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Abstract
Billions of dollars are projected to be spent on restoration projects along the northern Gulf Coast which will require efficient
monitoring at both landscape and project-specific scales. Recent developments in unmanned aircraft systems (UAS) have
sparked interest in the ability of these “drones” to capture hyperspatial imagery (pixel resolution < 10 cm) that resolves individual
species and produces accurate data for monitoring programs in coastal landscapes. We present a case study conducted at
Coastwide Reference Monitoring System (CRMS) station 0392, a Spartina patens–dominated, oligohaline coastal marsh in
Terrebonne Parish, Louisiana. Results demonstrate the ability of UAS technology to collect hyperspatial, multispectral aerial
images in a coastal wetland, and to produce very-high-resolution orthomosaics and digital elevation models. We then used
object-based image analysis (OBIA) techniques to (1) delineate the land–water interface, (2) classify composition by dominant
species, and (3) quantify average plant height by species. Model results were validated with traditional on-the-ground CRMS
vegetation surveys. Results suggest that OBIA methods can overcome the spectral variability of hyperspatial datasets, quantify
uncertainties in conventional techniques, and provide improved estimates of wetland vegetation cover and species composition.
These methods scale conventional plot-level coverage values to data-rich landscape-level models and provide useful tools to
monitor restoration performance, landscape changes, and ecosystem services in coastal wetland systems.
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Introduction

Coastal wetlands are important for many reasons. They are
naturally occurring and hold intrinsic value (Golley 1987)

while offering valuable ecosystem services to communities
near and far (Costanza et al. 1997; Brooks et al. 2007).
Louisiana’s coastal wetlands account for roughly 22% of the
total coastal wetland area of the lower 48 conterminous United
States (Gosselink 1984). They provide habitat for 5 million
migratory waterfowl annually, support 26% of the continental
US commercial fisheries landings by weight, and protect one of
the most productive oil and gas regions in the country (CPRA
2012). The wetland loss crisis in coastal Louisiana claimed
4833 km2 (1866 mi2) of land from 1932 to 2016 (Couvillion
et al. 2017) and has the potential to lose up to an additional
4532 km2 (1750 mi2) of land in the next 50 years (CPRA
2012). The causes of land loss in Louisiana are complex and
driven by both natural and human factors. Relative sea-level
rise as a result of global rise in sea level (Church and White
2006) and local subsidence (Meckel et al. 2006) have been
identified as the main drivers (González and Tornqvist 2006).

Wetlands have the capacity to keep up with relative sea-
level rise, i.e., when positive vertical accretion is equivalent to
or greater than sea-level and subsidence changes, provided
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that the plants produce organic input for soil formation and
assist with the trapping of inorganic sediment (Morris et al.
2002; Wang et al. 2019). Species composition combined with
vegetation cover and biomass are important, quantifiable de-
terminants that can be monitored through time to determine
the ability of a marsh to maintain itself (Chamberlain and
Ingram 2012; Cretini et al. 2012; Schoolmaster et al. 2018).

Monitoring of species composition at the landscape level
has historically relied upon field observations such as ocular
estimates of dominant species identification and coverage
(i.e., Braun–Blanquet cover scale (Kent and Coker 1994)).
This is a laborious process based on the determinations of
vegetation experts (Acosta et al. 2005; Sasser et al. 2014).
Such surveys are costly and infrequent, often every 5 to
10 years. Remote sensing workflows have many benefits over
traditional field surveys including increased temporal resolu-
tion and automation of the species identification process using
big data and machine learning techniques.

The Ramsar Convention on Wetlands supports the devel-
opment and application of remote sensing and GIS to fill gaps
in baseline wetland inventories (Rebelo et al. 2009).
Multispectral and hyperspectral image analyses have mapped
coastal wetland vegetation, submerged aquatic vegetation,
and coral reefs (Phinn et al. 1996; Belluco et al. 2006; Chust
et al. 2008; Yang and Artigas 2010), and identified invasive
vegetation in a wetland deltaic ecosystem (Hestir et al. 2008).
Multi-temporal satellite imagery, combinedwith field-verified
spectral and Lidar data, have been used to map marsh vegeta-
tion (Gilmore et al. 2008; Mitchell et al. 2014). Couvillion
et al. (2017) used a combination of aerial and satellite data
to map coastal land loss from 1932 to 2016. Recent advance-
ments in object-based image analysis are being used to extract
coastlines from high-resolution satellite data (Giannini and
Parente 2015). European Remote Sensing satellite radar data
has been used to estimate wetland vegetation biomass
(Moreau and Le Toan 2003). Traditional remote sensing tech-
niques have been used to map landscape fragmentation and
the land–water interface in Louisiana’s coastal zone (Suir et al.
2013; Couvillion et al. 2017), develop coastal vegetationmaps
by species, and map marsh health using indicators such as the
Normalized Difference Vegetation Index (NDVI) (Steyer
et al. 2013).

Unmanned aircraft system (UAS, also known as un-
manned aerial system or unmanned aerial vehicle) technol-
ogy has witnessed rapid growth in monitoring of coastal
environments (Klemas 2015) due, in part, to advancements
in commercial “off-the-shelf” hardware, software, GPS
navigation, command and control, sensors, and optics
(Pereira et al. 2009). In the late 1970s, Przybilla and
Wester-Ebbinghaus (1979) completed the first photogram-
metry experiments using a fixed-wing remotely controlled
aircraft. Eisenbeiss (2004) was the first to create a high-
resolution digital terrain model using a commercial low-

cost model helicopter with semi-automated navigation. In
coastal environments, high-precision elevation models de-
rived from UAS datasets are improving physical and
geomorphological studies. For example, Chong (2007)
mapped local beach erosion, Lejot et al. (2007) mapped
channel bathymetry and topography, and Niethammer
et al. (2012) mapped changes in topography after a land-
slide. Lidar data and photogrammetrically derived eleva-
tion models are also improving classification processes and
image analysis by adding high-resolution digital surface
models and digital elevation models to conventional image
data stacks (Chust et al. 2008; Yang and Artigas 2010;
Yang and Chen 2015; Sankey et al. 2017).

Remote sensing analytics can be applied to UAS
datasets and improve habitat mapping, landscape pattern
analysis, and coastal vegetation studies. Multispectral and
hyperspectral UAS imagery are now regularly used to
image, classify, and map wetlands (Lechner et al. 2012;
Klemas 2015; Ahmed et al. 2017). Object-based tech-
niques are used to map mangrove habitat (Cao et al.
2018), wetland vegetation (Pande-Chhetri et al. 2017;
Husson et al. 2016), and upland swamps (Lechner et al.
2012) among others. High-resolution UAS datasets also
improve estimates of vegetation parameters like biomass
(Doughty and Cavanaugh 2019).

Comparing traditional ground surveys, aerial photogram-
metry, and satellite data analysis is complex. Each data source
and subsequent workflow has a niche within the broader sci-
entific community and can offer a suitable methodology for
various projects. There are tradeoffs to consider such as cost,
area covered, resolution, and the potential for high temporal
sampling (Broussard et al. 2018). Manned aircraft overflights,
for example, can be costly (Klemas 2013) as compared with
UAS technology on smaller areas of interest. However,
manned aircraft can cover and map larger areas of interest at
a lesser cost per hectare because of economies of scale. UAS
have the capacity to improve the spatial resolution of imagery
(1–10 cm) with the added bonus of flexible deployments that
improve the temporal resolution of these datasets (Lechner
et al. 2012; Niethammer et al. 2012; Klemas 2015;
Marcaccio et al. 2015).

For monitoring coastal wetlands along the Northern Gulf
Coast, there are several sources of remotely captured data at
various spatial scales that can fill in the data gaps between
coastwide helicopter surveys (Sasser et al. 2014) and site-
specific surveys like the Coastwide Reference Monitoring
System (CRMS) network (Steyer 2010). These data types in-
clude LANDSAT satellite imagery (30 m), Worldview satel-
lite imagery (40–50 cm), traditional aerial photography
(30 cm–1 m), and UAS-captured aerial photography (2–
10 cm). Figure 1 demonstrates a typical aerial image basemap
with 1-m resolution compared to 2.5-cm resolution UAS im-
agery collected at the same location. Such hyperspatial, or
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very-high-resolution, datasets allow a user to discern patterns
and objects with detail similar to on-the-ground surveys. The
question here is whether such data products can be used in an
automated workflow to reliably classify and map intricate ob-
servations of wetland vegetation over larger, regional areas. If
so, then documenting fluctuations in landscape patterns and
the cover and height of specific plant communities would not
only enhance wetland inventories but link these observations
to differential levels of ecosystem services provided by these
communities. Such services include carbon sequestration
(Nahlik and Fennessy 2016; Wang et al. 2019), retention of
sediments in support of marsh accretion (Morris et al. 2016),
effectiveness of vegetation in attenuating storm surge
(Chatagnier 2012), changes in biodiversity support (e.g., plant
species richness) (Cretini et al. 2012), and shifting habitat
suitability for breeding and wintering bird species (DeLuca
et al. 2008; Woodrey et al. 2012; Valdes et al. 2016).

Research Objective

The objective of the present study was to investigate the
feasibility of collecting UAS data in a coastal Louisiana
grass-dominated marsh and to determine the usability of
hyperspatial, multispectral imagery for vegetation map-
ping. Such improvements would be important steps toward
a comprehensive monitoring program of coastal zones.
Specifically, the team addressed the following research
question: Can UAS hyperspatial imagery be used to clas-
sify species composition, model the land–water interface,
and quantify certain productivity estimates, particularly
plant height, in a Spartina patens–dominated oligohaline
coastal marsh environment?

Methods

A pilot project was conducted in Terrebonne Parish,
Louisiana, with the following general workflow: (1) collect
2.5 cm resolution UAS imagery using red–green–blue and
near-infrared sensors of a 1-km2 area in a coastal marsh; (2)
create georeferenced orthomosaic and digital surface model
(DSM) raster datasets; (3) use object-based image analysis
to model the land–water interface, dominant species distribu-
tion, and plant height; (4) quantify the model accuracy using
ground-based vegetation survey measurements (species cov-
er, composition, and height) and conventional spatial tech-
niques (land–water interface).

Study Area

The project site was a degraded oligohaline wiregrass marsh
(Visser et al. 1998) located in Terrebonne Parish, Louisiana,
along the Northern Gulf of Mexico, north of Lake Boudreaux,
and east of Bayou Grand Calliou (Fig. 2). The site is part of the
Terrebonne Bay drainage basin in the Mississippi River
Deltaic Plain. The area is prone to high rates of subsidence
and land loss (Couvillion et al. 2017). A benefit of the present
study area is that there is one long-term monitoring site be-
longing to the CRMS program (Steyer 2010) within the pro-
ject boundary. This station, 0392, was used as a reference
dataset since it has on-the-ground sampling stations for spe-
cies cover and regularly calculated land–water areas based on
traditional aerial photography. The 1-km2 area around CRMS
site 0392 was the area of the data acquisition for the present
study (CPRA 2016, Fig. 2). This site is one of the most
fragmented and variable sites in the CRMS network and a
good candidate for testing the ability of UAS workflows to
map and model a highly fragmented and dynamic landscape.

Fig. 1 2.5-cm resolution UAS
imagery collected in 2106 (above)
and 1-m resolution aerial photog-
raphy (below) collected as part of
the Coastal Wetlands Planning,
Protection and Restoration Act
program (CWPPRA 2008) shown
here as a “slider window” of the
same scene. Note the Spartina
patens–dominated marsh and the
tall Phragmites australis along
the water’s edge
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Fieldwork was completed August 29 and 30, 2016, and fully
compliant with the Federal Aviation Administration (FAA)
Small Unmanned Aircraft Rule (Part 107), which coinciden-
tally was effective August 29, 2016. The area of interest (AOI)
was divided into three flight blocks. Each block required ap-
proximately 35 min to complete, which allowed 15 min of
additional flight time for emergency maneuvers and travel to
the landing location. Ground control point (GCP) aerial tar-
gets were distributed evenly throughout all three flight blocks
(Fig. 2). So as not to disturb the target vegetation, 60 × 60 cm
vinyl sheets with an iron cross pattern were fixed atop wooden
stakes and elevated with a fixed center for supporting GPS
equipment (Fig. 3). The center point was then surveyed using
high-precision GPS equipment with real-time kinematic cor-
rections delivered via a virtual reference station network (GPS
horizontal accuracy = 3 cm, vertical accuracy = 6 cm).

Data Collection

UAS imagery was acquired with a Trimble UX5 aerial imag-
ing rover (Fig. 4) carrying two commercial-grade, off-the-
shelf cameras and controlled using a Trimble Yuma tablet
with Trimble Aerial Imaging software. Specifically, we used

a Sony α5100 camera that combines red, green, and blue
sensors (350–750 nm) to create true color (RGB) image
pixels. A modified Sony NEX-5r camera was used to capture
near-infrared (760–820 nm), red (630–690 nm), and green
(520–580 nm) light to create color infrared (CIR) image
pixels. This setup required separate flights for each camera.

Fig. 2 Location map of the project site including one set of flight lines in yellow, ground control points in white/black, and the 1-km2 area of interest
(AOI) surrounding CRMS 0392 in cyan. The landing location is 4 km north of the AOI in an open upland field

Fig. 3 Ground control point positioned above the target vegetation
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The Sony NEX-5r was modified by replacing the internal hot
mirror filter with a filter that allows transmittance of near-
infrared light, coupled with a blue rejection filter on the lens.
The modification allows red and green sensors to pick up
small amounts of near-infrared reflectance (700–1100 nm),
but forces the blue-specific sensors to record near-infrared
reflectance only. Both cameras used a Voigtländer lens with
a fixed nominal focal length of 15 mm. A flying altitude of
75 m resulted in a raw ground sample distance (resolution) of
2.33 cm for the CIR sensor and 1.95 cm for the RGB sensor.
The catapult launcher was secured to the bow of a research
vessel, and the UX5 was launched over the water within the
AOI. Because the study area was a highly degraded marsh,
there was no logical landing location near the AOI. An appro-
priate location for a belly landing was identified 4 km north
(Fig. 2). To maintain radio communications and line of sight
between the aerial rover and the ground control station, the
project team chased the rover home to the landing location
using an airboat. Four flights were flown over 2 days with a
side lap of 80% and a forward lap of 85%. The results pre-
sented here represent two of those flights, both of which are
from the same flight block. One contains the RGB dataset, and
the other contains the CIR dataset.

Post-Processing

Trimble-Inpho UAS Master Software (Trimble Inc 2016a)
was the photogrammetric software used to process the UAS
imagery and generate orthomosaic and DSM raster datasets.
Over 1000 images were collected per flight. Each raw image
was tagged with an initial orientation defined by the latitude,
longitude, and altitude measured by the internal GPS unit and
the roll, pitch, and yaw of the aircraft as measured by the
airframe’s inertial measurement unit. These initial approxima-
tions of the image’s orientation were then used by the

photogrammetry software to calibrate the camera focal length,
principal point, and distortion parameters. The images were
then aligned, and tie point locations were extracted, i.e., those
discernible locations that can be identified in multiple photos,
using Structure-from-Motion algorithms (Westoby et al.
2012; Mancini et al. 2013). Each GCP was then located and
manually selected within each available picture to refine the
initial orientation and to tightly georeference the orthomosaics
to a datum. After the absolute orientation process was com-
pleted, the root mean square error compared with the horizon-
tal and vertical control was 2.40 and 2.42 cm, respectively,
and the 95% confidence level for the horizontal and vertical
control was 4.83 and 4.74 cm, respectively. Final RGB, CIR,
and DSM datasets are presented in Fig. 5. The ground sample
distance of both orthomosaics was 2.5 cm while the DSM
generated a ground sample distance of 7.2 cm. For more in-
formation on quality control and error estimation of UAS data,
see the ASPRS Positional Accuracy Standards for Digital
Geospatial Data (ASPRS 2015) and Abdullah et al. (2015).

Object-Based Image Analysis

Object-based image analysis (OBIA) classification methods
are a good fit for UAS imagery (e.g., Laliberte and Rango
2009). Initially developed for coarser datasets, the ability of
OBIA to scale to finer UAS imagery is encouraging. With
high-resolution datasets, spectral variance increases within
target classes (Marceau and Hay 1999; Blaschke 2010).
Spectral separation between the classes is, therefore, more
difficult to identify and classify. Similar to the way in which
humans interpret an image, OBIA methods address spectral
variability and scaling issues by segmenting or grouping finer
pixels into larger, recognizable image objects that maximize
homogeneity and minimize heterogeneity. The pixels within
an object share similar attributes such as spectral signature,
texture, shape, and context to other objects (Blaschke 2010;
O’Neil-Dunne et al. 2014). This technique makes the classifi-
cation of UAS imagery easier because the programmer is then
tasked with finding commonalities by object (hundreds to
thousands of grouped pixels per object) rather than by indi-
vidual pixel (in this case 2.5 cm on the ground or 1.6 billion
pixels per 1 km2).

The goal of the OBIA in the present study was the delin-
eation of marsh grass versus open water, the identification of
dominant vegetation species, and the calculation of plant
height by dominant species using hyperspatial, multispectral
UAS imagery. The analysis first classified objects as either
land or water and then further separated those land objects
into one of three vegetation categories: (1) SPPA, Spartina
patens; (2) PHAU7, Phragmites australis; (3) OTHER, a
mix of Bacopa monnieri, Pluchea odorata, Iva frutescens,
and Baccharis halimifolia. Figure 6 demonstrates the outlines
of objects identified in the UAS imagery. The objects were

Fig. 4 Trimble UX5 aerial imaging rover used in this project
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delineated using Trimble eCognition Developer software
(Trimble Inc 2016b) based on similar spectral and texture
values, average height of the cells within objects, as well as
the context of other neighboring objects. Unique characteris-
tics of objects within each target class were then identified
through interpretation and exploration of the imagery. Based
on these characteristics, a rule set of hierarchical algorithms
(see Online Resource 1) was developed to methodically clas-
sify objects into one of the three target classes.

The intensity of the near-infrared spectrum coupled with
the very small pixel size of the UAS imagery made the iden-
tification of the water objects straightforward. Because water
absorbs near-infrared wavelengths, we used a simple thresh-
old of CIR intensity and classified those objects with a mean
near-infrared reflectance value lower than the threshold as

water. For the identification and classification of dominant
vegetation species, the algorithms focused first on plant
height, then greenness, and finally texture. Because
Phragmites australis, the common reed, is a tall clumping
species, this PHAU7 class was initially identified by plant
height (i.e., objects that were taller than their surrounding
objects). The class OTHERwas initially identified by a green-
ness factor because this class of plants was visibly greener
than the surrounding grasses. Finally, after classifying both
the PHAU7 and OTHER classes, the remaining objects be-
longing to the larger land class were then classified as SPPA.

An accuracy assessment was performed using two
methods. The first was a stratified random sampling in which
a predetermined number of random coordinate points were
generated within each group based on the relative aerial extent

Fig. 6 Objects outlined (above)
and then classified (below) dem-
onstrate the ability of hyperspatial
datasets to capture a complex
land–water interface and species
diversity. Blue is the class
WATER, teal is the class
OTHER, and orange is the class
SPPA

Fig. 5 Red–green–blue (left) and
color infrared (center) and DSM
raster datasets generated from
UAS imagery over the project site
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of each group (50 Water, 50 SPPA, 20 OTHER, and 10
PHAU7). We then performed a manual photo interpretation
based on the UAS orthomosaics to determine if the model
properly classified the image at each pre-determined location.
The second method verifies the models generated by the pres-
ent study with publicly available datasets obtained from
CRMS site 0932. Specifically, the researchers compared the
predicted land–water ratio derived from UAS data and the
predicted land–water ratio published by the CRMS program.
The CRMS land–water product utilizes a pixel-based ap-
proach and traditional aerial photography with roughly 1-m
ground sample distance. The products presented here were
developed using an object-based image analysis using UAS
aerial photography with roughly 2.5 cm ground sample dis-
tance. In addition to a comparison of remote sensing products,
predicted vegetation class and vegetation height derived from
UAS datasets were compared with observed on-the-ground
vegetation species composition and field measured plant
height. All CRMS data were collected in the late summer of
2016 during peak biomass (9/1/16 for vegetation), similar to
the timing of the UAS data collections. CRMS output is de-
livered through the Coastal Information Management System
database and is publicly available (CPRA 2016).

The publicly available CRMS data are based on vegetation
samples collected at three sites along a transect within the
CRMS 0932 boundary (Fig. 7). The subsample sites are 4-
m2 quadrants whose locations were measured using a hand-
held GPS in the field with roughly 3-m accuracy. CRMS
personnel measure the average height of the vegetation in
the field as the length of the stems to the nearest centimeter.
Ten subsample sites were established when the CRMS

program began in 2006, but due to rapid land loss at this site,
only three were vegetated when the present study was per-
formed. The remaining seven were open water.

Plant height was estimated as the difference between the
modeled DSM (i.e., average elevation of the top of the plants)
and the elevation of the marsh surface. To estimate the marsh
surface, we used the average ground elevation measured by
the CRMS program for the site (mean elevation = 6.98 cm
(0.229 ft) above Geoid12A).

Results

Image Classification Assessment

Results from the image classification assessment are presented
as an error matrix in Table 1. Overall accuracy was 85%, and
the Kappa coefficient was 0.78. User’s Accuracy ranged from
67% for OTHER to 100% for PHAU7. Producer’s Accuracy
ranged from 73% for SPPA to 100% for Water. This
Producer’s Accuracy for Water is noteworthy because it
means that the simple approach to classifying water, i.e., a
single threshold of near-infrared reflectance, is satisfactory.
The fine-scaled, 2–6 cm, delineation between the land–water
interface is a significant improvement in coastal land loss
mapping efforts. Each 2–6 cm pixel is either land or water.
There is very little mixing of spectral signatures within UAS
orthophoto pixels as compared with the mixing found in tra-
ditional 1-m aerial photographs (Fig. 1). As such, the land–
water interface model is highly accurate and reliable.

CRMS Land–Water Analysis

The land–water classification models produced by CRMS and
in the present study were compared (Fig. 8, Table 2). The
estimates of percent land were reasonably close between the
CRMS model and the project study model, which was unex-
pected given the substantial difference in resolution between
the two datasets and the difficulties in delineating the land–
water interface when 1-m pixels along the marsh edge are a
mix of land and water spectral signatures. The main difference
was that the coarser aerial photography datasets are not able to
resolve small interior ponds (Enwright et al. 2014) and tended
to overestimate land. Table 2 demonstrates the overestimation
of land in the CRMSmodel and the ability of the high-fidelity
UAS dataset to capture the complex land–water interface and
resolve the smaller pockets of openwater in the interior marsh.

CRMS Vegetation Classification

Vegetation communities were compared between the predicted
UAS vegetation class model and the observed CRMS data at
each of three subsample sites (V03, V09, and V61) located

Fig. 7 Three subsample sites (V03, V09, and V61) in the project area
demonstrate the fragmented herbaceous marsh landscape

Estuaries and Coasts



within the CRMS 0392 boundary (CPRA 2016). The predicted
vegetation model was queried at each location and compared
with the cover reported in the CRMS dataset. Species observed
during the CRMS ground survey are listed in order of their
cover. The comparisons are as follows: V03—predicted
SPPA, measured Spartina patens, Amaranthus australis, and
Cyperus odoratus; V09—predicted SPPA, measured Spartina
patens; V61—predicted OTHER, measured Bacopa monnieri,
Eleocharis parvula, and Pluchea odorata. Largely a demon-
stration exercise because of the low sample size, the predicted
dominant vegetation did match the observed dominant vegeta-
tion on the ground at each sampled location.

Plant Height

Plant heights measured in the field and modeled based on UAS
data are as follows: V03—predicted 1.30 m, measured 1.48 m;

V09—predicted 0.43 m, measured 1.19 m; V61—predicted
0.46 m, measured 0.49 m. Vertical error associated with field
measurements are ± 10 cm due to averaging of surrounding
plant stem height by field personnel. Vertical error associated
with predicted heights are ± 8 cm due to errors associated with
photogrammetrically derived elevation estimates of modeled
objects and error associated with GPS equipment used for con-
trol. Based on this comparison, there was less than 20 cm dif-
ference in plant height between ground measurements and the
digital elevation model for two of the three sites. The unsatis-
factory site (V09) had a small percentage of land predicted.
Because the locations of the subsample sites were determined
in the field using rough GPS estimations (± 3m horizontal), it is
highly likely that the modeled dataset was not queried in the
exact location as the sites on the ground. A 3-m distance can
easily traverse open water, partial plant cover, and complete
plant cover in this highly degraded landscape. In addition, the

Table 1 Error matrix demonstrating the results from the accuracy assessment of the object-based image analysis

Reference class

Predicted class WATER SPPA OTHER PHAU7 Count Producer’s Accuracy (%)

WATER 49 0 0 0 49 100

SPPA 7 35 6 0 48 73

OTHER 2 2 16 0 20 80

PHAU 0 0 2 8 10 80

Count 58 37 24 8 127

User’s Accuracy (%) 84 95 67 100

Overall accuracy: 85%
Kappa coefficient: 0.78

Bold values indicate the number of samples within a class where the predicted model matched the reference dataset

Fig. 8 Land–water classification
model produced from 2.5-cm
UAS data (top) and traditional 1-
m resolution aerial photography
that is publicly available through
the CRMS program (bottom)
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CRMS ground elevation surveys were performed at 10 random
points across the transect and may not reflect the actual eleva-
tion at the vegetation subsample sites. In aggregate, however,
the methodology shows promise in its ability to estimate plant
height at the landscape scale.

Discussion

Hyperspatial datasets allow a user to discern patterns and ob-
jects with great detail. Even the shape and size of a broadleaf
blade can be observed. Microtopographies with elevation
changes on the order of 3–5 cm can be measured in a marsh
creation site. There is potential for UAS technology to supple-
ment the coastwide helicopter transects (Sasser et al. 2014)
and the Coastwide Reference Monitoring System sites
(Steyer 2010) in Louisiana, USA. At present, the 30-day he-
licopter survey is conducted once every 7 years by a crew of
two to four scientists and one or more pilots. Successful im-
plementation of a UAS survey could increase the temporal
resolution of the dataset and potentially reduce the cost of
deployment. The ability to capture calibrated near-infrared
reflectance of the sampling locations could also provide infor-
mation on the health and vigor of the sampled vegetation
using indices such as NDVI, which would be an improvement
over current methods. Additional improvements that UAS im-
agery could provide include the ability to compute a digital
elevation model (DEM) of bare earth or marsh elevation based
on directly georeferenced UAS-mounted Lidar or
photogrammetrically produced point clouds such as those pre-
sented here.

Lessons Learned

Operating a UAS in a coastal environment does not come
without worry or problems. Potential hurdles include proper
locations for takeoff and landing, properly estimating flight
times that account for high wind conditions, and communicat-
ing with local landowners regarding privacy and permission
concerns. Current FAA regulations constrain the UAS to only
fly within the line of sight of the pilot in command or desig-
nated spotter, and battery limitations constrict the footprint of

flight operations and data acquisitions. These current limita-
tions make UAS platforms unsuitable as a coastwide survey
technique, but well positioned to supplement site-specific
monitoring. If future regulations relax the beyond-line-of-
sight requirement, the ability to work from an upland site
and capture imagery over coastal wetland sites will be easier
and perhaps worthy of long-range, high-endurance UAS
investments.

Big data collection, storage, maintenance, and analysis is
another consequence of UAS workflows. Data file size in-
creases on a logarithmic scale as ground sample distance in-
creases linearly. Furthermore, the Structure-from-Motion al-
gorithms used in UAS photogrammetric workflows require
access to large amounts of computer random access memory
(RAM). Manipulating and processing large datasets requires
large graphics processing units (GPUs). The time involved
with these kinds of workflows often involves overnight com-
putations using modern desktop computers. For these reasons,
additional processing time and computational resources are
required to convert the raw UAS imagery into accurate points
clouds, elevation models, and orthomosaics. Another level of
effort is then required to analyze these intermediate deliver-
ables and to develop actionable information.

These limitations notwithstanding, there are several bene-
fits to be gained from the use of UAS in coastal research.
These operations could save time and money when compared
with field surveys of elevation and vegetation. When in the
field, there are fewer personnel requirements. UAS can over-
come site accessibility issues, such as low water, offsetting the
need for airboat access or the potential to trample part of a
restoration site. UAS can deliver more frequent monitoring
events and develop higher resolution structural models, sur-
face elevation models, and multispectral orthomosaics of en-
tire project sites. Conventional field methods collect point data
along transects or coverage data using square meter plots. The
UAS methods presented here develop continuous 2D surface
models and classified datasets based on centimeter-level mea-
surements over several square kilometers. In the case of the
CRMS monitoring framework or restoration site monitoring,
these datasets can capture previously unknown variability in
the landscape by scaling from the plot to the landscape.

Finally, the ability to generate high-resolution maps of
the land–water interface and quantify land loss, habitat
fragmentation, biomass production, and carbon sequestra-
tion are particularly exciting. These map products would
facilitate and improve estimation of valued ecosystem ser-
vices, particularly at the project and landscape scale. The
breadth of such assessments could not, at present, be
coastwide or even regional. However, the potential is
there to develop the fundamental methods and to slowly
start increasing the extent of these endeavors, especially
as technology advances in both long-distance UAS oper-
ations and big data analytics.

Table 2 Results of the land–water classification comparison between
the predicted land–water interface model and the publicly available
CRMS land–water analysis dataset

Land Water

CRMS UAS CRMS UAS

Area (km2) 0.14 0.12 0.33 0.35

Percent 30% 26% 70% 74%
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Future Research

A fair amount of research has recently been done using object-
based image analysis on UAS imagery in coastal settings in-
cluding herbaceous marshes (Meng et al. 2017), floating
marshes (Pande-Chhetri et al. 2017), upland forests (Lechner
et al. 2012), and mangroves (Cao et al. 2018). Recent devel-
opments in supervised classification using random tree analy-
sis (Belluco et al. 2006; Michez et al. 2016), support vector
machine learning, and artificial neural network techniques,
also known as deep learning (Pande-Chhetri et al. 2017), have
improved results. However, further research is needed to re-
fine the object-based approach to UAS image classification.
Radiometric corrections and standards will need to be set for
larger regional analyses. The brightness and radiometry of
UAS imagery are highly variable because of changing sun
angles and weather patterns, and the use of commercial-
grade sensors. This variability in the raw imagery will need
to be addressed with consistent calibration practices if stan-
dardized approaches at larger regional scales are desired.
Finally, standardized accuracy assessments of hyperspatial
datasets collected with UAS are needed. Specifically, a statis-
tical analysis of independent checkpoints is necessary to val-
idate the absolute horizontal and vertical accuracy of the final
products. The American Society for Photogrammetry and
Remote Sensing recommends 20 such independent check-
points (ASPRS 2015). As a rule of practice, the final accuracy
statements should be no less than four times the accuracy of
the equipment used to determine the location of the ground
control and checkpoints. This ensures confidence in the esti-
mates and accounts for errors in both the positioning system
(i.e., GPS or leveling) and the photogrammetric process (i.e.,
Structure-from-Motion and bundle block adjustments)
(Abdullah et al. 2015). Therefore, the need for multiple, fixed
aerial targets surveyed with high-accuracy equipment remains
a necessity for high-accuracy model development that meets
current mapping standards. These standards will ensure that
UAS products are comparable with previous conventional
datasets and will support temporal analyses.

Another area of important and ongoing research is the esti-
mation of plant biomass and carbon sequestration rates based
on UAS imagery and subsequent datasets (Doughty and
Cavanaugh 2019). If one can correctly classify the dominant
plant species and plant height of an object, then standard coef-
ficients could be used to calculate the biomass, productivity,
and carbon sequestration. These coefficients would need to be
based on experimental and observational datasets and depen-
dent on the local conditions of the site in question. By knowing
details about vegetative structure, coupled with hydrologic
measures, estimates of sediment retention and storm surge at-
tenuation could be made. The ability to scale field-based mea-
surements to regional models remains a worthy goal and could
lead to improved quantitative estimates of ecosystem services.
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