
estuarine wetlands using 8-pixel connectivity (i.e., connectivity that can 
occur through cells in both cardinal and diagonal directions). Unless 
noted otherwise, the spatial data analysis was conducted using Esri 
ArcGIS Pro 2.9 (Redlands, California, USA). More details on the coastal 

Fig. 1. Study area for mapping irregularly flooded wetland probability along the northern Gulf of Mexico coast, USA. a-d includes watersheds for groups of regions 
and e provides an overview of the study area. Watershed names are listed by inset map and number. 
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wetland mask are included in Appendix A. 

2.3. Mapping irregularly flooded wetland probability 

The main objective of this study was to delineate irregularly flooded 
wetlands along the northern Gulf of Mexico coast. Fig. 2 shows an 
overview of the process used for developing this product. The sections 
below cover the general methods used for this study. Additional details 
on the methods can be found in Appendix A. 

2.3.1. Flooding level 
An important first step for this effort was to determine what flooding 

level should be used for irregularly flooded wetlands. Cowardin et al. 
(1979) broadly defines irregularly flooded wetlands as those where the 
land surface is flooded by tidal inundation less than daily. Irregularly 
flooded wetlands along the northern Gulf of Mexico are often found 
above MHW (i.e., the average of all the high water heights observed over 
the current National Tidal Datum Epoch; 1983–2001) and below the 
extreme high water spring tide (i.e., increased tide as the result of the 
Moon being new or full; Cowardin et al., 1979). In addition to regular 
tides, perigean spring tides, wind-induced water fluctuations, and 
storms can all play a major role in regulating the salinity and zonation of 
coastal wetlands, especially in microtidal areas with frequent extreme 
storms, such as the northern Gulf of Mexico (Stout, 1984). Examples of 
irregularly flooded wetlands along the Gulf of Mexico are shown in 
Fig. 3. 

NOAA has categorized high-tide flooding into three coastal flooding 
levels, which include minor flooding (also called nuisance flooding), 
more severe, storm-driven, moderate flooding, and major flooding 
(Sweet et al., 2018). NOAA's high-tide flooding levels have been calcu-
lated for tide gauges. We assigned high-tide flooding levels to each 
watershed based on proximity to the nearest NOAA gauge with an 
assigned high-tide flooding level. We used the minor flooding level for 
most of the study area as the upper boundary for irregularly flooded 
wetlands. The rationale for using NOAA's minor high-tide flooding level 
is that it captures the extreme spring tide along with perigean spring 
tides, wind-induced water level fluctuations, and minor storm tides that 
are often associated with irregularly flooded wetlands, such as high 
marsh and salt pannes/flats (USNVC, 2022a, b). In addition to high 

marsh and salt pannes/flats, our definition may include areas that fall 
within the wetland-upland transition zone (e.g., Thorne et al., 2016). In 
addition to justification from past literature (Stout, 1984), the use of 
these flooding levels is in line with recent coastal vegetation elevation 
analyses in Mississippi (Anderson et al., 2022). This study found the 
ecotone zone (i.e., wetland to upland transition) in Grand Bay, Mis-
sissippi had a maximum elevation of 0.69 m NAVD88. In comparison, 
the NOAA minor high-tide flooding level for Grand Bay is 0.81 m 
NAVD88 (using tidal datum transformation for NOAA station ID: 
8740166; note, this does not account for any uncertainty from the tidal 
datum transformation or the NOAA high-tide flooding level). With 
communication from local experts (Jennifer Wilson and Jena Moon, U.S. 
Fish and Wildlife Service, oral communication, [September 13, 2021)]), 
we used the moderate high-tide flooding level for the Laguna Madre and 
Texas Mid-Coast regions. A higher flooding level was used due to the 
presence of high marsh and salt pannes/flats at higher elevations, spe-
cifically salty prairie in the Texas' upper and middle coast and hyper-
saline salt flats in South Texas. 

2.3.2. Monte Carlo simulations 
Using an approach similar to one used by Enwright et al. (2018), we 

used Monte Carlo simulations run with lidar-derived, hydroflattened 
DEMs, existing coastal wetland land cover data, tide information, 
flooding levels, and elevation uncertainty estimates to calculate the 
probability of an area being irregularly flooded. We used the best 
available DEMs, which mostly included 1-m DEMs from the USGS 3DEP. 
Fig. 4 shows the acquisition year of lidar used to create DEMs, if known. 
The point spacing and expected accuracy of lidar data can be charac-
terized using USGS lidar quality levels (USGS, 2022). Of the lidar data 
used, around 11% of the data had a quality level 1 (≥ 8 points per m2; 10 
cm root mean square error [RMSE] for vertical accuracy; DEM spatial 
resolution was 1 m or better), 55% was quality level 2 (≥ 2 points per 
m2; 10 cm RMSE for vertical accuracy; DEM spatial resolution was 1 m), 
20% was quality level 3 (≥ 0.5 points per m2; 20 cm RMSE for vertical 
accuracy; DEM spatial resolution was 3 m), 7% was quality level 4 (139 
cm RMSE for vertical accuracy; DEM spatial resolution was ≥3 m). 
Generally, the quality level is linked to year of collection with newer 
data often having a quality level of 2 or better. Additional details on the 
DEM source metadata are included in Enwright et al. (2022). We used 

Fig. 2. An overview of the approach used for esti-
mating the probability of an area being an irregularly 
flooded wetland along the northern Gulf of Mexico 
coast, USA. Uncertainty estimates included uncer-
tainty from NOAA's high-tide flooding level (HTF; 
Sweet et al., 2018), coastal wetland elevation, and 
tidal datum transformation. HF, hydroflattened; 
DEMs, digital elevation models; LULC, land use land 
cover data; and VDatum, National Oceanic and At-
mospheric Administration's VDatum (NOAA, 2019b); 
SA, spatial autocorrelation.   
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NOAA's VDatum v4.0 (NOAA, 2019b) to transform the vertical datum of 
the DEMs at a spatial resolution of 10 m from the NAVD88. Specifically, 
VDatum was used to create DEMs that were referenced to two locally 
relevant tidal datums — the mean higher high water and MHW tidal 
datums. 

Monte Carlo simulations included 1000 iterations and were used to 
determine if pixel elevation was above MHW and below high-tide 
flooding levels (Sweet et al., 2018) while propagating various sources 
of elevation uncertainty. Elevation uncertainty included literature- 
derived estimates of coastal wetland elevation error in lidar data, 
regionally variable tidal datum uncertainty from VDatum, and the high- 
tide flooding level uncertainty. Regional VDatum uncertainty estimates 
were assigned to watersheds via the VDatum region that covered the 
majority of the watershed. The NOAA high-tide flooding level uncer-
tainty had a RMSE of 0.19 m and 0.25 m for minor and moderate high- 
tide flooding levels, respectively (Sweet et al., 2018). To increase 
computational efficiency, all elevation values and elevation uncertainty 
estimates used in this study were multiplied by 1000 and converted to 
integer (Appendix A). 

As previously mentioned, we conducted a literature review to derive 
estimates of coastal wetland elevation error in lidar data. For this re-
view, we documented the pulse spacing, elevation error, ground truth 
source, and study location (Appendix A). To be conservative, we trun-
cated the literature-derived coastal wetland elevation error estimate to 

cm precision (i.e., 0.23 m) and multiplied by 1000 (i.e., 230). 
For each region, we estimated the Euclidean distance where there 

was no spatial autocorrelation in coastal wetland elevation. We used 
GeoDa v. 1.20 (Anselin et al., 2006) to develop spatial correlograms for 
each watershed with 40 distance bins for elevation data resampled to 
100 m. We determined the distance bins where the spatial autocorre-
lation intersected the zero intercept and determined the average of the 
two distance bins (e.g., Fig. S1). We calculated the median distance for 
where no spatial autocorrelation existed per region. 

For each iteration in the Monte Carlo simulation, a random field was 
created by developing a random raster with a normal distribution that 
had mean set to 0 and the SD set to the coastal wetland elevation error 
estimate (i.e., 230 [0.23 m]). Because elevation error in DEMs for coastal 
wetlands is mostly positive (Buffington et al., 2016; Kidwell et al., 2017; 
Enwright et al., 2018; Alizad et al., 2020), we forced the error to be 
positive for 95% of the iterations by taking the absolute value of the 
random field. We left the bias of the error unconstrained for remaining 
5% of the iterations. The spatial resolution of this raster was set to the 
zero spatial autocorrelation distance for the respective region for the 
watershed. Next, the random field was converted to a point shapefile. 
We used inverse distance weighted interpolation to develop a 10-m 
rasterized random field from the point shapefile. In addition to uncer-
tainty related to coastal wetland elevation, the Monte Carlo simulations 
also integrated uncertainty for the upper and lower bounds of the 

Fig. 3. Examples of irregularly flooded wetlands along the northern Gulf of Mexico coast, USA. a Spartina patens (saltmeadow cordgrass) marsh. b marsh with Juncus 
roemerianus (black needlerush), and Distichlis spicata (saltgrass) with a salt panne in the background. Both photos were taken by Heather Levy in the Florida Big Bend 
region and used with permission. c Avicennia germinans (black mangrove) and Spartina patens marsh in coastal Louisiana. Photographs by Nicholas Enwright. 

Fig. 4. Acquisition year for elevation data used to estimate the irregularly flooded wetland probability along the northern Gulf of Mexico coast, USA. 3DEP, U.S. 
Geological Survey's 3D Elevation Program (USGS, 2020). 
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irregularly flooded wetland zone (Table S1). For each iteration, the 
upper and lower bounds were permuted using a random number from a 
normal distribution with a mean of zero and a standard deviation set to 
the uncertainty values (Table S2). 

2.3.3. Binning probabilistic outputs 
The watershed-based probability layers were mosaicked into a single 

raster file for the northern Gulf of Mexico. To summarize areal coverage 
of probability ranges, we reclassified the continuous probability layer 
that ranged from 0 to 1 into three classes that are used by the Inter-
governmental Panel on Climate Change for communicating probabilities 
(IPCC, 2022). The first class includes areas that are unlikely to be 
irregularly flooded wetlands (probability ≤0.33). The second class in-
cludes areas that are as likely as not to be irregularly flooded wetlands 
(probability >0.33 and ≤ 0.66). The final class includes areas that are 
likely to be irregularly flooded wetlands (probability >0.66). We used 
the midpoint of the NOAA high-tide flooding level and the MHW tidal 
datum to estimate whether areas that were unlikely to be irregularly 
flooded wetlands (i.e., probability ≤0.33) were in the upper (higher) or 
lower portion of the irregularly flooded wetland zone. We summarized 
the absolute and relative coverage of irregularly flooded wetlands by 
class by region and watershed (Fig. 1). 

2.4. Probabilistic output validation 

We used in situ elevation observations collected between 2012 and 
2021 within coastal wetlands (n = 3027) referenced to NAVD88 from a 
variety of sources across the northern Gulf of Mexico coast to validate 
the irregularly flooded wetland probability layer (Table 1). Points were 
located in every region except the Florida Panhandle. Some data came 
from Online Positioning User Service (OPUS) survey points and National 
Geodetic Survey benchmarks (Table 1; Stoker and Miller, 2022). For 
benchmark data, we restricted the points to those with an elevation 
source labelled as either “leveling” and “GPS observation.” These data 
have been used for other landscape-scale lidar DEM accuracy assess-
ments (Gesch et al., 2014; Stoker and Miller, 2022). 

While these in situ data may not have been collected at the same time 

as the lidar elevation data, these data provide a reasonable approach to 
validating the probabilistic outputs and are in line with the general 
approach of using the best available data, especially given the spatially 
extensive nature of the study area. While studies often compare a DEM 
to in situ elevation data using linear regression (Stoker and Miller, 2022; 
Medeiros et al., 2022), we opted to use a Spearman's rank correlation to 
show the relationship between the probability of an area being irregu-
larly flooded estimated using the DEMs and the in situ observations due 
to the constraint for linear regression having no spatial autocorrelation 
of the residuals, which is often violated in spatial environmental data-
sets. We conducted correlation analyses for the entire Gulf of Mexico 
coast and by region for regions with over 30 data points (Table 1). We 
developed box plots for the difference and absolute difference between 
the probability values from the DEMs and the in situ points and calcu-
lated the mean bias error (MBE), mean absolute error (MAE), and the 
root mean square error (RMSE). All plots were created in SigmaPlot 12.5 
(SyStat Software Inc.; San Jose, California, USA). 

MBE =

∑n
i=1(Pi − Oi)

n
(2)  

MAE =

∑n
i=1

⃒
⃒Pi − Oi

⃒
⃒

n
(3)  

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑n

i=1(Pi − Oi)
2

n

√

(4)  

where Pi is the irregularly flooded wetland probability value from the 
DEMs, Oi is the irregularly flooded wetland probability value from in 
situ observations, n is the number of validation points, and i is an integer 
from 1 to n. These statistics have been used by other studies for 
comparing elevation data and in situ observations (e.g., ASPRS, 2015; 
Cooper et al., 2019; Stoker and Miller, 2022; Medeiros et al., 2022). All 
validation results were rounded to the nearest cm. 

In addition to an overall assessment, validation was conducted for 
several categories including by lidar acquisition year bins, lidar quality 
levels, and land cover classes. Lidar acquisition year bins included: (1) 
pre-2005; (2) 2005–10; (3) 2010–15; and (4) 2015–18. The validation 
was assessed for individual lidar quality levels, except for levels 3 and 4, 
which were combined. Finally, we assessed the validation for the 
following land cover classes from 2016 30-m C-CAP land cover data: (1) 
estuarine emergent marsh; (2) estuarine woody wetland, with included 
both forested and scrub-shrub wetlands; (3) palustrine emergent marsh; 
(4) palustrine woody wetland, with included both forested and scrub- 
shrub wetlands; and (5) nonvegetated, which included unconsolidated 
shore, water, and palustrine and estuarine aquatic bed wetlands. For the 
landcover analysis, we omitted 10 points that were not mapped as one of 
the previously mentioned classes in the 2016 30-m C-CAP land cover 
map. Note, this rare event was caused by the coastal wetland mask being 
developed from both the 30-m C-CAP land cover product and the 2016 
10-m C-CAP BETA land cover product. 

3. Results 

3.1. Irregularly flooded wetland probability and validation 

The output of the irregularly flooded wetland probability analysis 
was a spatially explicit probabilistic raster that was published as a USGS 
data release (Enwright et al., 2022). For this product, we utilized lidar 
error from literature for coastal wetland DEMs from 23 different studies, 
which had a mean value of 0.46 m with an outlier (1.27 m linear error at 
95% confidence) removed (Appendix A; Table S3). An example of the 
data around Grand Bay, Mississippi is shown in Fig. 5. 

In situ elevation data were used to validate the irregularly flooded 
wetland product. The results of the Spearman's correlation analysis 
found that there was a moderate positive correlation (r = 0.563, p <

Table 1 
In situ elevation sources, number of points per source, and total points by region 
for comparison with the irregularly flooded wetland probability along the 
northern Gulf of Mexico coast, USA. See Fig. 1 for regional boundaries.  

Region Source(s) Points per 
source 

Region 
total 

Laguna Madre Stoker and Miller (2022) 12 12 
Texas Mid-Coast Moon et al. (2022) 9 180 

Stagg et al. (2021) 161 
Stoker and Miller (2022) 10 

Chenier Plain Moon et al. (2022) 5 706 
Sharp et al. (2021) 669 
Stagg et al. (2020) 29 
Stoker and Miller (2022) 3 

Mid-Deltaic Plain Sharp et al. (2021) 347 349 
Stoker and Miller (2022) 2 

Deltaic Plain Sharp et al. (2021) 609 612 
Stoker and Miller (2022) 3 

Mississippi Sound Andrews (2022) 124 915 
Brunden et al. (2023) 532 
Medeiros et al. (2022) 95 
Sharp et al. (2021) 161 
Stoker and Miller (2022) 3 

Florida Big Bend Medeiros et al. (2022) 85 93 
Stoker and Miller (2022) 8 

West Peninsula 
Florida 

Buffington and Thorne 
(2022) 

88 101 

Stoker and Miller (2022) 13 
Everglades Buffington and Thorne 

(2022) 
53 53 

Florida Keys Stoker and Miller (2022) 6 6  
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0.0001) between the probability estimated from the in situ elevation 
data and probability estimated from the DEMs. When exploring the 
probability differences, the MBE was around − 0.04 (i.e., in situ-based 
probability was slightly higher than DEM-based probability), the MAE 
was 0.20, and the RMSE was 0.26 (Fig. 6). 

The relationship between the DEM-based probability and in situ- 
based probability varied by region (Fig. 7). The relationship between 
probability estimates for the Texas Mid-Coast region was not significant 
(n = 180; r = 0.057; p > 0.05). Due the lack of a relationship, the MBE, 
MAE, and RMSE were calculated for this region, which were − 0.17, 
0.26, 0.34, respectively. There was a positive relationship between 
DEM-based probability and in situ-based probability for all other re-
gions. The Spearman's correlation coefficients ranged from 0.399 
(Deltaic Plain) to 0.702 (Florida Big Bend) with a p < 0.0001. The points 
for some regions in Florida (i.e., Florida Big Bend, West Peninsula 
Florida, and Everglades) did not cover the full range of probabilities 
(Fig. 7). 

In general, older lidar data and lidar with a lower quality level 
seemed to have less agreement between the probabilistic estimates from 
the DEMs and in situ observations (Table 2). Compared to newer lidar 
acquisitions, validation from lidar acquired prior to 2010 had a greater 
magnitude for all error metrics. The validation results for lidar quality 
levels generally tracked the lidar acquisition year results. Most of the 
validation data fell within the estuarine emergent wetland class (about 
78% of the points). Validation for the estuarine emergent wetland and 
palustrine emergent wetland had similar results for all metrics. Estua-
rine and palustrine woody had the highest correlation coefficients. In 
general, the error metrics for woody and nonvegetated had the highest 
magnitude error, whereas error metrics for palustrine woody were 
similar to emergent marsh. Nonvegetated had the lowest correlation 
coefficient of all land cover types. 

3.2. Irregularly flooded wetland probability areal coverage 

To quantify and explore differences in areal coverage along the 
northern Gulf of Mexico, we classified the probability values into three 
equal bins and evaluated whether wetlands in the lowest bin (proba-
bility ≤0.33) were in the lower or upper (higher) portion of the irreg-
ularly flooded zone (Table 3). Most of the area under the coastal wetland 
mask was included in either one of the unlikely classes (i.e., unlikely and 
low and unlikely and high). This area was closely divided between the 

Fig. 5. Example of the irregularly flooded wetland probability output near Grand Bay, Mississippi, USA. a land cover map modified from the National Oceanic and 
Atmospheric Administration's Coastal Change Analysis Program 30-m layer (NOAA, 2016). b irregularly flooded wetland probability on a continuous scale for areas 
within the coastal wetland mask. c irregularly flooded wetland probability by percent bin for areas within the coastal wetland mask. Unlikely and low, probability 
≤0.33 and below mid-point between mean high water and the NOAA high-tide flooding level (Sweet et al., 2018); Unlikely and high, probability ≤0.33 and above 
mid-point between mean high water and the NOAA high-tide flooding level; Likely as not, probability >0.33 and ≤ 0.66; Likely, probability >0.66. 

Fig. 6. Box plots for the difference in probability for being an irregularly 
flooded wetland (digital elevation model-based probability minus in situ 
observation-based probability) along the northern Gulf of Mexico, USA (n =
3027). a raw difference, b absolute value of the difference. 
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Fig. 7. Scatter plots and Spearman's correlation coefficients between the irregularly flooded wetland probability estimated from the in situ elevation observations 
and from the DEMs by region along the northern Gulf of Mexico coast, USA. a Texas Mid-Coast, b Chenier Plain, c Mid-Deltaic Plain, d Deltaic Plain, e Mississippi 
Sound, f Florida Big Bend, g West Peninsula Florida, h Everglades. Region-specific analysis was not conducted for regions with <30 points. See Fig. 1 for 
regional boundaries. 

Table 2 
Validation of irregularly flooded wetland probability estimates from digital elevation models along the northern Gulf of Mexico coast, USA using in situ elevation 
observations. The Spearman's coefficient was only calculated for categories with >30 points. *, p < 0.001; MBE, mean bias error; MAE, mean absolute error; RMSE, root 
mean square error, NA; not applicable.  

Validation Category n Spearman's coefficient MBE MAE RMSE 

All points NA 3027 0.563* − 0.04 0.20 0.26 

Acquisition years 

pre-2005 232 0.036 0.25 0.31 0.37 
2005–10 13 NA − 0.24 0.30 0.39 
2010–15 261 0.469* − 0.01 0.15 0.21 
2015–18 2521 0.615* − 0.07 0.19 0.25 

Lidar quality levels 

1 (≥ 8 points per m2) 160 0.805* − 0.17 0.24 0.31 
2 (≥ 2 points per m2) 2361 0.613* − 0.07 0.19 0.25 
3–4 (≥ 0.5 points per m2) 506 0.388* 0.11 0.23 0.30 

Land cover classes (omitting five non-wetland classes) 

Estuarine emergent marsh 2350 0.570* − 0.03 0.19 0.25 
Estuarine woody 84 0.719* − 0.18 0.25 0.32 
Palustrine emergent marsh 380 0.545* − 0.09 0.20 0.28 
Palustrine woody 68 0.740* − 0.08 0.15 0.20 
Nonvegetated 135 0.424* − 0.14 0.26 0.33  
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two classes with around 10,355.86 km2 (~38%) of the coastal wetland 
mask classified as unlikely and low and 9024.94 km2 (~33%) of the 
coastal wetland mask classified as unlikely and high. The majority of the 
area classified as unlikely and low was located in Louisiana (Table S4). 
For this class, the top-five regions based on areal coverage were: (1) 
Chenier Plain, 3124.05 km2 (~30% of the Gulf total); (2) Deltaic Plain, 
2179.66 km2 (~21% of the Gulf total); (3) Mid-Deltaic Plain, 1744.01 
km2 (~17% of the Gulf total); (4) Everglades, 1058.12 km2 (~10% of 
the Gulf total); and (5) Mississippi Sound, 815.47 km2 (~8% of the Gulf 
total). Most of the area classified as unlikely and high was in the Ever-
glades region (Table 3). For this class, the top-five regions based on areal 
coverage were: (1) Everglades, 6420.03 km2 (~71% of the Gulf total); 
(2) Texas Mid-Coast, 1153.16 km2 (~13% of the Gulf total); (3) Laguna 
Madre, 726.63 km2 (~8% of the Gulf total); (4) Deltaic Plain, 251.05 
km2 (~3% of the Gulf total); and (5) Chenier Plain, 187.49 km2 (~2% of 

the Gulf total). 
About 3411 km2 (~13% of the area under the coastal wetland mask) 

was classified as likely to be an irregularly flooded wetland. Most of this 
area was in Florida, Texas, and Louisiana (Tables 3). For this class, the 
top-five regions based on areal coverage were: (1) Everglades, 1104.46 
km2 (~32% of the Gulf total); (2) Chenier Plain, 520.96 km2 (~15% of 
the Gulf total); (3) Texas Mid-Coast, 385.15 km2 (~11% of the Gulf 
total); (4) Laguna Madre, 369.41 km2 (~11% of the Gulf total); and (5) 
Deltaic Plain, 354.97 km2 (~10% of the Gulf total). A breakdown of the 
areal coverage of irregularly flooded wetland probability by watershed 
is found in Table S4. 

Beyond overall coverage, regional comparisons using relative 
coverage differences for each bin by region can provide additional 
insight in the general distribution and coverage of irregularly flooded 
wetlands (Fig. 8). For the unlikely and low bin, the top-five regions 
based on relative areal coverage (rounded to nearest percentage) were: 
(1) Mid-Deltaic Plain, 74%; (2) Mississippi Sound, 70%; (3) Chenier 
Plain, 68%; (4) Deltaic Plain, 61%; and (5) Florida Big Bend, 56%. For 
the unlikely and high bin, the top-five regions based on relative areal 
coverage (rounded to the nearest percentage) were: (1) Everglades, 
70%; (2) Texas Mid-Coast, 47%; (3) Laguna Madre, 43%; (4) Florida 
Panhandle, 28%; and (5) West Peninsula Florida, 12%. For the 
remaining area under the coastal wetland mask, there was about 15% in 
the likely as not class and 13% in the likely class. For likely class, the top- 
five regions based on relative areal coverage (rounded to the nearest 
percentage) were: (1) Florida Keys, 28%; (2) Florida Panhandle, 27%; 
(3) West Peninsular Florida, 27%; (4) Laguna Madre, 22%; and (5) 
Florida Big Bend, 21%. 

4. Discussion 

The primary objective of this study was to develop a framework for 
estimating irregularly flooded wetland probability using NOAA's high- 
tide flooding levels. While the outputs of this study are similar to the 
work by Holmquist and Windham-Myers (2022) regarding the use of 
uncertainty to produce regional maps related to wetland inundation 
zonation, our product is the first regional map of elevation-based 
irregularly flooded wetland probability across the northern Gulf of 
Mexico coast. This product can serve many important applications 
including providing a baseline for gauging future coastal wetland 
transformation with climate change and designing wetland vegetation 
and faunal monitoring programs (e.g., above-ground biomass transects 
and developing marsh bird surveys). 

Table 3 
Areal coverage irregularly flooded wetland probability by bin by region along 
the northern Gulf of Mexico, USA. Unlikely and low, probability ≤0.33 and 
below mid-point between mean high water and the NOAA high-tide flooding 
level (Sweet et al., 2018); Unlikely and high, probability ≤0.33 and above mid- 
point between mean high water and the NOAA high-tide flooding level; Likely as 
not, probability >0.33 and ≤ 0.66; Likely, probability >0.66. See Fig. 1 for 
regional boundaries.   

Coverage irregularly flooded wetland probability (km2) 

Region Unlikely 
and low 

Unlikely 
and high 

Likely 
as not 

Likely Total 

Laguna Madre 165.31 726.63 425.16 369.41 1686.51 
Texas Mid- 

Coast 
436.12 1153.16 484.20 385.15 2458.63 

Chenier Plain 3124.05 187.49 758.88 520.96 4591.38 
Mid-Deltaic 

Plain 
1744.01 10.74 494.49 105.73 2354.98 

Deltaic Plain 2179.66 251.05 760.01 354.97 3545.69 
Mississippi 

Sound 
815.47 74.29 181.70 98.19 1169.65 

Florida 
Panhandle 

72.25 75.27 46.58 72.78 266.88 

Florida Big 
Bend 

515.58 49.62 156.20 195.16 916.56 

West 
Peninsula 
Florida 

190.07 69.49 166.51 161.44 587.51 

Everglades 1058.12 6420.03 594.46 1104.46 9177.06 
Florida Keys 55.22 7.17 48.20 42.78 153.37 
Gulf-wide 10,355.86 9024.94 4116.39 3411.03 26,908.22  

Fig. 8. Relative coverage of irregularly 
flooded wetland probability by percent bin 
for regions along the northern Gulf of 
Mexico, USA. Unlikely and low, probability 
≤0.33 and below mid-point between mean 
high water and the NOAA high-tide flooding 
level (Sweet et al., 2018); Unlikely and high, 
probability ≤0.33 and above mid-point be-
tween mean high water and the NOAA high- 
tide flooding level; Likely as not, probability 
>0.33 and ≤ 0.66; Likely, probability >0.66. 
See Fig. 1 for regional boundaries.   
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4.1. Interpretations and applications 

The results from the analysis provide a snapshot of irregularly floo-
ded wetland probability distribution across the region. Overall, these 
results are aligned with past efforts to quantify wetland coverage in the 
Gulf of Mexico and highlight abundant wetland coverage in low-lying 
areas in south Louisiana and south Florida (Reyer et al., 1988; 
Table 3). By using various sources of uncertainty, the probabilistic 
outputs add helpful nuance to simply quantifying the areal coverage of 
coastal wetlands by region or watershed. These results can be used to 
address questions such as what watersheds or regions have a high 
abundance of areas that are: (1) likely to be irregularly flooded wetland; 
(2) unlikely to be irregularly flooded wetland and low elevation; and (3) 
unlikely to be irregularly flooded wetland and high elevation. 

Based on our results, we found that the Everglades and coastal wa-
tersheds from south Texas to southwestern Louisiana have abundant 
areas that are likely irregularly flooded wetland. We found south Loui-
siana and the Everglades have a high amount of area classified as un-
likely to be irregularly flooded wetland and low. Finally, we found that 
the Everglades, Texas Mid-Coast, and Laguna Madre were regions have a 
high abundance of areas classified as unlikely to be an irregularly 
flooded wetland and high. Collectively, these results can provide in-
formation on the regional variability of coastal wetlands and provide 
general insights into how the wetlands in a region may be able to adapt 
to or withstand sea-level rise. For example, depending upon localized 
sediment accretion and subsidence rates, a watershed with an abun-
dance of area mapped as likely to be irregularly flooded wetland or 
unlikely to be irregularly flooded wetland and high may have an 
increased capacity to adapt to future sea-level rise compared to regions 
that have a large amount of area that is unlikely to be irregularly flooded 
wetland and low (Saintilan et al., 2022). Areas that are mapped as un-
likely to be irregularly flooded wetland and low may be candidates for 
placement of beneficial use materials to increase wetland elevation or, if 
impounded, tidal restoration to increase the frequency of sedimentation 
via tidal influence (Zhao et al., 2016). Likewise, regions that have 
abundant area classified as unlikely to be irregularly flooded wetland 
and high include areas that are currently mapped as coastal wetland but 
are located further upslope in freshwater wetlands. These areas include 
wetlands that may be irregularly flooded in the future with sea-level rise 
(Osland et al., 2022). Our understanding of the ability for coastal 
wetland adaptation or transformation may be expanded by combining 
the probabilistic layers developed in this study with coastal wetland 
condition metrics such as the unvegetated-vegetated ratio, which are 
correlated with wetland sediment budgets and wetland sea-level rise 
response (Ganju et al., 2022). Additionally, irregularly flooded marsh 
provides important habitat for many coastal fauna, such as the Eastern 
Black Rail (Laterallus jamaicensis jamaicensis; Tolliver et al., 2018), which 
was listed as threatened by the U.S. Fish and Wildlife Service in 2020. 
Maps of irregularly flooded wetland coverage can help assist land 
managers with habitat mapping for wetland-reliant fauna and develop 
current and future species-focused conservation plans (Moon et al., 
2021). 

With accelerated sea-level rise, the frequency of the occurrence of 
the NOAA high-tide flooding levels used in this study is expected to 
increase over the next several decades, with an especially high magni-
tude increase in frequency along the northern Gulf of Mexico occurring 
in the 2030s (Sweet et al., 2018; Thompson et al., 2021). As previously 
mentioned, this map can provide insights into potential adaptive ca-
pacity of current wetlands for sea-level rise. Rising sea level associated 
with climate change is expected to lead to wetland loss and trans-
formation (Osland et al., 2022). Therefore, there is a need for repeatable 
methods, such as the approach used in this study, to observe changes in 
irregularly flooded wetland probability over time. Change assessments 
between maps of irregularly flooded wetland probability could incor-
porate algorithms that are robust to noise, such as those that commonly 
used for detecting meaningful coastal geomorphic change by using mean 

and standard deviation of values (e.g., probabilities) between time pe-
riods (e.g., Liu et al., 2010). In addition to mapping contemporary 
irregularly flooded wetlands, the approach used in this study could be 
expanded to map potential future irregularly flooded wetlands using 
NOAA high-tide flooding levels and sea-level rise scenarios. Observa-
tions over time and projections can provide researchers with the ability 
to validate and refine wetland transformation models. 

Finally, while our approach and product are helpful for identifying 
coarse wetland zonation based on inundation, the probabilistic outputs 
from this project could be used for more detailed vegetation-specific 
analyses. For example, vegetation data could be paired with these 
probabilistic maps and other remotely sensed data for a variety of an-
alyses including species-level mapping, vegetation community-level 
mapping, and condition analyses. As an example, these data could be 
helpful for more detailed vegetation community delineation, such as 
determining high marsh, which is a subclass of irregularly flooded 
wetlands that is often dominated by vegetation species such as Spartina 
patens and includes other characteristic species, such as Distichlis spicata, 
Iva frutescens, and Salicornia spp. (USNVC, 2022b). 

4.2. Elevation uncertainty and validation 

Due to the well-documented elevation error in lidar data for coastal 
wetlands (Su and Bork, 2006; Schmid et al., 2011; Medeiros et al., 2015; 
Buffington et al., 2016), researchers have used a literature review to 
estimate possible lidar elevation error in coastal wetlands. This can be 
challenging because the level of detail of the in situ elevation data 
collection and error reporting may vary by study. Holmquist et al. 
(2018) published the first such literature review, which included four 
studies across many sites. The review led to the development of a site- 
weighted error and other error estimates, which included a mean 
offset of 0.173 m, a standard error of 0.110 m, and an assumed random 
error of 0.205 m (Holmquist and Windham-Myers, 2022). These un-
certainties were combined using the sum of squares for an average total 
uncertainty of 0.233 m. Building on this effort, for 12 studies, Alizad 
et al. (2020) found a pooled mean lidar error of 0.18 m and a standard 
deviation of 0.14 m. Our effort added to the literature review for a total 
of 23 studies. Because vegetation elevation error is often not normally 
distributed (ASPRS, 2015), we attempted to standardize the error esti-
mates to either the 95th percentile or the linear error at 95% confidence. 
We calculated the mean value of the 95th percentile and the linear error 
at 95% confidence error estimates, which was 0.230 m. 

The validation results point to a slight underestimate in probability 
when estimated from DEMs (MBE = − 0.04), which is likely due to 
overestimating of wetland elevation error for the areas tested. As pre-
viously mentioned, older lidar data and data with a lower quality level 
seemed to have less agreement for the probabilistic estimates from lidar 
data and in situ observations (Table 2). While this drop in agreement 
could be due to the lidar spacing, it could also be due to a large temporal 
gap between in situ elevation observations and lidar acquisition. While 
quality level 1 data had the highest correlation coefficient, the magni-
tude of the MBE and MAE was greater compared to quality level 2 data. 
To add context to these results, around 5% of the validation points were 
assessed with quality level 1 lidar, whereas about 78% of the points were 
from quality level 2 lidar. Due to the limited number of points linked to 
quality level 1 lidar data, additional data analysis for both quality levels 
could help better elucidate the differences in results between these two 
quality levels. Likewise, although woody wetland classes appeared to 
have a stronger correlation, additional data analysis for non-marsh 
wetlands could help reveal the validation differences by wetland types 
and provide more targeted information for elevation error in non-marsh 
wetlands. While this study estimated correlation by region, future efforts 
could expand on how regional differences in geomorphology, climate, 
and management of coastal lands impact irregularly flooded wetland 
delineation and validation using high-quality vegetation and in situ 
elevation data that was collected in a similar time period as the lidar 
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acquisition. Despite a moderate correlation result and slight underesti-
mate in probability, the product produced in our study provides the best 
available dataset for the probabilistic estimate of irregularly flooded 
wetland coverage at the landscape scale and can be used for the previ-
ously mentioned applications. 

4.3. Expanding upon past efforts 

Holmquist and Windham-Myers (2022) calculated relative tidal 
elevation for the conterminous United States, which focused on wet-
lands below the MHHWS tidal datum. Their products include an esti-
mate of the relative position in the tidal range and delineate regularly 
flooded wetlands (i.e., “low marsh;” areas exposed to tides daily). Our 
product complements the work done by Holmquist and Windham-Myers 
(2022) by focusing on the irregularly flooded wetland zone. In our study, 
we also produced a probabilistic coastal wetland map; however, we 
bracketed the irregularly flooded wetland zone with MHW as the lower 
bound and NOAA high-tide flooding levels as the upper bound. As pre-
viously mentioned, the NOAA high-tide flooding level includes inun-
dation associated with perigean spring tides, wind-induced water 
fluctuations, and minor storms and was aligned with the U.S. National 
Vegetation Classification high marsh and salt panne/flat definitions. As 
previously mentioned, the use of a higher threshold was aligned with 
flooding levels used by Brophy et al. (2019), which aimed at delineating 
estuarine boundaries using lidar data, and field observations by 
Anderson et al. (2022). 

In our study, we used Monte Carlo simulations to address uncertainty 
and develop probabilistic outputs, whereas Holmquist and Windham- 
Myers (2022) propagated uncertainty using partial derivatives. A 
strength of the Monte Carlo approach is that it utilizes spatial random 
fields for propagating the coastal wetland elevation error. Our effort 
built on past research that used local spatial autocorrelation via a 3-by- 
3-pixel filter (Enwright et al., 2018) and a multi-scaled approach using 
six different box sizes thought to potentially represent possible spatial 
autocorrelation of elevation error in coastal areas (Kulp and Strauss, 
2019). In this study, we used the distance that spatial autocorrelation of 
coastal wetland elevation was zero. We also added interpolation to 
develop smooth random fields between the coarser spatial 
autocorrelation-based box sizes as suggested by Wechsler and Kroll 
(2006). The use of spatial autocorrelation of coastal wetland elevation 
was informed by findings by Alizad et al. (2020), which found that 
wetland elevation error in lidar datasets in some areas, such as Plum 
Island, Massachusetts, generally tracks with wetland elevation. While 
the use of coastal wetland elevation spatial autocorrelation was a helpful 
starting point, wetland elevation error in lidar can be spatially variable 
and depend on species and vegetation height (Buffington et al., 2016; 
Alizad et al., 2020). 

For sea-level rise studies, a general rule of thumb is that confidence 
in accurately mapping inundation increases with higher thresholds due 
to less overlap with the target inundation level and elevation uncer-
tainty in source data (Gesch, 2018). This can introduce challenges with 
contemporary tidal wetland mapping as tidal datums, such as MHW or 
MHHWS, which may not be outside the uncertainty of the lidar, espe-
cially for microtidal areas like the northern Gulf of Mexico (Alizad et al., 
2020; Holmquist and Windham-Myers, 2022). Likewise, it could be 
difficult to find the probability of wetlands falling between narrow tidal 
datums (e.g., wetlands between MHW and MHHWS). The use of a wider 
inundation zone in our study (i.e., MHW as lower bound and around 0.5 
m to 0.8 m above MHHW as the upper bound) may have helped alleviate 
some of these issues. While the lidar vertical error may impact the 
probability results for the lower end of the zone (i.e., wetlands that are at 
or near the MHW datum), the width of this zone can help increase the 
confidence in the probabilistic results in the rest of the zone. Holmquist 
and Windham-Myers (2022) did not set an upper bound for the high 
class or the Z*MHW, but instead used wetland data to limit the area to 
estuarine wetlands, palustrine wetlands that were thought to be below 

MHHWS, and tidal wetlands. Differences in approach, data availability 
at the time of analysis, and research questions between Holmquist and 
Windham-Myers (2022) and our study prevent a meaningful direct 
comparison of products produced; however, the differences between the 
approaches and research questions make the products from both studies 
complementary. 

4.4. Limitations and additional next steps 

As previously mentioned, older lidar data and lidar data with a lower 
quality level seemed to have reduced the agreement between the 
probabilistic estimates from lidar data and in situ elevation observa-
tions. While most of the study area included recent data collections with 
a quality level 2, there were two locations were older lidar data were 
used. The best available elevation data at the time this study was con-
ducted was 3DEP 1/3 arc sec data (parts of the Everglades region) and 
lidar data with questionable quality in coastal wetlands (parts of the 
Deltaic Plain region). The impact of the disparate data sources created 
anomalous results (i.e., unlikely straight lines/breaks in probability). 
New lidar data from 2018 are now available for most of Florida and 
there is a recent acquisition for the Deltaic Plain of Louisiana that has 
not yet been published. 

While this effort used C-CAP data to develop a coastal wetland mask, 
this approach could be modified so that it can be used with any existing 
land cover product. This could include land cover maps that have 
reduced thematic detail such as USGS' NLCD, which includes wetlands 
mapped as either woody wetlands or emergent herbaceous wetlands, or 
LCMAP, which has a single wetland class. For this study, our coastal 
wetland mask did not explicitly include palustrine scrub/shrub and 
palustrine forested wetlands. Future research could explore whether 
these classes could be added to help identify freshwater forested wet-
lands that are irregularly exposed to saline water. This may require a 
more nuanced approach to addressing elevation error in vegetated areas 
than used in this study. For example, it would be important to ensure 
that elevation error estimates were developed for specific types of 
vegetation (e.g., scrub/shrub and forested), which may have a lower 
elevation error. 

In this study, we used available in situ elevation observations, which 
may have potential for time differences between the lidar acquisition 
date. The scope of the study area and limited in situ data availability 
hindered our ability to add constraints for in situ and lidar acquisition 
related to temporal gaps. For this reason, we also decided to limit our 
validation efforts to land cover types and not by species or vegetation 
characteristics (e.g., height and percent cover by species). Future efforts 
focused on regional analyses could enhance the validation by using 
stricter constraints on data acquisition timing gaps and factor in vege-
tation cover and characteristics for probability validation. 

Future efforts could include updating this map as new and improved 
coastal wetland elevation error estimates, new elevation data, and tidal 
datum transformations (with uncertainty estimates) become available. 
In this study, we found that lidar data advances, namely increasing 
points per square meter, have generally led to a reduction in lidar error 
in coastal wetlands. Future studies could evaluate whether lidar sensor 
technology advances, such as single photon and Geiger-mode lidar 
sensors (Stoker et al., 2016), and increased availability in lidar with a 
quality level 1 or 2 may help reduce lidar error in coastal wetlands. 
Additionally, the availability of lidar point cloud analysis in cloud-based 
platforms like Google Earth Engine and Microsoft's Planetary Computer 
may allow for researchers to efficiently use approaches to extract 
vegetation height information (Koma et al., 2021), which could enhance 
our understanding of potential elevation error. Likewise, future efforts 
could expand on this approach by integrating vegetation biomass or 
greenness, (Byrd et al., 2018) or vegetation height extraction from lidar 
point cloud into random fields. For example, salt pannes could have 
sparse cover and likely have low elevation error, but the approach used 
in our study did not account for variable vegetation cover. Likewise, 
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areas with tall Juncus roemerianus may have higher elevation error than 
other surrounding vegetation communities like Spartina patens or suc-
culent marsh species. 

Future efforts could build on the simple approach used in this study 
to determine areas in the upper (higher) and lower portions of the 
irregularly flooded wetland zone by using techniques like those used by 
Holmquist and Windham-Myers (2022) to estimate the general zonation 
within the irregularly flooded wetland zone while also incorporating 
elevation uncertainty. Finally, future efforts could explore how the 
framework could be enhanced by using synthetic aperture radar, which 
can delineate flooded vegetation (Rangoonwala et al., 2016), detecting 
inundation with optical imagery (O'Connell et al., 2017; Narron et al., 
2022), and fusion with optical imagery for developing refined wetland 
masks (Lamb et al., 2019). In addition to updating the analysis along the 
northern Gulf of Mexico coast, future studies could expand this frame-
work to the conterminous United States and beyond. 

5. Conclusion 

We used Monte Carlo simulations to incorporate elevation uncer-
tainty and lidar-derived DEMs to create a probabilistic map of irregu-
larly flooded wetlands. This product is the first regional map of 
elevation-based irregularly flooded wetland probability across the 
northern Gulf of Mexico coast. Our approach integrated findings from an 
updated literature review of coastal wetland elevation error and the use 
of spatial autocorrelation of coastal wetland elevation for random error 
field development. We found there was a significant, positive correlation 
when comparing the probability estimated from the DEM with the 
probability estimated from in situ elevation observations. Our results 
showed that DEM-based probability tended to be slightly lower than 
those estimated with in situ elevation observations. We found around 
the majority of the coastal wetland mask was included in either one of 
the classes that were unlikely to be irregularly flooded wetlands. 
Generally, these areas were split evenly between areas that were un-
likely and low and unlikely and high. Most of the area classified as un-
likely and low was in Louisiana and much of the area classified as 
unlikely and high was in the Everglades. The relative coverage of area 
classified as likely to be irregularly flooded wetlands covered around 
13%, with the greatest coverage in south Florida, south Louisiana, and 
Texas. Regarding acquisition year and quality level, we found that older 
lidar data and lidar with a lower quality level seemed to have lower 
agreement between the probabilistic estimates from lidar data and in 
situ elevation observations. Most of the validation data were from 
emergent marsh, which tended to have a lower magnitude of error 
compared to woody wetlands, but a lower correlation coefficient. Future 
efforts could include updating the product produced in this study as new 
lidar data becomes available. Future updates could explore enhancing 
validation by using vegetation information and increasing the spread of 
points more evenly across the irregularly flooded wetland zone and for 
other wetland types, expanding to other areas, and predicting future 
irregularly flooded wetlands. The products developed from this study 
can serve many important applications including providing a baseline 
for gauging future wetland change with climate change and designing 
wetland vegetation and faunal monitoring programs (e.g., above-ground 
biomass transects and developing marsh bird surveys). 

Author responsibilities 

NME and KOE designed the research. DBG, MSW and AMVF pro-
vided review and feedback of study methods. WCC, HRT, and NME 
performed the data analysis. JLP, JMS, and SCM all provided validation 
data for this study. NME drafted the manuscript, and all authors 
contributed to the manuscript editing and revision. 

Declaration of Competing Interest 

The authors declare that they have no known competing financial 
interests or personal relationships that could have appeared to influence 
the work reported in this paper. 

Data availability 

Data are available as a U.S. Geological Survey data release (https:// 
doi.org/10.5066/P9MLO26U) 

Acknowledgments 

This paper is a result of research funded by the National Oceanic and 
Atmospheric Administration's RESTORE Science Program under award 
NA19NOS4510195 to Mississippi State University and the USGS. We 
thank many individuals for providing feedback on draft products or 
assisting with in situ elevation data product availability, including 
Karrie Arnold, Eric Brunden, Kevin Buffington, Chris Butler, Jeremy 
Conrad, Jim Cox, Warren Conway, Mark Danaher, Christopher Gabler, 
Rebecca Howard, Brita Jessen, Erik Johnson, Kevin Kalasz, Peter 
Kappes, Joseph Lancaster, Heather Levy, Jonathon Lueck, Jonathan 
Moczygemba, Jena Moon, Michael Osland, Maulik Patel, Colt Sanspree, 
Amy Schwarzer, Fred Sklar, Eric Soehren, Camille Stagg, Karen Thorne, 
Will Underwood, William Vermillion, Jenneke Visser, Barry Wilson, 
Jennifer Wilson, Bernard Wood, and Woody Woodrow. We thank Neil 
Ganju from the USGS Woods Hole Coastal and Marine Science Center 
and three anonymous peer reviewers for their feedback on this work. 
MSW’s participation and contribution is, in part, supported by the Na-
tional Institute of Food and Agriculture, U.S. Department of Agriculture, 
Hatch project under accession number 7002261. As such, this publica-
tion is considered a contribution of the Mississippi Agricultural and 
Forestry Experiment Station. Any opinions, findings, conclusions, or 
recommendations expressed in this publication are those of the authors 
and do not necessarily reflect the view of the U.S. Department of Agri-
culture. Any use of trade, firm, or product names is for descriptive 
purposes only and does not imply endorsement by the U. S. Government. 

Appendix A. Supplementary data 

Supplementary data to this article can be found online at https://doi. 
org/10.1016/j.rse.2023.113451. 

References 

Alizad, K., Medeiros, S.C., Foster-Martinez, M.R., Hagen, S.C., 2020. Model sensitivity to 
topographic uncertainty in meso- and microtidal marshes. IEEE J. Sel. Top. Appl. 
Earth Obs. Remote Sens. 13, 807–814. https://doi.org/10.1109/ 
JSTARS.2020.2973490. 

Anderson, C.P., Carter, G.A., Waldron, M.C.B., 2022. Precise elevation thresholds 
associated with salt marsh–upland ecotones along the Mississippi Gulf Coast. Ann. 
Am. Assoc. Geogr 112 (7), 1850–1865. https://doi.org/10.1080/ 
24694452.2022.2047593. 

Andrews, B.M., 2022. The effects of short-term sea level rise on vegetation communities 
in coastal Mississippi. Theses and Dissertations 5407. https://scholarsjunction.mss 
tate.edu/td/5407. 

Anselin, L., Ibnu Syabri, I., Kho, Y., 2006. GeoDa: an introduction to spatial data analysis. 
Geogr. Anal. 38 (1), 5–22. https://doi.org/10.1111/j.0016-7363.2005.00671.x. 

ASPRS, 2015. ASPRS positional accuracy standards for digital geospatial data. 
Photogramm. Eng. Remote. Sens. 81, A1–A26. https://doi.org/10.14358/PERS.81.3. 
A1-A26. 

Barbier, E.B., Hacker, S.D., Kennedy, C., Koch, E.W., Stier, A.C., Silliman, B.R., 2011. The 
value of estuarine and coastal ecosystem services. Ecol. Monogr. 81, 169–193. 
https://doi.org/10.1890/10-1510.1. 

Brophy, L.S., Greene, C.M., Hare, V.C., Holycross, B., Lanier, A., Heady, W.N., 
O’Connor, K., Imaki, H., Haddad, T., Dana, R., 2019. Insights into estuary habitat 
loss in the western United States using a new method for mapping maximum extent 
of tidal wetlands. PLoS One 14 (8), e0218558. https://doi.org/10.1371/journal. 
pone.0218558. 

Brown, J.F., Tollerud, H.J., Barber, C.P., Zhou, Q., Dwyer, J.L., Vogelmann, J.E., 
Loveland, T.R., Woodcock, C.E., Stehman, S.V., Zhu, Z., Pengra, B.W., Smith, K., 
Horton, J.A., Xian, G., Auch, R.F., Sohl, T.L., Sayler, K.L., Gallant, A.L., Zelenak, D., 

N.M. Enwright et al.                                                                                                                                                                                                                            

https://doi.org/10.1016/j.rse.2023.113451
https://doi.org/10.1016/j.rse.2023.113451
https://doi.org/10.1109/JSTARS.2020.2973490
https://doi.org/10.1109/JSTARS.2020.2973490
https://doi.org/10.1080/24694452.2022.2047593
https://doi.org/10.1080/24694452.2022.2047593
https://scholarsjunction.msstate.edu/td/5407
https://scholarsjunction.msstate.edu/td/5407
https://doi.org/10.1111/j.0016-7363.2005.00671.x
https://doi.org/10.14358/PERS.81.3.A1-A26
https://doi.org/10.14358/PERS.81.3.A1-A26
https://doi.org/10.1890/10-1510.1
https://doi.org/10.1371/journal.pone.0218558
https://doi.org/10.1371/journal.pone.0218558


Remote Sensing of Environment 287 (2023) 113451

13

Reker, R.R., Rover, J., 2020. Lessons learned implementing an operational 
continuous United States national land change monitoring capability: The Land 
Change Monitoring, Assessment, and Projection (LCMAP) approach. Remote Sens. 
Environ. 238, 111356 https://doi.org/10.1016/j.rse.2019.111356. 

Buffington, K.J., Thorne, K.M., 2022. In: U.S. Geological Survey data release (Ed.), 
Elevation survey across southwest Florida coastal wetlands, 2021 [dataset]. https:// 
doi.org/10.5066/P9POUPH5. 

Brunden, E., Underwood, W., Arnold, K., 2023. Coastal wetland elevation survey of 
Weeks Bay National Estuarine Research Reserve, Alabama, 2016–2018 [dataset]. U. 
S. Geological Survey data release. https://doi.org/10.5066/P9Q2592L. 

Buffington, K.J., Dugger, B.D., Thorne, K.M., Takekawa, J.Y., 2016. Statistical correction 
of lidar-derived digital elevation models with multispectral airborne imagery in tidal 
marshes. Remote Sens. Environ. 186, 616–625. https://doi.org/10.1016/j. 
rse.2016.09.020. 

Byrd, K.B., Ballanti, L., Thomas, N., Nguyen, D., Holmquist, J.R., Simard, M., Windham- 
Myers, L., 2018. A remote sensing-based model of tidal marsh aboveground carbon 
stocks for the conterminous United States. ISPRS J. Photogramm. Remote Sens. 139, 
255–271. https://doi.org/10.1016/j.isprsjprs.2018.03.019. 

Cooper, H.M., Fletcher, C.H., Chen, Q., Barbee, M.M., 2013. Sea-level rise vulnerability 
mapping for adaptation decisions using lidar DEMs. Prog. Phys. Geogr. 37, 745–766. 
https://doi.org/10.1177/0309133313496835. 

Cooper, H.M., Zhang, C., Davis, S.E., Troxler, T.G., 2019. Object-based correction of 
LiDAR DEMs using RTK-GPS data and machine learning modeling in the coastal 
Everglades. Environ. Model. Softw. 112, 179–191. https://doi.org/10.1016/j. 
envsoft.2018.11.003. 

Cowardin, L.M., Carter, V., Golet, F.C., LaRoe, E.T., 1979. Classification of Wetlands and 
Deepwater Habitats of the United States. FWS/OBS-79/31. https://www.fws.gov/w 
etlands/Documents/Classification-of-Wetlands-and-Deepwater-Habitats-of-the-Uni 
ted-States.pdf. 

Dale, L.L., Chivoiu, B., Osland, M.J., Enwright, N.M., Thorne, K.M., Guntenspergen, G.R., 
Grace, J.B., 2022. Estuarine drainage area boundaries for the conterminous United 
States [dataset], U.S. Geological Survey data release. https://doi.org/10.5066/ 
P9LPN3YY. 

Enwright, N.M., Hartley, S.B., Couvillion, B.R., Brasher, M.G., Visser, J.M., Mitchell, M. 
K., Ballard, B.M., Parr, M.W., Wilson, B.C., 2015. Delineation of marsh types from 
Corpus Christi Bay, Texas, to Perdido Bay, Alabama. In: 2010. U.S. Geological Survey 
Scientific Investigations Map 3336. https://doi.org/10.3133/sim3336. 

Enwright, N.M., Wang, L., Borchert, S.M., Day, R.H., Feher, L.C., Osland, M.J., 2018. The 
impact of lidar elevation uncertainty on mapping intertidal habitats on Barrier 
Islands. Remote Sens. 10, 5. https://doi.org/10.3390/rs10010005. 

Enwright, N.M., Cheney, W.C., Evans, K., Thurman, H.R., Woodrey, M.S., Fournier, A.M. 
V., Bauer, A., Cox, J., Goehring, S., Hill, H., Hondrick, K., Kappes, P., Levy, H., 
Moon, J., Nyman, J.A., Pitchford, J., Storey, D., Sukiennik, M., Wilson, J., 2022. 
Mapping irregularly flooded wetlands, high marsh, and salt pannes/flats along the 
northern Gulf of Mexico coast [dataset]. U.S. Geological Survey data release. https:// 
doi.org/10.5066/P9MLO26U. 

Gabler, C.A., Osland, M.J., Grace, J.B., Stagg, C.L., Day, R.H., Hartley, S.B., Enwright, N. 
M., From, A.S., McCoy, M.L., McLeod, J.L., 2017. Macroclimatic change expected to 
transform coastal wetland ecosystems this century. Nat. Clim. Chang. 7, 142–147. 
https://doi.org/10.1038/nclimate3203. 

Ganju, N.K., Couvillion, B.R., Defne, Z., Ackerman, K.V., 2022. Development and 
application of Landsat-Based Wetland Vegetation Cover and UnVegetated-Vegetated 
Marsh Ratio (UVVR) for the Conterminous United States. Estuaries Coast 45, 
1861–1878. https://doi.org/10.1007/s12237-022-01081-x. 

Gesch, D.B., 2018. Best practices for elevation-based assessments of sea-level rise and 
coastal flooding exposure. Front. Earth Sci. 6 https://doi.org/10.3389/ 
feart.2018.00230. 

Gesch, D.B., Oimoen, M.J., Evans, G.A., 2014. Accuracy Assessment of the U.S. 
Geological Survey National Elevation Dataset, and Comparison with Other Large- 
Area Elevation Datasets—SRTM and ASTER. U.S. Geological Survey Open-File 
Report 2014–1008.. https://doi.org/10.3133/ofr20141008. 

Greenberg, R., Maldonado, J.E., Droege, S., McDonald, M.V., 2006. Tidal marshes: a 
global perspective on the evolution and conservation of their terrestrial vertebrates. 
Bioscience 56 (8), 675–685. https://doi.org/10.1641/0006-3568(2006)56[675: 
TMAGPO]2.0.CO;2. 

Holmquist, J.R., Windham-Myers, L., 2022. A conterminous USA-scale map of relative 
tidal marsh elevation. Estuaries Coast. 45, 1596–1614. https://doi.org/10.1007/ 
s12237-021-01027-9. 

Holmquist, J.R., Windham-Myers, L., Bernal, B., Byrd, K.B., Crooks, S., Gonneea, M.E., 
Herold, N., Knox, S.H., Kroeger, K.D., McCombs, J., Megonigal, J.P., Lu, M., 
Morris, J.T., Sutten-Grier, A.E., Troxler, T.G., Weller, D.E., 2018. Uncertainty in 
United States coastal wetland greenhouse gas inventorying. Environ. Res. Lett. 13, 
115005 https://doi.org/10.1088/1748-9326/aae157. 

IPCC, 2022. Climate Change 2022: Mitigation of Climate Change. Contribution of 
Working Group III to the Sixth Assessment Report of the Intergovernmental Panel on 
Climate Change. Cambridge University Press, Cambridge, UK and New York, NY, 
USA. https://doi.org/10.1017/9781009157926.  

Jennerjahn, T.C., Gilman, E., Krauss, K.W., Lacerda, L.D., Wolanski, E., 2017. Mangrove 
ecosystems under climate change. In: Riveria-Monroy, V.H., Lee, S.Y., Kristensen, E., 
Twilley, R.R. (Eds.), Mangrove Ecosystems: A Global Biogeographic Perspective. 
Springer, pp. 211–244. https://doi.org/10.1007/978-3-319-62206-4_7. 

Kidwell, D.M., Dietrich, J.C., Hagen, S.C., Medeiros, S.C., 2017. An earth’s future special 
collection: impacts of the coastal dynamics of sea level rise on low-gradient coastal 
landscapes. Earth’s Future 5, 2–9. https://doi.org/10.1002/2016EF000493. 

Knutson, T.R., McBride, J.L., Chan, J., Emanuel, K., Holland, G., Landsea, C., Held, I., 
Kossin, J.P., Srivastava, A.K., Sugi, M., 2010. Tropical cyclones and climate change. 
Nat. Geosci. 3 (3), 157–163. https://doi.org/10.1038/ngeo779. 
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