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PURPOSE: The purpose of this project was to evaluate and compare methodologies for using 
remotely sensed hyperspatial imagery from both Unmanned Aircraft Systems (UAS) and next-
generation satellite technology to calculate species composition and ecosystem service metrics in a 
coastal intermediate marsh. Such methods would be important steps towards comprehensive 
monitoring of wetland landscapes and would provide useful metrics to study wetland condition and 
response to ecosystem restoration and disturbance events. 

BACKGROUND: Plant species composition, cover, density, and biomass are structural components 
of coastal marshes that are commonly used to quantify vegetative characteristics and often serve as 
indicators of wetland condition (Chamberlain and Ingram 2012; Cretini et al. 2012). Historically, 
regional and coastwide surveys to map coastal vegetation have consisted of laborious traversing of 
wetland landscapes, including time consuming and subjective ocular estimates of species type and 
cover (O’Neil 1949; Chabreck and Linscombe 1978; Sasser et al. 2014). Although recent surveys, 
like those in coastal Louisiana, enlist the use of helicopters for transport between, and hovering over, 
sampling sites, they continue to rely on ocular estimates of dominant species and abundance (i.e., 
Braun-Blanquet cover scale), they are costly, and are typically reproduced approximately every ten 
years. Rapid species classification (even of dominant plants) using remotely sensed data would 
provide many advantages over traditional field techniques. 

A primary monitoring program for coastal vegetation in Louisiana is the Coastwide Reference 
Monitoring System (CRMS). CRMS sites are located throughout the Louisiana coastal zone and 
serve as the ambient coastal wetland monitoring network for the region (Steyer 2010). CRMS sites, 
which were used as reference data sets for this study, consist of 200 meters (m) x 200 m on-the-
ground sample stations where species cover, plant height, and vegetation community type are 
measured and monitored during peak biomass at various intervals ranging from seasonal to every 2–
3 years (Folse et al. 2014). Additionally, the land-water interface around 1km2 of each CRMS site is 
mapped every three years using traditional aerial photography and satellite imagery (USGS and 
LACPRA 2018). 

Remotely sensed data provide spatial and temporal perspectives on ecological phenomena that 
would otherwise be difficult to study (Anderson and Gaston 2013). Moreover, UASs are emerging 
as flexible platforms that in many cases overcome previous constraints (i.e., cost; atmospheric 
contamination; and spatial, spectral, and temporal limitations), and therefore, have the potential to 
supplement or replace traditional in situ and remotely collected data (Whitehead and Hugenholtz 
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2014). UAS technology has expanded in recent years for various survey and mapping applications. 
In the late 1970s, Przybilla and Wester-Ebbinghaus (1979) first used a fixed wing remotely 
controlled aircraft in photogrammetry experiments. In 2004, Eisenbeiss, Lambers, and Sauerbier 
(2005) were the first to create a high-resolution digital terrain model using a commercial low-cost 
model helicopter with semi-automated navigation. UAS technology has developed quickly since the 
turn of the century and has witnessed unprecedented developments in computing, communications, 
navigation, control, and optics (Pereira et al. 2009).  

Space-borne systems provide many advantages for environmental applications (i.e., wildlife and 
critical habitat surveys, forest structure and sustainable management, land surface and land use 
change and impacts, and monitoring hydrology and riverine ecosystems), especially those that 
require collection and assessments over large areal extents. While some systems lack flexibility (i.e., 
acquisition, cost, and resolution), some high resolution satellite image sources are available for 
acquisition at no cost to the U.S. Army Corps of Engineers (USACE) through the National 
Geospatial-Intelligence Agency’s (NGA’s) EnhancedView contract. All EnhancedView acquisitions 
(archived and new data collections), are coordinated through the Army Geospatial Center’s (AGC’s) 
Imagery Office (AIO). The data holdings directly support engineering, planning, and response 
requirements of USACE activities and allow end-users direct access to commercial imagery 
products, available in various formats and online repositories. 

Comparing UAS- and satellite-based methods. Comparing UAS and satellite data analysis is 
not straightforward. Each method has a niche and a best-fit for project application. There are various 
trade-offs to consider such as cost, area covered, resolution, and the potential for high temporal 
sampling, etc. Satellite deployment, maintenance, and data acquisition, for example, can be costly 
(Klemas 2013) as compared with UAS technology on smaller areas of interest. However, satellites 
can cover and map larger areas of interest at a lesser cost because of economies of scale. Global 
positioning satellite (GPS)-guided UAS have the capacity to obtain very high spatial resolution (1–
10 cm) imagery of specific landscape features with revisit times determined by the operator as 
opposed to fixed satellite revisit times (Lechner et al. 2012). 

For coastal wetland monitoring in Louisiana, there are several examples of remote sensing data 
types, at various spatial scales, that can fill in the data gaps between the helicopter coastwide survey 
and the CRMS network stations. These include Landsat satellite imagery (30 m), WorldView (WV) 
satellite imagery (30–50 cm), traditional aircraft captured aerial photography (30 cm –1 m), and 
UAS captured aerial photography (2–10 cm). Additionally, the ability to remotely capture high 
spatial and temporal data and then classify these data sets by dominant species, assess plant health 
using the Normalized Difference Vegetation Index (NDVI), and calculate elevation as Digital 
Elevation Models (DEM) or Digital Surface Models (DSM), would be an improvement over current 
methods. The ability to scale up these estimates from the site-specific scale to the landscape or 
regional scale is particularly appealing for restoration program managers. 

Few studies have evaluated the use of UASs and next-generation satellite data to classify, monitor, and 
assess wetland vegetation and condition. The primary objective of this pilot study was to investigate 
the effectiveness of high-resolution multispectral imagery (UAS and satellite) in classifying species 
composition and quantifying ecosystem services (i.e., plant productivity and the land-water interface), 
in an intermediate coastal marsh environment. Specifically, the goals of this study were to capture air- 
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and space-borne imagery to create 1) georeferenced orthomosaic images (2 cm for UAS and 30–50 cm 
for pansharpened WV imagery), 2) NDVI thematic maps, 3) classified land and water interface, 4) 
classification of dominant species, and 5) Digital Surface Models. With this information, the authors 
hope to compare methodologies that can capitalize on recent developments in UAS hyperspatial and 
WV high resolution imagery, and provide meaningful metrics that will assist resource managers in the 
monitoring and quantification of wetland ecosystems.  

METHODS  

Study site. This pilot study consisted of collecting, processing, and evaluating hyperspatial air-
borne and high spatial resolution space-borne imagery in an intermediate marsh environment (0.5 to 
5 practical salinity [SP]) in coastal Louisiana. The Terrebonne project site is a degraded marsh 
dominated by Spartina patens (marshhay cordgrass), approximately four kilometers (km) south of 
Houma, Louisiana (Figure 1). The site is 0.725 square kilometers (km2), and overlaps a portion of 
the CRMS station 0392, which was used as a vegetation (i.e., species composition and cover) 
reference data set (Figure 1). 

 
Figure 1. Project site location in coastal Terrebonne Parish, Louisiana. 

CRMS site 0392 was chosen with permission from the state governing agency, the Louisiana Coastal 
Protection and Restoration Authority (LACPRA), and the private landowner. Even though the site 
was in Class G airspace (completely uncontrolled), the pilot in command coordinated with the 
Houma-Terrebonne Airport (HUM) because the site was under the Class E airspace (completely 
controlled) surrounding HUM. The fieldwork for this project was conducted August 29 and 30, 
2016. All flight operations were compliant with the Federal Aviation Authority (FAA) Part 107 
ruling.  
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UAS image acquisition. A Trimble UX5 Aerial Rover (Figure 2) was used to collect UAS aerial 
imagery of the study site. Payload sensors included the Sony a5100 with a red-green-blue (RGB) 
sensor and a Sony NEX-5r modified to capture the near-infrared (NIR) spectrum using a B+W 040 
(orange) filter to suppress green, blue, and violet colors while allowing yellow, orange, red, and 
near-infrared to pass through more easily. Ground control point (GCP) photo targets were evenly 
placed throughout the project area (Figures 1 and 2). The targets were vinyl sheets (60 cm x 60 cm) 
with an iron cross pattern. The targets were fixed atop wooden stakes that were driven into the marsh 
and elevated so that the targets were visible over the marsh grass (Figure 2). A center stake was 
driven in the middle of the target to create a tent effect and fix the location of the center of the target 
at the top of this tent-like structure. The center point was then surveyed in using high accuracy GPS 
equipment (Figure 2; horizontal accuracy = 1 cm, vertical accuracy = 2 cm). 

 
Figure 2. UX5 aerial rover (left) and surveyed ground control point (right). 

UAS image post-processing. Trimble UAS Master Inpho Software was the photogrammetric 
software used to process the UAS imagery and generate orthomosaic and Digital Surface Model 
raster data sets. Over 2000 images are collected in two flights over the project area. Each image has 
an approximate latitude, longitude, altitude, roll, pitch, and yaw value associated with it. These 
initial approximations of the image’s external orientation were used by the software to extract tie 
point locations, (i.e., those locations that could be identified in multiple photos). The precise location 
of the GCPs were measured in all available images. Each GCP was measured (located) within each 
available picture to refine the initial orientation and to tightly georeference the orthomosaics to a 
datum. The root mean square error (RMSE) of the final orthomosaics were 2.40 cm, and 2.42 cm, for 
the horizontal and vertical control, respectively. The 95% confidence level for the horizontal and 
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vertical control was 4.83 cm and 4.74 cm, respectively. The ground sample distance was as low as 
2.6 cm for the orthomosaic and 7.2 cm for the digital surface model. 

Satellite image acquisition. The WorldView-2 (WV2 – 46 cm panchromatic and 185 cm 
multispectral, launched 2009) and WorldView-3 (WV3 – 31cm panchromatic and 124cm 
multispectral, launched 2014) sensors are the most spectrally diverse commercial satellites available 
to date. These sensors, which collect eight multispectral bands (coastal, yellow, blue, green, red, red 
edge, near-infrared 1, and near-infrared 2), were tasked to collect multispectral and stereo imagery 
near the same time as the UAS collections. The multispectral and stereo data were collected on 30 
August 2016 and 21 October 2016, respectively, and acquired using the DigitalGlobe Enhanced 
Viewer Web Hosting Service. The Environment for Visualizing Images (ENVI) version 5.4.1 was 
used to perform radiometric, atmospheric, and geometric corrections on all satellite imagery (ITT 
Visual Information Solutions Inc. 2009). 

Image analysis. The goal of the image analysis in this study was the classification of marsh grass 
versus open water, the identification of dominant plant species, and the development of NDVI 
surface models using multispectral UAS and satellite imagery. The first step in the analysis was to 
classify objects as either land or water and then to classify land objects into one of three of the 
following vegetation categories: 1) Grass, Spartina patens, 2) Reed, Phragmites australis, and 3) 
Other, a mix of Bacopa spp., Plucheas spp., Iva spp., and Baccharis spp. 

Recent studies have used object-based image analysis (OBIA) classification methods to analyze UAS 
imagery (e.g., Laliberte and Rango 2009; Laliberte and Rango 2011). For the UAS imagery, Trimble 
eCognition Developer software and an OBIA workflow was used to delineate the hyperspatial imagery 
into objects based on similar spectral values, texture, and size, including the context of other 
neighboring objects. Based on the characteristics of objects that shared a common target classification, 
a rule set was then developed to methodically classify objects into one of the three target classes. 

For the satellite-based image classifications, standard pixel-based methods were used to produce 
NDVI, land and water, and vegetation thematic maps. Details about each classification scheme, and 
related tests of performance (i.e., kappa coefficient and overall accuracy), are provided below. 

Normalized Difference Vegetative Index (NDVI). The NDVI has well established correlations 
to photosynthetic activity, aboveground biomass, and leaf area index, and is therefore a primary 
measure of condition, function, recovery, and sustainability (Tucker 1979; Carle 2013). It is often 
used to estimate above-ground biomass, primary productivity and wetland species distributions, to 
assess impacts from anthropogenic activities and episodic events, and evaluate marsh collapse 
thresholds (An et al. 2013; Bianchette et al. 2009; Couvillion and Beck 2013; Klemas 2013; Steyer 
et al. 2013). NDVI assessments were performed using the air- and space-borne imagery and the 
standard equation (Rouse et al. 1974) 

 

This equation utilizes a band ratio of imagery between a NIR and red band to measure an 
ecosystem’s ability to capture solar energy and convert it to organic carbon or biomass (An et al. 
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2013). NDVI values less than zero (< 0) are typical of non-vegetation features (e.g., water, cloud, 
impervious surfaces) (Reif et al. 2011; Carle 2013), so those were excluded from the NDVI 
assessments. An NDVI surface model was developed for both the UAS and satellite imagery data 
sets by calculating the index ratio by objects (UAS imagery) and pixel (satellite imagery). 

Land-water. The ratio and interface of land and water are some of the more important features and 
metrics of wetland landscapes. Therefore, this study utilized land-water classification methodologies 
to compare air- and space-borne products. 

The reflectance values of the near infrared spectrum, coupled with the hyperspatial resolution of the 
UAS imagery, provide for easier identification and separation of water objects. Because each pixel 
represented only 2.6 cm on the ground, there are fewer instances of spectral mixing, as most pixels are 
either land or water. Using a simple threshold level, those objects with a mean near-infrared reflectance 
value less than 90 were classified as water (because water absorbs near infrared wavelengths). 

The satellite-based methodology for developing the land-water interface was a variant of the 
standard procedures used for CRMS land-water classifications (Folse et al. 2014). This classification 
scheme consisted of the modified Normalized Difference Water Index (mNDWI), the NDVI, and an 
ISODATA unsupervised classification. The mNDWI and NDVI have been shown to be adept at 
separating land-water features. The traditional NDWI normalizes a blue band against a NIR band, to 
identify water features. For WorldView data, the coastal and NIR2 bands provide greater spectral 
separation, therefore, they are used in the mNDWI to provide a more discrete threshold for detecting 
water areas (Wolf 2010). This index is described by the equation  

 

The mNDWI and NDVI data were used in conjunction with the unsupervised classification (30 max 
iterations, 0.99 convergence threshold, and 50 classes) and an accuracy assessment to generate WV-
derived land-water data. The mNDWI was also used to create a water mask that was used to exclude 
all non-vegetated features from other metric assessments. 

Species classification. Identification of dominant vegetation species in UAS imagery used 
OBIA algorithms that focused primarily on height, texture, and greenness. Because the common 
reed, Phragmites australis, is a tall, clumping species, this Reed class was primarily identified by 
height (i.e., objects that were taller than their surrounding objects). The Other class was primarily 
identified by greenness because this class of plants were generally greener than the surrounding 
grasses. After classifying both the Reed and Other classes, the remaining objects belonging to the 
larger Land class were then classified as Grass.  

For species classification using WV imagery, the Maximum Likelihood Classifier (MLC) in ENVI 
5.4.1 was used to assign each pixel to a dominant species or land-cover class. The MLC is a parametric 
classifier that relies on statistical distributions of reflectance values, these are defined by training data 
for each class (Carle 2013). The CRMS vegetation data and the higher resolution UAS imagery were 
used to establish training and accuracy Regions of Interest (ROI) for dominant species and land-cover 
classes. 



 ERDC/TN WRAP-18-1 
  September 2018 

7 

Elevation. Rapid and accurate estimations of wetland vegetation height is useful for assessing 
wetland biomass, condition, and change (Luo et al. 2015). However, collecting elevation data in 
remote and densely vegetated wetlands can be difficult. The Inpho module of the UAS Master 
software suite includes a point cloud creation tool that uses photogrammetric techniques to calculate 
a z elevation value for each x,y coordinate. The final density of the point cloud and subsequent 
Digital Surface Model were defined as twice the Ground Sample Distance of the original resolution 
of the collected imagery, in this case 7.2 cm. 

Photogrammetric software also allows for feature and elevation extraction from satellite images that 
are acquired at optimal angles (stereo imagery). The DEM Extraction tool in ENVI 5.4.1 was used to 
create a DSM from WV-3 stereo imagery that was collected on 21 October 2016. The stereo pairs 
were used to create epipolar images which were image matched and geocoded using ground control 
points (ENVI 2009). An initial relative DEM was converted to an absolute DSM using 2015 
reference first return Light Detection And Ranging (LiDAR) data (USGS 2016).  

Landscape metrics. Landscape ecology is based on the premise that there are strong correlations 
between landscape pattern (configuration) and ecosystem function (Gustafson 1998). Recent studies 
have shown linkages between wetland loss, disturbance events, and wetland landscape configuration 
(Liu and Cameron 2001, Suir et al. 2013, Couvillion et al. 2016). A number of landscape metrics 
(i.e., total class area, percentage of landscape, number of patches, patch density, edge density, and 
aggregation index) were selected after careful consideration of previous landscape fragmentation and 
configuration studies. Though these measures represent general structure in wetland landscapes, the 
aggregation index (AI) has evolved as a primary metric for linking structure to ecosystem function. 
This index, which is defined as the frequency with which different pairs of patch types (including 
like adjacencies between the same patch type) appear side-by-side (McGarigal 2015), was used to 
assess landscape configuration between the UAS and WorldView imagery. The landscape 
aggregation index (AIL) is derived as 

 

where ei,i is the number of like adjacencies between pixels of patch type i (class), max_ ei,i is the 
maximum number of like adjacencies between pixels of patch type i, and Pi is the proportion of 
landscape comprised of patch type i (He et al. 2000; McGarigal 2015). The FRAGSTATS landscape 
pattern analysis software was used to compute landscape metrics on the final land-water classified 
data sets derived from the UAS and WV sensors. 

RESULTS AND DISCUSSION 

Orthomosaic images. This project demonstrated the ability to process both UAS (2.6 cm pixel 
resolution) and WorldView-3 pansharped imagery (31 cm pixel resolution) for coastal wetlands 
monitoring purposes. UAS data can capture RGB and NIR data similar to traditional aerial 
photography and produce similar cartographic products at high resolutions (Figures 3). Satellite-
based imagery can recreate the RGB data sets with much larger footprints, but lacks the traditional 
look and feel of aerial products (Figures 3). 



ERDC/TN WRAP-18-1 
September 2018 

8 

 
Figure 3. UAS red-green-blue (left) and pansharpened natural color 

(right), both collected on 30 August 2016. 

Normalized difference vegetative index (NDVI) assessments. Both workflows presented 
here could satisfactorily derive an NDVI surface of the project area (Figure 4). The NDVI values 
ranged from zero (0), represented by the color red, to one (1), represented by the color green. The 
mean NDVI, for all vegetation pixels (NDVI > 0), was 0.254 and 0.464 for the UAS and WorldView 
images, respectively. When compared to NDVI values from the literature, these values appear to be 
lower (UAS) and higher (WV) than the typical range (~0.36 - 0.4) for intermediate marsh in the 
Terrebonne basin. Table 1 consists of error summary statistics and accuracy statistics comparing the 
UAS and WV-derived NDVI data. The mean absolute forecast error (MAE) and RMSE between 
these data are relatively large, this is concerning since small changes or differences in NDVI values 
have been correlated to significant differences in biomass. One explanation for the lower than 
expected values of NDVI from the UAS data set is that the modified Sony NEX-5 camera was not 
designed and built to capture NIR data. More recent advancements in vegetation monitoring with 
UAS technology have introduced NIR-specific and multispectral sensors with ambient light 
corrections that more precisely reproduce true reflectance values. This is especially important when 
comparing multi-temporal data sets. For example, modified cameras are appropriately positioned to 
compare vegetation indices at one fixed moment in time whereas calibrated multispectral specific 
sensors are able to compare data sets captured annually or seasonally. More intensive evaluations of 
NDVI estimates using higher resolution sensors is necessary for future applications. 
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Figure 4. Normalized Difference Vegetation Index (NDVI) (UAS - left, and satellite - right). 

Imagery collected on 30 August 2016. 

Table 1. Normalized Difference Vegetative Index (NDVI) error summary 
statistics for UAS and WorldView-derived data. 

Statistic Value Statistic Value 
n 499 MAE 0.112 
min -0.324 RMSE 0.215 
max 0.803 skewness 1.234 
mean difference 0.086 kurtosis 0.723 
std. dev. 0.197 NMAS (LE90) 0.354 
3 sigma 0.645 NSSDA (LE95) 0.421 
mean difference squared  0.046 95th percentile 0.466 

Land-water assessments. Figure 5 shows the land-water data sets that were generated from the 
UAS (left panel) and WorldView (right panel) imagery. The UAS classification returned a landscape 
consisting of 20.8 ha and 51.7 ha for land and water, respectively. The WorldView classification 
returned a landscape consisting of 20.3 ha and 52.2 ha for land and water, respectively. Though 
these land and water totals are similar, confusion matrix in Table 2 shows that the agreement of 
classification was moderate (Kappa = 0.69). The water classes had a higher classification accuracy 
than the land classes. Classification accuracies of the UAS and WV land and water data were also 
calculated against the CRMS land and water data (derived from 2015 aerial photography, 1 meter). 
Table 3 compares the UAS land and water classification to the CRMS data, while Table 4 compares 
the WorldView and CRMS data. These tables show lower agreements with the CRMS data, with the 
UAS land and water data having higher agreement than the WordView data. 
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Figure 5. Land-water interface (UAS - left, and satellite - right). Imagery collected on 30 

August 2016. 

Table 2. Confusion matrix comparing land/water 
data derived from UAS and WorldView sensors. 
ClassValue Land Water Total U_Accuracy Kappa 
Land 110 33 143 0.77 0 
Water 31 326 357 0.91 0 
Total 141 359 500 0.00 0 
P_Accuracy 0.78 0.91 0 0.87 0 
Kappa 0 0 0 0 0.69 

Table 3. Confusion matrix comparing land/water 
data derived from UAS and CRMS. 

ClassValue Land Water Total U_Accuracy Kappa 
Land 101 76 177 0.571 0 
Water 1 257 258 0.996 0 
Total 102 333 435 0 0 
P_Accuracy 0.990 0.772 0 0.823 0 
Kappa 0 0 0 0 0.607 
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Table 4. Confusion matrix comparing land/water 
data derived from WorldView and CRMS. 

ClassValue Land Water Total U_Accuracy Kappa 
Land 92 85 177 0.520 0 
Water 6 252 258 0.977 0 
Total 98 337 435 0 0 
P_Accuracy 0.939 0.748 0 0.791 0 
Kappa 0 0 0 0 0.534 

The hyperspatial resolution of the UAS data set allowed for the classification of smaller pockets and 
ponds of water as opposed to the slightly coarser satellite data. Thus, calculations of percent land or 
percent water are not comparable amongst the two methods. For this reason, any comparison of 
current conditions with traditional estimates (i.e., CRMS program) (CPRA 2012), it is recommended 
to use the satellite-based workflow presented here. This would ensure a similar pixel-based 
methodology but improve the estimation due to the slightly higher resolution of WV satellite data 
(30–50 cm) as opposed to the traditional 1 m aerial imagery, this is the basis of the CRMS analysis 
(CPRA 2012). 

Species Classification Assessments. Figure 6 shows the dominant species classification that 
was performed using the UAS (left panel) and WV (right panel) imagery. The dominant species or 
primary habitat types are color coded, where Grass, Other, Reeds, and Water classes are represented by 
green, orange, red, and blue, respectively. The WorldView derived dominant species data show that the 
project area consisted of 0.10, 1.9, 18.79, and 51.71 ha of Reed, Other, Grass, and Water classes, 
respectively. While the WorldView derived data consisted of 0.38, 4.36, 15.56, and 52.2 ha of Reed, 
Other, Grass, and Water classes, respectively. Table 5 provides a measure of agreement between the 
two dominant species data sets. The confusion matrix show a moderate Kappa value of 0.55, with the 
largest differences occurring in the Other class, followed by Reed and Grass classes. Overall, there was 
a high level of agreement in the Water classes from each data set. The areas of disagreement are 
potentially due to cloud shadows in the WV image, and the differences in image grain size. 
Interestingly, the footprint of the “Reed” class was consistent in both workflows. Only the extent of the 
Other class differed substantially between the workflows. This is possibly a result of the limited 
training data used in the supervised classification process on the satellite data or a lack of 
transferability of the greenness algorithms from the UAS OBIA to the satellite pixel-based 
classification. 
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Figure 6. Dominant species classification (UAS - left, and satellite - right). Imagery collected 

on 30 August 2016 

Table 5. Confusion matrix comparing dominant species classes 
from UAS and WorldView sensors. 

ClassValue Reeds Grass Other Water Total U_Accuracy Kappa 
Reeds 4 2 3 1 10 0.400 0 
Grass 2 82 31 15 130 0.631 0 
Other 0 5 8 0 13 0.615 0 
Water 0 32 24 300 356 0.843 0 
Total 6 121 66 316 509 0 0 
P_Accuracy 0.667 0.678 0.121 0.949 0 0.774 0 
Kappa 0 0 0 0 0 0 0.550 

Elevation assessments. Photogrammetrically-derived digital surface models benefit from 
multiple perspectives and are well suited for UAS workflows because a singular point can be 
captured in as many as ten overlapping UAS images. This scenario can produce fairly accurate 
(4.74 cm, 95% vertical confidence) elevation predictions (Figure 7). Stereo-pairs of WorldView 
imagery can also produce elevation estimates using photogrammetric techniques (Figure 7). The 
WorldView assessment also utilized existing LiDAR data (2015) to assist with accuracy assessments 
of the DSM data. The mean surface elevations were 0.79, 0.38, and 0.298 m, for the UAS, WV, and 
LiDAR data, respectively. Table 6 provides summary statistics describing the difference between in 
UAS and WV elevation values at coincident points. The MAE and RMSE between the UAS and 
WV elevation data sets are 0.196 and 0.419, respectively (Table 6). Overall, it appears that 
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smoothing techniques were used to generate the DSM data from UAS imagery, and no filtering was 
applied upon the satellite-derived DSM data. The limited number of photos, ground sample distance, 
and absolute accuracy of the raw imagery constrains the final accuracy of the satellite-based DSMs. 
For coarse-scaled, regional assessments, the technique presented here is reasonable and economical. 

 
Figure 7. Photogrammetrically-derived Digital Surface Models (UAS - left, and satellite - right). 

UAS imagery collected on 30 August 2016 and satellite imagery collected on 21 
October 2016. 

Table 6. Digital Surface Model error summary statistics for UAS 
and WorldView-derived elevation data. 

Statistic Value Statistic Value 
n 498 MAE 0.196 
min -0.877 RMSE 0.419 
max 1.650 skewness 1.697 
mean difference 0.173 kurtosis 2.338 
std. dev. 0.382 NMAS (LE90) 0.689 
3 sigma 1.256 NSSDA (LE95) 0.821 
mean difference squared  0.175 95th percentile 1.076 

Landscape metric assessments. Landscape metrics were used to generate and compare standard 
measures of wetland structure derived from air- and space-borne data. Table 7 provides a summary of 
the metrics and values that were generated for this assessment. The area based metrics show 
similarities in the amount and proportion of land and water classes in the project area, while the patch 
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and density metrics show large differences. These are related to the grain size of the imagery, where 
higher accuracy is expected with increasing spatial resolution data. Moderate differences were 
observed in the Aggregation Index, where higher accuracy is expected with higher spatial resolution 
data. Though these metrics can be useful for comparing target landscapes to reference landscapes, the 
utility of these measures are generally found in the ability to track their changes through space and 
time, and linking those structural changes to ecosystem stressors and function.  

Table 7. Landscape metrics (class level statistics) computed from the UAS and 
WorldView-derived land and water classified data. 

LID   TYPE  

Total 
Class 
Area 

Percentage 
of Landscape 

Number of 
Patches 

Patch 
Density 

Edge 
Density 

Aggregation 
Index 

UAS  land  20.7689 28.6598 1203 1660.0637 1501.509 86.8966 
UAS water  51.6982 71.3402 1561 2154.081 1501.509 94.6026 
WorldView  land  20.2972 27.9835 853 1176.0213 906.212 91.8641 
WorldView water  52.2355 72.0165 522 719.6754 906.212 96.7834 

CONCLUSION: UAS and satellite-based operations in the coastal environment are filling 
important niches for site-specific, landscape, and regional monitoring of restoration activities. A 
defining advantage of remote sensing workflows and applications is the ability to “scale up” ground 
measurements and assess the conditions of larger landscapes. It is the specific needs of a project, 
including its scope, time, and budget constraints, that determines the most appropriate method and 
data source. The areal extent of satellite imagery makes it well suited for regional assessments of 
large areas. With rapidly increasing spatial and temporal resolution, satellite sensors are beginning to 
offer data sets that rival traditional aerial photography. This combination is highly advantageous for 
large projects. 

The goal of this study was to demonstrate photogrammetric methods and evaluate and compare UAS 
and high-resolution satellite-derived products for wetland monitoring. Through these comparisons, 
the benefits of the higher spatial resolution UAS data are realized with the vegetation and land/water 
classifications. The hyperspatial imagery and object based classification methods allow for more 
accurate determination of dominant vegetation communities and the ability to detect and categorize 
smaller (i.e., sub-meter) wetland features. However, the results from the satellite-derived products 
were largely similar to those from the UAS. For some products and applications, especially those 
projects requiring a large area of interest, the cost (e.g., time and money) of the UAS approach 
(collection/processing) may not outweigh the benefits that are experienced over the space-borne 
methods. This was observed with the NDVI and elevation data, which aside from lacking the spatial 
resolution necessary to identify the smallest land and water features, has more established and 
efficient methods for performing some remote sensing techniques on regional and landscape scales. 

UASs, and to some respect the higher spatial, spectral, and temporal resolution satellites, overcome 
many of the limitations (i.e., access, frequency, cloud cover) that are experienced with more 
traditional in situ and moderate resolution data collections. The trade-offs between these options are 
that the higher resolution data require CPU-intensive post-processing techniques and may require 
additional validation.  



 ERDC/TN WRAP-18-1 
  September 2018 

15 

This study demonstrated the utility and applicability of these novel systems and data, but it may be 
that a combination of these approaches (traditional photography, UAS, and space-borne data) are 
necessary to provide adequate coverage and metrics to fulfill monitoring, management, and 
regulatory needs. Future work should expand upon this study to evaluate other UAS mounted 
sensors (i.e., LiDAR, multispectral, and hyperspectral) to assess wetland structure and function 
metrics across a wider range of ecosystem landscapes. 
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