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ABSTRACT OF THE DISSERTATION

Salt Marsh Responses To Oil Contamination Following The
Deepwater Horizon Oil Spill

BY
MICHAEL BELAND

The Deepwater Horizon oil spill, which occurred from April to July of 2010, was the
largest spill in U.S. history. Oil washed onto hundreds of kilometers of intertidal marsh
shoreline resulting in widespread plant mortality and short-term reductions in ecosystem
function. Past incidences of oiling have shown that marsh recovery trajectories can vary
greatly over space and time. Accordingly, the long-term negative effects of an oil spill of this
magnitude on marsh ecosystems remains largely unknown. This dissertation investigates the
effects of oil contamination from the Deepwater Horizon oil spill on community dominant
plant species distributions and land loss rates and, simultaneously, demonstrates the value of
employing advanced remote sensing and GIS techniques to address landscape-scale

ecological disturbances.

To examine the response of marsh plant communities to heavy oiling, dominant
species in heavily oiled salt marshes, an image classification system was developed to map
dominant species. This classification approach utilizes canonical discriminant analysis
(CDA), along with a library of field-referenced image endmembers collected from a time
series of Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) images (2010-2012).

Land loss rates were calculated using the normalized difference vegetation index (NDVI)
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applied to a time series (2006-2016) of high resolution (0.30-0.64 m) orthorectified image
datasets. Finally, a simple, fetch-limited wind-wave model was integrated into the analysis of
shoreline oiling and land loss to examine the interacting effects of wave characteristics and

oiling on bay-wide land loss rates.

This dissertation’s findings suggest that the most important impact of oiling along
marsh boundaries is the acceleration of shoreline retreat and land loss. Further, the results
imply that marsh responses to oil contamination are highly variable, and wave action is a
significant factor in determining marsh recovery trajectories. Without high wave energy,
marsh plant communities show signs of recovery within 3 years of oil contamination.
Conversely, oiled shorelines that are exposed to high wave energy can accelerate land loss
exponentially. Finally, the results demonstrate the value of advanced remote sensing
techniques in examining landscape-scale ecosystem changes that are impractical to assess

using traditional, field-based quantitative methods.
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Chapter 1: Introduction

Salt marshes are highly productive, resilient ecosystems that provide a myriad of
important ecological services and possess unique physiological traits for coping with
stressful environmental conditions (Turner, 1976; Niering et al., 1977; Pennings and
Bertness, 2001; Gedan et al., 2009). For nearly two centuries, human activities in the
northern Gulf of Mexico have altered natural hydrologic regimes and changed the magnitude
of system perturbations beyond salt marsh resilience thresholds (Deegan et al., 1984; van de
Koppel et al., 2005), resulting in accelerated rates of wetland loss (> 250 km? yr: Stedman
and Dahl, 2008). Since the 1970s, land loss has been a major topic of concern in the region,
particularly for coastal Louisiana (Barrett, 1970; Gagliano et al., 1970; Chabreck, 1972;
Craig et al., 1979), which lost an estimated 4833 km? of intertidal wetland area from 1932-

2016 (~58 km?yrt: Couvillion et al., 2017).

The largest oil spill in U.S. history occurred in the Gulf of Mexico on April 20, 2010,
when an explosion at the BP/Deepwater Horizon (DWH) Macondo wellhead released
780,000 m® of crude oil into the Gulf before being capped on July 15 (Lehr et al., 2010). Oil
washed onto approximately 796 km of shoreline comprised of intertidal marshes,
disproportionally impacting salt marshes of Louisiana (Michel et al., 2013). Oiling was
concentrated along the marsh shoreline edge (Silliman et al., 2012; Kokaly et al., 2013;
Peterson et al., 2015), causing plant stress, mortality, and reductions in above- and
belowground biomass (Silliman et al., 2012; Lin and Mendelssohn, 2012; McClenachan et

al., 2013). The long-term effects of an oil spill of this magnitude remain difficult to predict,
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due to the variability in oiling characteristics, plant responses and landscape position

(Pezeshki et al., 2000; Lin and Mendelssohn, 2012; McClenachan et al., 2013).

Varying oiling characteristics, such as oil-type, timing of exposure, concentration,
thickness, degree of weathering and emulsification, and surface distribution, have been
shown to elicit highly variable plant community and ecosystem responses (Pezeshki et al.,
2000; DeLaune et al., 2003). For example, leaf tissue that is exposed directly to oil exhibits
immediate, yet, short-term effects, while oil contamination of marsh sediment may cause
longer-term effects on ecosystem processes, like gas exchange capacity (DeLaune et al.,
2003). The timing of an oil spill may determine the degree of plant mortality, as plants
respond more adversely to oiling during the growing season than during pre-dormancy and
dormancy periods (Webb, 1994; Lin, 1996). Furthermore, oil spills that occur during an
active storm year may cause more extensive marsh injury and mortality, due to higher storm

tides' capacity for transporting oil into previously unaffected areas (Pezeshki et al., 2000).

Dominant plant species shape community structure and are a useful indicator of
ecosystem health following disturbances (Frieswyk et al., 2007). Most petroleum crude oils
(e.g. south Louisiana crude) are nonionic, and therefore, associate more readily with organic
particles (Pezeshki et al. 2000). The level of soil organic matter (SOM) in a marsh substrate
impacts oil concentrations, and SOM content varies depending on plant species composition
(Lin and Mendelssohn, 1996). For example, Lin and Mendelssohn (1996) reported, in a
comparative greenhouse study, both higher SOM content and higher oil residual
concentrations in plots dominated by Spartina patens than those dominated by Spartina
alterniflora. Additionally, the distribution of commonly occurring species is a valuable

indicator of ecosystem response, due to the variable growth responses of species to oil
2



contaminated soils. For instance, Spartina alterniflora has exhibited a greater recovery rate
than other common dominant marsh species in field experiments, indicating a higher
tolerance limit for oil contamination (Lin and Mendelssohn, 2012). Therefore, identifying the
distribution of marsh species and documenting vegetation changes in relation to oiling
characteristics are critical steps in assessing the landscape-scale ecological impacts of oil

contamination.

Exposure of marsh plants to oil can lead to plant mortality and reduced biomass
production, resulting in destabilization of the root-soil matrix (Lin and Mendelssohn, 1996;
Silliman et al., 2012; Hester et al., 2016). Soil strength and sediment accretion are directly
related to belowground biomass as roots and rhyzomes create a binding matrix for sediment
accumulation (Gabet, 1998; Michel and Kirchner, 2002). Reductions in belowground
biomass caused by oiling and subsequent remediation efforts increased the vulnerability of
shorelines to both episodic (i.e. storm surge) and chronic (i.e. subsidence, sea-level rise)
erosional forces (Hershner and Lake, 1980; Silliman et al., 2012; McClenachan et al., 2013;

Zengel et al., 2015).

Limited resources and the inaccessibility of many areas have made ecological
assessments using traditional field-based methods infeasible. In light of these limitations,
remote sensing products have become attractive tools for “scaling up” in situ observations to
a landscape scale, evaluating post-disturbance responses, and monitoring ecosystem changes.
Time series, or multitemporal, image processing models have become important tools for
ecosystem ecologists and conservation biologists, as these techniques provide accurate and
reliable measurements of vegetation cover and biophysical parameters (i.e. aboveground

green biomass, leaf area index and vegetation stress) that are used to support estimates of
3



primary productivity for terrestrial ecosystems (Asner, 1998; Ustin and Gamon, 2010). More
recently, narrow-band, hyperspectral sensors, like the Airborne Visible / Infrared Imaging
Spectrometer (AVIRIS), have produced images with fine enough spectral resolution (10 nm)
to discriminate ground constituents that were previously indistinguishable with broadband
sensors. Consequently, advanced techniques, like increasingly sophisticated feature
extraction and spectral unmixing algorithms, have been developed to attain more detailed
information from spectroscopic data (Gamon et al., 1997; Asner, 1998; Roberts et al., 1998;
Ceccato et al., 2001; Serrano et al., 2002; Asner et al., 2003; Nagler et al., 2003; Feret et al.,

2008; Kokaly et al., 2009; Ustin et al., 2009).

The objective of this dissertation is to investigate the impact of oil contamination on
dominant plant species distributions (2010-2012) and marsh boundary land loss (2010-2013
and 2013-2016) in Barataria Bay, Louisiana following the DWH oil spill and,
simultaneously, to demonstrate the value of employing advanced remote sensing and GIS
techniques to address landscape-scale ecological disturbances. The dissertation is divided
into three main chapters that each address different questions related to this objective.
Chapter 2, titled “Mapping changing distributions of dominant species in oil-contaminated
salt marshes of Louisiana using imaging spectroscopy” and published in Remote Sensing of
Environment, analyzes the post-oiled, changing spatial distribution of dominant salt marsh
communities using a time series of airborne imaging spectroscopic data (AVIRIS; Beland et
al., 2016). An image classification system was employed for mapping dominant marsh
species, and novel imaging spectroscopy techniques were developed to distinguish spectrally
similar plant species. The goal was to develop and implement an image classification
strategy that would obtain satisfactory and consistent classification results.

4



Chapter 3, titled “Oiling accelerates loss of salt marshes, southeastern Louisiana” and
published in PLoS ONE, analyzes landscape and reach-scale land loss trajectories in oil
impacted salt marshes (Beland et al., 2017). Normalized Difference Vegetation Index
(NDVI) was applied to a time series (2006-2016) of high resolution satellite and airborne
color-infrared images to map changes in marsh land cover and open water before and after
oiling. Marsh boundaries were segmented into non-oiled and oiled reaches, and land-loss
rates were calculated to determine if losses were significantly different than background
rates. Further, standardized land-loss rates per unit shoreline were calculated to provide
results that can be easily compared with future assessments of marsh shoreline change in the

Louisiana Coastal Zone.

Chapter 4, titled “Interactive Contributions of Oiling and Wave Energy on
Land Loss along Salt Marsh Boundaries”, integrates a simple, fetch-limited wave climate
model with shoreline oiling and land loss observations to better explain the variability in land
losses after oiling by generating a spatially-explicit model of background rates of erosion
before and after oil contamination. This chapter examines the relationship between marsh
boundary oiling and exposure to wave energy and calculates land loss rates along heavily-

oiled and non-oiled marsh boundaries across a range of wave energy exposures.

The last chapter, Chapter 5, summarizes the overall findings of the dissertation work

and concludes with an examination of future research questions.
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Chapter 2: Mapping changing distributions of dominant species in oil-
contaminated salt marshes of Louisiana using imaging spectroscopy

Abstract

The April 2010 Deepwater Horizon (DWH) oil spill was the largest coastal spill in
U.S. history. Monitoring subsequent change in marsh plant community distributions is
critical to assess ecosystem impacts and to establish future coastal management priorities.
Strategically deployed airborne imaging spectrometers, like the Airborne Visible/Infrared
Imaging Spectrometer (AVIRIS), offer the spectral and spatial resolution needed to
differentiate plant species. However, obtaining satisfactory and consistent classification

accuracies over time is a major challenge, particularly in dynamic intertidal landscapes.

Here, we develop and evaluate an image classification system for a time series of
AVIRIS data for mapping dominant species in a heavily oiled salt marsh ecosystem. Using
field-referenced image endmembers and canonical discriminant analysis (CDA), we
classified 21 AVIRIS images acquired during the fall of 2010, 2011 and 2012. Classification
results were evaluated using ground surveys that were conducted contemporaneously to
AVIRIS collection dates. We analyzed changes in dominant species cover from 2010-2012

for oiled and non-oiled shorelines.

CDA discriminated dominant species with a high level of accuracy (overall accuracy
= 82%, kappa = 0.78) and consistency over three imaging dates (overallzoi0 = 82%,
overallo11 = 82%, overallo12 = 88%). Marshes dominated by Spartina alterniflora were the

most spatially abundant in shoreline zones (< 28m from shore) for all three dates (2010
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=79%, 2011 = 61%, 2012 = 63%), followed by Juncus roemerianus (2010 = 11%, 2011 =

19%, 2012 = 17%) and Distichlis spicata (2010 = 4%, 2011 = 10%, 2012 = 7%).

Marshes that were heavily contaminated with oil exhibited variable responses from
2010-2012. Marsh vegetation classes converted to a subtidal, open water class along oiled
and non-oiled shorelines that were similarly situated in the landscape. However, marsh loss
along oil-contaminated shorelines doubled that of non-oiled shorelines. Only Spartina
alterniflora dominated marshes were extensively degraded, losing 15% (354,604 m?) cover
in oiled shoreline zones, suggesting that Spartina alterniflora marshes may be more

vulnerable to shoreline erosion following hydrocarbon stress, due to their landscape position.

2.1. Introduction

Coastal wetlands of the Gulf of Mexico provide a wide range of vital ecosystem
services, including storm surge protection, water quality enhancements, carbon sequestration,
wildlife habitat, fisheries and recreational opportunities (Mitsch and Gosselink, 2000; Reddy
and DeLaune, 2008). However, for nearly two centuries, the states around the northern Gulf
of Mexico have experienced elevated rates of intertidal wetland loss (> 250 km?yr!: Stedman
and Dahl, 2008), due to a combination of natural disturbances (e.g. hurricanes, tropical
storms), and anthropogenic activities (e.g. wetland drainage, canal dredging, river
channelization and reduced sediment loads from the Mississippi River). Louisiana alone lost
an estimated 4800 km? of intertidal wetland area from 1932-2010 (~62 km?yr: Couvillion

etal., 2011).

On April 20, 2010, an explosion occurred on the Deepwater Horizon (DWH) offshore

drilling unit at the Macondo well about 64 km off the coast of Louisiana. An estimated
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780,000 m?® of crude oil was released into the Gulf before the well was successfully capped
on July 15, 2010 (Lehr et al., 2010). Oil washed onto shorelines of several Gulf States,
including approximately 796 km of Louisiana shoreline composed of intertidal marshes
(Michel et al., 2013). Past incidences of oiling have shown that marsh recovery trajectories
can vary greatly, from temporary reductions in stomatal conductance and photosynthetic
rates (Pezeshki et al., 1993) to plant mortality, substrate destabilization and marsh shoreline
erosion (Lin and Mendelssohn, 1996; Lin and Mendelssohn, 2012). The long-term effects of
an oil spill of this magnitude on marsh ecosystems remain unknown due to variations in
exposure properties (Alexander and Webb, 1985; Pezeshki et al., 2000), landscape
characteristics, such as marsh surface elevation (Hester and Mendelssohn, 2000), distance to
shoreline (Khanna et al. 2013) or exposure to wave action (Silliman et al., 2012) and plant
community composition (Pezeshki and Delaune, 1993; Lin and Mendelssohn, 1996; Lin and

Mendelssohn, 2012).

Studies conducted after the DWH spill suggest that oil coverage extended less than 15
m inland from the seaward edge of marshes (Silliman et al., 2012), reaching a maximum of
21 m (Kokaly et al., 2013), and vegetation stress was largely restricted to the zone extending
14 m from the shoreline (Khanna et al., 2013). Lin and Mendelssohn’s (2012) findings
indicate that impacts to salt marsh plant communities were variable depending upon oiling
intensity, and suggested that the locations most impacted by oiling were dominated by
Spartina alterniflora and Juncus roemerianus. However, the distribution of plant
communities that were impacted, and the degree of community change have not been

quantitatively determined.
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Dominant species shape community structure and are a useful indicator of plant
community condition (Frieswyk et al., 2007). More specifically, identifying dominant
species and changes in spatial distribution can help explain long-term marsh ecosystem
responses to oil (Lin and Mendelssohn, 1996; DeLaune et al., 2003). Most crude oils are
nonionic, and associate more readily with organic particles (Pezeshki et al., 2000).
Consequently, soil organic matter (SOM) in a marsh substrate impacts the persistence of oil
residues, and SOM content in turn varies with plant species composition (Lin and
Mendelssohn, 1996). In a comparative greenhouse study, Lin and Mendelssohn (1996)
reported both higher SOM content and higher oil residual concentrations in plots dominated
by Spartina patens than in plots dominated by S. alterniflora. Additionally, S. alterniflora
has exhibited a greater recovery rate than other common dominant marsh species (e.g.
Distichlis spicata, S. patens and J. roemerianus) in field experiments, indicating a higher
tolerance threshold for oil contamination (Mendelssohn et al., 1990; Lin and Mendelssohn,

2012).

Accordingly, mapping community dominants and changes in distribution are valuable
components of ecosystem assessments. Yet, quantitative assessments of plant community
impacts are infeasible using field-based methods, due to the large size of the DWH oil-
affected area. Remote sensing has become an attractive tool for evaluating responses of
vegetation to disturbance and for “scaling up” in situ observations to landscape scales, due to
the relatively high cost and time requirements of traditional field assessments and the
inaccessibility of many areas. More recently, narrow-band, hyperspectral sensors, like the
Airborne Visible / InfraredImaging Spectrometer (AVIRIS), have produced images with fine

enough spectral resolution (~10 nm) to discriminate ground constituents that were previously
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indistinguishable with broadband sensors. As a result, increasingly sophisticated image
classifiers, feature extraction and spectral unmixing algorithms have been developed to
derive more detailed information from spectroscopic data, including pigment (Demmig-
Adams and Adams, 1996; Gamon et al., 1997; Feret et al., 2008; Ustin et al., 2009), non-
pigment (Ceccato et al., 2001; Asner et al., 2003; Serrano et al., 2002; Nagler et al., 2003;

Kokaly et al., 2009) and biochemical constituents of vegetation (Asner, 1998).

Species-level classification, however, remains a substantial challenge due to the
spectral similarity of many species, particularly those within the same functional type (Ustin
and Gamon, 2010; Roth et al., 2015), and spatial, temporal and spectral variability of a single
species (Somers et al., 2009; see Somers, et al., 2011, for review of endmember variability).
Mapping coastal vegetation is further complicated by sharp environmental gradients, such as
salinity and anaerobic stress, phenology, and the tidal regime, all of which enhance spectral

variability over space and time (Schmidt and Skidmore, 2003; Adam et al., 2010).

Developing techniques that optimize the use of training data to minimize spectral
variability within classes and reduce data dimensionality are active areas of remote sensing
research as they may improve classification accuracies both spatially (Roth et al., 2015) and
temporally (Peterson et al., 2015). A broad range of endmember optimization (Somers et al.,
2011), dimension reduction (Ddpido et al., 2012) and classification techniques (Lu and
Weng, 2007) have been applied to hyperspectral images for vegetation mapping (Xie et al.,
2008 for review of vegetation mapping), all of which have advantages and limitations that
should be considered in relation to the analysis objectives, spatial and temporal factors, and
landscape complexity (Lu and Weng, 2007). With high dimensional data, like AVIRIS,

reducing the number of spectral bands used for classification is often necessary to retrieve
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satisfactory results, due to the redundancy and collinearity of some bands (Hughes, 1968),
particularly those close in spectral distance. Canonical discriminant analysis (CDA) with a
linear discriminant allocation rule has performed well in addressing class discrimination
problems (Palacios-Orueta, 1996; Guang and McLean, 2000; Pu and Liu, 2011; Alonzo et al.,
2013; Roth et al., 2015). CDA is a combined dimension reduction and classification method
that transforms high-dimensional datasets into discriminant functions that maximize the
difference ratios between class means and standard deviations. Subsequently, CDA selects
variables with significant discriminating power, discarding unexplained noise and
redundancy (Fisher, 1936; Guang and McLean, 2000; Roth et al., 2015). As a result, CDA is
well suited for distinguishing spectrally similar image constituents, such as perennial marsh

grasses, because it removes spectral bands that are collinear (Plaza et al., 2009).

Field surveys have reported that Barataria Bay was among the most heavily impacted
areas by oil following the DWH spill (Michel et al., 2013). Three recent studies have
detected oil and mapped the extent of oil and persistence in Barataria Bay with greater detail
using imaging spectroscopy (Khanna et al., 2013; Kokaly et al., 2013; Peterson et al., 2015).
Kokaly et al. (2013) compared AVIRIS data with field-collected spectra of oiled marsh,
focusing on the spectral absorption features related to the hydrocarbon (C-H) bond, to
delineate the distribution of oiled marshes. Khanna et al. (2013) used a continuum removal
technique centered on two oil absorption features to detect oil contamination on AVIRIS
images. Peterson et al. (2015) used stable zone unmixing (SZU: Somers et al., 2010) and
synthetic mixture analysis to determine which bands had discriminating power for oiled and
non-oiled marshes. Nine bands (1-visible (685 nm), 4-short-wave infrared 1 (SWIR1, 1263,

1622, 1732, 1772 nm), and 4 SWIR2 (2038, 2208, 2238, 2277 nm)) effectively discriminated
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oiled marsh from live and dead vegetation (Peterson et al., 2015). Here, we used the
approach from Peterson et al. (2015) to identify oiled zones, and applied CDA to all bands to
map dominant species. We evaluated the suitability of time series imaging spectroscopy for
mapping dominant species and for assessments of plant community distribution change after
the spill. The following questions provide a framework for examining the suitability of the

approach:

1. How well can spectrally similar salt marsh species be discriminated using
airborne imaging spectroscopy? Do the maps of dominant species correspond to

expectations based on expert knowledge of regional species distributions?

2. Which plant communities, defined by dominant species, were most affected by

oiling, and how did the spatial distribution of those communities change?

3. How did marsh area conversion to open water compare between oiled and non-

oiled shoreline reaches and for different dominant species?

S. alterniflora and J. roemerianus were the primary dominants inhabiting oil-
contaminated marshes of Barataria Bay (Lin and Mendelssohn, 2012; Kokaly et al., 2013).
No study has quantitatively or spatially documented the cover of these species or of other
less common salt marsh dominants (e.g. Phragmites australis, D. spicata, and S. patens) in
the impacted area. Further, no studies have documented changes in the distribution of those
dominants following the incident. Here, we devise an image classification scheme and
examine the spatial distribution of salt marsh dominants on a landscape-scale, including S.
alterniflora, J. roemerianus, P. australis, D. spicata and S. patens (Figure 2.1). Finally, we
evaluate the dominant species cover change in oiled and in adjacent, non-oiled zones for

potential oil-related impacts to marsh community distributions, including conversion of
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marsh to open water.
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Figure 2.1: Work flow schematic illustrating the AVIRIS and reference datasets (black
boxes) image processing, spectral sampling, classification and map analysis methodology.
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2.2. Material and Methods

2.2.1 Study Area

Following the 2010 DWH spill, the most heavily oiled marsh shorelines were located
in northern Barataria Bay, Louisiana (29.43°N, 89.88°W, approximately 60 km south of New
Orleans) (Figure 2.2B). The marsh ecosystems of this study area, which cover approximately
197 km?, are typical of coastal wetlands throughout the Mississippi Delta region and are
strongly influenced by the subtropical climate as well as by oceanic and fluvial processes.
Salt marshes of Barataria Bay are fractions of a meter from sea level and are being impacted
greatly by sea level rise (Penland and Ramsey, 1990). The vegetation types commonly found
in the northern portion of Barataria Bay are characterized by low species richness (Visser et
al., 1998). The common dominant species were identified using the 2007 Louisiana
coastwide vegetation survey (Visser et al., 1998; Sasser et al., 2008). A dataset of more than
8,000 records was queried to determine which dominant species were commonly observed at
Braun-Blanquet cover-abundance category 6 levels (>75%: see Moore and Chapman, 1986
for cover-scale). Five species met the criteria of dominant species in Barataria Bay,
including D. spicata, J. roemerianus, P. australis, S. alterniflora and S. patens, of which four
are grasses (D. spicata, S. alterniflora, P. australis and S. patens), and one is a grass-like

rush (J. roemerianus).
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Figure 2.2: Maps show the A) three AVIRIS image mosaicks used for classification, B)
location of study area (red box) and Deepwater Horizon well (red cross) in Louisiana, and C)
field collection sites (n = 59) for reference polygons in Barataria Bay. The spatial
distribution of salinity and flooding conditions is based on U.S. Fish and Wildlife Service's
National Wetlands Inventory maps.

Polyhaline marsh zones (salinity 8-29 ppt) of Barataria Bay are dominated by S.
alterniflora and J. roemerianus with J. roemerianus more frequently dominant in the
mesohaline zones (salinity 4-18 ppt: Chabreck, 1972; Visser et al., 1998). Additionally, P.
australis is commonly present in patches as a dominant in mesohaline zones. Commonly
intermixed with these dominants are the subdominants, D. spicata, S. patens, Schoenoplectus
americanus and Schoenoplectus robustus. D. spicata and S. patens are found as dominants

in mesohaline zones, and D. spicata is commonly present in polyhaline, irregularly flooded
19



zones as a dominant, and particularly in locations where a disturbance has recently occurred

(Chabreck, 1972; Visser et al., 1998).

All five species differ in the timing of peak productivity and in the volume of dead
biomass buildup, which impacts their spectral profile, or reflectance. The two extreme
species, in terms of fluctuations in biomass and seasonality, are S. alterniflora and S. patens.
S. alterniflora has the most seasonal fluctuations of biomass, and consistently exhibits peak
biomass in September, while S. patens grows throughout the year and the biomass shows
little, if any, seasonal pattern (Kirby and Gosselink, 1976; Morris and Haskin, 1990;

Pezeshki and DeLaune, 1991).
2.2.2 Image Acquisition and Preprocessing

In an effort to investigate the large-scale impacts and monitor the long-term recovery
of coastal ecosystems following the DWH oil spill, the National Aeronautics and Space
Administration (NASA) deployed the ER-2 and Twin Otter International aircrafts equipped
with AVIRIS to collect spectrometer data of the post-spill environment. AVIRIS is a
whiskbroom scanner that measures upwelling radiance between 365 and 2495 nm at 10 nm
intervals (total of 224 bands) (Green et al., 1998), and produces 700 - 800 ortho-corrected
pixels for 224 detectors on each scan. Here, the AVIRIS data used for analysis and mapping
were collected for ecosystem impact assessments while deployed on the Twin Otter in
October, 2010, 2011 and 2012 and had a native resolution of 3.3-3.5m
(http://aviris.jpl.nasa.gov/) (Figure 2.2A). The images were acquired with full navigation and

georectification information.

The AVIRIS radiometric calibration took place at the Jet Propulsion Laboratory

(JPL). Following image acquisition, atmospheric calibration and reflectance retrieval was
20
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performed in two steps using ACORN 6 (ImSpec LLC, Seattle). ACORN 6 performs
forward inversion that fits modeled radiance against measured radiance to retrieve surface
reflectance based on geographic, temporal and atmospheric parameters. In this study, water
vapor was fit using the 940 nm water vapor band. After initial reflectance retrieval, a ground

target was used to remove high-frequency noise in retrieved reflectance (Clark et al., 2002).

Georectification was completed in two steps, starting with a geocorrection procedure
using JPL's georeferencing information derived from inertial navigation data and GPS in a
geographic lookup table (Boardman, 1999). Further georeferencing was done using
Aerometric Inc. (http://gis.aerometric.net/dirlists.ntm) aerial photos (0.30m?) as base maps
that were resampled by pixel aggregation to 3.5 m to more closely match the resolution of the
first AVIRIS datasets. Registration error of less than one pixel (RMSE < 1.0) was achieved

for all images.

Environmental conditions are confounding factors in multitemporal analysis of
vegetation cover, and therefore, studies commonly seek to acquire data under similar
illumination, hydrologic and phenological conditions (Rogan et al., 2002). AVIRIS
collection is generally restricted to within two hours of solar noon, due to the increased
atmospheric scattering (atmospheric noise) that occurs early and later in the daytime hours.
Atmospheric conditions were favorable (i.e. low humidity and cloud-free) on all three dates.
A gap in coverage exists for the October 4, 2010 data. We attempted to fill this gap with a
dataset from an earlier date (September 24, 2010), but poor atmospheric conditions made
calibration unsatisfactory. Therefore, we excluded this area from the analysis for all three

dates.
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The AVIRIS collection dates had a maximum separation of 16 days on the Julian
calendar (Julian dates 277, 288, 293). However, the precipitation patterns preceding the
October collection dates varied appreciably from year-to-year, likely causing variable
phenological conditions (Figure 2.3C). As a result, spectral signatures also varied for some
species (Figure 2.3A & B). The 2010 water year (October 2009-September 2010) was the
wettest and vegetation was generally greener on 2010 imagery. Precipitation in both 2011
and 2012 was below average in relation to the 44-year climate record (Galliano, LA), which
may have contributed to the differences in spectra (Figure 2.3B & C). For instance, all
species but J. roemerianus showed increased reflectance in the red region and red-edge shifts
in the later October dates, which implies a shift from green to yellow and brown vegetation

caused by the onset of natural senescence (Figure 2.3B).
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Figure 2.3: Shows the full spectrum (A) and subset (B) mean reflectance curves (solid line)
with 95% confidence intervals (dashed lines) of dominant species training data and monthly
precipitation (C) for each water year leading up to the AVIRIS collection dates.

Tidal conditions at the time of AVIRIS data acquisition are important because
varying water levels can affect image registration (i.e. shorelines differ on multitemporal
datasets) and classification results (Jensen et al., 1993, Allen et al., 2012). AVIRIS data
capture in northern Barataria Bay occurred between 16:39 and 19:27 UTC on October 4,
2010. Tide levels over that timeframe ranged from 0.246 to 0.138 m above mean lower low
water height (MLLW: NOAA Station ID 8761724, Grand Isle, LA). On October 15, 2011,
data capture occurred from 16:22 to 18:04 PM UTC with tides ranging from 0.026 to 0.036
m above MLLW. On October 19, 2012, data capture occurred from 15:48 to 17:11 PM UTC
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with tides ranging from 0.097 to 0.034 m above MLLW. The AVIRIS collection time on the
two later acquisition dates (October 15, 2011 and October 19, 2012) were during lower tides,
and therefore any decreases in land cover on those dates would not be due to higher water
levels. Water levels were highest on the first image date, so the use of that image as the base
layer for identification of increased open water would result in conservative estimates of the

area experiencing conversion to open water.
2.2.3 Data Collection, Spectral Library Development & Endmember Selection

Classification accuracies are highly dependent upon: a) how representative the
collected reference spectra are of the classes of interest (Foody et al., 1995; Chen and Stow,
2002), and b) whether the spectral separability among classes is greater than the variability
within a class (Somers et al., 2011). Spectra used for classification can be collected from
measurements of reflectance taken from the field, lab or imagery. Here, we used image-
derived spectra because image pixels can more effectively capture the broad range in live
(green) and senesced vegetation composition as well as the background components (i.e.
water or soil) found in scenes (Figure 2.4). Selecting pixels that cover a single class is
difficult, due to the composite nature of surface materials, resulting in problems with class
separability (Somers et al., 2009). We used field-referenced polygons of relatively pure

stands to minimize class intermixing that may result in classification error.
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Figure 2.4: Mean spectral reflectance profiles and 95% confidence intervals for the five
dominant species (Distichlis spicata, Juncus roemerianus, Phragmites australis, Spartina
alterniflora, Spartina patens), and examples of "pure” green vegetation (GV: S. alterniflora)
and non-photosynthetic vegetation (NPV: S. alterniflora). Training data (image spectra) of
dominant species are composites of mostly live vegetation, but also include dead vegetation,
water and soil. Image spectra of dominants differ from "pure” GV and NPV endmembers
(gray), and illustrates where spectral confusion among species classes is likely occur.

Class training spectra (herein referred to as endmembers) were collected from
spatially referenced dominant species polygons overlaid onto AVIRIS image mosaics for
each date. To minimize spectral mixing of dominants and subdominants or understory
species, selected training data were limited to dense monotypic stands by using only the

Braun-Blanquet cover-abundance category 6 range (75-100% cover). Image-derived
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endmembers were collected from reference polygons of dominant species stands delineated
during field visits in October 2012 and May and October of 2013. Field polygons (n = 95) of
variable size were delineated using a global positioning system (GPS) and species percent
cover estimates were recorded (Figure 2.2C). Due to a lack of large stands observed during
field visits, supplemental polygons were established for P. australis using the 2007 CRMS
coast-wide vegetation survey (Sasser et al., 2008; see Visser et al., 1998 for details in
regards to Louisiana coast-wide vegetation survey methods). Endmembers for water and soil
classes were collected using visual spectra interpretation, and oil endmembers were selected
using a hydrocarbon absorption index to detect oil on marsh surfaces (Kihn et al. 2004). In
total, 9639 image spectra from 281 field-delineated polygons were used for training and
validation of dominant species and non-vegetated surfaces, including wet and dry soil,

water/glint and oiled-marsh.

The full spectral library of classes was separated into training and validation datasets.
Polygons from each image date, comprising at least two-thirds of the spectra for a given
class, were reserved for validation of classification results. Next, image spectra were selected
from training and validation polygons, until one of two predefined thresholds was met to
ensure that both small and large polygons were well-represented in the training and
classification testing process, either an absolute sampling limit of 50% of the spectra from a
polygon, or a limit of 10 spectra (Roth et al., 2012). The percentages of image spectra used in
classification training for all classes ranged 4-15%, and for validation ranged 15-27%. The
percentages were determined by the number of polygons, number of image spectra per
polygon and the aforementioned thresholds for partitioning. A total of 547 image

endmembers were used for classification training. A summary of the reference polygons,
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total image spectra and endmembers (i.e. training pixels) for each class is shown in Table

2.1. Twenty random training and validation libraries were generated and tested for CDA

classification. Generating the relatively large number of paired training and validation

libraries was considered an important step, due to the potential intrinsic variability of the

image spectra.

Table 2.1: Summary table of Dominant Species dataset, including reference polygons, total
reference spectra (pixels), training and test samples.

total

Class Name polygons pixels training validation
Distichlis spicata 19 597 41 87
Juncus roemerianus 29 742 41 144
Phragmites australis 51 1898 91 228
Spartina alterniflora 78 3127 135 346
Spartina patens 21 570 38 97

soil 3 100 15 24

water 72 2362 185 290

oiled marsh 2 7 1 2

2.2.4 CDA classification
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CDA was applied to the training data to maximize the between-class variance by
selecting bands with significant discriminating power, and discarding unexplained noise and
redundancy (Pu and Gong, 2011; Alonzo et al., 2013). A set of standardized coefficients
were multiplied through the original spectra in MATLAB (The Mathworks, Inc., 2012) to
derive canonical weighted functions (one per band), and determine the bands which are
significant contributors to class discrimination (Roth et al., 2015). Following CDA dimension
reduction, a linear discriminant classifier was used in ENVI/IDL (www.exelisvis.com)to
assign image spectra to the class that produces the highest discriminant function score.
AVIRIS image mosaics were classified (October 2010, 2011 & 2012), and a post-
classification majority vote of the 20 different maps generated by the random training pulls
was used to eliminate noise in areas of higher classification inconsistency, and improve

overall map outputs.
2.2.5 Map Validation

Two data sets were used to validate the dominant species classification maps. The
first assessment was done using spectra in the validation dataset that were excluded from the
random sampling process. A total of 7043 pixels were used as validation spectra for each of
the 20 random pairs of training and validation libraries, and confusion matrices were assessed

for errors of omission (producer error) and commission (user error) among classes (Species).

A classification performance assessment was conducted using USGS post-oil spill
vegetation surveys (USGS unpublished data). Researchers from the USGS revisited six sites
(three oiled and three non-oiled) contemporaneously with AVIRIS collection in October,
2010, 2011 and 2012 (Figure 2.5A & B). The surveys consisted of four 4 m? plots along 50 m

transects that were spaced 30 m apart for a total of 72 plots. The 12 plots from site 5 were
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excluded from the classification assessment because it was located in the data gap in the
October, 2010 image. Transects A, B and C were positioned from west to east at each site,
and plots were randomly spaced along each 50 m transect with plot 1 being the closest and
plot 4 being the farthest from the shoreline. This dataset provided field observations of
species composition that corresponded with AVIRIS collection dates. Observations included
species identification and richness, cover fractions and abundance estimates of live, green
(GV) and senesced, non-photosynthetic (NPV) vegetation. Using this dataset for
classification validation introduces several challenges and limitations. For instance, the
reliability of classification evaluation is potentially diminished, due to georectification error
of up to one pixel (12.25 m?) and the uncertainty of the GPS accuracy for the plot locations
(~ 5m). Because of differences in plot and pixel size, and positional uncertainty, we created
2 m buffers around the USGS plots. We evaluated the classification performance based on

one or more pixels within the 4 m? buffer area being classified as the targeted species.

Some of the dominant species are not represented well by the reference dataset, as
95% of the observations were either S. alterniflora or J. roemerianus. Therefore, the
validation library (first approach) is the more comprehensive method, but the USGS plots
provide an assessment of each individual map in the time series, and validation by shoreline
zone. We defined the dominant species as the one with the highest cover fraction per plot,

because some plots lacked a dominant with GV cover >50%.
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2.2.6 Oiled and non-oiled shoreline identification

Marsh oiling was concentrated in the first 15 m of the shoreline with a maximum
distance of 21 m (Silliman et al., 2012; Khanna et al., 2013; Kokaly et al., 2013; Peterson et
al., 2015). Therefore, the focus of our analysis of dominant species distributions was on the
shoreline zones. To establish a shoreline vector, we masked all pixels that were modeled as
GV, NPV, oiled vegetation or soil that summed to >5%. We used 5% to match minimum
fraction criteria used in model selection by Multiple Endmember Spectral Mixture Analysis
(MESMA: Roberts et al., 1998; Halligan, 2002; Dennison and Roberts, 2003). Next, we
removed mudflats and lakes located within the marsh interior that had no connectivity with
large channels and bays by converting the raster of water pixels into a polygon. We separated
the multi-part polygons into individual features, and deleted the features that were
disconnected from the Barataria Bay polygon. This procedure removed shorelines that we
assumed would not have been exposed to oil following the DWH spill (Khanna et al., 2013).

An 8 pixel (28 m) buffer from the edge pixels was used to create shoreline zones.
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Figure 2.5: USGS site locations are shown on study area maps of A) oiled (red), B) and non-
oiled shoreline zones (blue) in similar landscape positions.
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Oiled marsh cover was determined using MESMA (Roberts et al., 1998; Peterson et
al., 2015), because oil fractions (per pixel) generated with MESMA provide a more
comprehensive spatial coverage of oil than produced by discrete CDA classification. For a
detailed description of the method used to generate oil fractional cover, refer to Peterson et
al. (2015). In summary, iterative endmember selection (IES: Roth et al., 2012) was used to
produce a spectral library of GV, NPV, soil and oiled marsh endmembers. Stable Zone
Unmixing (SZU: Somers et al., 2010), InStability Index (I1SI: Somers et al., 2009) and
synthetic mixture modeling were used to identify an optimal subset of bands for
discriminating endmembers. Finally, two, three and four endmember models were run on
each image, followed by an automated extraction process in which endmember combinations
with the lowest RMSE and least complexity (fewest endmembers) were selected for each

pixel and merged into a multiple endmember fractional cover dataset.

We created a mask of pixels that were oiled (>5% oil fraction) using AVIRIS images
(same spatial resolution) from September 14, October 4, 2010 and May 4, 2011 to capture
maximum oil coverage, and applied it to the mask of the shoreline zone maps (Figure 2.5A).
The mask was used to examine the changes in marsh vegetation cover at oiled locations and
to compare change in oiled marshes to changes in marshes that were not affected directly by
oil, but were in a similar landscape position (elevation and distance from shoreline).
Furthermore, we refined the non-oiled zone filter to only include shorelines that were
oriented towards the south (90° to 270°) as these were the locations most heavily
contaminated by oil (Khanna et al., 2013; Kokaly et al., 2013; Peterson et al., 2015) (Figure

2.5B).
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2.3. Results
2.3.1 Spectral Library (Endmember) and Classification Validation

Twenty randomly sampled (paired) training and validation libraries were spectrally
transformed into CDA functions and assessed for classification performance using a linear
classifier in MATLAB 7.9. Twenty paired libraries had an average overall accuracy of 82%
and kappa of 0.78 (Table 2.2). Little variability was found among classification accuracies
for all training libraries, so we opted to use all libraries for CDA classification and a majority
rule classifier to aggregate the final results. Average producer’s and user accuracies for the
species classes was 72% (Table 2.2). The highest accuracies (producer) were for S.
alterniflora and J. roemerianus, and P. australis and S. alterniflora reported the highest
classification reliability (user) (Table 2.2). As expected, accuracies were higher for non-
vegetated classes with the exception of oiled marsh, which had a small sample size (Table
2.2). We anticipated D. spicata and S. patens would be difficult to distinguish, due to their
similar morphology and spatial association. S. patens reported the lowest combined accuracy
and reliability, while D. spicata reported the lowest reliability overall. Yet, D. spicata
endmembers were more likely to be confused with J. roemerianus and S. alterniflora (Table
2.2). Confusion occurred among the Spartina species (S. patens misclassified 30% of
training samples as S. alterniflora). However, as expected, S. patens is more dominant in the
northern portion of the study area where the marshes transition from polyhaline (indicator
species S. alterniflora) to mesohaline (indicator species S. patens) (Figure 2.6: Visser et al.,

1998).
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Table 2.2: Matrix of training endmember allocations, producer and user accuracies and
averaged kappa and overall accuracies for the 20 sample libraries.

] g

¥ -2 ¢ & & 8 g § &

s 8 w5 :
D. spicata 61 17 14 14 6 0 0 0 0
J. roemerianus 17 108 7 22 4 0 0 0
P. australis 2 0 157 6 0 0 0 0
S. alterniflora 5 16 23 300 29 0 0 0
S. patens 1 3 27 3 58 0 0 0
soil 0 0 0 0 0 24 0 0
oiled marsh 1 0 0 0 0 0 2 0
water 0 0 0 1 0 0 0 290
unclassified 0 0 0 0 0 0 0 0
producer (%) 70 75 69 87 60 100 100 100
user (%) 54 68 95 80 63 100 67 100
?(%)erall accuracy 8210
kappa 0.78

33



SPECIES

2010 . e
B |y % TO g we S ; SN
@‘P R e 3
- é

5. alterniflora T el s patens J.roemerianus E cirons i)

2011 5
TR B t \
{%f. :rj,, @ E 23
R :
.o S ~ E

2012 -
el T { (. 7 v, %
&y aglt DEETE O ‘
g ’ o e ot
. . X% 18 ¢ |

¥ 1}:; {

Figure 2.6: Highlighted marsh dominants (red) for 2010 (top), 2011 (middle) & 2012
(bottom). Spartina alterniflora covered 70% of the marsh area, followed by Juncus
roemerianus with 14% and Spartina patens with 10%.

2.3.2 Dominant Species Distribution

A total of 41,248,359 m? were classified as one of the five dominant species, soil,
water (shallow water, deep water and glint), or oiled marsh (Figure 2.6; Table 2.3A). S.
alterniflora was the most widespread over all three years, averaging 76% cover, followed by
J. roemerianus (9%), S. patens (9%), D. spicata (3%) and P. australis (1%) (Figures 2.6;
Table 2.3A). The percent cover was relatively stable between years for the less common

dominants, however, S. alterniflora and J. roemerianus exhibited considerable change (Table
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2.3A). There was an overall loss of 7% (2,909,585m?) of the marsh area to open water from

2010-2012, with a greater loss occurring from 2011-2012 (1,807,285m?) (Table 2.3A).

Table 2.3: Coverage area and percent cover per dominant species and non-vegetation classes
for 2010, 2011 & 2012 in full study area (A), oiled shoreline zones (B) and non-oiled (C)
shoreline zones. DISP = Distichlis spicata; JURO = Juncus roemerianus; PHAU =
Phragmites australis; SPAL = Spartina alterniflora; and SPPA = Spartina patens

A

Species 2010{m?)  %Cover 2011(m?) %Cover 2012(m’) % Cover
DISP: 554,082 1 2,126,780 5 957,628 2
JURO: 1,496,604 4 5,530,035 14 3,861,497 9
PHALU: 95,093 0 53,863 0 766,352 2
SPAL: 35,514,804 87 27,721,138 68 29,491,320 712
SPPA: 3,236,254 8 4,421,259 11 2,966,840 7
drysoil: 1,934 0 539 0 2,338 0
ociled: 59,470 0 2,326 0 2,681 0
water: 0 0 1,102,300 3 2,909,585 7
total: 40,958,241 40,958,241 40,958,241

B

Species 2010(m?)  %Cover 2011(m?)  %Cover 2012(m’)  %Cover
DISP: 76,498 3 216,922 10 146,031 7
JURO: 228,944 10 333,316 15 261,066 12
PHAU: 25,242 1 7,798 0 63,314 3
SPAL: 1,801,580 80 1,444,124 64 1,446,976 65
SPPA: 51,562 2 130,900 6 47,779 2
dryscil: 575 0 135 0 539 0
oiled: 57,058 3 220 0 453 0
water: 0 1] 108,045 5 275,303 12
total: 2,241,460 2,241,460 2,241,460
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Table 2.3 continued

C

Species 2010(m?)  %Cover 2011(m?)  %Cover 2012(m?)  2%Cover
DISP: 27,336 4 64,746 10 42,417 6
JURO: 83,953 12 157,709 23 143,827 21
PHAU: 6,757 1 1,126 0 25,426 4
SPAL: 521,788 77 392,541 58 403,118 60
SPPA: 33,505 5 27,213 4 15,461 2
drysoil: 0 0 0 0 0 0
ociled: 49 0 0 0 12 0
water: 0 0 30,053 4 43,127 6
total: 673,389 673,389 673,389

S. alterniflora and J. roemerianus covered greater than 80% of the marsh area in the
oiled and non-oiled shoreline zones (Figure 2.5; Table 2.3B & C). Distributions of species in
oiled and non-oiled shoreline zones changed substantially during the two periods, however,
the distribution patterns were similar for both zones. S. alterniflora decreased markedly from
2010-2011 and remained relatively stable from 2011-2012 in both oiled and non-oiled
shoreline zones (Table 2.3B & C). J. roemerianus increased substantially from 2010-2011
and decreased slightly from 2011-2012 in both oiled and non-oiled shoreline zones (3B & C).
D. spicata exhibited similar increases from 2010-2011 and decreases in 2011-2012 in oiled
and non-oiled shoreline zones (Table 2.3B & C). S. patens increased in oil zones and
decreased in non-oiled shoreline zones from 2010-2011, and decreased in both oiled and non-
oiled zones from 2011-2012. P. australis cover was negligible in 2010 and 2011, but
increased considerably from 2011-2012 in both oiled and non-oiled shoreline zones (Table

2.3B &C).



Cover change detection from 2010-2012, in areas initially dominated by S.
alterniflora and J. roemerianus, indicate that marsh area loss was proportionately similar for
both species in oiled shoreline zones. Marsh loss to open water for both species was higher
along oiled shorelines (12% and 10%, respectively) than non-oiled shorelines (7% and 4%,
respectively). S. alterniflora retained a comparable proportion of its initial cover distribution
in oiled (72%) and non-oiled (69%) shoreline zones, however, J. roemerianus retained 20%
less of its initial cover distribution along oiled shorelines (37% and 57%, respectively). J.
roemerianus was largely converted to S. alterniflora (34%) along oiled shorelines, while only
8% of S. alterniflora converted to J. roemerianus. A relatively small percentage changed to
any of the three other classified dominants ( <5% for D. spicata, P. australis, S. patens) in

oiled and non-oiled zones.

The overall loss of vegetated marsh in the oiled zone was 12% compared to 6% in the
non-oiled zone, as indicated by the increases in water classes found in oiled (0% to 5% to
12%) and non-oiled (0% to 4% to 6%) zones (Table 2.3B & C). The loss of S. alterniflora
from 2011-2012 is not replaced by the other marsh dominants. Rather, it largely transitions to

the water class indicating a net loss of marsh area.
2.3.3 Site-Specific Assessments of Dominant Species Maps

The data used for map validation (USGS) were not collected for the purposes of
assessing discrete classification performance. Rather, the surveys were conducted to evaluate
plot-scale changes in community composition, and to measure belowground and
aboveground biomass. Consequently, the quantity (i.e. 60 plots) and spatial distribution of
sites is limited, in part due to the time-consuming nature of the data being collected. The

USGS sites were the only data available that could be used to evaluate multitemporal
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classification performance, and to document the change in cover at both oiled and non-oiled
shoreline locations. USGS data were used to examine species composition and plot-specific
cover attributes in comparison with classification maps to assess the performance of the

classifier on a per-pixel basis.

Overall, CDA classifications were consistent with field observations across sites with
84% agreement between USGS plots and CDA classified maps, and the lowest accuracy
reported for site 1 (75%) and the highest accuracy for sites 2 & 3 (94%). The dominant
species were mapped accurately for 82% of the USGS plots in 2010, 82% in 2011 and 88%
in 2012. The overall accuracy based on the USGS field observations (84%) was comparable
to the spectral library validation accuracy (82%). When the USGS observations were
separated into Braun-Blanquet cover-abundance category 6 (>75%) levels and below, the
classifier was 88% accurate for >75% single dominant cover and 82% accurate for <75%
cover of a single dominant, indicating spectral mixing of dominants is accountable for some
class confusion. In general, CDA-classifications were more accurate for plots greater than 25
m from both oiled and non-oiled shorelines. For plots farther than 25 m from the shoreline,
the classified maps were in 89% agreement with field observations, while plots within 25 m

of the shoreline were 80% accurate.

From 2010 to 2012, all plots at non-oiled sites (sites 1 & 6) had greater than 80%
vegetation cover and an overall decrease in cover of 4% and 7% (Figure 2.7). Of the plots
closest to the shoreline, only C1 exhibited a decrease in vegetation cover of greater than 10%
(95% to 80%), suggesting that shoreline erosion did not occur or was minimal at these non-

oiled sites (Figure 2.7; Table 2.4).
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Figure 2.7: Location of plots (light blue square, N = 24) used for 2010, 2011 & 2012

classification and survey comparisons of USGS non-oiled sites 1 & 6. Four randomly
positioned plots (1 closest and 4 farthest from shoreline) were located along transects
A(west), B(middle) and C(east). Black pixels represent initial (2010) open water.
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Table 2.4: Prevalent species and cover-abundance (%) at non-oiled site 1 (left) and site 6
(right) in 2010, 2011 and 2012 from USGS plots (1-4).

Site 1 2010 Site 6 2010
Plot transectA transectB transectC Plot transectA transectB transectC
1 JURO(40) SPAL(10) DISP(10) SPPA(15)
....................... JURO(98) JURO(89)  SPAL(45) ! DISP(30) SPAL(30) DISP0)
2 SPAL(1S) SPPA45) JURQO(75) SPAL(8S)
JURO(95) JURO(45) SPAL(80) > SPAL(10) SPAL(30)
3 SPAL(10) SPAL(30) SPAL@40) JURO(60) JURO(65) SPAL(98)
JURO(85) JURO(B0) JURO(50) 3 SPAL(85) SPAL(85) SPAL(98)
4 SPAL(10) JURO(30) SPAL(28) 4 SPAL(75) SPAL(30) SPAL(S0)
JURO(88) SPAL(50) JURO(70)
2011 2011
1 JURO(45) JURO(20) JURO(40) DISP(13) JURO(15) SPPA(20)
....................... SPAL(54) SPAL(80) SPAL(80) ! SPPA(B0)  SPAL(15) SPAL(70)
5 JURO@S)  SPAL(S) SPPA@0)
....................... SPAL(54) JURQ(80) SPAL(95) 5 SPAL(10)
3 SPAL@48) SPALG3S) JURQ(8S) JURO(15) SPAL(90)
JURO(B0) JURO(45) JURO(80) 3 SPAL(70) SPAL(40) SPAL(70)
4 JURO(G) JURO(18) JURO(<E) A SPAL(50) SPAL(60) SPAL(30)
....................... SPAL(<5) SPAL(80) SPAL(<5)
2012 2012
1 SPAL40) JURO(10) JURO(15) DISP(10) SPPA(10) SPPA(10)
....................... JURO(45)  SPAL(85)  SPAL(75) ! SPAL(10) ~ SPAL(15) SPAL(50)
5 JURO@D) SPAL(10) JURO(1O) SPPA40) JURO(B5)
....................... SPAL(50) JURO(75)  SPAL(80) 5 JURO(50) SPAL(30)
3 SPAL(10) SPALCLS) SPAL(<5) JURO@5) SPAL(93)
....................... SPAL(50) JURO(35)  JURO(S5) 3 SPAL(75) SPAL(95)
4 SPAL(25) JUROR2O) SPAL(7T7) JURO(<5) JURQ(<S)
....................... SPAL(70) JURO(50)  SPAL(35) 4 SPAL(80)
SPAL(70) JURO(<5) SPAL(70)
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Figure 2.8: Location of plots (light blue square, N = 36) used for 2010, 2011 & 2012
classification and survey comparisons with USGS oiled sites 2, 3 & 4. Four randomly
positioned plots (1 closest and 4 farthest from shoreline) were located along transects
A(west), B(middle) and C(east). Black pixels represent initial (2010) open water.
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Table 2.5: Prevalent species and cover-abundance (%) at oiled sites in 2010, 2011 and 2012
from USGS plots with percent cover in parentheses (1-4).

Site 2 2010 Site 3 2010 Site 4 2010
Plot transectA transectB transectC Plot transectA transectB transectC Plot transectA transectB transectC
DISP(8) no DISP(20)  SPAL(30)  DISP(10) no
SPAL(<5) JURO(90) vegetation SPAL(40) JURO(40) SPAL(20) 1 SPAL(8) SPAL(<3) vegetation
JURO(45) JURO(25) ~ SPPA(20)  JURO(10) 2 SPAL(90)  JURO(50)  SPAL(95)
2
2 JURO(85)  JURO(99) SPAL(50) SPAL(60)  SPAL(82)  SPAL(80) ) SPAL(25)
5 spauss) SPALBD)  SPAL(LS) 5 JURO(1S) WURO(2S) (oo JURO(60)  PAL(ES)  SPAL(SO)
JURO(68)  JURO(90) SPAL(75)  SPAL(75) 4 SPAL(10)  JURO(10)  SPAL(34)
JURO(45)  SPAL(25) SPAL(20) 4 SPAL(93) JURO(15) SPAL(95) JURO(85)  SPAL(70)  JURO(36)
SPAL(80)  JURO(65)  JURO(60) SPAL(75)
2011 2011 2011
SPAL(15) SPPA(15)  SPPA(15) 1 SPAL(15)  SPAL(70) no
1 eretotion  DISP25)  DISP(50) 1 spAL(2S)  spAL(30)  STAH20) vegetation
& JURO(35) DISP(50)  JURO(55)  DISP(60) 2 SPAL(10)  SPAL(98)  SPAL(80)
JURO(35) DISP(20) JURO(15) JURO(15)  SPPA(10) 3 SPAL(<5) DISP(10) SPAL(45)
2 SPAL(45) JURO(20) SPAL(70) : SPAL(45)  SPAL(45) SPAL(80) SPAL(S5)
SPAL(50) JURO(25)  JURC(18) 4 JURO(I5]  JURO(15)  SPAL(15)
3 SPAL(90
3 SPAL(S0) JURO(40) JURO(50) SPAL(40)  SPAL(20) (90) SPAL(55)  SPAL(45)  JURO(25)
SPAL(45) JURO(10)
SPAL(20)  JURO(10)  JURO(10) JURO(10)  JURO(25)
4 4 SPPA(10)
JURO(30)  SPAL(80)  SPAL(35) SPAL(30) SPAL(50)  SPAL(30)
2012
SPAL(20) 2012 o
1 SPAL(70 DISP(40 SPPA(10)  JURO no no
7o JURO(30) 1o 1 (10 (1) SPAL(70) 1 vegetation vegetation SPAL{<3)
DISP(10) SPAL(8S)  SPAL(50] JURO(S) no no
, JURO[20] SPAL(15) JURO(25) o JURORON o s SPAL(20 SPAL(5
SPAL(50) JURO(3%) SPAL(40) SPAL(60) (45) (20) (5) vegetation vegetation
JURO(25) 3 SPAL(60) ne ne
3 SPAL(80) JSUPQ(;((iES)) JURO(60) 3 SPAL(40) SPAL(40) SPAL(65) vegetation vegetation
no
JURO(35) JURO(20) JURO(10) 4 JSUPTE(;S) JSUPTE(ZO) SPAL(90) 4 JURO(e] SPAL(20) vegetation
SPAL(50)  SPAL(50)  SPAL(35) (70) (55)

USGS field sites 2, 3, & 4 were impacted by heavy oiling in 2010 and exhibited signs
of oil-induced vegetation stress, including widespread chlorosis and plant mortality,
particularly in the plots that were closest to the shoreline. Field observations indicated site 4
was the most heavily oiled site with oil covering both the vegetation stems and/or soil
substrate. Oil was present on plant stems and soil substrate in five of the six plots that were
closest to the shoreline at site 4, and vegetation in these plots exhibited near-complete
mortality (>90%: Table 2.5). Plot C2 was the only plot within 15 m of the shoreline to show
signs of live vegetation cover (98% live) with only light oil impact to vegetation stems
(Table 2.5). The CDA map successfully classified oil in the five plot locations with oil cover,
and correctly classified plot C2 as S. alterniflora. Site 3 was also extensively oiled with plots
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Al, B1 and C1 showing heavy impacts, including 70% (C1) and 40% (Al & B1) plant
mortality (Table 2.5). CDA successfully classified Al as oiled marsh (Figure 2.8; Table 2.5).
Plot B1 was inhabited by J. roemerianus (40%) and S. alterniflora (30%), and CDA
classified the two pixels encompassed by the plot as J. roemerianus and S. patens (Figure
2.8; Table 2.5). Plot C1 was inhabited by S. alterniflora (20%) and D. spicata (10%), and this
location was misclassified as J. roemerianus (Figure 2.8; Table 2.5). At plots Al and C1 of
site 2 near-complete mortality (>90%) was also observed, and the CDA map successfully

identified the oiled-vegetation in these plot locations (Figure 2.8; Table 2.5).

All plots that showed heavy oiling exhibited plant stress (>50% chlorosis) in 2010,
however, mortality was not observed at all plots. For example, heavy oiling and greater than
50% chlorosis was observed at plots B1 and B2 of site 2, but plant mortality was less than
10%, and CDA successfully classified these plots as J. roemerianus (Figure 2.8; Table 2.5).
Plots A3, B3 and C3 of site 4 showed only light oiling and live vegetation cover between 85-
90%, and these plots were classified accurately as J. roemerianus (A3) and S. alterniflora
(Figure 2.8B3 & C3; Table 2.5). Plots A4, B4 and C4 all had live vegetation cover greater
than 70%, and exhibited only trace oil impacts (i.e. speckled chlorosis on stems) with no
visible oil present on stems or substrate. CDA misclassified one of these plots as S.
alterniflora (A4), and classified accurately plots B4 and C4 as S. alterniflora. S. alterniflora
dominated cover with only trace oil impacts were observed at the nine plots greater than 5 m
from the shoreline at site 3, and the 2010 CDA map was correctly classified as S. alterniflora
for all these plot locations (Figure 2.8; Table 2.5). Additionally, D. spicata was classified in
pixels adjacent to the plots and observed as a subdominant in plots in 2011 and 2012 (Figure

2.8; Table 2.5).
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Heavy oiling of stems and soil substrate was only seen at site 4 in 2011. Heavy oiling
and dead stems were observed at A1 & C1 of site 4. These plots were characterized by low to
no live aboveground biomass (<15%), while B1 showed heavy oiling, but S. alterniflora live
biomass of 75% (Figure 2.8). The 2011 CDA map did not classify plots Al & C1 as oiled,
but captured the S. alterniflora in plot B1. All other plots of site 4 were classified accurately
as S. alterniflora with the exception of C4, which was reportedly a mixed plot of J.

roemerianus and S. alterniflora, but with low live vegetation cover (40%) (Figure 2.8).

The CDA classifier performed poorly at sites 2 and 3 in 2011 where vegetation had
begun to recover, due to the lack of a single, clear dominant in the plots and an apparent
increase in species richness (Table 2.5). For instance, no oil was observed on stems or
substrate within plots Al, B1 or C1 of site 3, and only trace impacts were observed to stems
(speckled chlorosis). Vegetation had largely recovered and was characterized by mixtures of
S. alterniflora, D. spicata, J. roemerianus and S. patens with live vegetation composing at
least 80% of the plots (Table 2.5). S. alterniflora was observed in the field and classified for
all three plots. However, D. spicata cover (50-60%) was dominant in plots Al and C1, and
therefore the classification of S. alterniflora was viewed as an error (Figure 2.8; Table 2.5).
The green vegetation on most plots were S. alterniflora-dominated for site's 2 and 3 with the
exceptions of B3 and C4 of site 2, which were inhabited by S. alterniflora and J.
roemerianus in comparable cover-abundance. The classification products were accurate for
all plots 2 through 4, except for B4 which was classified as D. spicata and J. roemerianus

rather than S. alterniflora as observed in the field (Figure 2.8; Table 2.5).

In 2012, no oil was observed at sites 2, 3 or 4. At site 4, only four plots exhibited any
vegetation cover (A2 =15%, A3 = 95%, A4 = 15%, B4 = 30%) and only one plot had live
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vegetation cover of >20%. The CDA maps are in general agreement with most of the survey
observations (Figure 2.8; Table 2.5). At sites 2 & 3, S. alterniflora was the most abundant
dominant along all transects, however, the cover was below 50% for several plots in 2012.
Likewise, the classification results in those plot locations reflect S. alterniflora dominance.
Several plots that were misclassified (e.g. A3 and C2 of site 3) had low live vegetation cover,

low average stem heights (52-73 cm) and the presence of wrack (Figure 2.8; Table 2.5).

2.4. Discussion
2.4.1 Accuracy Assessment

Oiling factors, such as oil-type, timing of exposure, concentration, thickness, degree
of weathering and emulsification, and surface distribution, have been shown to elicit highly
variable vegetation and ecosystem responses (Pezeshki et al., 2000). Subsequent to the DWH
spill, ground-based and remotely sensed surveys of oil contamination in marshes have been
conducted to measure these oiling factors (Kokaly et al., 2013; Michel et al., 2013; Peterson
et al., 2015). The distribution of dominant species in oil-contaminated marshes is an
important factor in explaining ecosystem response. We set out to generate a time series of
classified maps that consistently meet or exceed previous efforts to map salt marsh dominant
species. An overall accuracy 82% (kappa = 0.78) was obtained when comparing training and
validation spectra (Table 2.2), indicating CDA performed well in discriminating classes
despite the spectral similarity of the dominant species. The CDA classifier performed well in
locations with little spectral mixing among dominant species classes. For instance, the
classified pixels in Figure 2.9A & D are in agreement with the observations from validation

polygons, despite presence of subdominant species (Figure 2.9A). In contrast, the classifier
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performed poorly in areas characterized by wrack zones in 2011 and low vegetation cover

(Figure 2.9B) or intermixed dominant species in 2012 (Figure 2.9C).
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Figure 2.9: Classification map of dominant species in October 2011. Expanded view boxes A
and D show areas with validation polygons where the CDA classifier performed well, and
expanded view boxes B and C show areas of poor classification results.

In comparison with a time series of field (USGS) surveys along oiled and non-oiled
shorelines, CDA classifications were in agreement with 84% of the plot observations (n =
180), and in 88% agreement if plots with mixed dominants (<75%) are removed. S.
alterniflora is clearly the most commonly occurring dominant in the polyhaline marshes of
Barataria Bay, but appears to be overly classified in shoreline zones in place of J.

roemerianus on the 2010 classified map (Figure 2.6). Dense mixtures of J. roemerianus and
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S. alterniflora are commonly observed within ~30m of shoreline, and due to the influence of
distinctive phenological properties on spectral features, the species that is classified as
dominant in a given location (i.e. pixel) may change depending on the timing of the AVIRIS
data collection. J. roemerianus, for instance, has continuous aboveground biomass
production throughout the year and lacks a clear "greening up" pattern (Hopkinson et al.,
1978). Conversely, S. alterniflora has clear seasonal trends in aboveground green biomass
with increasing live leaf production through the spring and summer (Hopkinson et al., 1978;
Gosselink, 1984). S. alterniflora canopies were potentially greener in 2010, due to the greater
annual rainfall leading up to the collection date (Figure 2.3C). This would potentially explain
some of the decrease in S. alterniflora and increase in J. roemerianus from 2010 to 2011.
The seasonality of S. alterniflora also may be responsible for the S. alterniflora to S. patens
conversion from 2010 to 2011 seen in Figures 2.6 and 2.7. This conversion to S. patens is
likely an artifact in the classification occurring in locations where mats of dead grass (wrack)
have suppressed new vegetation growth. The large wrack zones were only observed in the
2011 data, and the inclusion of a senesced grass class could have addressed this classification
problem. However, we determined a non-specific plant class, like senesced grass, would
aggregate pixels from all species classes where heavily mixtures of live and senesced grass
occurred. This was considered a departure from the focus of the paper, and was excluded
from the classification scheme. The accuracy of the CDA-classified maps are acceptable in
comparison to previous efforts to map species in intertidal environments using imaging
spectroscopy. Sadro et al. (2007) used spectral angle mapper (SAM) and a mixture-tuned
matched filter to classify salt marsh vegetation species on AVIRIS images and generated

overall accuracy of 59% (kappa = 0.40). Similarly, Schmidt et al. (2004) produced wetland
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species maps with an overall classification accuracy of 66% (kappa = 0.64) using an expert
system and HyMap imagery (Integrated Spectronics Pty Ltd). Judd et al. (2007) achieved
higher classification accuracies (overall accuracy 85%, kappa= 0.76) using Navy Research
Laboratory Portable Hyperspectral Imager for Low Light Spectroscopy Il (PHILLS 1) sensor

and a linear unmixing algorithm.
2.4.2 Assessment of Vegetation Cover Change

The loss in overall vegetation cover (and increase in bare soil) suggests post-spill
productivity was reduced, but the conversion from dead to live vegetation also suggests there
were signs of recovery. For example, green vegetation increased to 45% cover or more in the
oil-impacted plots of sites 2 and 3 in 2012. D. spicata (40%) was dominant and the
classification map was in agreement with the field observations (Figure 2.8; Table 2.5).
Additionally, the colonization by D. spicata following disturbance makes ecological sense as
it has been described as an opportunistic species (Shumway, 1995). Previous research has
suggested that D. spicata can more effectively compete for resources under nutrient-limited
conditions than other salt marsh dominants (Levine et al., 1998). Further, in Gulf Coast
marshes, it has been shown to occur as a colonizing species following disturbances, such as

storm surges (Clewell et al., 1999).

In contrast to stability at some sites (2 and 3), site 4 exhibited heavy vegetation
damage and shoreline erosion following the oiling and additional disturbance caused by
Hurricane Isaac in August 2012 (Figures 2.8 & 2.9B). A comparison of the reported
observations and our classified maps indicate we successfully captured the land-cover change
documented in this marsh location. The marsh shoreline retreated 27 to 31 m along these

transects, and our classifications reflect this shoreline loss (Figure 2.8). The most remarkable
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changes at site 4 (and along other shorelines) occurred between 2011-2012, as the open water
intruded from the shoreline into the interior marshes by more than 30 m in some locations
(Figure 2.8). The shoreline change is more complicated than shoreline retreat. The shoreline
change appears to be a function of retreat plus the formation of new tidal channels and
mudflats in the near-shore marsh interior, perhaps developed following the storm surge from

Hurricane Isaac (Figures 2.8 & 2.9B).
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Figure 2.10: A) Map of dominant species in 2010. The shorelines in the north were among
the most heavily oiled marshes following the DWH spill. B) Progression of marsh loss from
2010-2012 on a heavily oiled shoreline.

The most striking result from the times series analysis is the decrease in overall marsh
area in the oiled shoreline zones. Figure 2.10B illustrates the transition from oiled marsh to

subtidal, open water over the period of the study. Our examination of a subset of generally
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south-facing (i.e. 70° to 270°) shorelines that are bifurcated into oiled and non-oiled locations
indicate that both shoreline zones exhibited retreat, however, oiled marshes loss appreciably
more area (Table 2.3B & C). We found an 8% (15,351 m?) greater decrease in total marsh
area for oiled shoreline zones (-12%) than for non-oiled shoreline zones (-6%) from 2010-
2012 suggesting that, in comparison to similarly situated marsh shorelines, oil contamination
exacerbated marsh area loss. Furthermore, the results point to the potential vulnerability of

shorelines lacking vegetated soil stability to storms that are common in the region.

Tidal stage is widely known to influence vegetation reflectance characteristics and
estimates of wetland area, resulting in classification and change detection assessment
uncertainty (Jensen et al., 1993; Dobson et al., 1995; Kearney et al., 2009). We anticipated S.
alterniflora and P. australis to have the near-infrared reflectance similar to that of the "pure”
GV spectra shown in Figure 2.4, due to the leaf structure (i.e. high leaf area) of these species,
and P. australis exhibits comparable reflectance in this region. Yet, S. alterniflora reflectance
is much lower than expected, which could be attributable to the influence of background
water, resulting from a relatively high tidal stage during the AVIRIS collection period in

2010 (0.246 - 0.138 m above MLLW).

The percent loss of wetlands in oiled zones (12%, 173,799 m?) is likely an
underestimate of the actual loss, due to the offset caused by lower water levels in 2011 and
2012 compared with the base image (2010). The maximum tidal difference between data
capture periods (2010 and 2011) is 22 cm, and a minimum difference of 4 cm from low tide
in 2010 to high tide in 2012. In determining the effect of tidal stage on remotely sensed
classification/ change detection products in S. alterniflora dominated marshes of South

Carolina, Jensen et al. (1993) found that for every 10 cm of water level change wetland area
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changed by 1-2%. Using this metric, a 22 cm decrease in water level (maximum difference
during data capture periods) could increase wetland loss in oiled zones as much as 4%
(43,955 m?). However, a great deal of uncertainty lies in predicting the impacts of water

level on wetland area change estimates.

The salt marshes where the heaviest oiling occurred were dominated by S.
alterniflora and J. roemerianus, but only S. alterniflora were extensively degraded or lost in
the oiled zones (Table 2.3B). The relative even distribution of J. roemerianus from 2010-
2012 (10-12%) suggest that J. roemerianus was less sensitive to oiling than S. alterniflora.
This assertion contradicts field and greenhouse mesocosm experiments which have shown S.
alterniflora to have a higher tolerance threshold for oil contamination (Lin et al., 2002, Lin
and Mendelssohn, 2012). An alternative explanation is that the disproportional negative
response of S. alterniflora is due to its spatial distribution and landscape position. For
example, J. roemerianus commonly dominates intermediate marsh zones and is not as widely
spread on the shoreline edge, or on the southern, bayside islands that are closest to the Gulf
of Mexico (Figure 2.6). Conversely, S. alterniflora is widespread on the marsh shoreline
edges of these islands, which suggests that S. alterniflora marshes may be more vulnerable to
wave action and storm surge erosion following oiling, due to their landscape position (Figure

2.6).

Our results showing variable marsh responses to heavy oiling are supported by
previous field observations (Lin and Mendelssohn, 2012; Silliman et al., 2012). Silliman et
al. (2012) highlighted the importance of landscape position and biogeomorphological
feedbacks in the variable responses of marsh ecosystems to disturbance, and that heavily

oiled shorelines amplified erosion in areas already experiencing elevated rates of retreat, due
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to multiple human stressors. Erosion rates along heavily oiled shorelines of already receding
platforms were more than twice that of reference sites one-and-a-half years after the spill
began. Conversely, shoreline erosion was suppressed at heavily oiled sites with different
geomorphic and/or vegetation properties as these sites showed evidence of recovery with
plant cover meeting or exceeding that of reference sites through lateral (clonal) regrowth
originating from the marsh interior (Silliman et al., 2012). More recently, Zengel et al. (2015)
has indicated that manual oil treatments (i.e. oil and oiled debris removal) conducted by
small crews improved habitat conditions by exposing residual oiling to natural degradation
processes and minimizing additional detrimental effects (Zengel et al., 2015). Furthermore, S.
alterniflora planting, following treatment, increased vegetation recovery and reduced
shoreline erosion (Zengel et al., 2015). Going forward, marsh shoreline change should be
further examined, with consideration of different treatment and re-vegetation methods, using

imaging spectroscopy.

2.5. Conclusion

We demonstrated the capacity of a time series of airborne imaging spectroscopic data
(AVIRIS) to distinguish spectrally similar plant species in a salt marsh ecosystem heavily
impacted by oil. We used canonical discriminant analysis (CDA) to classify dominant
species, and verified distributions with temporally corresponding field data. Finally, we
compared changes in dominant species percent cover during three years (October 2010, 2011
and 2012) along oiled and non-oiled shorelines with comparable locations, inshore distance

and orientation.
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S. alterniflora was by far the most widespread dominant in oiled zones. J.
roemerianus and S. patens were common dominants, but were not frequently dominant in the
southern portion of the study area that was most impacted by oil. D. spicata was a pioneer
species following oiling disturbance. Both oiled and non-oiled shorelines showed signs of
shoreline erosion, but oiled shorelines exhibited more than twice as much loss 2.5 years after
initial oiling. Damage to vegetation from oil may have increased the vulnerability of the
shoreline to erosion during subsequent extreme events. Marshes that were heavily oiled
exhibited variable degrees of loss and recovery, suggesting other factors may have

contributed to the marsh responses.

Future research will build upon the findings here by analyzing marsh transitions
following oiling using sub-pixel mixture modeling techniques, and determine whether
observed marsh responses (i.e. recovery, type-conversion, degradation, or loss) are functions
of oil distribution (oil EM fractions, oil penetration and persistence) and/or tidal and wave
height properties. The goal is to improve predictions of marsh ecosystem responses (i.e.

degradation and resiliency), and in doing so, advance mitigation and management efforts.
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Chapter 3: Oiling accelerates loss of salt marshes, southeastern Louisiana
Abstract

The 2010 BP Deepwater Horizon (DWH) oil spill damaged thousands of km? of
intertidal marsh along shorelines that had been experiencing elevated rates of erosion for
decades. Yet, the contribution of marsh oiling to landscape-scale degradation and subsequent
land loss has been difficult to quantify. Here, we applied advanced remote sensing techniques
to map changes in marsh land cover and open water before and after oiling. We segmented
the marsh shorelines into non-oiled and oiled reaches and calculated the land loss rates for
each 10% increase in oil cover (e.g. 0% to >70%), to determine if land loss rates for each
reach oiling category was significantly different before and after oiling. Finally, we
calculated background land-loss rates to separate natural and oil-related erosion and land
loss. Oiling caused significant increases in land losses, particularly along reaches of heavy
oiling (>20% oil cover). For reaches with >20% oiling, land loss rates increased abruptly
during the 2010-2013 period, and the loss rates during this period are significantly different
from both the pre-oiling (p < 0.0001) and 2013-2016 post-oiling periods (p < 0.0001). The
pre-oiling and 2013-2016 post-oiling periods exhibit no significant differences in land loss
rates across oiled and non-oiled reaches (p = 0.557). We conclude that oiling increased land
loss by more than 50%, but that land loss rates returned to background levels within 3-6
years after oiling, suggesting that oiling results in a large but temporary increase in land loss

rates along the shoreline.
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3.1. Introduction

Coastal wetlands provide a myriad of important ecosystem services, including flood
mitigation, pollution removal, carbon sequestration, wildlife habitat and recreational
opportunities, but they are threatened by an array of human activities, both directly by
dredging, channelization and construction, and indirectly by sea level rise and reduced
sediment input. Intertidal ecosystems, particularly salt marshes, are resilient to physical
disturbances, which has been attributed to their high productivity (Turner, 1976; Pennings
and Bertness, 2001; Gedan et al., 2009) and their physiological traits for coping with stressful
environmental conditions (Niering et al., 1977; Smart and Barko, 1978; Pezeshki and

DeLaune, 1993; Lin and Mendelssohn, 1996; Weis and Weis, 2004).

For nearly two centuries, human activities in the northern Gulf of Mexico have
altered natural hydrologic regimes and changed the magnitude of system perturbations
beyond salt marsh resilience thresholds (Deegan et al., 1984; van de Koppel et al., 2005),
resulting in accelerated rates of wetland loss (> 250 km? yr!: Stedman and Dahl, 2008). Since
the 1970's, land loss has been a major topic of concern with broad management implications
for the region, particularly for coastal Louisiana (Barrett 1970; Gagliano and van Beek, 1970;
Chabreck 1972; Adams et al., 1976; Craig et al., 1979). Louisiana alone lost an estimated
4800 km? of intertidal wetland area from 1932-2010 (~62 km? yr: Couvillion et al., 2011).
A combination of natural (e.g. subsidence, sea-level-rise, abandoned river delta decay, wave
energy and storm events) and anthropogenic (e.g. levees, impoundments, canal dredging and
subsequent channel erosion) forces have contributed to the alarming rates of wetland loss,
which has been popularly expressed in media outlets as "a football field per hour"

(Couvillion et al., 2011).
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Barataria Bay, a rapidly eroding abandoned delta where aggradation is no longer
keeping pace with the effects of eustasy and subsidence (Evers et al., 1992), perhaps best
illustrates the challenge of managing land loss (Craig et al., 1979; FitzGerald et al., 2007), as
it has been losing 15.1 km? of wetland area per year since 1932 (Britsch and Dunbar 1993;
Couvillion et al., 2011). Yet, these land losses in the Barataria Basin have not increased
monotonically over the past century (Couvillion et al., 2011; Turner 2011). Episodic
disturbances, like oil spills and hurricanes, can accelerate land loss, particularly along marsh
edges, in areas already experiencing marsh degradation or loss (Hester and Mendelssohn,
2000; Ko and Day, 2004; Culbertson et al., 2008; Silliman et al., 2012; McClenachan et al.,

2013).

The largest oil spill in U.S. history occurred in the Gulf of Mexico on April 20, 2010,
when an explosion on the Deepwater Horizon (DWH) offshore drilling unit released 780,000
m?3 of crude oil into the Gulf before being capped on July 15 (Lehr et al., 2010). Oil washed
onto approximately 796 km of shoreline comprised of intertidal marshes, disproportionally
impacting salt marshes of Louisiana (Michel et al., 2013). Oiling was concentrated along the
marsh shoreline edge (Silliman et al., 2012; Kokaly et al., 2013; Khanna et al., 2013),
causing plant stress, mortality, and reductions in above- and belowground biomass (Lin and
Mendelssohn, 2012; McClenachan et al., 2013). Exposure of marsh macrophytes to oil can
lead to reduced function (i.e. transpiration and photosynthesis) followed by recovery through
new shoot regeneration (Pezeshki and Delaune 1993; DeLaune et al. 2003), or plant mortality
and reduced biomass production, resulting in destabilization of the root-soil matrix (Lin and
Mendelssohn 1996; Silliman et al., 2012; Hester et al., 2016). Soil strength and sediment
accretion are directly related to belowground biomass as roots and rhizomes create a binding
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matrix for sediment accumulation (Gabet,1998; Michel and Kirchner, 2002; Turner, 2011).
Reductions in belowground biomass caused by oiling and subsequent remediation efforts
increases the vulnerability of shorelines to both episodic (i.e. storm surge) and chronic (i.e.
subsidence, sea-level rise) erosional forces forces (Hershner and Lake, 1980; Silliman et al.,

2012; McClenachan et al., 2013; Zengel et al., 2015).

Barataria Bay was among the areas most heavily impacted by oil following the DWH
spill (Michel et al., 2013). The threat of accelerated erosion is of particular concern for the
rapidly deteriorating marsh platforms of the lower Barataria Basin (Lin and Mendelssohn,
2012; Silliman et al., 2012; McClenachan et al., 2013; Zengel et al., 2015). Land loss in the
lower basin over the last century has been caused by a combination of natural and
anthropogenic erosional forces, including reduced sediment deposition from the Mississippi
River, compaction and subsidence of underlying deltaic deposits, flood control practices and
canal dredging (Craig et al., 1979; Ko and Day, 2004; Wilson and Allison 2008). Qiling from
the DWH spill in Barataria Bay was concentrated within the first 15 m from the marsh edge
(maximum of 19m; Kokaly et al., 2013, Khanna et al., 2015), with only 1% reaching beyond
15m (Peterson et al., 2015). Oiling accelerated shoreline erosion, contributing to erosion rates
at oiled sites that were more than double that of reference (non-oiled) sites a year after
exposure (Silliman et al., 2012; Zengel et al., 2015). However, existing studies were
conducted over relative small areas (60 m of shoreline in Silliman et al, 2012; 300 m of
shoreline in McClenachan et al., 2013; ~630 m of shoreline in Zengel et al, 2015).
Extrapolating results from these small study areas to regional scales can be problematic, due
to the variability in shoreline orientation and exposure to wave action, degree of oiling, and
variable responses of aboveground and belowground biomass to oiling (Pezeshki et al., 2000;
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Lin and Mendelssohn, 2012; McClenachan et al., 2013). Consequently, the magnitude of
marsh shoreline retreat and land loss attributed to oiling is difficult to quantify over regional

scales by extrapolating from specific study reaches.

Three recent studies used remote sensing techniques to examine the impacts of oiling
on salt marshes of Barataria Bay on a landscape-scale (Beland et al., 2016; Rangoonwala et
al., 2016; Turner et al., 2016). Beland et al. (2016) found that only Spartina alterniflora
dominated marshes were extensively degraded and that vegetation classes converted to an
open water class along oiled shorelines at more than double the rate of non-oiled shorelines
from 2010-2012. In comparing pre-oiling (2009-2010) shoreline recession rates,
Rangoonwala et al. (2016) documented a fourfold and threefold increase in shorelines
experiencing >4 m recession for the first and second years after oiling. Turner et al. (2016)
assessed shoreline loss by measuring the change in width (east-west) and length (north-south)
of 46 marsh islands in Barataria Bay, and reported erosion rates of oiled islands were 3 times
that of non-oiled islands for the first 2.5 years after oiling. To date, however, a bay-wide and
reach-scale assessment of wetland loss attributable to oiling has yet to be conducted. Further,
previous studies have not accounted for variability in background erosion rates for oiled
shorelines, or determined if land loss rates remained above pre-oiling rates or returned to

background levels beyond the first 2.5 years.

In this chapter, our objectives were to: a) map changes in land loss along the shoreline
in a bay affected by the DWH oil spill for three time periods: before, 3 years after, and 6
years after the spill, b) determine if rates of land loss were significantly different before and 3
and 6 years after the spill, and ¢) quantify the impact of oiling on reach-scale and bay-wide

loss rates, controlling for temporal variability in natural background erosion rates. Land loss
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rates per unit shoreline (m? m™ yr!) were calculated to standardize the loss rates for varying
shoreline lengths, and to provide results that can be easily compared with future assessments
of marsh loss along the shoreline in the Louisiana Coastal Zone. The rationale for examining
the land loss rates at three-year time intervals derived from the temporal response patterns
documented in prior research (Hester et al., 2016; Rangoonwala et al., 2016; Turner et al.,
2016). Additionally, the time intervals (i.e. length of time between image acquisition dates)
were constrained by the availability of high resolution satellite and airborne datasets

capturing Barataria Bay.

3.2. Materials and Methods

We used a combination of remote sensing and GIS techniques and simple statistical
algorithms to map shoreline change. Marsh shorelines were segmented into non-oiled (i.e.
reference) and oiled reaches, and land loss rates were calculated to determine if loss rates
were significantly different for oiled and non-oiled reaches, and for pre- (3 years before
oiling) and post-oiling (0-3 years, 3-6 years) time periods. Last, we calculated background
land loss rates for oiled reaches, using a combination of oiled (pre-spill) and non-oiled (pre-
and post-spill) shoreline loss rates, to estimate the magnitude of oil-related land losses that

are not attributable to temporal variability in background loss rates.

3.2.1 Study area description

The study area covers approximately 197 km? in northern Barataria Bay, Louisiana
(29.43°N, 89.88°W), and consists of 41 km? of marsh area and 133 km of marsh shoreline
(excluding interior channel and canal banks) (Figure 3.1). Barataria Bay is an
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interdistributary bay, formed between the active Plaquemines delta lobe and Lafourche
headland, which is experiencing some of the highest relative sea level rise rates in the
continental United States (0.94 cm/yr from 1947-2006; FitzGerald et al., 2007). Salt marshes
of Barataria Bay are fractions of a meter from sea level and are being impacted by sea level
rise (Penland and Ramsey, 1990), and are highly vulnerable to natural and anthropogenic

disturbances (Craig et al., 1979; Day et al., 2000; Ko and Day, 2004).
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Figure 3.1: Upper Barataria Bay study area. Shows shoreline reach oil fractions, NDVI
validation locations (red x’s), water level measurement site (blue circle).
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Soils in the lower Barataria Basin form on sediment and are tidally redistributed in
the lower basin (Li et al., 2011). Soils (Timbalier, Lafitte, Bellpass, Clovelly, Scatlake series)
are very poorly drained and consists of a moderate to thick layer (30-310 cm) of muck and
fibrous peat (20% organic content) over clayey (coarse silt) alluvium with 0-0.2% slopes
(Hatton et al., 1983). The lower Barataria Basin is a microtidal environment with a diurnal
spring tidal range less than 0.6 m (Li et al., 2011). Diurnal tides and wind-driven winter
storms account for frequent water exchanges between the lower Barataria Basin marshes and
the Gulf of Mexico, while tropical storms account for infrequent, yet pronounced flooding of

the marsh platform with saline water (Chuang and Wiseman, 1983).

Salt marshes of Barataria Bay are vegetated by dense monotypic stands of polyhaline
and mesohaline macrophytes, with Spartina alterniflora and Juncus roemerianus commonly
comprising more than 80% of the vegetation cover. Distichlis spicata, Spartina patens,
Phragmites australis, Schoenoplectus americanus and Schoenoplectus robustus are also
common (Visser et al., 1998; Lin and Mendelssohn, 2012; Beland et al., 2016). Non-
inundated bare soil (e.g. mudflats, salt pannes, unvegetated marsh edges) cover accounts for

< 2% of the total marsh area (Beland et al., 2016).

3.2.2 Qil fraction cover maps

The oil maps used here were generated using MESMA applied to Airborne
Visible/Infrared Imaging Spectrometer (AVIRIS) imagery and published in Peterson et al.
(2015). AVIRIS datasets were radiometrically calibrated, converted to apparent surface
reflectance using Atmospheric Correction Now (ACORN 6.0, ImSpec LLC, Seattle), and
ground-reflectance spectra from a calibration site (airport tarmac) were used to remove

residual atmospheric features (Peterson et al., 2015). Peterson et al. (2015) used iterative
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endmember selection (IES: Roth et al., 2012) to produce a spectral library of green
vegetation, non-photosynthetic vegetation, soil and oiled marsh endmembers. Stable Zone
Unmixing (SZU: Somers et al., 2010), InStability Index (I1SI: Somers et al., 2009) and
synthetic mixture modeling were used to identify an optimal subset of nine bands for
discriminating endmembers, particularly bands that effectively separated spectrally similar
oiled marsh and non-photosynthetic vegetation. Finally, two, three and four endmember
models were run on each image, followed by an automated extraction process in which
endmember combinations with the lowest RMSE and least complexity (fewest endmembers)
were selected for each pixel and merged into a multiple endmember fractional cover dataset.
The models were run on images from July 31, August 15, September 14, October 4, 2010 and
May 4, 2011 to capture the movement of oil around Barataria Bay (Peterson et al., 2015).
Accuracies for the image dates ranged from 87.5% to 93.3% with zero false positive
detections (Peterson et al., 2015). Here, we created marsh oiling zones of 0-21m from the
shoreline edge, and extracted the maximum oil fraction (per 3.5 m pixel) over a multi-
temporal data set of oil maps (i.e. July 31, August 15, September 14, October 4, 2010 and
May 4, 2011). Overall, the oil maps used here were consistent with the Shoreline Cleanup
Assessment Technique (SCAT) maps used in previous studies (Michel et al., 2013;
Rangoonwala et al., 2016), however, some discrepancies in oil coverage along shorelines
were apparent. These variations were likely due to differing methodologies, reach extents and

oil surface cover categories.
3.2.3 Mapping shoreline change: Remote sensing techniques

High resolution (0.30-0.64 m) orthorectified image datasets were acquired from
DigitalGlobe (https://www.digitalglobe.com) and Aerometric Inc.
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(http://gis.aerometric.net/dirlists.htm) for the four dates used in this study (S1 Table). The
DigitalGlobe products were captured on the QuickBird-2 and WorldView-2 & 3 instruments
(panchromatic and multispectral) at ground sample distances (GSD) ranging from 0.31 m to
0.64 m (Table 3.1). Aerometric Inc. four band (blue, green, red, near infrared) stereoscopic
photographs have a GSD of 0.30m (RMSE < 1.2 m). A relative image-to-image accuracy of

0.77 m (RMSE) was achieved across all image dates.

We generated binary classification maps of marsh cover and open water for each
image (S2 Figure). Marsh vegetation cover and open water are easily distinguishable in
bands 4 (NIR) and 3 (red), so we utilized the Normalized Difference Vegetation Index
(NDVI), and a binary threshold of -0.03 to create marsh land and open water cover
classification maps. A -0.03 threshold was used to include mudflats in the marsh land class.
Maps were assessed using field observations made contemporaneous with image acquisition
dates (n = 289) from six field sites located along the marsh edge (Figure 3.1). Land and water
were classified accurately for 97% of the observations. Mudflats and lakes located within the
marsh interior that had no connectivity with large channels and bays were removed by
converting the raster of water pixels into a polygon. This process was followed for all four
image dates. Post-classification change detection analysis was performed to determine if
marsh area was retained from the previous imaging date, or if a conversion from marsh to

open water (i.e. land loss) had occurred.

Image acquisition time could affect the amount of water mapped due to tides,
therefore, image data captured at or below mean low water (MLW) are ideal and acquisition
at 1-2 feet (0.31 - 0.62 m) above MLW is acceptable for the northern Gulf of Mexico (Jensen

et al., 1993; Dobson et al., 1995). Here, acquisition times for the data were at 17:10 (2006),
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17:00 (2010), 21:25-21:31 (2013) and 16:44 UTC (2016), corresponding to tidal heights of
0.007, -0.031, 0.140 and 0.185 m from MLW (S1 Table). The tidal range (0.22 m) over all
image acquisition periods is relatively small, and the maximum tidal height of 0.185 m above
MLW (2016) is well within the preferred tidal range (< 0.31 m) stated previously (Jensen et
al., 1993; Dobson et al., 1995). In addition, the ratio of erosion in oiled and non-oiled reaches
should be insensitive to tidal effects because the background rate for non-oiled reaches is

determined from the same image pair as the oiled reaches (see Land loss analysis section).

3.2.4 Land loss analysis

Image change analysis often uses pixel-wise comparisons over time. For analysis of
marsh land loss along shorelines, both total area loss and the distance of shoreline retreat are
important, so we aggregated the pixel data by shoreline reaches with a single orientation and
oil fraction. A vector of the 2006 marsh shoreline was used as a baseline for generating
transects every 100m using an onshore transect sampling algorithm. The sinuosity of the
marsh shorelines and number of small marsh islands (< 1000 m?) in the southern Barataria
Basin resulted in frequently overlapping onshore transects and created shoreline reaches that
were variable in length (S1 Figure). Where overlapping transects generated longshore
reaches that were less than 15 m, the transects were manually removed, resulting in reaches
that ranged in length from 15-172 m (S2 Table). We then examined land loss in relation to oil
fractional cover along the segmented longshore reaches (N=1443, 133 km of marsh
shoreline) (S2 Table). The ArcGIS zonal statistics tool was used to calculate the area of land
loss per reach over each time period, and to calculate the mean oil fractional cover over the

same shoreline reaches. Finally, the ArcGIS spatial join tool was used to link all the reach
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attributes (shoreline reach length, land loss area for each time period and mean oil fraction)

to a single shoreline vector file.

To account for the variable lengths of the created longshore reaches (15-172 m), we
normalized the total land loss by the reach length to get a standardized loss rate (slr) in

m yr?:

slr = (%)/ t @

where slr is calculated as the land area loss () over the segmented longshore reach
length (1) divided by the number of years between image acquisitions (t). The time intervals
(t) between imaging dates were 3.4 (2006-2010), 3.6 (2010-2013) and 2.5 (2013-2016) years.
We performed reach-level pair-wise T-tests, and then summarized the p-values for each
oiling category to determine if post-oiling land loss rates were significantly different from the

pre-oiling rates (Table 3.1).

Post-spill land loss rates were higher for all shoreline reaches, including non-oiled
reaches, presumably due to normal erosion forces affecting all reaches, such as wave energy,
currents, tides and sediment supply. Additionally, storm surge from Hurricane Isaac, which
made landfall in the study area in August 2012, likely contributed to increased land losses
during the first post-oiling period (2010-2013). Therefore, we estimated background loss

rates (blr) for a given oiling category (j) for the post-oiling periods as:
blr; = k(sh}””) 2

where K is the ratio of slr for post-oil (slr post,no.oil) and pre-oil (slr, pre,no.oil)

periods for non-oiled reaches (oil cover = 0):
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__ Slrpostmno.oil (3)

Slrpre,no.oil

For instance, the post-oiling (2010-2013) change coefficient (k1 = 1.36) was
calculated by dividing the post-oiling (2010-2013) period slr (0.36 m? m™ yr) by the pre-
oiling slr (0.26 m? m* yr!) for non-oiled reaches. The oil-related loss rate (olr) is the
difference between the observed slr and the blr. All three loss rates were converted into an

area loss rate by multiplying the loss rate by the length of shoreline for each oiling category.

3.3. Results
3.3.1 General land loss patterns over the three periods

Sixty-two percent of the shoreline (N=993; 82,446 m) exhibited no detectable oiling
(i.e. oil cover = 0) from July 2010 - April 2011 (Figure 3.1, Table 3.1, S2 Figure). Twenty-
one percent of the shoreline had mean oil fractions greater than 50%, and the remaining 17%
had mean oil fractions between 3 and 49% (Figure 3.1, Table 3.1). Shorter reaches (< 50m)
could have a disproportionate effect on land loss rates along the shoreline, however, these
reaches only accounted for 7% of the total shoreline length. Additionally, 91% of the shorter

reaches (< 50 m) were along non-oiled shorelines.

Table 3.1. Annual land loss rates by reach oiling category and time period. Rows (oiling
categories) and columns (time periods) also include background annual loss estimates and
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resulting p-values for the reach-level pair-wise T-tests for Period 1 (2006-2010), Period 2
(2010-2013) and Period 3 (2013-2016) and for each oil category.

shoreline  2006-2010  2010-2013  2010-2013  2013-2016  2013-2016 periods periods periods

ol category _length {m) [m2fyr) (m2fyr) hackground [ma2fyr) backgrownd 142 2&3 1&3

no oiling 82,446 43,348 58,762 58,762 51,904 51,904 0129 0249 0.581
>0-10 629 29 402 39 132 34 0.146 0302 0.095
20-Oct 2,033 385 1,070 522 1,074 461 0.253 0.91 0.143
20-30 5,046 2,254 7,351 3,056 2,378 2,699 0.001 0.002 0.849
30-40 5,669 1,923 9,481 2,607 2,313 2,302 <0.001 0.002 0.484
40-50 8,515 5,973 20,461 9,453 5,550 8,350 0.006 <0.001 0.368
50-80 12,602 9,771 29,840 13,245 9,701 11,699 <0.001 <0.001 0.357
60-70 8,710 5,022 16,7483 8,163 7,626 721 <0.001 <0.001 0.616
70+ 6,533 4,087 9,792 5,540 4,749 4,694 0.023 0.046 0.248
Total: 133,183 74,792 153,909 101,387 85427 89,553 <0.001 <0.001 0.56

Total land loss during post-oiling period 1 (2010-2013) more than doubled the losses
from the pre-oiling period (2006-2010) (Figure 3.2A), and then returned to near the pre-oiled
rate in the post-oiling period 2 (2013-2016). Total land loss for all reaches increased from
74,702 m? yrt (0.49 m®> m? yr!) to 153,676 m? yr! (1.44 m? m* yr!) from 2010-2013, and
decreased to 85,388 m? yr! (0.58 m? m* yrt) from 2013-2016 (Figure 3.2A). For non-oiled
reaches (82,446 m), the slr was highest during the first post-oil period (2010-2013, 0.71 m?
m™ yr?), however, there were no statistical differences in slr between 2010-2013 and the pre-
oiling period (0.53 m?> m* yr, p = 0.129) or the 2013-2016 period (0.63 m? mt yrt p =
0.249) (Table 3.1). Even though the land loss rates for non-oiled reaches were highest during
the 2010-2013 period, their relative contribution to the total losses were low (Figure 3.2B).
Land loss within non-oiled reaches contributed to 38% (58,762 m?/yr) of the total land loss
during 2010-2013, despite accounting for 62% of the shoreline length (Table 3.1). In
comparison, land loss within non-oiled reaches accounted for 58% (43,348 m? yr!) and 61%

(51,904 m?yrt) of the total land loss during the 2006-2010 and 2013-2016 periods,
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respectively (Table 3.1), which is comparable to the percent shoreline length, suggesting
non-oiled and oiled shorelines had similar relative contributions to land loss in pre- and the
second post-oiled periods (Figure 3.2B). Furthermore, there was no statistical difference
observed for any reach oiling categories from pre-oiling and post-oiling period 2 (2013-
2016), suggesting land loss had returned to background rates by the second post-oiling period

(2013-2016) (Table 3.1).
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Figure 3.2: Cumulative land loss plots. Shows land losses in m?yrt (A) and percent of
cumulative losses (B) over reaches with increasing oil fractions for the three time periods.

75



3.3.2 Land loss trajectories along oiled reaches

Reaches with oiling, particularly mean oil fractions >20%, exhibited noticeably
higher land loss rates during post-oiling period 1 (2010-2013) (Figure 3.3). Further, the
trajectory of land loss rates during this period is significantly different than either the pre-
oiling or post-oiling period 2 (2013-2016) (Figures 3.2 and 3.3, Table 3.1). The loss rates
during the first post-oiling period are consistently and significantly higher (p < 0.05) than the
pre-oiling period and post-oiling period 2 (2013-2016) for reaches with >20% oiling (Figure
3.3, Table 3.1), though land loss rates in post-oiling period 1 (2010-2013) do not increase
monotonically with oiling and reached a maximum at 40-60% oiling. The decrease in loss
rate for shorelines with >60% oiling may partly be a product of remediation efforts along the
heaviest oiled shorelines as discussed in Zengel et al. (2015). For instance, the island in Bay
Jimmy in Figure 3.4 (red box) received extensive treatment following oiling, including both
mechanical and manual treatments, which may have contributed to suppressed shoreline
erosion (Zengel et al., 2015). The average loss rates in post-oiling period 1 (2010-2013) for
reaches with >20% oiling are more than three times the rates of both the pre-oiling and the
post-oiling period 2 (Table 3.1). Reaches with >20% oiling (36% of shoreline length)
accounted for 93,674 m? yr! of land loss, or 62% of the total land loss for the post-oiling
period 1 (2010-2013). In comparison, the land losses from the pre-oiling period (31,030 m?
yrl, 42% of total loss) and post-oiling period 2 (2013-2016: 32,317 m? yr, 38% of total
loss) are more similar to the relative length of the shorelines. Reaches with >50% oiling
contributed 37% of the land loss during the post-oiling period 1 (2010-2013), while

accounting for 21% of the shoreline length (Table 3.1).
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Figure 3.3: Land loss rates over reach oiling categories. Pre-oiling (2006-2010), post-oiling
(2010-2013), post-oiling (2013-2016), and background land loss rates over reach oiling

categories.

3.3.3 Background rates and oil-related land losses

Mean background loss rates along the shoreline are 0.65 and 0.58 m? m* yr* for oiled

reaches, and range from 0.06-1.11 and

0.05-0.98 m?/m/yr over the two consecutive post-

oiling periods (Figure 3.3). Background land loss area for oiled reaches are 42,635 and

37,650 m?/yr for the two post-oiled periods, accounting for 28% and 44% of the total losses

(Table 3.1).
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Total land losses along oiled reaches increased by 55%, or 52,521 m? yr!, in the first
post-oil period (2010-2013), more than 80% of which are attributable to the 30-70% oiled
reaches (Table 3.1). The background loss rate for post-oiling period 2 (2013-2016) accounts
for all of the erosion observed. The estimated background loss rates were slightly higher than
the observed loss rates for some reaches in the second post-oil period, which resulted in area
loss estimates that were above the observed losses for the 40-60% oiled reaches (Figure 3.3,

Table 3.1).

3.3.4 Spatial patterns of land loss

Two distinct spatial patterns are observed in the maps of progressive land loss over
the three time periods (Figures 3.4-3.7). First, we observed substantial land loss along non-
oiled, north facing shorelines. In Figure 3.5, non-oiled reaches (A) along the northern
shoreline exhibit shoreline retreat and land loss over all three periods. A similar pattern of
land loss is shown in Figure 3.6B, along the northeast facing non-oiled reach. Second,
moderate to heavily oiled shorelines show the greatest losses, particularly in the post-oiling
period 1 (2010-2013), and highest rates of land loss are predominantly along south and
southeast facing shorelines as seen in Figures 3.4-3.7. In Figures 3.4,3.5 and 3.7, the south to
southeast facing shorelines exhibit heavy oiling (A), and extensive land loss from 2010-2013
(B). These reaches exhibited far less shoreline retreat and land loss during the pre-oiling and

2013-2016 time periods (Figures 3.4B, 3.5B and 3.7B).

78



Figure 3.4: Maps of shoreline oiling category and corresponding land loss in Bay Jimmy
(map location is shown in Fig.1). Map A shows shoreline zones and reach mean oil fractions,
and map B shows marsh land loss along the same reaches over the three time periods.
Narrow strip of the Bay Jimmy island (red box) is an area that experienced extensive oiling

treatments for remediation.

Figure 3.5. Maps of shoreline oiling category and corresponding land loss (map location is
shown in Figurel). Map A shows shoreline zones and reach mean oil fractions, and map B
shows marsh land loss along the same reaches of northern Bay Jimmy over the three time

periods.
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Figure 3.6: Maps of shoreline oiling category and corresponding land loss in Bay Batiste
(map location is shown in Figurel). Map A shows shoreline zones and reach mean oil
fractions, and map B shows marsh land loss along the same reaches of eastern Bay Batiste

over the three time periods.

Figure 3.7: Maps of shoreline oiling category and corresponding land loss in Bay Batiste
(map location is shown in Figurel). Map A shows shoreline zones and reach mean oil
fractions, and map B shows marsh land loss along the same reaches of southeastern Bay

Batiste over the three time periods.
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3.4. Discussion
3.4.1 Land losses in historical context

The Mississippi River Delta, particularly the Terrebonne and Barataria basins, has
among the highest land loss rates of any deltaic system in the United States (Couvillion et al.,
2011), which is driven by both natural and anthropogenic forcings (DeLaune et al., 1994;
Nyman et al., 1994; Ko and Day, 2004; Day et al., 2007; Morton and Bernier, 2010; Turner,
2011). Vertical erosion processes have been attributed to canal dredging, river
channelization, land subsidence and sea-level-rise (Ko and Day, 2004; Day et al., 2007;
Morton and Bernier, 2010; Turner, 2011), while wave energy has been the primary
contributor to lateral erosion (i.e. marsh edge undercutting) forcings (DeLaune et al., 1994;
Nyman et al., 1994; Sasser et al., 1986). Herein, we report overall land loss rates of 1.03%
(2006-2010), 1.40% (2010-2013) and 1.23% (2013-2016) wetland area per year for non-oiled
shoreline zones (i.e. < 21m from marsh edge), which are consistent with earlier periods of
land loss in Barataria Bay. Similar rates were reported for the 1956-1970 (0.70 - 1.2%)
(Adams et al., 1976; Gagliano et al., 1981; Sasser et al., 1986; Turner, 1990; Evers et al.,
1992) and the 1990-2000 time periods (0.90%; Barras et al., 2003). Our findings are higher
than the rates reported from 1933-1956 (0.20 - 0.37%; Sasser et al., 1986; Evers et al., 1992;
Couvillion et al., 2011) and 2000-2010 (0.49%); ; Couvillion et al., 2011), but less than the
1970-1990 peak loss period (1.90 - 2.04%; Sasser et al., 1986; Evers et al., 1992; Barras et
al., 2007), which suggests that 2006-2016 was a period of intermediate rates of erosion from
non-oiling related forces. The lower rates of land loss, during the 1933-1956 and 1990-2010
periods, are consistent with rates averaged over geological time scales that are attributable to
sediment compaction and deep crustal loading (Morton and Bernier, 2010). The peak land
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loss rates during the 1970-1990 period are likely the direct result of accelerated subsidence
from fluid extraction for oil and gas production, which increased in the Mississippi Delta

during the 1960's and 1970's (Morton and Bernier, 2010).

Our reported rates (i.e. 1.03%, 1.40% and 1.23% for the three periods) are somewhat
higher than what Barras et al. (2007) (0.90%) and Couvillion et al. (2011) (0.49%) reported
for the most recent pre-oil period (1990-2010). The observations of land loss conducted
during these earlier studies used coarser spatial resolution imagery (Landsat: 30 m), which
may account for some of the discrepancy in land loss rates. The difference in rates is more
likely a result of our focus on near-shore marshes (i.e. < 21m from marsh edge). Historically,
interior marshes of Barataria Bay have comparatively low land loss rates (Couvillion et al.,
2011), therefore, we expect that the percentage of total wetland loss would decrease to
around the previously reported rates attributable to natural processes (i.e. 0.40-0.90 % yr?), if
interior marshes were included in the analysis. A more appropriate comparison of non-oiled
near-shore marsh loss rates is with the bay islands of Barataria Bay, due to their similar
biogeomorphic profiles, which are comprised of low, relatively flat monotypic (i.e. Spartina
alterniflora dominant) marsh platforms behind 30-50 cm natural levees at the marsh edge
(Rangoonwala et al., 2016; Turner et al., 2016). Our annual wetland loss rates post-oiling
(2010-2013: 1.40 % yr! and 2013-2016: 1.23% yrt) are comparable to the marsh island area
loss rates of 1.5-1.6% reported in Turner et al. (2016) for non-oiled islands. Rates of
shoreline retreat along non-oiled shorelines that are reported in our analysis (0.99 - 1.21 m yr-
1y are also similar to the rates reported previously in specific study sites of Barataria Bay
(0.80-1.38 m yr) (Wilson and Allison, 2008; Silliman et al., 2012; McClenachan et al.,
2013).
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3.4.2 Impact of oiling on land loss trajectory

Several recent studies have used remote sensing techniques to assess the impacts of
oiling on salt marsh vegetation (Van Eerdt, 1985; Michel and Kirchner, 2002; Hester et al.,
2001; Khanna et al., 2013; Beland et al., 2016) and marsh land loss (Beland et al., 2016;
Rangoonwala et al., 2016; Turner et al., 2016). Herein, we take a unique approach to
quantifying the impact of oiling on reach-scale and bay-wide loss rates, while controlling for
temporal variability in natural background erosion rates. The most notable results from our
analysis are: 1) the differences in land loss trajectories reported for the first 3-years post-
oiling (2010-2013) and the other two periods, and 2) the magnitude of land loss beyond
background rates. The curves of cumulative land loss by oiled fraction are relatively similar
for the pre-oiling period and 3-6 years after oiling (2013-2016), and exhibit no significant
differences across all reaches (Figure 3.2, Table 3.1). There is a striking increase in land loss
rates during the 2010-2013 period for all reaches with oiling >20% (Figure 3.3). As expected,
the substantial increase in loss rates contributed to total land losses that are more than double

the period before (2006-2010) or after (2013-2016) (Table 3.1).

Heavy oiling has complex and interactive effects on the structural and physiological
traits of marsh macrophytes that likely influence recovery success (Pezeshki and DeLaune,
1993; Delaune et al., 2003; Lin et al., 2016). Plant community composition (i.e. stem density,
above- and belowground productivity) may influence residual oil concentrations and
ecosystem response (Lin and Mendelssohn, 1996; DelLaune et al., 2003; Pezeshki et al.,
2000; Lin and Mendelssohn, 2012). Most petroleum crude oils (e.g. south Louisiana crude)
are nonionic, and therefore, associate more readily with organic particles (Pezeshki et al.,

2000). Consequently, soil organic matter (SOM) in a marsh substrate impacts oil
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concentrations, and SOM content varies depending on plant species composition (Lin and
Mendelssohn, 1996). Lin and Mendelssohn (1996) reported both higher SOM content and
higher oil residual concentrations in plots dominated by Spartina patens than those
dominated by S. alterniflora. In both field and mesocosm experiments, S. alterniflora has
exhibited a greater recovery rate than Juncus roemerianus, indicating a higher tolerance limit
for oil contamination (Lin and Mendelssohn, 2012; Lin et al., 2016). Live aboveground
biomass and stem density were about 10 times greater for S. alterniflora than J. roemerianus
after 18 months under heavy oiling conditions (Lin and Mendelssohn, 2012). Recently,
Beland et al. (2016) reported that only S. alterniflora dominated marshes were extensively
degraded following the DWH spill, losing 15% (354,604 m?) cover along oiled shorelines,
suggesting that marsh degradation might have been worse if the oil-impacted marshes were

dominated by other species i.e. (J. roemerianus or S. patens).

For heavily oiled shorelines (>50% oil fraction), we report loss rates 2.7 times greater
(2.1 times for all oiled reaches) than that of non-oiled shorelines for the first 3-years after
oiling. This magnitude of impact from oiling is consistent with observations of land loss on
Barataria Bay marsh islands from Turner et al. (2016) and from site-specific studies (Silliman
etal., 2012; Zengel et al., 2015), which have reported erosion rates at heavily oiled plots that
were 2-3 times that of reference, non-oiled plots within 2 years of initial oiling. Our bay-wide
results show that oiled shorelines experienced 2.1 times the loss rate of non-oiled shorelines
over 3 years, which is in agreement with Turner et al. (2016) observations of oiled island
shorelines that were 2.0 times greater than non-oiled islands over 2.5 years. Accounting for

bay-wide background land losses from natural processes (42,625 m? yr't), we determined
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52,521 m?yr't of land was lost due to oiling, increasing the land losses by 52% over the

background rate.

Two marsh erosion processes, driven by heavy oiling, were presumably contributing
to the accelerated rates of land loss that we observed. Exposure to heavy oiling obstructs
critical, adaptive mechanisms for reducing oxygen stress in anoxic soils (Pezeshki et al.,
2000), and for controlling tissue salt (Na+ or Cl—) concentrations through osmotic adjustment
(Pezeshki et al., 2000). Further, long-term (months to years) exposure to heavy residual
oiling has resulted in reduced aboveground primary productivity and root matrix mortality,
which are critical components of soil strength (Lin et al., 2002; Mishra et al., 2012; Lin et al.,
2016; Ramsey et al., 2016; Shapiro et al., 2016). Consequently, above- and belowground
plant loss and reductions in primary productivity have resulted in substrate instability and
increased potential for shoreline erosion (Silliman et al., 2012; McClenachan et al., 2013;
Zengel et al., 2015; Lin et al., 2016). Early assessments following the DWH spill reported
widespread vegetation mortality and deterioration of the aboveground vegetation structure
and function at heavily oiled sites (Lin and Mendelssohn, 2012; Silliman et al., 2012; Zengel
et al., 2015), resulting in slow rates of recovery with aboveground biomass reaching only
50% of that in reference sites after 3.5 years (Zengel et al., 2015; Lin et al., 2016), and
accelerated surface subsidence (vertical erosion) (Silliman et al., 2012; Lin et al., 2016).
Further, heavily oiling in marsh soils have also resulted in losses of belowground biomass,
weakening soil shear strength and accelerating the undercutting along marsh edges

(McClenachan et al., 2013; Zengel et al., 2015).

The influence of other factors, including: oiling characteristics (Alexander and Webb,

1987; Mendelssohn et al., 1990; Hoff et al., 1993; Mendelssohn et al., 2012; Lin and
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Mendelssohn, 1996; Hester and Mendelssohn, 2000; Pezeshki et al., 2000; DeLaune et al.,
2003) and treatment methods (Baker et al., 1993; Sell et al., 1995; Hoff, 1995; Zengel and
Michel, 2013; Zengel et al., 2015), environmental stressors (e.g. salinity, flooding, nutrients,
predation) (Bertness and Shumway, 1993; Pennings and Bertness, 2001; Silliman and
Bertness, 2002; Pennings et al., 2005), as well as complex and interactive marsh
biogeochemical processes (Atlas et al., 2015; Marton et al., 2015; Bernhard et al., 2016;
Turner and Bodker, 2016) make attributing the landscape-scale progression of marsh
deterioration and land loss to oiling difficult (Hester et al., 2016; Rabalais and Turner, 2016;
Turner et al., 2016). We attempt to control for the influence of these factors on land loss by
calculating reach-scale background rates over the three periods between image acquisition

dates.

This study is the first to show that land loss rates returned to pre-oiling levels within
3-6 years after oiling, and that no significant differences in land loss rates are exhibited for
any oiling category between the pre-oiling and latter post-oiling periods (p > 0.095) (Table
3.1). Land loss was higher in the second post-oiling period (2013-2016) compared with pre-
oiling, but non-oiled reaches accounted for 81% of this increase, which suggests that any
increases in land loss related to oiling is negligible from three to six years after initial

contamination.

We provided a landscape-scale, bay-wide quantification of land loss, while
documenting the return to background erosion rates 3-6 years after oiling. Yet, several
obvious questions remain unaddressed, such as: What is the relative importance of lateral
erosional forces from wave action in comparison to vertical forces (i.e. reduced sediment

accretion and subsidence) in Barataria Bay? Wilson and Allison (2008) estimated that 25%
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of wetland losses in southeastern Louisiana are due to lateral erosion from wave action,
particularly along shorelines exposed to long fetches and predominant direction of wave
approach. Over the last century, shoreline erosion has likely accelerated in Barataria Bay as
the conversion from marsh platform to open water has increased the fetch and wave energy
on exposed marsh edges (Wilson and Allison, 2008). Oiling in Barataria Bay occurred most
frequently on the south side of landmasses and marsh islands (Kokaly et al., 2012; Khanna et
al., 2013), and we anticipated oil distribution might be correlated with pre-oiling shoreline
erosion rates, due to the strong influence of currents, wave energy and tides on both
processes (Turner et al., 2016). Yet, the land loss along non-oiled shorelines was substantial
and relatively similar during all three time periods, and these loss rates were at least equal to
the rates of oiled reaches during the pre-oiling period. Future research will need to explicitly
investigate the compounding role wave action has on lateral erosion and overall land loss

rates.

The impact of marsh treatments on bay-wide land losses is still largely unknown.
Clean-up and treatment efforts affect the recovery process, both positively and negatively
(Sell et al., 1995; Hoff, 1995). Aggressive treatment strategies, including the use of large
cleanup crews or heavy machinery, have delayed marsh recovery or increased degradation by
trampling live vegetation and churning oil into underlying sediments (Baker et I., 1993; Hoff,
1995; Zengel and Michel, 2013). Conversely, less intrusive treatments, which include the use
of sorbents, bioremediation, and restricted cutting, have been shown to accelerate the rates of
recovery (Sell et al., 1993; Lin and Mendelssohn, 2009). Two years after the DWH spill,
Zengel et al. (2015) reported both mechanical and manual treatments exhibited greater
improvements in oiling conditions and vegetation characteristics than the natural recovery

87



(reference sites). However, mechanical treatments increased oil mixing in soils and
accelerated shoreline erosion (Zengel et al., 2015). Other analysis has indicated that shoreline
erosion was similar on both treated and non-treated shorelines (Rangoonwala et al., 2016).
Due to the potential impact of treatments, the location and treatment type should be regarded

as a factor in a future analysis of marsh responses to oiling.

Finally, we showed that land losses increased significantly for the first three years
after oiling, followed by a return to background erosion levels after three years. To date, this
process of returning to background rates of erosion remains unexplained, and should be
addressed in future research. Hester et al. (2016) reported evidence of vegetation stress
(chlorosis), lower stem densities and productivity for the first 2.5 years, but few significant
impacts to plant aboveground productivity (for plots that did not erode away) for heavily
oiled plots 3.5 years after the DWH spill, which may suggest that vegetation recovery and
presumably substrate stability had returned to heavily oiled marshes that were not eroded in
the first three years. Conversely, Lin et al. (2016) reported that belowground biomass (0-12
cm) at heavily oiled plots was 76% less than reference sites after 3.5 years, which may
suggest substrate instability is an ongoing problem. Further research is required on the
interactions among belowground biomass recovery, resistance to wave-driven erosion, the

sequence and magnitude of wave events, and subsequent shoreline erosion.

3.5. Conclusion

We examined the relative land loss rates of oiled shoreline reaches compared to non-

oiled reaches of Barataria Bay over three consecutive time periods. Oiling increased total
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land losses by 52,521 m? yrt, in the first post-oil period (2010-2013), more than 80% of
which are attributable to the 30-70% oiled reaches. No statistical difference was observed for
any reach oiling categories from pre-oiling and post-oiling period 2 (2013-2016). Oiling
increased land loss by more than 50%, but land loss rates returned to background levels
within 3-6 years after oiling, suggesting that oiling results in a large but temporary increase

in shoreline loss.

We attempted to control for effect of other erosional forces (i.e. wave energy,
variability in landscape position and geomorphic profile) on land loss by calculating the
background rates (blr) derived from pre-oiling land loss patterns and post-oiling land loss in
non-oiled reaches. Our calculation of blr assumes that the ratio between the loss rate in the
pre-oil and post-oil period is the same under non-oiled conditions for all shoreline
orientations and locations in the bay. Wave modeling could be included in future analysis to

control for changes in shoreline orientations, wind direction and fetch between periods.

This study does not examine the relative contributions of oiling as it relates to other
drivers of land loss, or efforts to suppress shoreline erosion following oil contamination. For
instance, Rangoonwala et al. (2016) showed that storm surge from Hurricane Isaac (August
2012) contributed to a 2.5x increase in the shoreline length that experienced lateral recession
of >12 m over a 4-month period. Further, Zengel et al. (2015) documented significant
differences in the ecological responses of oiled marshes that received manual and mechanical
treatments, and those not receiving remediation. Going forward, a spatially explicit model
could determine the relative importance of multiple factors, including oiling (oil fractional
cover), wave energy (significant wave height, period and length), vegetation composition

(green and non-photosynthetic vegetation, aboveground biomass) and treatment type
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(manual, mechanical and no remediation) on predicting land loss. The results from this
analysis, along with a spatially-explicit predictive model, would help inform future

management decisions regarding coastal wetland ecosystems.
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Chapter 4: Interactive Contributions of Oiling and Wave Energy on Land Loss
along Salt Marsh Boundaries

Abstract

The 2010 Deepwater Horizon (DWH) oil spill damaged salt marshes in the
Mississippi River Delta, which have for decades experienced some of the highest land loss
rates in the United States. Along marsh boundaries, where oiling was concentrated, wave
action is the dominant physical driver of erosion and land loss. Disentangling the
contribution of oiling and physical processes of erosion, in particular the effects of wave
energy, on marsh boundary land loss is challenging. Here, we integrate a simple, fetch-
limited wave climate model with high spatial resolution imagery that documents shoreline
oiling and land loss to examine the interacting effects of wave characteristics and oiling on
bay-wide land loss rates. Oiling was most severe along reaches with the highest wave energy,
suggesting that it can be predicted with a simple wave model, and land loss rates correlated
with wave energy in both oiled and non-oiled reaches. Land loss rates were higher on oiled
reaches in the first post-oiling period (2010-2013) after controlling for wave height, but only
for reaches with wave heights greater than 0.5 m (18 % of all reaches). Loss rates on oiled
reaches decreased to less than that of non-oiled reaches in the second post-oiling period
(2013-2016). Our results support previous findings that indicate oiling accelerates land loss

rates, highlighting that high wave energy was necessary for oil-induced land loss.
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4.1. Introduction

Salt marsh ecosystems of the Mississippi River Delta (MRD) provide a multitude of
important ecosystem services, including storm surge protection, water quality enhancements,
carbon sequestration, wildlife habitat, fisheries, and recreational opportunities (Mitsch and
Gosselink, 2000; Reddy and DelLaune, 2008). However, human activities have altered the
natural hydrologic regime and sediment loads for over a century (Deegan et al., 1984),
resulting in coastal wetlands that are among the most vulnerable in the world to current and
future land loss (Tessler et al., 2015). Mechanisms of both vertical and lateral erosion are
contributing to high loss rates, which have been described colloguially as "a football field per
hour" (Couvillion et al., 2011). The importance of specific physical factors and mechanisms
that drive land loss are largely dependent on landscape position. For example, vertical
erosion in the interiors of marshes, which accounts for ~75% of all wetland loss, is primarily
the result of marsh platform subsidence and a lack of sediment accumulation, due to either
reduced river discharge and reduced sediment deposition, or degraded substrate stability
(Penland and Ramsey, 1990). Lateral erosion from direct exposure to wind-generated waves
is the dominant erosional process along marsh boundaries (Delaune et al., 1994; Nyman et
al., 1994; Sasser et al., 1995). Lateral erosion accounts for approximately 25% of all wetland
losses in Louisiana, which is particularly prevalent along shorelines exposed to long fetches
and predominant direction of wave approach (Penland and Ramsey, 1990; Wilson and

Allison, 2008).

Oil spills have been shown to accelerate land loss rates (Lin and Mendelssohn, 2012;
Silliman et al., 2012; Turner et al., 2016; Beland et al., 2017). Oil exposure from the DWH

spill led to plant stress, reduced function, and mortality of marsh organisms (Lin and



Mendelssohn 2012; Silliman et al., 2012; Khanna et al., 2013; Zengel et al., 2015). Heavy
oiling can cause an obstruction of critical, adaptive mechanisms for reducing oxygen stress
and controlling tissue salt concentrations (Na+ or Cl-), resulting in long-term reductions in
aboveground primary productivity, root matrix mortality, substrate instability, and increased
potential for accelerated rates of shoreline erosion (Silliman et al., 2012; McClenachan et al.,

2013; Zengel et al., 2015; Lin and Mendelssohn, 2016).

Tropical storms and hurricanes can act as both destructive and marsh building agents,
and the spatial distribution of coastal wetland impacts from a single storm can vary greatly,
depending on a marsh's position in relation to the storm track, antecedent conditions, and
geomorphology (Guntenspergen et al., 1995; Stone et al., 1997). Tropical disturbances can
cause severe vegetation damage, scouring of the marsh platform, and subsequent
accumulation of wrack that hinders recovery (Cahoon et al., 1995; Guntenspergen et al.,
1995; Khanna et al., 2017). Conversely, tropical storms and hurricanes are important
mechanisms of sediment replenishment, particularly for vertically deteriorating marshes that
have been cut off from fluvial sources of sedimentation (Cahoon et al., 1995; Guntenspergen

etal., 1995).

Multiple disturbances in succession (e.g. oil spill followed by a high energy tropical
storm) have the potential to hinder ecosystem recovery (Rangoonwala et al., 2016; Khanna et
al., 2017). Given sufficient time to recover, salt marsh ecosystems are resilient to physical
disturbances, due to their high productivity and intrinsic physiological traits for coping with
stressful environmental conditions (Turner, 1976; Niering et al., 1977; Smart and Barko,
1978; Pezeshki and DelLaune, 1993). However, sequential disturbances, occurring

repetitively in short time intervals, can result in greatly amplified land loss rates
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(Rangoonwala et al., 2016; Khanna et al., 2017). Oiling weakens substrate stability along
marsh boundaries by damaging vegetation and reducing above- and belowground biomass
(Lin et al., 2002; Lin and Mendelssohn, 2012), and high winds and high energy waves
associated with tropical storms and hurricanes can scour weak-rooted marsh platforms and
remove unconsolidated topsoil along open water boundaries (Wilson and Allison, 2008;

Rangoonwala et al., 2016).

Barataria Bay, a rapidly eroding abandoned delta, perhaps best exemplifies the state
of intertidal marshes in the MRD (Craig et al., 1979; Fitzgerald et al., 2007). A combination
of natural and anthropogenic factors, including reduced sediment deposition from the
Mississippi River, compaction and subsidence of underlying deltaic deposits, flood control
practices, and canal dredging have caused the rapid deterioration of marsh platforms in the
lower Barataria Basin (Craig et al., 1979; Evers et al., 1992; Britsch and Dunbar, 1993; Ko
and Day, 2004; Fitzgerald et al., 2007; Wilson and Allison, 2008). Since 1932, the lower
Barataria Basin has been losing 15.1 km? of wetland area per year out of a total of 3833 km?
(Britsch and Dunbar, 1993; Couvillion et al., 2011). Fetch and wind-generated waves have
increased as more wetland area has been converted to open water, creating an erosion

feedback mechanism (Wilson and Allison 2008).

In the spring of 2010, the largest oil spill in U.S. history occurred off the coast of
Louisiana, when an explosion at the Deepwater Horizon (DWH) offshore drilling resulted in
the release of 780,000 m® of crude oil before it was capped on July 15 (Lehr et al., 2010).
Due in part to the prevailing currents and tides, the marshes of Barataria Bay were among the
most severely impacted in the MRD (Michel et al., 2013). Oiling was concentrated along

marsh boundaries (<21 m from the marsh edge).
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Several recent studies conducted in Barataria Bay have linked the acceleration of land
loss rates to the distribution of heavy oiling (Silliman et al., 2012, McClenahan et al., 2013,
Rangoonwala et al., 2016; Khanna et al., 2017, Beland et al., 2017). Rangoonwala et al.
(2016) investigated shoreline erosion following the DWH oil spill and Hurricane Isaac and
reported a distinctive pattern of erosion caused by marsh boundary oiling. In the first year,
shorelines that were heavily oiled and exposed to higher wave energy eroded; this was
followed by erosion extending into areas subjected to less severe oiling and lower wave
energy in the second year (Rangoonwala et al., 2016). Other work has pointed out that heavy-
oiling occurred most frequently along seaward facing boundaries exposed to long fetches and
thus potentially more vulnerable to lateral erosion from wave action (Turner et al., 2016).

Yet, disentangling marsh responses to oiling from other physical factors remains a challenge.

To control for variations in physical erosion between controlled and oiled sites, two
site-specific studies integrated wave models (Silliman et al., 2012; McClenachan et al.,
2013). However, to date, we know of no research that has quantified the relationship between
wave climate and heavily oiling along marsh boundaries, or determined the role played by

wave energy in both the distribution of oil and land loss rates.

Here, we investigate the effects of wave energy on bay-wide trends in land loss rates
along marsh boundaries, while controlling for variations in oiling along boundary segments.
Our goal is to better explain the distribution of land losses after oiling by integrating a
spatially explicit, yet simple, wave climate model to determine the spatial distribution of
background rates of erosion before and after oil contamination. The following questions
provide a framework for the analysis: 1) How strong is the relationship between marsh

boundary oiling distribution and exposure to wave energy? 2) How do land loss rates differ
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along heavily-oiled and non-oiled marsh boundaries across a range of wave energy
exposures? and 3) Which factor (oiling or wave energy) has the strongest influence on
erosion rates at three and six years after oiling? To address these questions, we generate a
wind-wave model for Barataria Bay to compare marsh boundary wave energy characteristics
and land loss rates for non-oiled and heavily-oiled (>20% areal surface cover) segments over
a time period prior to oil exposure (2006-2010) and two periods following shoreline oiling

(2010-2013, 2013-2016).

4.2. Methods

We used a combination of remote sensing, GIS, and wave modeling techniques to
examine marsh boundary responses to oiling and wave action. The primary response
variables are a time series of land loss rates (Lr) derived from a time series of high resolution
(0.30-0.64 m) orthorectified image datasets (September 29, 2006; February 17, 2010;
October 9, 2013; April 3, 2016). The rationale for examining land loss at near-three year time
intervals derived from the shorter-term (~ 1 — 2.5 years) response patterns that have been
well-documented by past investigations of land loss following the DWH oil spill (Silliman et
al., 2012; Lin and Mendelssohn, 2012; McClenachan et al., 2013; Khanna et al., 2017,
Rangoonwala et al., 2017; Turner et al., 2017); Further, the time intervals between image
acquisition dates (1237, 1330, and 907 days) used in the analysis were constrained by the

availability of high resolution images.

The variables used to predict Lr are surface oiling (%) and the 95th percentile
significant wave height (Hs95). We calculated the background Lr for both oiled and non-

oiled boundaries based on pre-spill observations (2006-2010) to determine the relationship
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between Lr and Hs95 and to examine the oil-related amplification of Lr along heavily oiled

boundaries.
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Figure 4.1: Study area map location (A) in Louisiana and within Barataria Bay (B).
Topobathymetric range is shown in map B. Wind rose shows the prevailing wind direction
over the study period (C). An example of the nine radials (3° interval) used in the fetch-
limited method (D). Maps E-G show Hs95 results for the full study period (E), Hurricane
Gustav (F) and Hurricane Isaac (G).
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4.2.1 Study Area Description

The study area covers approximately 197 km? in northern Barataria Bay, Louisiana
(29.43°N, 89.88°W) and consists of 41 km? of marsh and 133 km of marsh-ocean boundary
(excluding interior channels and canal banks; Figure 4.1A-B). The Bay and surrounding
wetlands are cut off from freshwater and sediment inputs from the Mississippi River and
LaFourche Bayou. Surface elevations of salt marshes of Barataria Bay are fractions of a
meter above sea level, are being impacted by sea level rise (Penland and Ramsey, 1990), and
are highly vulnerable to natural and anthropogenic disturbances (Craig et al., 1979; Ko and
Day, 2004; Day et al., 2000). Barrier islands, which form the southern boundary of Barataria
Bay, are predominantly exposed to low-energy wind-generated waves (< 0.4 m) from the
Gulf of Mexico, except during the passage of winter storms and infrequent hurricanes, when
waves can exceed 3.0 m and cause widespread erosion, overwash, and breaches (Stone et al.,
2005). Diurnal tides with a spring tide range of 0.46 m and wind-driven winter storms
account for frequent water exchanges between the lower Barataria Basin marshes and the
Gulf of Mexico, while tropical storms account for infrequent (1 every 7 years; Muller and
Stone, 2001) yet pronounced flooding of the marsh platform with saline water (Chuang and
Wiseman, 1983). Salt marshes of Barataria Bay are vegetated by dense monotypic stands of
polyhaline and mesohaline macrophytes, with Spartina alterniflora and Juncus roemerianus
commonly comprising more than 80% of the vegetation cover. Soils are very poorly drained
and consist of vegetative mats that are 10 — 20 cm thick and moderate to thick layers (30 -
310 cm) of fibrous peat (20% organic content) over clayey (coarse silt) alluvium with

negligible slopes (Hatton et al., 1983).
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4.2.2 Marsh Boundary Land Loss Analysis

High spatial resolution (0.30-0.64 m) orthorectified image datasets were acquired
from DigitalGlobe’s QuickBird-2 and WorldView-2 & 3 instruments
(https://www.digitalglobe.com) and stereoscopic aerial photographs from Aerometric Inc.
(http://gis.aerometric.net/dirlists.htm), which collectively covered the four dates used in this
study (Beland et al., 2017). Acquisition times for the DigitalGlobe datasets were at 17:10
(September 29, 2006), 17:00 (February 17, 2010), and 16:44 UTC (April 3, 2016),
corresponding to tidal heights of 0.007, -0.031, and 0.185 m from mean low water (MLW).
Image acquisition times for the Aerometric dataset were between 21:25 - 21:31 UTC on
October 9, 2013, corresponding to a tidal height of 0.140 m MLW. The maximum tidal
height of 0.185 m MLW (2016) is well within the tidal range (< 0.31 m) stated in previous
works for minimizing change detection errors in intertidal environments (Jensen et al., 1993;
Dobson et al., 1995). Images were resampled to 0.64 m, and a relative image-to-image

registration root-mean-square error (RMSE) of 0.77 m was achieved across all image dates.

A Normalized Difference Vegetation Index (NDVI) and a binary classification
system (i.e. marsh, including vegetation, bare soil, and open water) were applied to
QuickBird (2006), WorldView (2010 and 2016) and Aerometric (2013) images to generate a
time series of maps documenting marsh boundary land loss. Further details of the image
processing techniques used to generate these maps were published in Beland et al. (2017).
Following land and water classification, image masks were used to create shoreline vectors
for each image acquisition date and to generate polygons of the land loss that occurred

between each date.
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4.2.3 Shoreline Segmentation and Land Loss Analysis

For land loss analysis, both total area loss and the distance of shoreline retreat are
valuable measures of change, so we aggregated pixel-scale data into shoreline segments, or
reaches (Beland et al., 2017). Determining the appropriate lengths of reaches along marsh
boundaries is an important component of land loss analysis as the relative influence of
different erosional processes changes with scale (Priestas et al., 2015). Through visual
examination of previously published oil maps (Kokaly et al., 2013; Michel et al., 2013;
Peterson et al., 2015), we concluded that reaches of approximately 30 m would sufficiently
capture the patchiness of oil exposure, while reducing the effects of localized influences (<10
m), like macrofauna burrowing and herbivory, on reach-scale observations (Holdredge et al.,

2009; Davidson and De Rivera, 2010).

Longshore segments of 30 m were created for each of the four imaging dates using an
onshore transect sampling algorithm (N = 2440, 138 km of marsh shoreline). Boundary
sinuosity, small marsh peninsulas, and islands (< 1000 m?) created overlap of onshore
transects that resulted in longshore reaches of variable length, and in some cases, boundary
absence in the latter time periods. Some overlapping onshore transects along peninsular and
island boundaries were manually removed to eliminate short longshore reaches (< 15 m) and
to avoid boundary absence problems, which resulted in wide ranging segment lengths (15-

619 m). However, more than 90% of the reaches were between 20 - 99 m.

Our preliminary analysis included reach-scale marsh boundary sinuosity calculations.
However, the degree of shoreline sinuosity appeared to have no statistical effect on land loss
rates (R? < 0.01; p > 0.01). Therefore we omitted shoreline sinuosity from this analysis, but

acknowledge that marsh boundary geometry and morphology are likely factors in lateral

107



erosion rates at finer temporal (i.e. months to a year) and spatial scales (i.e. <30 m) as

reported in previous studies (Priestas et al., 2015).
4.2.4 Shoreline Oiling

Mean surface oiling percentages were calculated for each reach from the maps
generated in Peterson et al. (2015) and used in previous analyses of oil impacts (Beland et al.,
2016; 2017). Peterson et al. (2015) used multiple endmember spectral mixture analysis
(MESMA), applied to Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) imagery
(see Peterson et al., 2015, for details on MESMA). AVIRIS datasets were radiometrically
calibrated and converted to apparent surface reflectance using Atmospheric Correction Now
(ACORN 6.0, ImSpec LLC, Seattle). Ground-reflectance spectra from a calibration site
(airport tarmac) were used to remove residual atmospheric features (Peterson et al., 2015).
Using a spectral library of green vegetation, non-photosynthetic (senesced) vegetation, soil,
and oiled marsh endmembers, MESMA was run on radiometrically corrected images from
July 31, August 15, September 14, October 4, 2010, and May 4, 2011 to capture the
movement and deposition of oil around Barataria Bay. Accuracies for the image dates ranged
from 87.5% to 93.3% with zero false positive detections (Peterson et al., 2015). Overall, the
MESMA-generated oil maps were consistent with the Shoreline Cleanup Assessment
Technique (SCAT) maps used in previous studies (Michel et al., 2013; Rangoonwala et al.,
2016). The discrepancies that were observed between these oil maps were likely the result of
differing methodologies, reach extents, and oil surface cover categories. For instance, we
used MESMA-generated fractional (per pixel) oil maps derived from images, rather than

descriptive categories (i.e. low, moderate, and high) based on field observations.
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We created oiling zones of 0-21 m from the marsh boundary edge and extracted the
maximum oil percentage (per 3.5 m pixel) over for the four dates of AVIRIS imagery (July
31, August 15, September 14, October 4, 2010, and May 4, 2011; Figure 4.1E-G). Our
designation of "heavily oiled" for those shoreline reaches exhibiting surface oiling of > 20%
was in agreement with the SCAT surveys (Michel et al., 2013). In total, 92% of the reaches
with > 20% oiling on our MESMA-generated oil maps were classified as either "heavily" or

"moderately” oiled during the SCAT field surveys (Michel et al., 2013).

4.2.5 Wind-wave Model

Wave characteristics were computed for each reach using the United States
Geological Survey (USGS) Waves model (Rohweder et al., 2008), which uses wind fetch,
wind direction, wind speed (two-minute means), and bathymetric data as inputs to hindcast
significant wave height, wavelength and peak spectral period according to equations
documented in the United States Army Corps of Engineers Shore Protection Manual
(USACE, 1984) and the Coastal Engineering Manual (USACE, 2002). Effective fetch was
calculated using the method recommended by the USACE Shore Protection Manual for
fetch-limited water bodies as wave generation is often significantly lower for inland waters
when compared to open waters under the same generating conditions (USACE, 1977). The
fetch-limited method spreads nine radials about the wind direction at 3-degree increments
and calculates the mean fetch length from the nine radials (Figure 4.1D: USACE, 1984,
Rohweder et al., 2008). For water depth, we used an integrated topobathymetric elevation
model (spatial resolution = 3 m) created by the USGS National Geospatial Technical
Operations Center (USGS dataset accessed December 17, 2014 at

http://earthexplorer.usgs.gov). The Barataria Bay portion of the project (Barataria LIDAR
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Data Collection Project) was conducted from March 5-8, 2013. Fetch lengths were calculated
along the bearing of potential wind directions (i.e. 0° - 360°) for all cells in the
topobathymetric elevation model using the aforementioned fetch-limited method.
Topobathymetric elevations ranged from -8.5 — 1.8 m relative to the North American Vertical
Datum of 1988 (NAVD88, Figure 4.1B). Wind data for the three periods between image
dates were obtained from the National Oceanic and Atmospheric Administration (NOAA)
meteorological station in Grand Isle, LA (Station I1D: 8761724,
https://tidesandcurrents.noaa.gov). The Grand Isle station is located approximately 21 km

southwest of our study area.

Using the Rohweder et al. (2008) 2-dimensional wave model and inputs for fetch
length, wind speed and direction (6-minute means), water density (1025 kg/m?), and
topobathymetric data, we derived cell-by-cell (3 m resolution) daily significant wave height,
spectral wave peak period, and wave length. We examined the relationships among several
wave action variables and background land loss rates, including the 50th percentile
significant wave height (Hs50) and spectral peak wave period (Tp50) to estimate the frequent,
low-energy events, and the 95th percentile significant wave height (Hs95) to estimate the
infrequent, high-energy events. We averaged these parameters over each time period between
image acquisition dates (hereafter referred to as the “three time periods”) and for each marsh

boundary reach.

Wave energy flux, or wave power, is proportional to Tp times the square of Hs
(Young and Verhagen 1996; McLouglin et al., 2015; Leonardi et al., 2016); therefore, we
used Hs50 and T,50 for the three time periods leading up to imaging dates to estimate the

wave energy flux (P) for each marsh boundary segment using:
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P = 321 (4)

where P; is the wave power (expressed in W/m of crest length) for the ith boundary
segment, pis the water density (1025 kg/m?®), g? is the gravitational acceleration constant (9.8

m/s?) squared, HZ is the significant wave height squared, and T,, is the peak wave period.

4.2.6 Analysis

The relationships between land loss rates (Lr) and the main driving factors (wave
energy, wave power and marsh boundary oiling percentage) were explored and tested using
simple linear regression and analysis of variance (ANOVA). Through regression analysis, we
explored relationships between: a) Hs, b) Pi, ) Lr for the pre-oiling (2006-2010) and post-
oiling (2010-2013, 2013-2016) time periods, and d) wave energy and oiling. ANOVA was
utilized to determine if the mean values for oiling and wave energy groups were significantly

different for oiled and non-oiled shorelines and over the three time periods.

4.3. Results
4.3.1 Wind-wave climate

The prevailing winds over the ten-year timeframe (2006-2016) were out of the south,
southeast (SE), and east directions, accounting for 35% of the mean daily wind direction
(Figure 4.1C). Wind direction was similar over the three time periods; however, SE winds
were more prevalent during the pre-oil (2006-2010) period (Table 4.1). The mean wind
speeds over the three time periods were 3.6, 3.8 and 4.0 m/s, respectively, and mean hourly

wind speeds ranged from 0.0 - 25.5, 0.0 - 27.2, and 0.0 -17.6 m/s over the three time periods.
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Generally, the marsh boundaries with the longest fetches faced S and SE, and these fetches

ranged from approximately 4 to 21 km (Figure 4.1B).

Two extreme events, Hurricanes Isaac (August 2012) and Gustav (September 2008),
accounted for the top 19 mean hourly wind speeds over the study period (2006-2016) ranging
from 17.8 to 27.2 m/s (Figure 4.1F-G). Hurricane Isaac sustained mean hourly wind speeds
of >17.5 m/s for a ten hour period between August 28-29, 2012, and Hurricane Gustav
sustained mean hourly wind speeds >15.9 m/s for a ten hour period on September 1, 2008.
The average for the top 5% mean hourly wind speeds was 13.5 m/s with observed wind
speeds that were slightly greater over the first two time periods (2006-2010 = 13.7 m/s, 2010-
2013 = 13.8 m/s) than the last time period (2013-2016 = 12.8 m/s) (Table 4.1). The

prevailing wind directions of the top 5% mean hourly wind speeds were SSE and ESE.

Table 4.1: Wind speeds, wave period (T,50), significant wave height (Hs50 and Hs95), wave
power (Pi), and land loss rates (Lr).

Time Period wgi gdr?ﬁwirl ) siimi ) T(Eﬁ)o Tr?r? )O PIOMT) o (;7_95 " Oit fvoL g(frf_nzm*1 W(;;L
2006-2010 3.6 13.7 0.69 0.04 32.30 0.20 0.38 0.72 1.29
2010-2013 3.8 13.8 0.79 0.06 98.94 0.23 044 1.04 2.71
2013-2016 4.0 12.8 0.78 0.06 91.60 0.24 042 0.84 0.86

4.3.2 Wave height, period and energy flux

The mean spectral peak wave periods (T,50) varied between 0.24 and 2.66 s with an
overall mean of 0.76 sec, and only a 0.1 sec difference for the three periods between imaging
dates (Table 4.1). Mean Hs50 and mean Hs95 were 5 and 29 cm with ranges from 1 to 31 cm

and 5 to 71 cm, respectively (Table 4.1). Mean Hs50 and mean Hs95 are consistent for the
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three time periods with only 2 cm and 4 cm differences between them, respectively (Table
4.1). Further, the Tp50 showed only a 0.1 sec difference for the three periods between
imaging dates (Table 4.1). The mean wave power was 74.28 Wm™ (Table 4.1); however, the
estimates varied greatly, increasing by four orders of magnitude from the lowest (0.02 Wm™)

to the highest (253.37 Wm™) power.
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Figure 4.2: Time period comparisons of reach-scale Hs95 (m) for non-oiled (A,C,E) and oiled
shorelines (B,D,F). Plots A & B show the relationships in Hs95 between the 2006-2010 and
the 2010-2013 periods for non-oiled reaches (R? = 0.96) and oiled reaches (R? = 0.96). Plots
C & D show the relationships in Hs95 between the 2010-2013 and the 2013-2016 periods for
non-oiled reaches (R? = 0.91) and oiled reaches (R? = 0.96). Plots E & F show the
relationships in Hs95 between the 2006-2010 and the 2013-2016 periods for non-oiled
reaches (R? = 0.96) and oiled reaches (R? = 0.96).
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The relationship between reach-level Hs95 and land loss rates is significant but weak
(R?=0.28, p value <0.0001) but it is stronger than for the Hs50 (R? = 0.19), T50 (R? = 0.17)
and Pi (R? = 0.15). Therefore, we selected Hs95 as the wave energy variable for predicting
land loss rates under non-oiled conditions. Time period comparisons of reach-level Hs95
showed that all three periods are highly correlated (R2 > 0.90, p< 0.0001) and exhibit little
variability (SE < 0.026) for both oiled and non-oiled boundaries (Figure 4.2). The slopes of
the regression lines are between 0.83 and 1.17 (Figure 4.2). Overall, the Hs95 for 2010-2013

and 2013-2016 are slightly higher than for 2006-2010 (Figure 4.2).

Generally, the south- and southeast-facing marsh boundaries exhibit the highest
surface oiling percentages, due in part to their direct exposure to currents and tides (Turner et
al., 2016). Interestingly, many of the same boundaries were exposed to the longest fetches in
the study area, resulting in the highest significant wave heights (Figure 4.1E-G). Therefore,
we expected the boundary reaches with the highest Hs95 would be good predictors of heavy
oiling. Hs95 was a moderately good predictor of the degree of marsh boundary surface oiling
(R? = 0.34; p < 0.0001, Figure 4.3). In general, the marsh boundaries that experienced heavy
oiling in 2010 had the highest Hs95 in all three time periods (Table 4.1). Further, oiling
percentage increases monotonically when the Hs95 is grouped by 10 cm intervals (Figure

4.3).
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Figure 4.3: Relationship between the 95 percentile significant wave heights and percentage
of shoreline oiled surface for all marsh boundary reaches (R? = 0.34; p < 0.0001; N = 2420).
Large black circles show the averaged percent oil coverage over 0.10 m wave height
intervals to highlight the overall trend. Large red circles show the averaged percent oil
coverage with non-oiled (0%) reaches excluded from calculation.

4.3.3 Land loss, significant wave height, and oiling

For heavily-oiled marsh boundaries, mean Lg increased by an average of 0.99 m?m-

yr® for every 10 cm increase in the Hs95 from a low of 0.84 m?myr? (10-20 cm) to 5.79
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m2m2yr? (>60 cm) during the period from 2010-2013 (Figure 4.4A-C). The increase in mean
Lr was non-linear for Hs95 above 40 cm, highlighted by a tripling of the mean Lr from the
Hs95 interval of 40-50 cm to >60 cm (Figure 4.4A-C). Heavily oiled boundaries exhibited a
different mean Lr during the following period (2013-2016) than observed in the 2010-2013
period. During the second post-oiling period (2013-2016), mean Lr ranged from a low of
0.27 m?myr? (10-20 cm) to a high of 1.61 m?myr? (50-60 cm) and increased by an
average of 0.34 m?myr? for every 10 cm increase in the Hs95, before dropping to 1.27
m2mtyr? for the highest Hs95 (Figure 4.4C). The mean Lg for heavily-oiled boundary
reaches from 2013-2016 were less than half the background Lr of the pre-oiling (2006-2010)
period along the same reaches, despite exhibiting Hs95 in the 2013-2016 period that were
slightly greater (Figure 4.2F). Mean Lr for non-oiled boundaries ranged from 0.27 m?mtyr?
(0-10 cm) to 2.96 m?myr! (>60 cm) and increased, on average, 0.42 m?>myr? for every 10
cm increase in the Hs95 (Figure 4.4A-C). There are few shoreline reaches that were both non-
oiled and exposed to high Hs95, which could introduce bias into the analysis of Lr-Hs95.
Accordingly, we examined the sensitivity of non-oiled and oiled shoreline Lr-Hs95
relationships to outliers by removing all reaches with Hs95 >0.40 m. Removal of the reaches
with Hs95 > 0.40 m reduced the slope of the Hs95-Lr relationship to a similar degree for both
oiled and non-oiled shorelines, indicating the relationship is consistent for a range of Hs95,

and is not sensitive to outliers at high Hs95 (Figure 4.4D-F).
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Figure 4.4: Land loss rates (Lr) with increasing significant wave height (Hs95). Small gray
(non-oiled) and red (heavily-oiled) points show overall distribution of marsh boundary Lr for
each period: 2006-2010 (A), 2010-2013 (B) and 2013-2016 (C). Large black (non-oiled) and
red (oiled) points represent grouped Hs95 (0.10 m intervals). The zoom inserts for the 2006-
2010 (D), 2010-2013 (E) and 2013-2016 (F) show Lk trends (bold lines) for reaches without
Hs95 > 0.40 m and with Hs95 > 0.40 m.

Heavily-oiled boundaries exhibited similar overall covariability for Lr - Hs95 (R? =
0.21, R? =0.24, and R? = 0.11; p < 0.0001).The mean Lr for each Hs95 category was not
significantly different for the non-oiled and heavily-oiled marsh boundaries during the pre-oil
period (2006-2010, p = 0.29). Lr along non-oiled marsh boundaries were weakly but
significantly correlated with Hs95 in all three periods (R? = 0.20, R? = 0.14, and R = 0.12; p
< 0.0001; Figure 4.4A-C). Lr for oiled reaches behaved differently than Lr for non-oiled

reaches in 2010-2013 (p < 0.1) and 2013-2016 (p < 0.05; Figure 4.4B-C). A difference in Lr
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between oiled and non-oiled reaches occurred in the first post-oil period (2010-2013) for
Hs95 > ~0.4 m, suggesting that oiling had the largest impact on reaches with the highest
waves. The Lr-Hs95 relationship for heavily-oiled boundaries (>20% oiled) in 2010-2013
was exponential, which differs from the linear Lr-Hs95 relationship for the other time periods
(i.e. 2006-2010, and 2013-2016; Figure 4.4A-C) and non-oiled boundaries (Figure 4.4B).
The Lr-Hs95 relationship for the same heavily-oiled boundaries was linear during the second
post-oil period (2013-2016; Figure 4.4C), similar to the non-oiled boundary background rates
(Figure 4.5), but the slope of the line was less steep than the non-oiled (<25% oiled)
boundaries, which suggests Lr for heavily-oiled marsh boundaries dropped below the

background rates (Figure 4.6E-F).
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Figure 4.5: Comparison of land loss rates (Lr), grouped and averaged by Hs95, for oiled
reaches and reaches (red and gray lines) without oiling (blue line) and £ sd (dashed lines).
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Overall, Lr were generally higher during 2006-2010 and 2010-2013 than during the
2013-2016 period (Figure 4.6A-F). The greatest differences in Lr were determined for
heavily oiled boundary reaches between 2010-2013 and 2013-2016 (Figure 4.6D), followed
by the non-oiled reaches of the same time periods (Figure 4.6C). These results suggest a
considerable decline in Lr over the latter period, even though Hs95 was comparable between
the pre-oil and second post-oil periods (Figure 4.2C-D). Interestingly, Lr along non-oiled
boundaries were slightly higher during the 2006-2010 period than the 2010-2013 period
(Figure 4.6A), despite overall Hs95 being slightly higher in the latter period (Figure 4.2).
Conversely, Lr were substantially higher during the 2010-2013 period than the 2006-2010
period along oiled shorelines (Figure 4.6B), despite the Hs95 slope differences being virtually
the same for oiled and non-oiled shorelines (Figure 4.2). This further suggests that oiling
accelerated Lr from 2010-2013. All three time period comparisons of Lr showed highly
significant relationships (p < 0.001) for both oiled and non-oiled boundaries, except for non-

oiled reaches between time periods 2010-2013 and 2013-2016 (R? = 0.001, p = 0.34).
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Figure 4.6: Time period comparisons of reach-scale Le(m?myr?) for non-oiled (A,C,E) and
oiled shorelines (B,D,F). Plots A & B show the relationships in Lr between the 2006-2010
and the 2010-2013 periods for non-oiled reaches (R? = 0.13, SE = 1.01) and oiled reaches (R?
=0.34, SE = 2.32). Plots C & D show the relationships in Lr between the 2010-2013 and the
2013-2016 periods for non-oiled reaches (R? = 0.001, SE = 1.02 ) and oiled reaches (R?=
0.11, SE = 1.02). Plots E & F show the relationships in Lr between the 2006-2010 and the
2013-2016 periods for non-oiled reaches (R = 0.13, SE = 0.97) and oiled reaches (R?= 0.19,
SE=0.97).

4.4. Discussion

The marsh platform of Barataria Bay has been eroding since 1932, losing ~31% of its
marsh area between 1932 and 2010 (Couvillion et al., 2011), through human activity and
natural forcings (DeLaune et al., 1994; Nyman et al., 1994; Day et al., 2007; Morton and
Bernier, 2010; Turner, 2011). From 1932-1990, twenty-five percent of land loss in salt
marshes occurred along shorelines, driven predominantly by waves and tidal currents
(Penland et al., 2000; Wilson and Allison, 2008). Over decades, the loss of marsh platform to
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open water further lengthens fetches and increases the wind-generated wave power (Wilson
and Allison, 2008). The compounding effect of greater wave energy, in addition to
subsidence and reduced sediment supply, resulted in peak loss rates of 1.90 - 2.04% per year
of total marsh area from 1970-1990 (Sasser et al., 1986; Evers et al., 1992; Barras et al.,
2003). Loss rates declined from 1990-2010 (0.49 - 0.90 % per year), which was likely a
result of reduced fluid extraction for oil and gas production after the 1970's (Morton and

Bernier, 2010).

Turner et al. (2016) suggested that the distribution of oil along marsh boundaries
immediately following the DWH spill event may be directly related to the variance in
shoreline erosion rates prior to the DWH spill because both are strongly influenced by local
currents and tides. Wave energy has been widely reported to drive lateral erosion processes,
and the strong relationship between the spatial distribution of oiling and variance in shoreline
erosion rates implies that oiling along marsh shorelines may be correlated with exposure to
wave energy. Our analysis showed that the marsh boundaries that experienced the highest
wave energy were also the most severely oiled following the DWH oil spill (Figure 4.3).
Only 2% of the marsh boundary reaches (totaling 2627 m) with Hs95 greater than 50 cm
experienced no oiling (according to the MESMA maps), while 91% of these reaches
exhibited surface oiling greater than 20%. Conversely, 26% of reaches with Hs95 less than
30 cm exhibited oiling greater than 20%, suggesting that heavy oiling was concentrated along

shorelines with high wave energy.

Our observations of accelerated land losses along oiled marsh shorelines are in
general agreement with several recent studies conducted in Barataria Bay that have

documented marsh responses following the 2010 DWH oil spill (Silliman et al., 2012;
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McClenahan et al., 2013; Zengel et al., 2015; Rangoonwala et al., 2016; Turner et al., 2016;
Beland et al., 2017; Khanna et al., 2017). Our analysis shows that land loss rates are
correlated with wave energy for both oiled and non-oiled boundaries, and that loss rates were
amplified along oiled reaches with wave heights (Hs95) greater than 50 cm (18% of all
reaches) in the first post-oiling period (2010-2013). Land loss rates for heavily-oiled
shorelines (> 20% oiling) were 75% higher than background rates for reaches with wave
heights (Hs95) greater than 50 cm (Figure 4.5). These findings are in agreement with two
recent studies that documented the distinct land loss patterns observed over the same period
following the DWH oil spill and Hurricane Isaac, which made landfall in the Barataria Bay
area (Rangoonwala et al., 2016; Khanna et al., 2017). Hurricane lIsaac, a category 1 storm,
made landfall twice in the vicinity of Barataria Bay on August 29, 2012, roughly two years
after oil washed ashore from the DWH spill. While the maximum sustained wind speeds only
reached tropical storm levels (~27 m/s), the storm’s long dwell time in the area worsened the
damage (Rangoonwala et al., 2016). Khanna et al. (2017) reported land loss rates for oiled
boundaries that were 31% higher along the marsh zone closest to the shoreline (0-7 m), and
84% higher 7-14 m from the shoreline. By contrast, Rangoonwala et al. (2016) found that
land loss along marsh shorelines was far more spatially extensive than that caused by wave-
induced erosion, concluding that, perhaps the greatest impact of oil exposure was the
acceleration of loss rates along boundaries protected from high wave energy. Our analysis of
land loss rates found that oiling increased marsh loss even along shorelines exposed to low
wave energy. However, loss rate increases were not as significant as exhibited by the
boundaries subjected to high wave energy (Figures 4.4B & 5), suggesting that oiling and

wave energy interact to produce rapid land loss.
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The elevated land loss over background rates (i.e. + 75% background loss rates from
2006-2016) would likely have been even greater if not for the impacts of Hurricane Gustav,
which made landfall in September of 2008. Hurricane Gustav likely damaged marsh
boundaries, particularly along the high wave energy shorelines, thus resulting in elevated
background rates used in the analysis. We suspect periods with light tropical cyclonic storm
activity would exhibit background loss rates that are more in line with 2013-2016
observations. However, the accelerated losses along reaches with the highest wave energy
reported here highlight the importance of landscape position, physical forces, and
biogeomorphological feedbacks in predicting marsh responses to disturbances (Silliman et

al., 2012; McClenahan et al., 2015).

Finally, land loss rates along oiled reaches decreased to less than the loss rates of non-
oiled reaches in the second post-oil period (2013-2016). While this result was unanticipated,
recent research has documented a similar trend in decreases in land loss rates in the MRD
(Couvillion et al., 2017). Couvillion et al. (2017) offered several potential reasons for the
reduced rate of loss, some of which may apply to the oil impacted, high wave energy
exposure marshes of Barataria Bay. One possibility is the lack of major hurricane effects that
have occurred over the last 5+ years (2013-2017; Couvillion et al., 2017). As observed in our
analysis among others (e.g. Rangoonwala et al., 2016; Khanna et al., 2017), hurricanes can
severely degrade vegetated shorelines and convert marsh platform area to open water,
particularly along marsh boundaries that are vulnerable to direct, high energy waves. An
equally compelling explanation for the decreased loss rates in our study area is that the most
exposed and vulnerable marshes had already been lost by the second post-oil period (2013-
2016), and therefore, the loss rates declined (Couvilion et al., 2017). For instance, heavily
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oiled portions of marsh boundaries eroded more rapidly than non-oiled or low oiled portions
creating headlands along the boundaries (McClenachan et al., 2013). As a result, these
headlands were exposed to wave energy from more directions, which led to the rapid erosion
of these micro-peninsulas (McClenachan et al., 2013). This process of oiling, heightened
exposure to wave energy, and increased erosion rates may explain the acceleration of losses.
Further, the subsequent decrease in rates below that of background land loss rates may be due
to the removal of “points” or “heads” as discussed in previous studies of shoreline
morphodynamics (Priestas et al., 2015). More research will be required to address the

questions regarding the effects of shoreline morphology on recent trends in loss rates.

4.5. Conclusion

We examined the interactive contributions of wave action (Hs95) and oiling to marsh
boundary land loss rates (Lr) in Barataria Bay over three consecutive time periods.
Significant wave height was a moderately good predictor of heavily oiled marsh boundary
locations, and surface oiling (%) increased monotonically with 10 cm increments of Hs95.
Land loss rates were higher on oiled reaches in the first post-oiling period (2010-2013) after
controlling for wave height, but only for reaches with wave heights greater than 0.5 m (18 %
of all reaches) did the Lr - Hs95 relationship change from linear to exponential. Marsh
responses to oil contamination were highly variable, and that wave action and degree of
marsh boundary oiling were both significant factors in driving land loss for years after initial

oiling. Three to six years after oiling, reaches returned to background rates across all wave
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energy categories. These results highlight the importance of exposure to high wave energy in

accelerating Lr following oiling.
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Chapter 5: Conclusions

Globally, coastal wetlands are under threat from rising sea level and reduced
sediment supplies (Kirwan et al., 2010). Nowhere is this more evident than in coastal
Louisiana, which has been losing ~62 km?yr since the early 1930’s (Couvillion et al., 2017).
The DWH oil spill and subsequent oiling along marsh shorelines added a compounding
effect onto existing high rates of land loss exhibited by these ecosystems. This dissertation
shows that the marsh responses to oil contamination are highly variable, and that wave action
and degree of marsh boundary oiling are both significant factors in determining marsh
recovery trajectories. For instance, the results suggest that marshes that are heavily-oiled, but
protected from wave action, show signs of vegetation regrowth and recovery within 3 years
of oil contamination. This is demonstrated in Chapter 2, where some of the heavily oiled
shorelines showed signs of recovery in 2011 and 2012 as sub-climax, pioneer species
revegetated disturbed marsh. Conversely, heavily oiled marsh boundaries that were exposed
to high wave energy exhibited land loss rates that were amplified from 2010-2013. For
example, in Chapter 3, the results show that oiling increased total land losses by 50% (52,521
m2yr1) from 2010-2013 (more than 80% of which are attributable to reaches with > 30% oil
cover), and the relationship between land loss and wave height for heavily-oiled (>20%)

reaches was exponential during the 2010-2013 post-oil period.

The findings highlight the importance of wave action in determining ecosystem

responses following oiling, and demonstrate how an integrated oil-wave action exposure
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model could be used more broadly to prioritize the most vulnerable marsh boundaries for
immediate restoration and substrate stabilization efforts. The dissertation also accounted for
background rates of land loss attributable to natural erosional forcings. While the rates are
likely substantially higher for Barataria Bay than would be reported for estuarine marshes in
other regions, these results are a valuable reference for comparison with other estuaries in the
Mississippi River Delta and elsewhere. Additionally, the dissertation provides a simple
method for calculating background rates of land loss that can be used in future assessments

of impacts following disturbances.

The findings related to oil effects on marsh communities and land loss will likely
have limited applicability beyond the Gulf Coast region, due to the unique set of physical and
biological factors that govern the ecosystem responses in these estuaries. Past studies have
demonstrated that coastal wetlands exposed to oil in warmer (equatorial or sub-tropical)
regions, like the Gulf of Mexico, have the capacity to recover more rapidly than in temperate
or polar regions because of the enhanced activity by hydrocarbon-utilizing microorganisms
in warmer water and marsh sediments (Pezeshki et al., 2000; Atlas et al., 2015). Weather
events, like hurricanes, also influence the distinctive ecosystem response of this region.
Elevated wave energy flux during tropical storm events can result in severe lateral erosion
along marsh boundaries and scouring of the marsh platform (Cahoon et al., 1995;
Guntenspergen et al., 1995). Conversely, warm regions or locations where tropical storms
and high wave energy events are infrequent will likely exhibit greater ecosystem resilience in
response to an oiling disturbance. Further, climatic factors (i.e. temperature and
precipitation) largely determine the plant community composition for a particular region,
which would also influence ecosystem response to oiling. For example, the forested
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wetlands of the Niger Delta or mangrove swamps of Southeast Asia are likely to response

differently to oil exposure than marshes along the Gulf Coast region of the United Sates.

Finally, the general applicability of this research lies predominantly in the advanced
remote sensing and GIS techniques developed here to assess the ecosystem responses to a
large-scale disturbance. In Chapter 2, the dissertation demonstrates the capacity of the
IES/CDA classification system to accurately and consistently map spectrally similar salt
marsh species across multiple datasets and image acquisition dates (overall accuracy = 82%,
kappa = 0.78). This approach has also performed well in forested ecosystems (Roth et al.,
2015), making it a good candidate for further application following future ecosystem
disturbances. In Chapter 3, a methodology is developed to assess reach-scale wetland loss
attributable to oiling and to account for variability in background erosion rates over multiple
time periods. This approach could be broadly applied to future investigations of ecosystem
degradation along vegetated shorelines following a disturbance. A limitation of Chapter 3 is
that non-oiled shorelines in all locations within Barataria Bay are assumed to have the same
background land loss rate for a given time period. This limitation is addressed in Chapter 4
by integrating a simple, fetch-limited wave model to determine the interactive contributions
of wave energy and oiling on marsh boundary land loss rates. This model could help explain
land loss rates across many regions where estuarine shorelines are exposed to variable wave

energy which influence recovery trajectories following disturbances.

5.1. Limitations

A limitation of this dissertation is the potential influence of spatiotemporal

autocorrelation in the statistical analysis of the relationships among the land loss rates, wave

133



energy, and oiling variables. Based on visual interpretation and preliminary spatial
autocorrelation results (I = 0.70, z-score > 10, p < 0.005), there is a high probability (>95%)
of clustering of Lr. Going forward, a major challenge will be determining which factors are
the primary drivers of the spatial dependence for Lr. For instance, an important question will
be to address whether or not the spatial autocorrelation of Lr is caused by the spatial
dependence of exogenous variables (i.e. wave action, oiling, vegetation, macrofauna), or is
due to endogenous factors (i.e. boundary elevation and plant biomass) and, therefore,

unexplained (statistically) by these other factors.

Another limitation of this dissertation is that there are other factors, in addition to
wave energy and oil exposure, contributing to the dynamics of Lr. Priestas et al. (2015) notes
that variability in Lr is strongly influenced by local geomorphic and biological factors. For
instance, sediment composition along with above- and belowground biomass composition
have a substantial effect on marsh boundary resistance to erosional forces. In addition, slight
differences in marsh boundary elevations can have a measurable effect on erosion rates at a

local scale.

5.2. Future Research

An analysis of the spatial dependence of explanatory (oiling and wave energy) and
response (land loss) variables could increase our understanding of oil exposure and land loss
characteristics, and assist in forecasting later disturbance events. Other future studies that
integrate local variables into the landscape-scale model introduced here would likely enhance
our capacity to analyze the dynamic response of salt marshes to disturbance events such as

oil spills and hurricanes.
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