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Abstract Deltaic landscapes consist of vast wetland systems that rely on sedimentation to maintain their
elevation and ecological communities against relative sea-level rise. In the Mississippi River Deltaic plain,
rising relative sea level and anthropogenic activities are causing land loss that will continue unless vertical
accretion of sediment on the wetland surface is enough to fill the accommodation space. Even though the fate of
the Mississippi Deltaic plain is tied directly to vertical accretion, there is not yet a clear understanding of the
system-wide controls on this process. Here, we investigate vertical accretion in coastal Louisiana using a data
set of 266 stations from the Coastwide Reference Monitoring System (CRMS). Using linear regression models,
we analyze vertical accretion in freshwater-intermediate, brackish, and saline marsh communities. Integrating
results from these models into a Gaussian Process regression model, we predict controls on vertical accretion
rates across the deltaic plain. Consistent with previous studies, our results suggest that tidal amplitude and flood
depth are critical controls on vertical accretion. These effects are additive and marshes with high tidal
amplitudes and flood depths experience the most vertical accretion. Interestingly, the normalized difference
vegetation index is found to be important for predicting vertical accretion, but not because of an increase in
biomass production, but because it records unique marsh communities and flooding regimes. This study
emphasizes the importance of incorporating marsh specific information into predictive models for the vertical
accretion of coastal wetlands and that better predictions of wetland accretion probably require denser
observational data.

Plain Language Summary The Mississippi River Deltaic plain (MRDP) is a threatened landscape as
the Gulf of Mexico encroaches inland due to relative sea-level rise. To prevent further coastal land loss, enough
sediment must be deposited onto the wetland surface to offset the relative sea-level rise. Even though the fate of
the MRDP is directly tied to sedimentation, we still do not have a system-wide understanding of what controls
this process. We used 266 stations that recorded numerous environmental variables from the Coastwide
Reference Monitoring System to investigate the controls on sedimentation. Using a machine learning
framework, we find that tidal amplitude and flood depth have additive effects that positively affect
sedimentation rates. Interestingly, the normalized difference vegetation index is found to be important for
predicting sedimentation, but not due to an increase in biomass production, but because it records unique
wetland communities and flooding regimes. This study emphasizes the importance of building predictive
models for sedimentation that consider specific information about different wetland types.

1. Introduction

The coastal wetlands of the Mississippi River Deltaic Plain (MRDP) contain diverse flora and fauna, and
constitute roughly 37% of the wetlands in the United States (Baustian et al., 2021; Couvillion et al., 2011). Beyond
their ecological importance, these wetlands sequester atmospheric carbon and protect communities against
hurricanes and tropical storms (Barbier et al., 2013; Cahoon et al., 2006; Turner et al., 2006) as well as provide
economically important landscapes for tourism and fisheries. Whether these wetlands survive or disappear in the
face of rising relative sea-level comes down to sediment mass balance (Blum & Roberts, 2009; Brown et al., 2017,
Edmonds et al., 2023; Sanks et al., 2020; White et al., 2019). The MRDP is currently experiencing a sediment
deficit, which means there is not enough sediment input to the wetland surfaces to raise their elevations at the rate
of relative sea level rise, and this results in land loss.

The sediment deficit on the MRDP may have been caused by humans because they have interfered with the
sediment mass balance and disrupted the normal pathways of sediment transport. For example, dam construction
has reduced sediment concentration in the Mississippi River by ~75% since 1890 (Blum & Roberts, 2009; Meade
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& Moody, 2009; Tweel & Turner, 2012; K. Xu et al., 2019). Levee construction in the delta impedes the pathways
of floodwaters that would normally deliver sediment to the wetlands. Subsurface fluid extraction may be
significantly increasing relative sea level (Day et al., 2020; Kolker et al., 2011). These three major causes can
explain the land loss in the Barataria Basin, a part of the delta (Edmonds et al., 2023). Despite these human-
induced disruptions to the sediment transport pathways, land loss in the delta has significantly slowed down
during the last 20 years (Blum et al., 2023; Couvillion et al., 2017; Edmonds et al., 2023; Roy et al., 2020; Sanks
et al., 2020). Sanks et al. (2020) showed that in some parts of the delta, sedimentation may be balancing relative
sea level rise, though significant uncertainty remains because variability in sedimentation is substantial
(Bianchette et al., 2015; Lane et al., 2020). Accurate predictions of land loss on the MRDP strongly depend on
understanding the variables that control vertical accretion and its variability.

In a broad sense, wetland sedimentation or vertical accretion can be derived from organic or inorganic sediment.
The former is associated with both the above- and below-ground production of plant material. The aboveground
biomass contributing to organic accretion consists of the in situ dying of vegetation and leaf litter, while the
belowground biomass accumulation consists of the production of root structures (McKee, 2011; Turner
et al., 2002, 2004; Twilley et al., 2019). Allochthonous organic sediment is also deposited onto the wetland
surface via flood waters (Mariotti et al., 2020). For organic sediment to positively contribute to surface elevation,
it must be preserved instead of decomposing. Microbial activity increases the degradation of organics in the soil
(Hayes et al., 2021); however, anaerobic conditions during inundation can increase preservation by slowing
decomposition rates (Hayes et al., 2021; Reddy & DeLaune, 2008). Differences in both decomposition rates and
burial rates vary along salinity gradients in tidal wetlands, where faster decomposition rates and slower burial
rates are found in more saline wetlands (Nyman et al., 1995; Weston et al., 2011). Furthermore, saline intrusions
have been shown to negatively impact plant growth rates and productivity while enhancing the decomposition of
organic materials (Baustian et al., 2017; Cormier et al., 2013; Curc6 et al., 2002; Janousek & Mayo, 2013; Solohin
et al., 2020; Stagg et al., 2018; Weston et al., 2011; Williams & Rosenheim, 2015). Both effects of salinity reduce
the amount of preserved organic sediment, which manifests as higher soil bulk density with more inorganics
moving toward the coastline (Sanks et al., 2020).

Inorganic sediment in the delta is derived from the creation, breakdown, and transport of geologic material in the
Mississippi watershed, which is eventually deposited along the deltaic plain or offshore (Blum & Roberts, 2012;
Falcini et al., 2012). Much of the vertical accretion of this sediment occurs from episodic floods via the over-
topping of nearby rivers into the adjacent floodplain (J. M. Coleman, 1988; Shen et al., 2015). The adjacent
floodplain can have high shallow subsidence rates and ample accommodation space that readily preserve de-
posits. Shen et al. (2015) found that, on the MRDP, aggradation is episodic with vertical accretion rates from 1 to
4 cm/year that can persist for centuries. Inundation and sediment resuspension from tides, storm surges, and wave
energy have also been shown to accrete wetland surfaces (Bianchette et al., 2015; Cahoon et al., 2006; Cortese &
Fagherazzi, 2022; Turner et al., 2006). While floods deliver a substantial amount of inorganic sediment (Smith
et al., 2015; Turner et al., 2006), they also induce erosion (Tornqvist et al., 2007), which is not always accounted
for in mass balance estimates.

During tidal flooding, sediment from the ocean can also be delivered to wetland surfaces. The provenance of
oceanic-derived sediment is not always clear, but at least in one well-documented case, the sediment discharged
out of the Mississippi Delta river mouths was transported back on shore (Falcini et al., 2012). When the river
mouth sediment plume mixes with the coastal waters of the basin, it can become more diffuse, losing energy, and
thus promoting deposition in the nearby delta (J. M. Coleman, 1988; Falcini et al., 2012). This can result in both
the progradation of the delta and the redeposition of sediment onto the wetland surfaces. On the other hand, if the
coastal currents and wave regimes are not sufficient to diffuse the jet, or if the conditions create density currents
(Lamb & Mohrig, 2009), sediment may be deposited far offshore (Falcini et al., 2012).

To complicate matters, organic and inorganic sedimentation are not independent variables. For example, flooding
delivers inorganic sediment and influences vegetation growth. Inundation, frequency, and depth both affect
vegetation species and their development, leading to spatially coupled ecological and flooding regimes (Evers
et al., 1998; Hiatt et al., 2019; Kirwan & Guntenspergen, 2012; Visser et al., 1999). Depending on the vegetation
type and density, vegetation can enhance or diminish inorganic sediment deposition (Ensign et al., 2014; Mudd
et al., 2010; Nardin & Edmonds, 2014; Y. Xu et al., 2022). This represents a physical and biological coupling
between flooding and vegetation growth with sediment deposition. However, there are few comprehensive
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Figure 1. (a) Schematic of the RSET table recording vertical accretion. (b) Map of coastal Louisiana depicting the different marsh communities, total suspended
sediment estimations, river vectors (blue lines) from the Global River Width from Landsat data set, non-land pixels corresponding to the 90% water occurrence mask,
and average accretion rates at each 266 Coastwide Reference Monitoring System (CRMS) stations used in the machine learning model. The circles highlighted in yellow
represent CRMS stations that experience both tidal amplitudes and flood depths that exceed the 75th percentile of their respective distributions. The CRMS0171 station
is the station used in the results section to explain SHapley Additive exPlanations (SHAP) values (see Section 3.4 for details on SHAP).

studies that investigate how each possible environmental variable drives vertical accretion rates across the
wetlands in the MRDP.

Here, we assess the variables that control the time-averaged total vertical accretion (combined organic and
inorganic) and its variability in the MRDP. We use a data set of 266 stations from the Coastwide Reference
Monitoring System (CRMS) that record vertical accretion and environmental variables. Then, using a machine
learning framework, we determine which environmental variables explain accretion rates across the MRDP. Our
approach consists of three parts. First, we split our data set by wetland community and use feature selection to
determine the variables related to vertical accretion rates. Second, we used the selected features to construct a
predictive model for the vertical accretion rates of each wetland community to determine which variables have the
most predictive power. Finally, we construct a single unified model for vertical accretion across the delta, where
we examine how variables influence accretion within the unified model and explain how this contributes to
vertical accretion of wetlands.

2. Data
2.1. CRMS Stations

In this section we summarize the variables collected at each CRMS site that we use in our model. CRMS is a
distributed monitoring campaign that is part of an initiative enacted by congress in 1990 in response to the
outstanding land loss problem in coastal Louisiana (Couvillion et al., 2017; Steyer, 2010; Steyer et al., 2003).
CRMS provides the most comprehensive wetland monitoring database in the world, and it is used for wetland
management research and to inform mitigation measures to address the land loss problem (Cortese & Fagher-
azzi, 2022; Jankowski et al., 2017; Jensen et al., 2022; Keogh et al., 2019, 2021; Sanks et al., 2020). CRMS
consists of ~401 stations that record co-located sedimentologic, hydrologic, and biologic data on the wetlands
within the MRDP. Each CRMS site also has descriptions of the wetland communities (Figure 1), characterized by
the dominant vegetation species as well as the number of present taxa (Visser et al., 2002).
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Table 1
Brief Descriptions of the 15 Variables Considered in Our Study, Their Sampling Periods, and Source
Environmental variable Sampling method Sampling frequency Sampling duration Source
Soil Porewater (ppt) Insert a water sampling syringe into the upper 10- Variable to annually 2007-2022 CRMS
cm and 30-cm of the soil column
Height Dominant Height of dominant species determined during Annually during peak 2007-2022 CRMS
Vegetation (cm) surveys by percent of coverage growing season, July
to September
Normalized Difference NDVI = IR —Red 8-day average composite 2007-2022 Google Earth
Vegetation Index (NDVI) Taken from Landsat 7 imagery of overlapping Engine
(unitless) images during peak
growing season (July
to September)
Total Suspended Sediment TSS = —1.91 = 1,140.25 (SurfaceBand1) Recurrence every 2 days 2007-2022 Google Earth
(TSS, mg/L) Derived from Moderate Resolution Imaging Engine
Spectroradiometer Satellite following Miller
and McKee (2004)
Wind Speed (m/s) Reanalysis Data from the Global Wind Atlas One characteristic sample 2008-2017 Google Earth
Database Engine
Tidal Amplitude (cm) Difference between daily high and low water Hourly 2007-2022 CRMS
levels
Average Time Flooded (%) Percent time the recorded water level exceeds the Hourly 2007-2022 CRMS
wetland elevation
Flood Frequency (Floods/year) Number of times the recorded water level Hourly 2007-2022 CRMS
exceeds the wetland elevation
Average Flood Depth (cm) Average recorded water level when the water Hourly 2007-2022 CRMS
level exceeds the wetland elevation
90th Percentile Flood 90th percentile of the water level when the water Hourly 2007-2022 CRMS
Depth (cm) level exceeds the wetland elevation
10th Percentile Flood 10th percentile of the water level when the water Hourly 2007-2022 CRMS
Depth (cm) level exceeds the wetland elevation
Standard Deviation of Flood Standard deviation of the water level when the Hourly 2007-2022 CRMS
Depth (cm) water level exceeds the wetland elevation
Distance to Water (km) Distance to nearest 90% recurrence water pixel 8-day recurrence 1984-2015 Google Earth

Distance to River (km)

Vertical Accretion Rate (mm/
year)

from the Global Surface Water data set
(Pekel et al., 2016)

Engine

Distance to nearest river vector from the Global 1 sample Satellite era composite Google Earth
River Width from Landsat Engine
Height of sediment recorded above a feldspar 6- to 12-month intervals 2007-2022 CRMS

layer datum

The variable that we are trying to predict is total vertical accretion (combined organic and inorganic sediment)
deposited at a CRMS station. Starting in 2007, vertical accretion was measured as the thickness of sediment above
a datum, in this case a feldspar layer (Figure 1a, Wager & Haywood, 2022). Vertical accretion measurements are
usually retaken every 6—12 months to provide a time series. These temporal measurements are converted into rates
by dividing the number of decimal years between establishment and sampling times.

There are many different variables collected at each CRMS station, but we narrowed our focus to 10 hydrologic
and sedimentological variables that likely impact sediment transport and deposition processes (Table 1). Hy-
drologic data, describing tides and flood depths, come from a nearby open water channel on an hourly basis with
underwater sondes. The sonde is within 200-m? of the monitoring site on dry land. Tidal amplitude is determined
from the difference between the highest and lowest water levels within a 24-hr cycle. Flood depths are calculated
by subtracting the observed water level from the local land surface elevation of the adjacent monitoring station.
The depths we use are the average and 90th percentile values. We use the 90th percentile of flood depth as an
indicator of extreme events. It might be expected that the 90th percentile of flood depth co-varies with tides, for
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example, during spring tide. While there is a significant relationship (R*> = 0.065, p-value: 2.5¢e—5), the 90th
percentile of flood depth only explains 6.5% of the variance of tidal amplitude. This suggests that non-tidal
flooding processes, perhaps from rivers, hurricanes, or storm surges, may account for the remaining variance.

Sedimentologic data describing soil characteristics, such as grain size, organic matter percentage, organic density,
and bulk density, are derived from three 24-cm cores taken upon site initiation and every subsequent 6-10 years.
Soil grain sizes are described as percentages of sand, silt, or clay (Wager & Haywood, 2022). Organic matter
percentage is measured by dividing the weight of the soil sample after ignition by the dry weight prior to ignition
(Wager & Haywood, 2022). Organic density is the mass per volume organic carbon of the soil sample, while bulk
density is the density of the sample prior to being dried (Wager & Haywood, 2022).

2.2. Spatial and Remote Sensing Variables From Google Earth Engine (GEE)

We augment the variables from CRMS with five additional variables calculated from Google Earth Engine
(GEE): (a) wind speed; (b) distance from a major river; (c) distance to water; (d) normalized difference vegetation
index (NDVI); and (e) suspended sediment concentration. Wind speed can be important because it creates waves
capable of flooding the wetland platform and delivering resuspended sediment (Allison et al., 2017; Cortese &
Fagherazzi, 2022; Mariotti & Carr, 2014). We use wind speed reanalysis data at 250-m resolution collected from
the Global Wind Atlas data set, openly available on GEE (The Global Wind Atlas 3, 2022). We determined the
characteristic wind speed by averaging all values within a 1-km radius surrounding each CRMS station from 2008
to 2017.

Distance from a river is potentially important since river supply of inorganic sediment usually decreases with
increasing distance away from the source. We determine the straight-line distance from each CRMS site to the
nearest river greater than 30-m wide using the Global River Width from Landsat data set (Allen & Pavelsky, 2018,
GRWL). These rivers included the Sabine on the westernmost border, the Pearl on the easternmost border, and the
Mississippi and Atchafalaya rivers. Our analysis does not consider whether the river is leveed. Since sediment can
come from non-fluvial water sources other than rivers, we calculated the distance of a CRMS station to the nearest
water pixel from a 90% water recurrence mask. We use a 90% water recurrence mask to make sure we measure to
a persistent water body.

NDVI is commonly used as a proxy for aboveground biomass, which should contribute to vertical accretion
provided the organic matter accumulates (Cortese et al., 2023). We acquire NDVI values by computing the 15-
year median of 8-day composite Landsat-7 images taken from 1 January 2007 to 1 January 2022. We mask out
pixels that occur as water in more than 60% of the images (Pekel et al., 2016), and then computed the average
NDVI on all remaining pixels within a 1-km radius of the CRMS stations.

The sediment concentration of water adjacent to the CRMS station may also influence vertical accretion (D. J.
Coleman et al., 2022; Cortese & Fagherazzi, 2022; Jensen et al., 2022). Therefore, total suspended solid (TSS)
concentrations were estimated from Moderate Resolution Imaging Spectroradiometer Satellite (MODIS)
following Miller and McKee (2004). Similar to NDVI, we took all MODIS images within the area represented by
CRMS stations from 1 January 2007 to 1 January 2022, this time excluding the land pixels, and calculated the
median of all the instances, then averaged the values within a 1-km radius of the CRMS stations. Accretion rates,
TSS, wetland communities, the fluvial sources, and the water mask used in our study are shown in Figure 1b.

2.3. Data Preprocessing

The variables from the CRMS sites are collected at multiple times (see sampling frequency in Table 1). To create
a characteristic value for each variable that is used in the model, we calculated the median rate over the sampling
duration reported in Table 1. For vertical accretion, we do not consider the time history. For all measurements at a
given site, we calculated the accretion rate since establishment, and took the median to obtain a characteristic
accretion. Following Jensen et al. (2022), stations with accretion rates greater than the 75th percentile plus 1.5
times the interquartile ranges were then removed as outliers, leaving a data set of 266 CRMS stations for analysis
(those shown in Figure 1b). A requirement of the machine learning models we apply—a Gaussian process (GP)
Regression and a Bayesian Linear Regression (BLR)—is that the data are normally distributed. To ensure this, we
transform any variable violating the normality requirement, in this case the distance to water and distance to river
variables, by taking the natural log transformation.
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Figure 2. Schematic illustrating the workflow in this study. (a) Preprocessing steps in a machine learning workflow, and (b) Feature selection, implementation, and
evaluation of both the Gaussian Process Regression (GPR) and the Bayesian Linear Regression (BLR) machine learning algorithms.

Finally, we scaled our variables before training the machine learning models. This allows the variables to be
comparable on equal scales. The scaled equation follows below

€]

where x; is the jth input variable, z; is the scaled x;, X; is the mean of the jth input variable, and S; is the standard
deviation of the jth input variable.

3. Methods
3.1. Machine Learning Workflow

In this section, we refer to the 15 input variables listed in Table 1 as variables and the resulting calculation of time-
averaged vertical accretion as the rarget prediction. Our goal is to identify the most important variables
contributing to accretion rates. During our initial exploration and consistent with published studies (e.g., Brown
etal., 2017), we found that different marsh communities may influence modes of accretion (Figure 1). Because of
this, we split our data into three experimental sets. These sets are determined by the reported marsh type at the
CRMS station: (a) freshwater-intermediate marshes, (b) brackish marshes, and (c) saline marshes. We split the
data into marsh community groups since variables that influence accretion, such as salinity, tidal amplitude, and
NDVI, vary across marsh communities (Jarvis, 2010; Lane et al., 2020). We first preprocess the data as shown in
Figure 2a, then, for each of the three experimental sets, we conduct feature selection to determine which variables
in Table 1 influence accretion rate and should be used in the model (Figure 2b). CRMS stations in swamp
communities were excluded from this study because there are no recordings of sedimentologic characteristics for
the sites.

Due to the number of CRMS stations per marsh community subset, we used backward elimination for feature
selection (Han & Kamber, 2012). It involves fitting an ordinary least squares regression with the variables in
Table 1 as independent variables and the accretion rate as the dependent variable for each experimental set. The p-
value is computed for each independent variable, removing the variable with the highest p-value and repeating the
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process until all variables have a p-value below the significance threshold of 0.05. This final set of significant
variables is used in the final model. We evaluate the performance of our final model by randomly splitting the data
into 5 equally sized subsamples, training our model on four of the subsamples, testing our trained model on the
remaining subsample (called 5-fold cross validation), and repeating that 100 times (Figure 2b). Below we explain
the machine learning algorithms, a Gaussian Process Regression (GPR) and a BLR, which we implement using
the Python machine learning package scikit-learn.

3.2. Bayesian Linear Regression (BLR)

We use a BLR for two reasons. First, because feature selection is judged by ordinary least squares, implementing a
linear model, like the BLR, is a logical way forward. Second, BLR is an interpretable model (Bishop, 2006;
Molnar, 2019) because it approximates the unknown target f(x) from a linear combination of the input variables, x
(Table 1). BLR is also has a regularization term, which limits data overfitting. The Bayesian treatment of linear
regression allows us to solve for the regularization term without hyperparameter tuning, which would require
splitting our data set into smaller subsets. When we insert our regularization term, our solution to the weight
vector then follows

1
Wyt = <;—;1 + XTX) xTy ©)

where y is the target variable, f is the noise associated with y, a is the noise associated with the weight parameter
w, I is the identity matrix, and X is the set of input variables. The value of % is the regularization term.

The BLR model works best when the input variables are all scaled within the same range of values because the
learned weight coefficients are proportional to feature importance. However, when we interpret how the variables
affect the target in their natural units, we transform them back to their original units. When transformed, we can
interpret the coefficients in the classic sense that an increase in X, the jth variable, will increase y according to the
magnitude of the weight coefficient for the jth variable. Thus, we report feature importance derived from the mean
absolute value of the scaled weight coefficients and use the mean of the transformed weight coefficients for
interpretation.

3.3. Gaussian Process Regression (GPR)

At the whole delta scale, we opt for a nonlinear model that can handle the differing controls on accretion per marsh
community. The nonlinear model that we use is a GPR, which is a probabilistic machine learning technique that
can make predictions about a target for any input variable. The GPR model overcomes linearity by projecting the
input variables into an infinitely high dimensional space using basis functions (Rasmussen & Williams, 2005).

A GPR models the target as a GP, which is a collection of random variables that follow a multivariate Gaussian
distribution. The GP can be completely specified by its mean function, m(x), and covariance function, k(x,x")
(Rasmussen & Williams, 2005). With a known mean and covariance, the prior distribution of all possible random
unknown functions is

flx)~ GP(m(x),k(x,x’)) 3)
An important choice for GPR is the covariance function, k(x, x"), which represents the uncertainty in the data. In a
broad sense, we expect similar samples to have similar outcomes and effects on the target variable and their

covariance function is what defines the similarity between samples. After multiple trials, we deduce that a squared
dot product covariance function fits our use case

k(x,x’) = (x~x/)2 +6 )

where 6 is the error associated with the target variable, the vertical accretion rate, and x and x’ are either variables
within the training or test sets, as seen in Equation 5.
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From a specified mean and covariance function, the joint distribution of our observed target values and the
functions of every given test sample is given as

0 2
Y oM ,k(X,X) +0*1 k(X.X,) )
£ 0 kX.X)  k(X.X,)

where k(X, X) is the variance within training samples, k(X, X+) is the variance within testing samples, k(X+, X) and
k(X, X.) are the covariances between training and testing samples, y is the target variable, f. is the learned pre-
dictive function, and ¢ is the noise associated with the target variable (Rasmussen & Williams, 2005). Equation 5
assumes a zero mean. Utilizing the rules for the combination of partitioned Gaussians, the mean and covariance
for the predictive posterior distribution for f. are

m(x) = kX, X)((X.X) + *1) 'y (6)
ke x') = k(X X,) — kX, X)(K(X.X) + )" k(X.X,) )

3.4. Post-Training Explainability: SHAP

To attain transparency of predictions from the GPR model, we make use of a readily available python package for
post training explainability called SHapley Additive exPlanations (SHAP). SHAP computes the Shapley values
for individual predictions for various machine learning models (Lundberg & Lee, 2017). Acquired from game
theory, Shapley values seek to quantify the relative involvement of players in a game. In our case, the “players”
are the variables from Table 1 included in the GPR model, and the “game” is the task of predicting vertical
accretion rates.

To evaluate the contribution of each variable, the explainability model can be regarded simply as
R B M
F@) =F@) + 3¢5 ®)
J=1

where f(x) is the predicted target, f(x) is the mean of all the predicted values, and ¢; is the Shapley value
contribution of the jth variable of M total variables (Silva et al., 2022).

Individual Shapley values come from the relative influence of each variable on a single sample of the predictions.
This is done by calculating the differences between the predictions, including and excluding the variable of in-
terest for every possible combination of variables for a total of 2/ combinations of variables. For example, if we
are interested in the Shapley value of jth variable, using our GPR model we compute the estimated outcome
including the jth variable for each sample, compute the estimated outcome excluding the jth variable for each
sample, and then subtract the two estimations from each other. The difference is the Shapley value, and the
average difference across all 2 values expresses how much the jth variable influences a prediction.

4. Results
4.1. Bayesian Linear Regression (BLR) Experiments

The BLR models for each marsh community reveal two important findings. First, certain marsh subsets have
higher predictive capabilities than others (Figure 3). The freshwater-intermediate (n = 150) and saline marsh
(n = 57) subsets yield the highest R* values of 42% and 50% respectively. The brackish marsh (n = 59) subset,
situated between fluvial and oceanic sources, has the lowest R? value of 20%.

Second, each marsh type has a unique set of significant environmental variables that influence sedimentation
(Figure 4). Because the model was trained on scaled variables (Equation 1), the magnitudes of the weights from a
single model can be directly compared to assess relative feature importance (Molnar, 2019). Larger values are
features of higher importance than those with lower values. However, feature importance values are model
specific and cannot be compared across models, which is why we use the term “relative” feature importance. For
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Brackish CRMS Stations freshwater and intermediate marshes, tidal amplitude was the most important,
20 , while soil porewater salinity, total suspended sediment, wind speed, flood
= d / 120 frequency, distance to water, and the 90th and tenth percentile flood of flood
%‘ // depths played secondary roles (Figure 4b). In the brackish marsh subset, the
= 25 / 1000 number of important variables decreases and only includes soil porewater
9 / g salinity and the average height of the dominant vegetation type (Figure 4a).
& 20 // 80 g Lastly, in the saline marshes, NDVI, total suspended sediment, the 90th
,E /7 =4 percentile of flood depth, and the tenth percentile of flood depth are important
g 15 g % - g (Figure 4c). Not surprisingly, vertical accretion in all of the marsh types
£ & depends more on hydrodynamic variables, such as flooding, except in the
E " L g' brackish marshes, where vegetation parameters emerge as more important.
_g &5 g ’ Transforming the weight coefficients into their natural units reveals the
E g ; 3 (Miedian MAE = 3.327) 20 positive or negative influence of each variable on the model. Consistent with
V4 (Median r-squared = 0.199) expectations, TSS and flood-related variables (e.g., tidal amplitudes, flood
3 10 15 20 25 30 — depth percentiles, and flood frequencies) were always positive contributors to
Measured Accretion Rate (mm/yr) vertical accretion predictions. Negative contributions to vertical accretion
Freshwateranid lntermadistie CRMS Statiors rates were from soil porewater salinity, NDVI, and windspeed of the exper-
imental sets.
b : f
=30 7/
E // 250 4.2. Gaussian Process Regression (GPR) Experiments
E25 / g There is not a straightforward way to conduct feature selection for nonlinear
% = 2 dependencies, so we choose which variables to use in our GPR model by
QCC 20 ‘g selecting the most important variables from the BLR models for each marsh
£ 1503 community subset. These are tidal amplitude and TSS for the freshwater-
g 15 % % g intermediate subset, soil porewater salinity for the brackish subset, and
< -_— g NDVI and the 90th percentile of flood depth for the saline subset. Considering
E 10 = all these variables in a GPR model captures the differing controls on sedi-
g & " ’ mentation across marsh types.
g 3 & Using the 5-fold cross-validation technique to determine our model fit
/ (Median r-squared = 0.421] (splitting the data set into 5 equal subsets, training and testing, then repeating
5 10 15 20 25 30 o 100 times), we achieve an R*> = 0.47 (Figure 5). Because GPR models the
Measured Accretion Rate (mm/yr) interactions between variables, the results cannot be interpreted as directly as
Saline CRMS Stations the BLR because variables are not independent. To circumvent this, we
35 200 computed the feature importance from Shapley values (Figure 6a), waterfall
C plots (Figure 6b), and dependence plots of features (Figures 7a, 7d, 8a, 8d, and
30 V4 . 9a). The notation (*) denotes that the variable is in the scaled units of standard
// 0 1509 deviations.
3 @ 4 ’2 The mean SHAP value reveals the relative importance of each variable in the
125; GPR model (Figure 6a). This is calculated by averaging the SHAP values
3609 associated with a single variable such as tidal amplitude (e.g., Figure 6b)

=
v

Estimated Accretion Rate (mm/yr)
= N
o o

Figure 3. Cross validation predicted vertical accretion rates versus measured

Median MAE = 3.529

(Median r-squared = 0.497]

~
w
suoldIpal

5 10 15 20 25 30
Measured Accretion Rate (mm/yr)

vertical accretion rates for each wetland type (a—c). Honeycomb cells

represent the density of predictions versus observed values.

across all CRMS predictions and taking the absolute value. The most
important variable is tidal amplitude, followed by NDVI, soil porewater
salinity, 90th percentile flood depth, and total suspended solids (Figure 6a).

The prediction of vertical accretion for each CRMS is created through a
combination of different variables, which can be visualized in a waterfall plot
(Figure 6b). Looking at CRMSO0171, located in the Barataria basin (Figure 1),
the ribbons show the SHAP value of each variable and its effect on the final
prediction of accretion f{x), where tidal amplitude causes the largest increase
in accretion (relative to the mean of all predictions, E[ f(x)]) and soil pore-
water salinity causes the largest decrease (Figure 6b). The SHAP values show
how each variable causes the model prediction to deviate from the mean
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Brackish CRMS Stations prediction for all stations (E[ f(x)]). Thus, the SHAP values are dimensional
35 and sum to a single prediction f{x), which in Figure 6b is 17 mm/year.

i n N w
o o o o

Relative Feature Importance
P
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0.0
Soil Average
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Freshwater and Intermediate CRMS Stations

25
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o o =]
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o
o
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Figure 4. The relative importance of each feature within the Bayesian Linear
Regression models for each wetland type (a—c) determined from the absolute
value of the average of the 500 learned weight coefficients for each
experimental set.

To understand how tidal amplitude, for instance, affects all predictions rather
than the single one in Figure 6b, we can use SHAP dependence plots. The
SHAP dependence plots show the SHAP value (i.e., the ribbon in Figure 6b)
of a single variable for every CRMS station prediction and express the relative
influence of a variable on vertical accretion across all samples. These are
colored by the magnitude of another related variable in the model to help
visualize interactions between variables.

Tidal amplitude is identified as the most important variable in the GPR model
(Figures 7a—7c). Up to a tidal amplitude of 1.0*, larger amplitude tides
enhance sedimentation, but at amplitudes >1.0* the relationship becomes less
clear (Figures 7a and 7c). The spreading corresponds to changes in the 90th
percentile flood depth where high tides are correlated with high sedimentation
when flood depths are large (Figure 7a). Large tidal amplitudes tend to occur
more commonly in saline marshes (Figure 7b).

The 90th percentile flood depth is important for sediment transport and its
subsequent deposition. Higher flood depths have higher contributions to ac-
cretion (Figures 7d and 7f). Though the effect depends on tidal amplitude, as
sites with low tidal amplitudes seem to be less responsive to increasing 90th
percentile flood depths, while sites with high tidal amplitudes have a stronger
response to increasing flood depths (Figure 7d). There does not seem to be
any clear separation of the distributions of flood depths per marsh community
(Figure 7e).

NDVI is the second most important variable, and it has a nonlinear and non-
monotonic influence on accretion (Figures 8a—8c). Moving from low to the
mean value (0*), the contribution of NDVI to accretion is positive but di-
minishes and eventually becomes negative (meaning it decreases accretion
relative to the mean). As NDVI increases above the mean value, its contri-
bution to accretion is negative but grows and eventually becomes positive
again (Figure 8a). These differences correlate with salinity values: when
porewater salinity levels are high, there is a diminishing relationship between
NDVI and accretion, but when porewater salinity is low, the relationship re-
verses (Figures 8a and 8c). This is related to different marsh types. The mean
unscaled value of NDVI is roughly 0.35, which also marks a clear split in the
marsh type (Figure 8b). This suggests that the effect of NDVI on accretion in
our model is different for freshwater-intermediate marshes and saline marshes.

Soil porewater salinity displays a negative linear relationship with vertical
accretion (Figures 8d—8f). NDVI levels are highest where salinity is lowest,
verifying a dependence of salinity and NDVI (Figures 8a, 8d, and 8f). As
expected, the distribution of salinity values shows that there is a separation
between freshwater-intermediate and brackish-saline sites around 10 ppt
(Figure 8e).

Finally, higher TSS concentrations lead to higher vertical accretion rates

(Figure 9a). TSS is largely independent of the other variables considered in the model, as indicated by the minimal
interactions in the SHAP dependence plot (Figure 9a). But higher TSS is associated with slightly higher bulk
densities (Figure 9c¢). There is also little separation in the distribution of TSS across marsh types (Figure 9b).
Therefore, it seems to act solely as a positive contributor to vertical accretion for all marsh communities, con-

trasting the role of soil porewater salinity (Figures 8d and 9a).
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Figure 5. Predicted vertical accretion rate versus observed vertical accretion rate for the 500 splits of the cross-validation
simulations (5-fold cross-validation repeated 100 times) in the Gaussian Process Regression (GPR) experiment.

5. Discussion
5.1. The Influence of Tidal Amplitude, 90th Percentile Flood Depth, and NDVI

Our discussion revolves around our GPR model because it integrates the whole delta while performing
reasonably well on prediction tasks. The GPR model shows that the vertical accretion rate of sediment is
controlled by tidal amplitude, NDVI, and porewater salinity, whereas flood depth, and TSS are of secondary
importance (Figure 6a). While this is not necessarily novel, it is consistent with a large body of field work
(Baustian et al., 2020; Bianchette et al., 2015; Brown et al., 2017; Callaway et al., 1996; Lane et al., 2020;
Nyman et al., 2006). But, in field deployments, it can be difficult to isolate variables and extrapolate
findings over a broader area. Our methodology and results shed light on how these variables work together.
For example, the tidal range is the most important variable in our model because tidal flooding of the
wetland surface transports inorganic sediment into the system. Other variables related to flooding, such as
90th percentile flood depth, achieve a similar outcome but are not as important. The model indicates that
these two variables are additive because sites with large flood depths and large tidal ranges have the highest
accretion rates (Figures 7a and 7d). Highlighted in Figure 1 in yellow are sites that have both flooding
depths and tidal amplitudes greater than the 75th percentile of their respective distributions. The reasons why
flooding enhances vertical accretion more effectively at high amplitudes are possibly because of the position
of the marshes. Among these 14 CRMS stations with high tidal amplitudes and high flooding depths, three
of them are located close to an active fluvial sediment source such as the Mississippi River delta. The other
11 are in the Terrebonne and Barataria basins where some of the highest land loss rates are measured
(Couvillion et al., 2017). In Terrebonne and Barataria, edge erosion could be a significant source of sedi-
ment for vertical accretion (Cortese & Fagherazzi, 2022; Edmonds et al., 2023; Sanks et al., 2020). It seems
that sites with high tides and deep flooding could have higher vertical accretion because of additional
sediment sources.
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Figure 6. (a) Feature importance of variables within the Gaussian Process Regression (GPR) model as defined by mean
SHapley Additive exPlanations (SHAP) values. The size of the bar, arranged from most important to least important,
indicates the relative importance of the variable to the GPR model. These values are created by averaging all the SHAP
values for each variable across all stations and taking the absolute value. (b) Waterfall plot showing the unscaled SHAP
values for different variables at CRMS0171 that influence the final prediction of accretion within our model. E[ f{x)] is the
mean of all vertical accretion predictions across all Coastwide Reference Monitoring System stations, and 17.005 mm/year is
the vertical accretion prediction for CRMS0171.

NDVl is the second most important variable for predicting accretion in our GPR model (Figure 6a) and it may be
important because it represents aboveground biomass, which is a sediment source. This assumption was made by
Jensen et al. (2022), who chose to use it in a predictive model for vertical accretion. To test the validity of this
assumption, we used aboveground biomass estimates for 146 CRMS stations from the Coastal Information
Management System website. We found no clear relationship between NDVI and aboveground biomass or
organic matter in the soil (Figure 10). This contradicts the results of Cortese et al. (2023), and this might arise
because our study covers the whole MRDP, which could introduce more variability. The lack of relationship
could be because a significant portion of organic matter deposited on the marsh surface is allochthonous material
transported during floods rather than through in situ production and subsequent deposition (Mariotti et al., 2020).

Flood depth seems to negatively bias the NDVI values in our data set (Figure 11). This is not altogether surprising
because water has lower NDVI values (Kearney et al., 2009; Mo et al., 2017; Narron et al., 2022; Suir &
Sasser, 2019; Sun et al., 2018). However, there are two negative trends with different slopes: a shallow trend that
includes mostly freshwater-intermediate marshes and a steep trend that traverses all marsh communities
(Figure 11a). The steeper sloped trend traverses a salinity gradient described by the changing marsh communities
(Figures 11a and 11c¢), which likely amplifies the negative relationship between NDVI and flood depth. These two
trends are not caused by inundation effects because the shallow trend has the highest inundation times
(Figure 11b). Nevertheless, inundation does seem to reduce NDVI because within each trend, sites with lower
NDVI also have higher inundation. But a more likely reason for the separation of the two trends is that the unique
vegetation species of each marsh community are recorded by NDVI, either by differences in plant litter back-
ground color or other characteristics.
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Figure 7. (a, d) SHapley Additive exPlanations (SHAP) dependence plot for tidal amplitude and flood depth. The x-axis is the scaled variable and the y-axis is the SHAP
value. The points correspond to different Coastwide Reference Monitoring System stations and are colored by the scaled values of a given variable. The gray bars
directly above the x-axis show the distribution of the scaled x-axis variable. (b, e) Distribution of the variable for each marsh community type. (c, f) Unscaled Scatter

plots between variables of interest.
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Figure 8. (a, d) SHapley Additive exPlanations (SHAP) dependence plot for normalized difference vegetation index (NDVI) and soil porewater salinity. The x-axis is the
scaled variable and the y-axis is the SHAP value. The points correspond to different Coastwide Reference Monitoring System stations and are colored by the scaled
values of a given variable. The gray bars directly above the x-axis show the distribution of the scaled x-axis variable. (b, ) Distribution of the variable for each marsh
community type. (c, f) Unscaled Scatter plots between variables of interest.

It is clear that NDVI records more than aboveground biomass because it is also affected by flooding regimes and
varying plant compositions (Cortese et al., 2023). It seems that the main function of NDVI in the GPR model is to
distinguish marsh communities, which is consistent with the findings of Cortese et al. (2023) for the Terrebonne
Basin. Our data suggest that NDVI is an important feature in the models because it distinguishes marsh com-
munities that depend on different sources of sedimentation.

CHENEVERT AND EDMONDS

14 of 20

85U8017 SUOWILLIOD BA 81D 8|ed!dde au Aq pauenob a8 Saole YO ‘88N JO S9nJ Joj AeJq 1T 8UIIUO AB]IA UO (SUOIPUOD-PUE-SWSY/W0D" A8 1M Al jBulJUo//Sty) SUORIPUOD pue swie | 8L 8es *[z02/60/TT] uo A%eiqiaulluo A8|Im uswebeue N pue JO neaing Aq £8€2004r£202/620T 0T/10p/W00 A8 1M Azl iput|uo'sgndnfe//sdny woly pepeojumod ‘€ 7202 ‘TT0669T2



I ¥edl

NI Journal of Geophysical Research: Earth Surface 10.1029/2023JF007383

ADVANCING EARTH
AND SPACE SCIENCES

SHAP Value (mm/yr)
o
ul
NDVI (¥)

|
N

35 b Community
Brackish
Emm Saline

25 Intermediate
Emm Freshwater

Count

0 10 26 30 4b 50 60
TSS (mg/L)

Bulk Density (g/cm3)

30 0.15 )
C 0.30 g
. ® 045 5 .
525 ® 060 $
£ ® 075 :
£ ® 090 . -
220 ;
© .
o't
g 15 ]
"é i 0> 2
3 10 ®ny T o
< : .

(5]

0 10 20 30 40 50 60
TSS (mg/L)

Figure 9. (a) SHapley Additive exPlanations (SHAP) dependence plot for
total suspended solids (TSS). The x-axis is the scaled variable and the y-axis
is the SHAP value. The points correspond to different Coastwide Reference
Monitoring System stations and are colored by the scaled values of a given
variable. The gray bars directly above the x-axis show the distribution of the
scaled x-axis variable. (b) Distribution of the variable for each marsh
community type. (c) Unscaled Scatter plots between variables of interest.
Scatter plot markers are colored by bulk density (a term not included in the
ML framework).

5.2. Variability of Vertical Accretion Rates

Our study has contributed predictions of accretion rates across the coast of
Louisiana using a small set of five environmental variables with a GPR
model. Our model R? values suggest that half of the observed variation in
accretion is explained by the model (Figures 3 and 5). Our model's R” is
similar to that reported for the Integrated Compartment Model used in the
2017 and 2023 Coastal Master Plan (Brown et al., 2017). That model, how-
ever, is based on the mass balance of water and sediment, and is driven by
field-derived boundary conditions. The fact that these two vastly different
approaches yielded similar results underscores just how noisy accretion rates
are and how difficult they are to predict. Part of the issue could be that the
CRMS accretion data have short spatial correlations of the order of 10 km
(Nienhuis et al., 2017; Sanks et al., 2020). The relatively low R? values of the
model here could be an outcome of using gradually varying properties (like
tidal range or NDVI) to predict noisy accretion measurements that vary
considerably from site to site.

It seems that higher resolution measurements in space or time could improve
predictions with these variables. An obvious place to start is with the sediment
supply side of vertical accretion. The TSS values we derived from MODIS,
arguably a dominant source of inorganic sediment, gradually vary and are
averaged over 15 years. If vertical accretion is primarily event-driven, then
future approaches might try predicting the time-dependent accretion rate at a
given site with variables such as TSS calculated over the same sampling
period.

In particular, our model underperforms at the highest accretion rates. This
could be because these sites with high vertical accretion have sediment
sources not reflected in our variable list. One possibility is the local
recycling of sediment from edge erosion of the wetland. Sanks
et al. (2020) speculated this could be a source of sediment, and Edmonds
et al. (2023) suggested that edge erosion may account for up to 80% of the
mineral sediment in the Barataria Basin. Another possibility is that storms
are the cause of the high vertical accretion. Water level increases from
storms should be recorded in the 90th percentile flooding depth, but
isolating that effect is not straightforward. Previous studies have noted that
storms rework sediment along the coast, causing substantial elevation
changes (Bianchette et al., 2015; Cahoon et al., 2006; Cortese &
Fagherazzi, 2022; Hopkinson et al., 2018; Howes et al., 2010; Thorne
et al., 2022; Turner et al., 2006). Thus, discerning the main drivers of
accretion during extreme storm events can be an exciting avenue of future
research.

Another possibility for the lower performance of the model at high accretion
rates is shallow subsidence. We specifically measure vertical accretion, which
depending on the local shallow subsidence (Jankowski et al., 2017) may or
may not result in positive surface elevation change. If sites with high vertical
accretion also induce higher shallow subsidence and decrease in surface
elevation, then that positive feedback creates accommodation space that could
continue to encourage vertical accretion. It is not clear how this effect might
be picked up in the variables used in our models.
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Figure 10. Using a data set of 146 Coastwide Reference Monitoring System (CRMS) stations, (a) There is no correlation
between normalized difference vegetation index (NDVI) and percent organic matter within the top 24-cm of soil at a CRMS
station. (b) There is little correlation between NDVI and aboveground biomass.
6. Conclusion
The sustainable management of the MRDP relies on understanding the sedimentation rate and patterns. But in a
complex wetland system, where biologic, chemical, and physical processes interplay, the drivers of sedimentation
are multifaceted. The CRMS on the MRDP maintains 266 sites where vertical accretion is regularly measured.
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Figure 11. Plots of normalized difference vegetation index (NDVI) and 90th percentile flooding depth for all points used in the Gaussian Process Regression model.

Panels (a, b, and c) differ only in how the points are colored or displayed.
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We use this data and a machine learning framework to understand the sedimentology, hydrodynamic, and
ecological controls on vertical accretion. Even in a microtidal system, our model clearly identifies the importance
of tidal amplitude on vertical accretion. High tidal amplitude increases sedimentation even more when it co-
occurs with a large flooding depth. NDVI has a nonlinear influence, primarily recording shifting flooding and
plant community gradients rather than aboveground biomass. We corroborate previous notions about the ten-
dency of saline intrusions to act as sinks of sediment volume and suspended sediment in nearby waters to act as a
source of sediment volume. While our predictive models have an R? ranging from 20% to 50%, we find that highly
accurate accretion predictions in the mixed marshes of Louisiana remain difficult. Two prominent avenues of
future work may help improve the predictions. First, a focused study aimed to achieve a clear explanation for how
tidal amplitude can capture much of the variability of accretion in Louisiana would clarify its importance in
depositional processes. Second, exploring the NDVI gradient across coastal Louisiana and its effects on vertical
accretion rates would prove insightful as more marshes transcend from brackish to saline marsh types as relative
sea levels continue to rise. Incorporating this knowledge into future models of deltaic deposition could inform
coastal practices and management in a changing natural and human landscape.

Data Availability Statement

Code and relevant data files can be found on Zenodo (Chenevert, 2023). All data were derived from the Coastal
Reference Monitoring System and Costal Information Management System (Coastal Protection and Restoration
Authority, 2023).
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