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ABSTRACT Coastal salt marshes along the northern Gulf of Mexico shoreline re-
ceived varied types and amounts of weathered oil residues after the 2010 Deepwater
Horizon oil spill. At the time, predicting how marsh bacterial communities would re-
spond and/or recover to oiling and other environmental stressors was difficult be-
cause baseline information on community composition and dynamics was generally
unavailable. Here, we evaluated marsh vegetation, physicochemistry, flooding fre-
quency, hydrocarbon chemistry, and subtidal sediment bacterial communities from
16S rRNA gene surveys at 11 sites in southern Louisiana before the oil spill and resa-
mpled the same marshes three to four times over 38 months after the spill. Calcu-
lated hydrocarbon biomarker indices indicated that oil replaced native natural or-
ganic matter (NOM) originating from Spartina alterniflora and marine phytoplankton
in the marshes between May 2010 and September 2010. At all the studied marshes,
the major class- and order-level shifts among the phyla Proteobacteria, Firmicutes,
Bacteroidetes, and Actinobacteria occurred within these first 4 months, but another
community shift occurred at the time of peak oiling in 2011. Two years later, hydro-
carbon levels decreased and bacterial communities became more diverse, being
dominated by Alphaproteobacteria (Rhizobiales), Chloroflexi (Dehalococcoidia), and
Planctomycetes. Compositional changes through time could be explained by NOM
source differences, perhaps due to vegetation changes, as well as marsh flooding
and salinity excursions linked to freshwater diversions. These findings indicate that
persistent hydrocarbon exposure alone did not explain long-term community shifts.

IMPORTANCE Significant deterioration of coastal salt marshes in Louisiana has been
linked to natural and anthropogenic stressors that can adversely affect how ecosys-
tems function. Although microorganisms carry out and regulate most biogeochemi-
cal reactions, the diversity of bacterial communities in coastal marshes is poorly
known, with limited investigation of potential changes in bacterial communities in
response to various environmental stressors. The Deepwater Horizon oil spill pro-
vided an unprecedented opportunity to study the long-term effects of an oil spill on
microbial systems in marshes. Compared to previous studies, the significance of our
research stems from (i) a broader geographic range of studied marshes, (ii) an ex-
tended time frame of data collection that includes prespill conditions, (iii) a more ac-
curate procedure using biomarker indices to understand oiling, and (iv) an examina-
tion of other potential stressors linked to in situ environmental changes, aside from
oil exposure.

KEYWORDS Deepwater Horizon, Gulf of Mexico, PAHs, bacterial diversity, n-alkanes,
organic matter, sediment

Received 4 April 2017 Accepted 11 July 2017

Accepted manuscript posted online 4
August 2017

Citation Engel AS, Liu C, Paterson AT,
Anderson LC, Turner RE, Overton EB. 2017. Salt
marsh bacterial communities before and after
the Deepwater Horizon oil spill. Appl Environ
Microbiol 83:e00784-17. https://doi.org/10
.1128/AEM.00784-17.

Editor Harold L. Drake, University of Bayreuth

Copyright © 2017 American Society for
Microbiology. All Rights Reserved.

Address correspondence to Annette Summers
Engel, aengel1@utk.edu.

MICROBIAL ECOLOGY

crossm

October 2017 Volume 83 Issue 20 e00784-17 aem.asm.org 1Applied and Environmental Microbiology

 on O
ctober 25, 2017 by U

S
G

S
 Libraries

http://aem
.asm

.org/
D

ow
nloaded from

 

http://orcid.org/0000-0003-2469-744X
https://doi.org/10.1128/AEM.00784-17
https://doi.org/10.1128/AEM.00784-17
https://doi.org/10.1128/ASMCopyrightv1
mailto:aengel1@utk.edu
http://crossmark.crossref.org/dialog/?doi=10.1128/AEM.00784-17&domain=pdf&date_stamp=2017-8-4
http://aem.asm.org
http://aem.asm.org/


Coastal salt marsh ecosystems are environmentally sensitive and subject to both
marine and terrestrial environmental stressors (1), with stressors defined as condi-

tions or parameters in excess of their normal range and variability that may adversely
affect how communities function (2, 3). Significant deterioration of salt marshes along
the Louisiana coastline has been linked to natural stressors (in many cases exacerbated
by anthropogenic activities), such as hurricanes, sea-level rise, subsidence, and dimin-
ishing sediment supply (4–8) and to direct anthropogenic stressors from canal devel-
opment, introduction of invasive species, pervasive nutrient pulses, pollutant accumu-
lation, and freshwater flooding due to river diversions (9–11), as well as from accidents
such as chemical and oil spills (12 and 13–16). The Deepwater Horizon (DWH) explosion
and Macondo Prospect well blowout in the Mississippi Canyon Block 252 (MC252) on
20 April 2010 released an estimated 4.9 million barrels of Louisiana sweet crude oil into
the Gulf of Mexico (17). Shoreline Cleanup Assessment Techniques (SCAT) teams
surveyed 7,058 km of northern Gulf coastline, finding that 1,773 km had trace to heavy
oiling (18) (Fig. 1). Marshes comprised approximately 45% of the surveyed coastline,
with roughly 95% of the oiled marshes being in Louisiana (19).

Insights into ecosystem resistance, resilience, and recovery can be gained following
a disturbance like an oil spill by monitoring changes in biodiversity and community
structure through time, including at the microbial level (16, 20–22). However, although
microorganisms are known to regulate marsh biogeochemical reactions (6, 23, 24),
predicting whether and how marsh microbial communities would respond to the DWH
oil spill was a challenge because diversity had been understudied (8, 16, 25, 26), and
almost nothing was known about community functional redundancy that could en-
hance response and resistance (20, 21, 27–30). Initially, some DWH spill researchers
proposed a swift microbial response (16, 17) because microbes have the capacity to
degrade constituent carbon compounds in oil (31–35) and earlier nutrient enrichment,
metal exposure, and oiling experiments provided evidence that marsh communities
could withstand low levels of disturbance from an oil spill (25, 36). Short-duration
studies based on research conducted during one sampling time or from �6 to 9
months of sampling events in 2010 and 2011 confirmed that the relative abun-
dances and species richness for bacterial communities exposed to weathered oil
residues changed through time and recognized a greater diversity among known
hydrocarbon-degrading bacteria as the amount of petroleum hydrocarbon concen-
trations increased (37–40). Although a cascading series of long-term biogeochemi-
cal consequences, due to the microbial response, was anticipated for the marsh
ecosystem (41), some of the earlier studies suggested a faster-than-expected
recovery (16, 42). This assessment was likely premature because high concentra-
tions of weathered oil and oil residues, trapped by salt marsh vegetation, lingered
for more than a year after the spill and were expected to persist under anoxic
conditions for potentially decades (43–46). Therefore, the long-term effect of the
spill on marsh microbial communities, and the implications for coastal ecosystems
overall, still remain unclear because long-term studies of marsh microbial commu-
nities have been needed (47, 48).

Our research was motivated by the need to understand the long-term conse-
quences of oiling on marsh bacterial community compositions, and our investigation
differed from earlier DHW studies in several ways. Although some marshes in the
northern Barataria Bay were previously examined following the DWH spill (40, 42), we
expanded the geographic extent of study across three different regions of southern
Louisiana to include salt marshes in Breton Sound and Terrebonne Bay, which have not
been intensely studied (49). We also collected data before any of the marshes were
oiled in May 2010 and evaluated bacterial communities in the context of natural,
preexisting environmental gradients that could also be considered natural stressors,
including those caused by inundation frequency, salinity, temperature, and redox
fluctuations, as well as vegetation changes, without the potential effects of specific
normal (n)-alkane and/or polycyclic aromatic hydrocarbon (PAH) compounds intro-
duced from the oil spill. We sampled the same marshes up to 38 months after the spill
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and tracked changes among the types and amounts of organic carbon (C) sources from
petroleum or natural (i.e., native) organic matter (NOM), including vascular plants and
marine phytoplankton, more accurately by using calculated refractory biomarker indi-
ces of n-alkane and PAH compounds.

FIG 1 Maps from Shoreline Cleanup and Assessment Technique (SCAT) observation data from the Deepwater
Horizon Response and the Natural Resource Damage Assessment, available from the Environmental Response
Management Application (ERMA) online mapping tool (https://erma.noaa.gov/gulfofmexico/erma.html#) (117),
with base maps adapted from OpenStreetMap under a Creative Commons license. (A) Cumulative SCAT oiling
shoreline observations from 19 May 2010 through 29 May 2010, which bracketed the first sampling time in this
study. (B) Cumulative SCAT oiling shoreline observations from 17 September 2010, after the second sampling time
in this study when new sites were added. (C) Cumulative SCAT observations done 30 September 2014 show
maximum shoreline oiling (120).
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RESULTS AND DISCUSSION
Vegetation changes due to flooding history and oiling. One goal of our study

was to understand how the natural environmental gradients occurring before and after
the DWH oil spill influenced bacterial community compositions. A marsh’s inundation
history, and particularly salinity fluctuations, can affect oxygen and nutrient availability,
herbivory rates, sedimentation, and plant composition and productivity, which could all
lead to changes in the microbial system, without any confounding oiling effects
(50–52). To supplement our field data (see also Table S1 in the supplemental material),
we used data reported in the Coastwide Reference Monitoring System stations (http://
www.lacoast.gov/crms2/Home.aspx) to evaluate potential relationships from 2007 to
2014 among some of the natural environmental factors related to inundation, daily
water level, salinity, and temperature. The results from analyzing this 7-year data set
indicated that the American Bay marshes nearest river diversions were experiencing
more frequent periods of inundation before the oil spill (Fig. 2B). According to pairwise
comparisons of data from the sampled marshes grouped by time, the measured inland
water depth at 10 m also differed significantly over time (nonparametric permutational
multivariate analysis of variation [NPMANOVA] F � 6.59, P � 0.0012) (see Table S2a in
the supplemental material), with marshes in all the regions except Bay Batiste being
flooded more frequently over the course of the study. During the time of the oil spill,
water salinity differed significantly between September 2010 and June 2011 and
between June and September 2011 (see Table S2b in the supplemental material). The
difference in the first time period was likely because river diversions in southern
Louisiana were opened to full capacity from late April through October 2010 in an
attempt to inhibit oil penetration inland (53, 54), even though freshwater flooding
negatively impacts fisheries and oyster abundances (55).

We originally sampled only Spartina alterniflora marshes, but the plant diversity at
some marshes increased over time to include Spartina patens, Juncus roemerianus,
Distichlis spicata, and Aster spp. (see the additional data and Table S3 in the supple-
mental material). Vegetation die-off was not observed at the marshes sampled, unlike
marshes in other studies (see, for example, reference 42). The S. alterniflora canopy
height was used as a rough proxy for plant health and productivity in the absence of
stem density information for all of the marshes sampled through time (see, for example,
reference 56). Despite modest increases due to seasonal growth at some locations, S.
alterniflora height significantly decreased at 6 of the 11 marshes (F � 3.76, P � 0.012)
(Table 1 and Fig. 2C; see Table S2c in the supplemental material). Plant height changes
did not link to temperature, salinity, or inundation history, but negatively correlated
with inland n-alkane concentrations (Fig. 2D; Spearman’s rho �0.47, P � 0.0016) and
PAH concentrations (Fig. 2E; rho � �0.50, P � 0.001), which also differed significantly
over time. The highest hydrocarbon concentrations were in September 2011, which
was more than 1 year after the spill (Fig. 2D and E; see also Tables S2d and S2e in the
supplemental material). The negative effects of oiling on S. alterniflora aboveground
biomass and productivity are known (57), but the expectation was that the vegetation
would recover postspill (16, 42). Instead, our results showed significant plant height
reduction, which match the results from other long-term, postspill studies indicating oil
exposure diminished vegetation health and productivity (58, 59) and contributed to
accelerated shoreline retreat (60, 61).

Changes in the sources of organic C and weathered oil residues. The organic C
contributions from vegetation, phytoplankton, and petroleum at each of the marshes
over time were determined from calculated refractory biomarker indices for the
n-alkanes (see Table S4 in the supplemental material). The higher concentrations of
long-chain homologues (nC24 to nC35) with an odd-to-even C number preference
reflect biogenic contributions, which were predominately from higher plant epicuticu-
lar leaf waxes (62, 63). The odd-to-even C number preference, and dominance of
longer-chain compounds for samples collected in May 2010, indicated that plants
primarily contributed to marsh NOM, with a secondary input from autochthonous

Engel et al. Applied and Environmental Microbiology

October 2017 Volume 83 Issue 20 e00784-17 aem.asm.org 4

 on O
ctober 25, 2017 by U

S
G

S
 Libraries

http://aem
.asm

.org/
D

ow
nloaded from

 

http://www.lacoast.gov/crms2/Home.aspx
http://www.lacoast.gov/crms2/Home.aspx
http://aem.asm.org
http://aem.asm.org/


FIG 2 (A) Location map for salt marsh sampling from 2010-2013, with the base map adapted from Open Street Maps and visualized by
ArcGIS Online (Esri). Sampled marsh locations correspond to the year and sample number listed on Table 1, without the “ELM” prefix, and
are color-coded in panels A, C, D, and E. (B) The percentage of time during a year that the marsh surface is above mean sea level or,
conversely, the amount of time a marsh surface is flooded, according to Coastwide Reference Monitoring System (CRMS) station data
(http://www.lacoast.gov/crms2/Home.aspx). Stations are color-coded to match the closest sampled marsh. Marshes in American Bay and
Terrebonne Bay are flooded more frequently than marshes in Barataria Bay. (C) Canopy height of Spartina alterniflora at 10 m inland for
each marsh over time. (D and E) Total n-alkane concentrations (D) and aromatic compound concentrations (E) for each of the marshes
over time. The black arrows for panels C to E refer to major meteorological events during the sampling, including Topical Storm Bonnie
(25 July 2010), Tropical Storm Lee (4 September 2011), and Hurricane Isaac (29 August 2012).
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sources. The nC29 homologue dominated, and the average proportion of wax (indicated
by the %wax values) was �81% (range, 70.5 to 97.4%), which corroborated previous
findings from pristine salt marshes that plant wax contributes from 80 to 87% (64)
to � 90% (62) of the NOM. The shorter chain homologues (nC12 to nC23) without an
odd-to-even C number preference have been associated with petroleum (62, 64, 65).
One of the samples collected in May 2010 in Bay Sansbois marshes was dominated by
nC18 and had carbon preference index (CPI) values close to 1, although the SCAT maps
did not indicate any visually apparent oiling at the site at that time.

The concentration of total n-alkanes increased at all sites by September 2010 (Fig.
2D), including at the American Bay and Tambour Bay marshes where the SCAT maps
did not indicate any oiling over time (Fig. 1C and Table 1). For about half of the marshes
sampled, the nC18 became the peak compound (see Table S4 in the supplemental

TABLE 1 Summary of marsh vegetation and physicochemistry, organized by location and sampling eventsa

Geographic location
and site no.

Sampling
time

Water
temp (°C)

Salinity
(psu)

Inland at 10 m Offshore Edge at 1 m

SCAT 2010
and 2014 max
oiling categories

Canopy
ht (cm)

Water
depth
(cm)

Total n-
alkanes
(mg kg�1)

Total
aromatics
(�g kg�1)

Sediment
% H2O

Sediment
% Org C

Total n-
alkanes
(mg kg�1)

Total
aromatics
(�g kg�1)

American Bay
ELM-10-001 May 2010 29.7 2.69 110 5 0.4 8.0 55.4 6.3 NM NM No oil
ELM-10-042 Sept 2010 31.3 4.22 85 3 3.9 61.4 48.2 5.8 0.8 21.2
ELM-11-056 June 2011 28.7 13.93 75 0 5.8 64.3 62.9 9.0 2.7 58.8
ELM-11-105 Sept 2011 29.3 9.6 71 0 4.5 98.4 66.2 14.0 3.0 110.1
ELM-13-001 Aug 2013 31.8 6.12 119 0* 2.3 117.4 52.9 7.56 NM NM No oil
ELM-10-003 May 2010 30.3 3.31 88 3 0.5 10.9 80.1 30.2 NM NM No oil
ELM-10-041 Sept 2010 30.3 5.13 90 1 3.5 105.0 73.5 20.9 1.0 28.6
ELM-11-055 June 2011 28.3 19.01 55 0 7.3 134.8 69.5 20.5 6.3 62.48
ELM-11-104 Sept 2011 29.2 9.0 67 0 9.4 282.3 77.0 26.4 8.1 211.1
ELM-13-003 Aug 2013 31.5 5.36 79 0* 3.1 117.6 82.8 26.1 NM NM No oil

Bay Sanbois, Northern
Barataria Bay

ELM-10-015 May 2010 31.8 8.77 142 13.5 0.5 10.2 89.2 68.7 NM NM No obs.
ELM-10-044 Sept 2010 30.8 8.55 100 2.5 4.3 93.6 82.8 34.8 1.8 52.4
ELM-11-109 Sept 2011 29.5 9.9 76 0 22.5 536.8 88.7 65.6 15.7 545.5
ELM-13-015 Aug 2013 31.0 9.41 64 0* 17.8 516.7 91.9 67.9 NM NM Moderate
ELM-10-016 May 2010 32.1 8.53 101 1 1.3 26.8 82.9 34.0 NM NM No obs.
ELM-10-043 Sept 2010 29.9 8.47 104 0 4.8 150.0 79.4 30.9 2.0 70.4
ELM-11-110 Sept 2011 30.6 9.8 81 0 25.0 542.2 90.6 54.3 25.6 707.3
ELM-13-016 Aug 2013 30.7 9.33 76 0* 10.2 244.9 76.4 32.3 NM NM No oil

Tambour Bay,
Terrebonne Bay

ELM-10-027 May 2010 28.1 16.16 78 7 9.6 96.9 60.2 10.9 NM NM No obs.
ELM-10-051 Sept 2010 30.2 16.27 80 0 2.4 131.0 47.1 5.5 2.0 394.0
ELM-11-085 June 2011 27.2 15.64 55 0 3.1 149.8 63.9 13.3 3.3 85.5
ELM-13-027 Aug 2013 30.3 20.46 61 0* 11.2 355.0 31.9 3.11 NM NM No oil
ELM-10-028 May 2010 28.8 15.76 98 16 0.9 30.5 49.3 14.2 NM NM No obs.
ELM-10-052 Sept 2010 30.6 13.57 85 0 2.1 98.4 57.5 10.2 0.8 230.0
ELM-11-086 June 2011 27.7 15.24 100 2 5.2 155.6 52.2 8.2 2.1 315.2
ELM-13-028 Aug 2013 30.4 17.85 53 0* 4.6 524.0 55.9 10.0 NM NM No oil

Grand Bayou Bourbeux,
Terrebonne Bay

ELM-10-049 Sept 2010 32.5 10.65 100 0 9.9 184.0 82.6 29.8 2.3 114.0 No oil
ELM-11-083 June 2011 27.4 14.48 107 0 5.9 229.3 79.3 37.9 13.5 169.0
ELM-11-116 Sept 2011 28.8 13.8 75 0 7.4 313.4 84.8 29.5 27.1 699.1 Moderate
ELM-10-050 Sept 2010 33.6 11.72 100 0 3.2 71.2 56.4 53.5 30.1 882.0 Light
ELM-11-084 June 2011 28.3 15.83 70 1 9.4 282.3 41.8 6.6 6.7 714.0
ELM-11-115 Sept 2011 29.0 14.12 51 8.75 9.6 235.2 79.3 19.5 15.0 269.2 Moderate

Bay Batiste, Northern
Barataria Bay

ELM-10-046 Sept 2010 30.8 7.39 80 0 78.1 24.9 5.0 614.0 3.3 87.4 No obs.
ELM-11-058 June 2011 28.7 13.23 95 0.5 78.2 17.4 4.7 104.4 16.6 771.0
ELM-11-106 Sept 2011 26.2 9.6 64 0 77.5 17.4 7.9 195.9 6.5 194.32 No oil
ELM-10-045 Sept 2010 31.1 8.64 105 0.5 69.2 17.0 1.0 34.8 2.2 60.5 No obs.
ELM-11-082 June 2011 29.5 12.93 120 10 80.8 28.7 12.2 148.8 7.4 191.7
ELM-11-108 Sept 2011 29.5 10.2 74 0 74.7 19.5 8.5 219.5 8.2 334.5 Heavy
ELM-11-059 June 2011 28.9 13.16 100 0 52.0 34.2 227.8 8,880.3 4.0 106.8 No obs.
ELM-11-107 Sept 2011 27.3 10.3 73 0 75.3 16.0 7.0 574.6 9.5 360.9
ELM-13-047 May 2013 30.2 8.1 100* 0 82.5 26.9 4.3 153.5 NM NM Heavy

aThe total n-alkane and total aromatic hydrocarbon concentrations are reported for 10 m inland and 1 m from the marsh edge (from Turner et al. [46]). Sediment
water and organic C content were measured from offshore sediments that correspond to microbiological samples. Shoreline oiling categories from SCAT data, ranked
as no oil to heavy oiling, are included, observed 19 to 29 May 2010 and from maximum cumulative oiling by 30 September 2014 at the sampled marshes (120)
(Fig. 1). *, estimated. NM, not measured. No obs., no SCAT observations were made for May 2010.
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material), although the concentrations were not significantly different from those in the
samples collected in May 2010 (see Table S2d in the supplemental material). One
explanation for the increase in n-alkane concentrations could be that plant-sourced
n-alkanes can accumulate seasonally, perhaps because of resistance to microbial deg-
radation (66). However, if the higher n-alkane concentrations were due solely to plant
maturation and limited decomposition throughout the year, or particularly during and
after the summer growing season, then the hydrocarbon distribution patterns and
relative abundances of specific n-alkanes (e.g., nC29) should have remained relatively
unchanged over time (67). By June 2011, however, n-alkane concentrations differed
significantly from values in May 2010, with the proportion of wax contributions
decreasing, the CPI values dropping to �1, and the Pr/Phy ratios decreasing from
values indicative of terrestrial NOM to values indicative of fresh petroleum deposited
under anoxic conditions (63) (see Tables S2d and S4 in the supplemental material).
Higher abundances of low-molecular-weight (LMW) n-alkanes (e.g., nC10 to nC19)
peaked in September 2011 for most sites, at up to 25.0 mg kg�1 (see Table S4 in the
supplemental material). Moreover, half of the marshes had n-alkane biomarkers denot-
ing oil contamination, despite the lower concentrations due to the effects of abiotic
weathering and biodegradation over time (44).

Most of the earlier DWH studies did not consider how the heterogeneous, weath-
ered oil residues could linger in marsh sediments for years (32, 43) or become
redistributed by storms years after the main oiling. We detected oil up to 100 m into
the marshes by late 2011 (46), which contradicted earlier studies that claimed oil was
restricted to shoreline edges (42, 58). The remobilization and burial of oil likely occurred
after Tropical Storm Lee in 2011 and also after Hurricane Isaac in 2012 (Fig. 2D and E)
(45, 46). Hydrocarbon concentrations peaked in late 2011 for some Barataria Bay
marshes that were along the storm path. None of the sampled marshes in this study,
therefore, were free of petroleum hydrocarbons, although the SCAT mapping of
cumulative oiling (ending in 2014) indicated that there was no apparent oiling at some
locations (Fig. 1C and Table 1). The inconsistency is understandable, because the SCAT
mapping is based on observations of oil along shorelines, rather than measuring
hydrocarbon compounds from collected soils and sediments. Therefore, even if the
marshes did not look contaminated by oil, especially for the light oiling category, the
oil may have been incorporated into the inland soils and subtidal sediments but not
visually observed.

The total n-alkane concentrations in August 2013 increased in the Terrebonne Bay
marshes but decreased in the Barataria Bay marshes (Fig. 2D). The biomarker calcula-
tions in both regions suggested that the organic C contributions were from vegetation
and not oil, although some LMW n-alkanes were still detected at low concentrations,
particularly at the Terrebonne Bay sites (see Table S4 in the supplemental material). The
CPI values were also significantly different in 2013 compared to in 2010 and 2011 (see
Table S2f in the supplemental material), but the Pr/Phy ratios increased and were
comparable to May 2010 prespill ratios, thereby suggesting alkane degradation (63, 68).
Evidence of biodegradation was noted by others (38, 40, 69, 70). By June 2013, the
concentrations of n-alkanes and PAHs were 1 and 5%, respectively, of early 2011
concentrations, which confirmed that petroleum hydrocarbons were still present in the
marshes, but at lower levels likely due to sediment sequestration, weathering, and
degradation (68).

Petrogenic and pyrogenic (i.e., from combustion of grass, wood, or coal) sources
were determined from the sediments and soils using the PAH compound concentra-
tions and molecular ratios. Total PAH concentrations remained elevated through 2013
compared to prespill values at most marshes, and the Flu, Phe, and Chry concentrations
were higher in 2011 than in 2010 (Fig. 2E; see Tables S5 and S2e in the supplemental
material). We expected that the PAH compound concentrations would generally de-
crease as the molecular weight increased because the half-lives for LMW PAH com-
pounds, which have higher volatility and enhanced bioavailability, range from �10 to
120 days, and the half-lives for high-molecular-weight (HMW) compounds, like BaP,
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range from 200 to �1,400 days (71). We also expected that biodegradation should have
decreased PAH levels from the time of initial oiling (35, 37, 72). However, the concen-
tration of PAH compounds increased over time, and the molecular ratios of key PAHs
indicated that the source(s) also changed (see Fig. S1A and B in the supplemental
material). Specifically, the Phe0/An values, which can suggest a petrogenic source if
over �15, significantly differed for all the sampled marshes (F � 8.44, P � 0.0001) (see
Table S2g in the supplemental material), and by 2013 these values indicated a pyro-
genic source. Further, the pyrogenic index (PI) values (see Fig. S1C and D in the
supplemental material) also revealed a shift from petrogenic to pyrogenic PAHs at most
of the marshes (62, 73). For inland samples, pyrogenic PAHs correlated with higher CPI
values from n-alkanes, which were indicative of, and confirmed, the return to plant wax
contributions (see Fig. S1E and F and Table S4 in the supplemental material).

Collectively, the weathered oil residues were geographically widespread throughout
southern Louisiana, and the highest concentrations of oil residues in the marshes we
sampled occurred from June through September 2011, despite previous reports from
near Grand Isle, Louisiana, claiming that peak oiling occurred before March 2011 (74),
or that peak oiling occurred in northern Barataria Bay marshes only months after the
spill (40, 42). In addition, our analyses indicated that the petrogenic hydrocarbon
contributions to marshes decreased after September 2011 when marsh vegetation and
4- to 6-ring HMW PAHs dominated NOM. The increased PAH levels, up to 542.2 �g
kg�1, may be due to preferential sorption onto the plant-dominated NOM and anoxic
sediments over time (75), which would also manifest as a shift from petrogenic to
pyrogenic PAHs. Although the highest PAH concentrations, in total or as individual PAH
compounds, were below the concentrations thought to induce toxic effects (76), this
PAH source transition likely impacted the microbial communities because petrogenic
PAHs are generally more bioavailable than pyrogenic compounds (32). However, the
impact of PAHs on marsh sediment microbial communities, as well as to marsh plants
and the ecosystem at large, are still being realized (see, for example, references 35,
77, 78).

None of the marshes in our long-term study could be considered true reference
sites, as they had been exposed to oil residues. However, because some marshes, like
those in American Bay or Terrebonne Bay, had lower cumulative hydrocarbon concen-
trations over time than marshes in Barataria Bay, this provided a low- to high-oiling
gradient from which we could analyze the microbiology data. Incidentally, the wide-
spread distribution of oil throughout Louisiana marshes over time may have compro-
mised the use of reference sites in other marsh microbiology studies after the DWH oil
spill. For instance, Mahmoudi et al. (40) used sample locations of Silliman et al. (42) in
northern Barataria Bay and considered reference sites to be unimpacted by the DWH
spill. However, their references sites had an average concentration of total n-alkanes of
24.5 mg kg�1 (n � 6) and an average total PAH compound concentration of 983 �g
kg�1 (n � 6), values which exceed all but four of our marsh edge samples for n-alkanes
and all but one of our sampled marsh edges for PAH concentrations for any sampling
time (see Table S5 in the supplemental material). These values make it difficult to
understand how these microbiology results could reflect reference, or unimpacted,
conditions. Moreover, other studies, such as that of Atlas et al. (69), have reported TPH
values that are not easily comparable to our data because of methodological differ-
ences, but the TPH values in 2011 and 2013 were orders of magnitude higher than the
combined total concentrations for n-alkanes and PAHs at our sites. Again, the microbial
diversity results at those marsh locations, which were apparently heavily oiled, are
difficult to evaluate as being reference sites that would have been at all comparable to
communities prior to the disturbance.

Bacterial community shifts linked to a changing marsh environment. Of the
997,649 16S rRNA gene amplicons retrieved, there were 436,106 screened, trimmed,
and chimera-removed amplicons used to evaluate bacterial community compositional
changes (see Table S6 in the supplemental material). The taxonomic compositions
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compared by sample depth were not statistically different (P � 0.05) (see Table S7 in
the supplemental material), and so the relative abundances were combined for each
sampling event (see Table S8 in the supplemental material). The bacterial community
compositions did not significantly differ by geographic region but did significantly
differ over time from 2010 to 2013 (F � 9.437, P � 0.00001) (see Table S8 in the
supplemental material) and became more diverse based on H= values (Fig. 3 and 4; see
also Table S6 and S9 in the supplemental material). The calculated Bray-Curtis dissim-
ilarity index (BCDI) values indicated that the May 2010 and September 2010 commu-
nities were compositionally more similar to each other, with BCDI values averaging
0.74. The average H= values decreased between May 2010 (5.09, n � 6) and September
2010 (4.61, n � 10), and diversity increased from June 2011 (5.67, n � 9) to September
2011 (6.58, n � 9) and then decreased again in May to August 2013 (7.08, n � 7). The
community compositions were significantly different between September 2010 and
June 2011 (F � 5.411, P � 0.006), and the lower BCDI values indicated that communities
at each of the marshes had become more dissimilar, with values averaging 0.69. The
communities became more distinct between September 2011 and August 2013 (F �

7.719, P � 0.0003), with the BCDI values averaging 0.62, perhaps because diversity
increased through time. Interestingly, the average BCDI value for only marshes sampled
in August 2013 was 0.84, which was the highest value of all the comparisons and
suggested that the 2013 communities were more similar to each other compositionally
than to the other communities during any of the previous sampling times. Of all the
comparisons, however, the most significant compositional differences were between
May 2010 and August 2013 (F � 17.44, P � 0.00001), which confirmed that pre- and
postspill communities were different.

An increase in diversity following a stress or disturbance has been reported for a
number of other ecosystems (21, 27), if the habitat was not destroyed faster than
organisms could adapt or recover. Other microbiological studies after the DWH oil spill

FIG 3 Shannon diversity index values per sampled marsh through time. Refer to Fig. 2 for sample
locations. Plotted data are color-coded for each marsh location on Fig. 2A, with the sample numbers
listed for each site from Table 1 without the “ELM” prefix.
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also note higher diversity among marsh communities over time (37, 69). The influx of
degradable organic C from hydrocarbons may have contributed to a higher bacterial
diversity (33, 79), as long as the effects of toxicity or overselection of groups capable of
degrading hydrocarbons were minimized (33, 80, 81). Minimizing overselection of
hydrocarbon degraders was not possible, and so it may be that the heavy oiling levels
measured in the Atlas et al. (69) study, and even those of the Mahmoudi et al. (40)
study, caused toxicity because, in contrast to our findings, the lowest H= values in the
Atlas et al. (69) study corresponded to exceptionally high TPH levels, whereby even
their highest H= values correlated to lower TPH concentrations that were still greater
than nearly all of our measured hydrocarbon values.

The Proteobacteria, Firmicutes, Bacteroidetes, and/or Chloroflexi phyla in the marshes
sampled in this study made up more than 70% of the total bacterial communities for
all the marshes over time (Table 2; see also Fig. S2 and Table S9 in the supplemental
material). Several key community shifts were apparent, as evidenced from the BCDI
values (Fig. 5). First, the dominant taxonomic groups at the phylum level changed
between May 2010 and September 2010 from Proteobacteria (Fig. 5A), predominately
Gammaproteobacteria, to Firmicutes (Fig. 5B and Table 2; see also Fig. S2 in the
supplemental material). The relative abundance of Firmicutes negatively correlated with
the concentrations of n-alkanes (rho � �0.56, P � 0.0001) and PAHs (rho � �0.33, P �

0.003), and positively correlated to the lower Phe0/An values indicative of pyrogenic
PAH sources (rho � �0.5, P � 0.0009). Firmicutes were dominated by Clostridiales in
May 2010 (49% of all Firmicutes), but the representation of Bacillales increased as the
overall proportion of Firmicutes decreased by May 2011 when relative abundances of
Thermoanaerobacterales increased (Table 2, Fig. 5B). The Bacillales are known to be
hydrocarbon-degraders (82–84) and Thermoanaerobacterales include taxa capable of
cellulolytic metabolism (85) or syntrophic acetate oxidation with hydrogenotrophic
methanogens (86). This compositional shift could be associated with changes in the

FIG 4 Comparisons between concentrations of total n-alkanes and aromatics and Shannon diversity values over
time for marsh edge measurements (A and B) and 10-m-inland measurements (C and D), with May 2010 data
(inland hydrocarbon only) being solids squares and August 2013 (inland hydrocarbon only) being closed green
diamonds.
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availability and type of organic C sources, from plant-derived NOM to oil-derived
organic C and then back to plant-derived NOM or to a change in the sediment redox
status or the salinity of water flooding the marshes.

Another major taxonomic shift occurred after September 2010 among the
proportions of gamma-, alpha-, and deltaproteobacterial classes (Fig. 5C to E). For
the Gammaproteobacteria (Fig. 5C), the proportion of Pseudomonadales (represented by
Pseudomonas and Alkanindiges spp., known hydrocarbon degraders) in May 2010 was
higher than the other orders until September 2010 when the proportion of Xanthomon-
adales increased and Enterobacteriales spiked. The Enterobacteriales were predomi-
nately represented by Serratia, Citrobacter, Klebsiella, and Raoultella, all genera previ-
ously associated with hydrocarbon degradation (83, 87, 88). Other groups, however,
decreased, such as the Rhodobacterales that are known to be oil- and PAH degraders
during the DWH oil spill and elsewhere (89–93) and have been implicated in DWH oil

FIG 5 Average changes in relative abundances (R.A.) for all of the sampled marshes at specific times for the classes within the Proteobacteria phylum (A), orders
within the Firmicutes phylum (B), orders within the Gammaproteobacteria class (C), orders within the Alphaproteobacteria class (D), orders within the
Deltaproteobacteria class (E), and classes within the Chloroflexi phylum (F). The lines shown on the graphs that connect each of the sampling times are only
meant to guide the eye between comparisons and do not imply a continuum of data over the 38 months of study.
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degradation in other coastal habitats (40, 94, 95). Our results differ from those of
Mahmoudi et al. (40), who detected more Rhodobacterales in marshes 5 months after
the spill from northern Barataria Bay. Other known hydrocarbon-degraders retrieved in
high abundances during the spill in the open ocean (e.g., Oceanospirillales and Altero-
monadales) (90, 92, 96, 97) were encountered in much lower abundances in the marsh
sediments that we analyzed.

Through September 2011, the proportions of Gammaproteobacteria decreased as
hydrocarbon concentrations increased (rho � �0.44, P � 0.004 for inland n-alkanes;
rho � �0.49, P � 0.001 for inland PAHs), despite relative increases during this time for
some orders of known oil degraders (i.e., Chromatiales, Methylococcales, etc.) (33, 93,
98). Moreover, the proportion of Alphaproteobacteria surpassed Gammaproteobacteria,
as the deltaproteobacterial diversity increased to over 26% of the Proteobacteria (Table
2 and Fig. 5A). The proportion of Alphaproteobacteria positively correlated to n-alkane
(rho � �0.3, P � 0.05) and PAH levels (rho � �0.51, P � 0.0007), and specifically to
pyrogenically sourced PAHs and a return to plant-derived NOM for the marsh sedi-
ments. The alphaproteobacterial representation also shifted, with a decrease in Rho-
dobacterales (represented by Oceanicola, Paracoccus, Roseicyclus, and Loktanella) and
an increase in Rhizobiales (represented by C1 metabolizers Methylosinus, Hyphomicro-
bium, and Methylovirgula spp.) (Fig. 5D). The proportion of Deltaproteobacteria, domi-
nated by Desulfobacterales and increasing to the highest relative abundances in Sep-
tember 2011 (Fig. 5E), also positively correlated to the concentrations of n-alkane
(rho � �0.47, P � 0.002) and aromatics (rho � �0.47, P � 0.001). These prevalent
groups of sulfate-reducers are considered major hydrocarbon degraders (32). Sulfate
reduction, in general, has been linked to high rates of MC252 oil degradation in marsh
sediments (34, 37, 69, 99).

By August 2013, the Rhodobacterales replaced Rhizobiales, and the Gammaproteo-
bacteria were predominately associated with putative sulfur cycling, including the
unclassified genera Thiohalobacter, Thioprofundum, and Sedimenticola and the Chroma-
tiales genera Ectothiorhodosinus and Thiohalospira. The shift to more sulfur and sulfide
oxidizers at shallow sediment depths through time likely reflects the increased abun-
dances of putative sulfate reducers belonging to the Deltaproteobacteria, specifically
associated with the timing of higher petroleum-derived hydrocarbon concentrations in
the sediments but also to a potential shift in the redox state of the sediments because
of greater water depths over the marshes.

Another notable change in phylum-level representation was between September
2011 and August 2013, when the Chloroflexi represented by the Anaerolineae and
Dehalococcoidia classes became the second most abundant phylum after Proteobacte-
ria (Table 2 and Fig. 5F). The Chloroflexi are associated with natural hydrocarbon seeps
(100), anaerobic pipelines (101), and oil contaminated experiments (81, 102, 103). The
relative abundances of Chloroflexi positively correlated to the concentration of total
inland n-alkanes (rho � 0.46, P � 0.002), to total aromatics (rho � �0.66, P � 0.0001)
and, interestingly, to the presence of J. roemerianus (rho � �0.31, P � 0.04). However,
the Chloroflexi were also negatively correlated to the Phe0/An values, which are
indicative of petrogenic hydrocarbon sources (rho �0.63, P � 0.0001), suggesting an
affinity to pyrogenic PAH compounds. The relative abundances of Dehalococcoidia
peaked in September 2011 and surpassed the abundance of Anaerolineae (Fig. 5F).
Most Dehalococcoidia are associated with dehalogenation (104, 105), but uncultured
groups have been retrieved from, if not considered dominant in, shallow marine
sediments associated with sulfur cycling and organic C oxidation, specifically of aro-
matic compounds (106), which corroborates the noted shift among the major gamma-
proteobacterial groups associated with sulfur metabolism.

Salt marshes are dynamic, heterogeneous systems that are affected by daily, sea-
sonal, and annual processes that affect microbial community structure and composition
(24, 29, 51, 107). Therefore, we used nonmetric multidimensional scaling (NMDS)
analysis to explain community compositional changes through time as a function of the
different environmental parameters that were statistically different or that correlated to
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bacterial community membership, including salinity, temperature (as a proxy for sea-
son), inland water depth, inland canopy height, the presence of J. roemerianus and D.
spicata plants, inland concentrations of n-alkanes and aromatics, and CPI and Phe0/An
values indicative of petrogenic oil sources. Marsh communities clustered more closely
in NMDS space by time and not region (Fig. 6A). Changes in the ordination of each
marsh community through time, based on the prevalent changes in the bacterial
community composition (Fig. 6A), also followed similar trajectories through time (Fig.
6B to G). Marshes with the highest measured hydrocarbon concentrations (e.g., Bay
Batiste, Terrebonne Bay; Fig. 6B to F) had bacterial communities separated by the most
distance across NMDS space (e.g., from the far left side to the far upper-right corner),
particularly between September 2010 (Fig. 6A, triangles) and September 2011 (Fig. 6A,
stars). These distances represented the greatest changes in organic C concentrations at
those marshes and shifts from oil- to plant-derived NOM. Those marsh communities
also had higher relative abundances of Chloroflexi and Deltaproteobacteria in Septem-
ber 2011 compared to the other marshes (Fig. 6A). Moreover, the NMDS trajectory for
salinity was similar to that of inland concentrations of n-alkanes and aromatics (Fig. 6A),
thereby potentially confounding interpretations of whether salinity or oiling could be
used to explain community shifts through time. However, marshes with the greatest
salinity excursions (American Bay, Fig. 6G) also had lower hydrocarbon concentrations
(Table 1) and experienced an increase in J. roemerianus vegetation; the ordination shifts
across NMDS space from June to September 2011 were accounted for by these
dimensions. By August 2013 (Fig. 6A, diamonds), all marsh communities clustered
together in NMDS space, shifting from the September 2011 positions along dimensions
of vegetation, CPI and Phe0/An values, and n-alkane and PAH concentrations. The 2013
community ordinations were proximal to the May 2010 communities, despite the
compositions being significantly dissimilar to each other. The ordination of 2010 and
2013 marsh communities in NMDS space likely reflected the influence by organic C
sourced from vegetation and not oil residues.

Concluding perspectives. Unraveling the long-term consequences of the DWH oil
spill on marsh ecosystems is difficult because of inadequate baseline information on
community composition and dynamics prior to the disturbance, particularly at the
microbial level (47, 48). Our research focused on understanding the long-term effects
of oiling on marsh bacterial communities by simultaneously assessing how natural
environmental gradients that could be considered natural stressors influenced com-
munity compositions. The prespill samples, collected before oiling in May 2010 from
across a broad geographic area throughout southern Louisiana, provided unprece-
dented insight into the baseline composition of sediment bacterial communities that
were influenced by plant-sourced NOM, salinity, and inundation history without any
confounding influences of oil.

In contrast, other studies of the DWH oil spill started within months of the spill, or
after peak oiling by as much as one to 2 years (37, 42, 69, 99). Comparing our findings
with results from those earlier studies indicates that the DWH oil spill appeared to cause
a rapid response among bacterial communities from salt marshes (37, 40, 42), the open
ocean (90, 96, 97, 108–110), and sandy beaches (94, 95, 111–114). Initially, we observed
that marsh bacterial communities were dominated by Proteobacteria, which were replaced
by Firmicutes only 4 months later. Within the proteobacterial classes, such as the Gamma-
proteobacteria and Deltaproteobacteria, order-level shifts, particularly among putative
hydrocarbon-degrading taxa, correlated with changes in the concentrations of petroleum
hydrocarbons and salinity reductions due to freshwater diversions affecting each marsh
location. By 1 year after the spill, none of the sampled marshes were free of oil and overall
bacterial diversity was higher. Several distinct taxonomic shifts corresponded to changes in
plant height and type, salinity, and periods of inundation, as well as the relative
contributions of petrogenic versus pyrogenic hydrocarbons introduced into the marsh
sediments. Despite the specific environmental conditions at each of the marshes
sampled, bacterial communities in August 2013 were more compositionally similar to
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FIG 6 (A) NMDS plot of bacterial diversity (color-coded by site number from Fig. 1A) against 10 environmental dimensions (vectors) having
statistical significance based on NPMANOVA tests (P � 0.05). Sampling times are plotted with distinct shapes for each of the sampling times.

(Continued on next page)
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each other than to any other time period sampled. Furthermore, these communities
were significantly different than the prespill, baseline communities.

Unlike earlier studies of salt marshes (40, 69), the open ocean (97, 109, 110), and
beaches (114), we did not find evidence of bacterial communities returning, or recov-
ering, to a prespill community of non-oil degraders within months to a year after the
spill. The difference is most likely caused by the brief sample collection intervals used
in those earlier studies, which could have inaccurately addressed the potential effects
of persistent oil residues in the anoxic sediments and soils on the bacterial communities
(44, 45), as the degradation of n-alkanes and PAHs would take years to decades,
respectively, to return to pre-DWH conditions (46). The 2013 results of our study also
indicate that recovery had not occurred because the postspill community compositions
were significantly different from prespill compositions. Without a clear indication that
recovery is possible or will happen, more research is needed. In particular, as our results
have shown, future evaluations will need to control for environmental changes that
likely also induce bacterial community compositional shifts. In addition, continued
monitoring and future (meta)‘omics approaches should uncover whether the expected
functional diversity changes at the base of the marsh ecosystem affected the overall,
long-term biogeochemical cycling and food web dynamics.

MATERIALS AND METHODS
Selection of marshes for sampling and sampling timeline. Because the oil spill was an uncon-

trolled event, with the timing and location of oiling uncertain, we originally sampled over a broad area
of southern Louisiana for a descriptive survey to detect patterns of change in the marshes (115) as a
comparative mensurative experiment (sensu, 116). Site selection and distribution are described by Turner
et al. (46). Briefly, sites were originally chosen based on SCAT mapping of detected weathered oil
residues. These maps were available through the Environmental Response Management Application
(ERMA) online mapping tool (https://erma.noaa.gov/gulfofmexico/erma.html#) (117) from the Office of
Response and Restoration (OR&R) at National Oceanic Atmospheric Administration (NOAA) (Fig. 1A). We
also based sampling on the OR&R trajectory maps for surface oil plume migration. Our first sampling of
Spartina alterniflora-dominated marshes from Breton Sound (American Bay), northern Barataria Bay
(including Bay Sansbois), and Terrebonne Bay occurred before visual oiling was recorded at those sites
(Fig. 1A; see also Table S1 in the supplemental material) (45, 46). Soils and sediments were sampled for
hydrocarbon concentrations, vegetation type and coverage, and faunal diversity at 10 m inland of the
seaward edge of each marsh, and a subset of the marshes were chosen to examine sediment bacterial
diversity from 1 m seaward of the marsh edge, including sites (at the time) that appeared to have limited
oiling and could potentially be considered reference sites (sensu lato 118). SCAT data indicated more
widespread contamination in northern Barataria Bay compared to other bays by September 2010 (Fig.
1B), and additional microbiology sampling sites were added in this region (see Table S1 in the
supplemental material). As the spill continued, highly weathered oil, mousse, and tarballs visibly
impacted shorelines throughout the Gulf in 2011 (44). As such, not all original sites could be resampled,
primarily due to potential exposure of the team and boats to toxic concentrations of oil on the marshes,
but also because of weather conditions (e.g., thunderstorms and high waves) or due to parish, state, or
federal response, cleanup, remediation, and restoration efforts. A few sites had to be moved (less than
100 m away) because of landowner permission or problems with site accessibility during low tides.

Over the 38-month period of study, 11 marsh locations were sampled at least three or four times each
for hydrocarbon concentrations, vegetation type and coverage, and microbiology (Fig. 2A; see also Table
S1 in the supplemental material). The sampling frequency deliberately bracketed S. alterniflora seasonal
growth, with highest biomass generally in September before inflorescence (119), and the periodic
sampling also minimized impact to marsh ecosystems under stress from oiling. Moreover, the tiered
sampling approach, with a subset of locations used for microbial characterization but a larger number
of locations used for hydrocarbon assessment, was similar to the scheme used by Atlas et al. (69),
although our study began prior to oiling and included more sampling events. Specifically, in the Atlas et
al. study (69), which also did not sample during 2012, more than half of the marshes were only sampled
twice, once in 2011 and once in 2013. The broader geographic extent of the sampled marshes in our

FIG 6 Legend (Continued)
Bar graphs around NMDS plot are for representative communities and are used to show compositional changes for dominant phyla and classes
from the sediment samples over time. Changes in diversity according to a Bray-Curtis distance matrix are represented on the two NMDS axes
visualized in two dimensions. Differences in sample ordination correspond to the vector of influence for environmental parameters. The stress
for the data set is 0.09, suggesting the NMDS adequately represents true distances in multidimensional space. (B to G) Trajectories displaying
changes in NMDS ordination of marsh sediment bacterial communities at each marsh, with arrows guiding the eye from sampling event to
sampling event. Symbols correspond to sampling time and symbols are color-coded for sampling locations on Fig. 2A. All of the data from plot
A are represented on these plots, but only specific changes across NMDS space are noted for marshes from similar geographic areas, such as
plots B and C from Terrebonne Bay, plots D, E, and F from northern Barataria Bay, and plot G from American Bay.
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study also captured a wider range of oiling than in the previous studies. Cumulative SCAT observations
through the end of 2014 indicated that the marshes we sampled in northern Barataria Bay received heavy
to moderate oiling, whereas the marshes at American Bay and in Terrebonne Bay received no to
moderate oiling (Fig. 1C) (120).

Sediment characterization, hydrocarbon analyses, and refractory biomarker indices. Subtidal
sediment samples for geochemical characterization and microbiology were collected using a WaterMark
push core sediment sampler with 20-cm long polycarbonate barrels. Cores were taken from 1 to 2 m
seaward of the marsh edge at the sediment-water interface. Variation in sampling distance from the
vegetated edge was caused by irregularities due to terracing or marsh undercutting. Sediment from 0 to
1 cm (labeled “A” depth) and 1 to 2 cm (labeled “B” depth) depths were sectioned aseptically in the boat
into separate sterile Whirl-Pak bags. The samples were kept on ice in the field, frozen within 12 to 24 h
of collection, and kept frozen until analysis. The thawed homogenized aliquots for each depth were
separated in the laboratory to measure total organic water and C content using the loss-on-ignition
method (94). The marsh soil samples for petroleum hydrocarbon analyses used for comparison came
from the top 5 cm of marsh soil at 10 m inland from the marsh edge, as well as from 1 m inland from
the edge (45, 46). Table 1 summarizes the sampling times and basic marsh field data and sediment
analyses. All sediment data for each marsh sample collected are archived in the Gulf of Mexico Research
Initiative Information and Data Cooperative (GRIIDC) database (https://doi.org/10.7266/N7Q23X55).

The target n-alkanes and eight parent PAH compounds and their associated alkyl homologs were
quantified using gas chromatography-mass spectroscopy operated in the selective ion mode, and
compositional matches to MC252 oil were done from qualitative comparisons of specific compound
ratios (45, 46, 60). All petroleum hydrocarbon data collected for previously published studies are archived
in the GRIIDC database (https://doi.org/10.7266/N7Z60KZR), with only those data used in this study
provided as Table S5 in the supplemental material.

Earlier studies following the DWH event report total petroleum hydrocarbon (TPH) concentrations or
bulk concentrations of n-alkanes or PAH compounds (see, for example, 37, 40, and 69). However, TPH
measurements, bulk PAHs, and especially bulk n-alkane concentrations, capture non-petroleum hydro-
carbon source contributions, such as from terrestrial plant leaf epicuticular waxes (62, 67, 121). Therefore,
although total n-alkane concentrations were determined by summing all measured compounds from the
marsh sediment samples (nC10 to nC35), distinction among the different size and size ranges of n-alkanes
was also done because specific NOM sources are linked to these sizes and size ranges. For example, nC14

to nC20 can be attributed to microbial biosynthesis (122, 123). For marine phytoplankton (including
phototrophic and nonphototrophic bacteria), nC17 is the dominant homologue, whereas nC15 or nC17 are
the dominant homologues for algae, and zooplankton have bimodal nC18 and nC24 peak dominance
(122, 124, 125). nC29 is the dominant homologue of S. alterniflora epicuticular plant wax (62). Moreover,
because n-alkanes are stable and can persist for decades or longer under anoxic conditions, various
refractory biomarker indices calculated from the concentrations of specific n-alkanes provide information
about the nature of changes that may have affected n-alkane source distribution through time (see the
supplemental material). The carbon preference index (CPI), average chain length, natural n-alkanes ratio,
percentage of plant wax, and terrestrial-aquatic ratio calculations (see also the supplemental material)
provided more accurate assessments of n-alkane signatures than if considering only TPH and bulk
concentrations alone (63, 126).

The concentrations and molecular ratios of PAH compounds were also compared using previously
described approaches (62, 63, 127). Crude oil has, in general, higher concentrations of alkylated PAH
homologues compared to parent compounds. Naphthalenes, fluorenes, phenanthrenes (Phe), anthra-
cene (An), and alkalyated chrysenes are commonly sourced from petroleum, and HMW compounds such
as the parent pyrene, fluoranthrene, chrysene (Chry), benzo(b)fluoranthene, benz(a)pyrene (BaP), diben-
z(a,h)anthracene, and benzo(ghi)perylene originate primarily from pyrogenic sources or because of the
enhanced weathering of LMW compounds in oils (32). The ratios for parent Phe0 to An and fluoranthene
(Fl) to pyrene (Py) were calculated, and the [Fl/(Fl � Py)] values were compared to the pyrogenic index
(PI) (73) (see also the supplemental material).

Microbiological sample collection. Bacterial diversity was determined from 16S rRNA gene se-
quences that were retrieved from the top 0 to 1 cm and 1 to 2 cm of subtidal marsh edge sediments.
The nucleic acids were extracted using the modified approaches of Somerville et al. (128), Zhou et al.
(129), Mitchell and Takacs-Vesbach (130), and Engel and Gupta (94). Triplicate analyses of up to 2 g of
thawed sediment were aseptically mixed with fresh sucrose lysis buffer (SLB [pH 8.0]; 50 mM Tris-HCl [pH
8.0], 40 mM Na-EDTA, 0.5 M sucrose) and 1 mg ml�1 lysozyme. The lysates were vortexed harshly for 5
min and then placed in a 37°C water bath for 1 h. Each of the cooled sediment lysates were mixed in
triplicate with a solution of (final concentration) 5% sodium dodecyl sulfate, 2.5 mg/ml proteinase K, and
0.1% cetyltrimethylammonium bromide (CTAB) made with SLB. This procedure yielded nine extractions
per sample. The lysates were incubated at 55°C for up to 5 h at 100 rpm and then cooled, and the
supernatant was transferred into 1.5 M ammonium acetate (final concentration) before mixing and
centrifugation. The supernatant was transferred to a 100% cold isopropanol solution before incubation
on ice for up to 4 h. The nucleic acids were pelleted by centrifugation and washed twice with 70%
molecular grade ethanol before eluting in Tris-EDTA (pH 8.0) buffer and storage at �20°C.

After nucleic acid extraction, aliquots were homogenized per sample for tag-encoded GS FLX�
amplicon pyrosequencing using Titanium technologies (Roche 454 Life Sciences, Branford, CT). Sequenc-
ing was done by the Research and Testing Laboratories in Lubbock, Texas, for the May 2010 to May 2011
samples, and by the Molecular Research LP in Shallowater, Texas, for the September 2011 and August
2013 samples. Negative and positive controls were used throughout these procedures, from the initial
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DNA extractions to sequencing. The samples were purified to remove PCR inhibitors and trace humic
substances, and the V1-V3 region of bacterial 16S rRNA genes was amplified using the primers 28F
(5=-GAGTTTGATCNTGGCTCAG-3=) and 519R (5=-GTNTTACNGCGGCKGCTG-3=) (131, 132).

The raw amplicons generated for this study were submitted to the NCBI Sequence Read Archive
(http://www.ncbi.nlm.nih.gov/) under BioProject PRJNA232457 and are also archived at GRIIDC (https://
doi.org/10.7266/N7D21VH8). Summaries of the raw data are provided as Table S6 in the supplemental
material. The taxonomic classifications are included at the phylum level (see Table S9A in the supple-
mental material) and at the class and order levels (see Table S9B in the supplemental material) and are
archived at GRIIDC (https://doi.org/10.7266/N7C8278T).

Amplicon processing, clustering, and taxonomic assignments. The amplicons were sorted ac-
cording to barcodes, and the raw sequence reads were checked for quality, which included eliminating
poor quality reads (�20) or those that were �200 bp long before alignment in the Ribosomal Database
Project (RDP) Pipeline (133) using the RDP Infernal Aligner. Chimera were removed using UCHIME with
USEARCH (134). Nonbacterial rRNA sequences were also removed. A distance matrix was created using
the mcClust complete-linkage clustering algorithm in the Functional Gene pipeline (135) at 0 to 4%
distances, and estimators of operational-taxonomic-unit richness were calculated using the RDP pipeline,
including Chao1 and Shannon diversity (H=) indices (see, for example, reference 136). The taxonomic
assignments from phylum to genus levels were made for all curated amplicons per sample at an 80%
confidence level directly by the RDP Classifier. Values with �80% confidence assignments were consid-
ered unclassified reads.

Comparative statistical analyses. The abundance counts for each of the binned taxonomic units
were adjusted for amplicon library size, and the presence/absence data were used to construct a
Bray-Curtis similarity matrix among sampling times for each of the marshes using the program PAST
(v2.14) (137). The composite of the May 2010 bacterial communities and environmental conditions were
considered the baseline conditions from which all other data were compared. We used nonparametric
permutational multivariate analysis of variation (NPMANOVA) calculations (99,999 permutations of group
membership) to test for the significance of relative taxonomic abundances among samples through time
(138, 139). The F statistics and Bonferroni-corrected P values tested for significant differences in the
means of environmental variables over time. A Spearman’s rank correlation test, reported as rho
coefficients, evaluated environmental variables and abundances of specific taxonomic groups. The
statistical significance for all tests was defined by P values set at alpha � 0.05, but values from 0.05 to
0.1 were recorded to identify potentially weaker relationships. Nonmetric multidimensional scaling
(NMDS) analyses, based on the approach by Taquchi and Oono (140), were computed using a Bray-Curtis
distance matrix of abundance data, and marsh environmental variables, including hydrocarbon data,
were log10(x � 1) transformed (except pH) (see, for example, reference 139). The ordination stress
indicator was set at �0.2.

SUPPLEMENTAL MATERIAL

Supplemental material for this article may be found at https://doi.org/10.1128/AEM
.00784-17.

SUPPLEMENTAL FILE 1, PDF file, 2.0 MB.
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