CRMS Website Roadshow

May 2019

855.547.8255
836170#
Any website issues, questions, or special data requests should be emailed to CRMS@usgs.gov for fastest resolution.

The website works the best with Google Chrome.
Released on the “New” Website
Updated Site Photos
Land area change in coastal Louisiana (1932 to 2016)

Scientific Investigations Map 3381

By: Brady R. Cowillion, Holly Beck, Donald Schoolmaster, and Michelle Fischer

https://doi.org/10.3133/sim3381
Released on the Website
Updated Land/Water, High Resolution, 1m

Released on the Website

Updated Land/Water, High Resolution, 1m
Released on the Website
Updated Land/Water, High Resolution, 1m

PDF available for download:
Library > Maps

Data and metadata available through Sciencebase.

CRMS High Resolution 1m links
• On the mapping viewer using the Classify Tool
• Based on query output
• Site level presence by year
• Limit of 3 species per visualization
In Development
Canopy Cover Charts

Site:

Station:
CRMS soil profiles were collected in 2018.

Above and belowground biomass and vegetation nutrients collected by basin in a yearly rotation from 2016-2021. New series of charts (10+) in development.

- Updated soil profiles for OM and BD
- Soil nutrient profiles for TN, TP, TC
- Carbon density profile
- Above and belowground biomass (live and dead)
- Aboveground vegetation nutrient content
Analytical Team Updates
Limitations of classical clustering techniques

- Species abundance data are usually messy
 - Outliers, missing data
 - Sparse matrices – most cells are zeros
 - Strongly nonlinear
 - These are all violations of traditional multivariate clustering approaches

- Unstable to the addition of new samples
 - This can be problematic for ecological monitoring programs where new samples continuously become available
 - Eliminates need for different classifications spatially and temporally
 - Chenier vs Delta, number of classes changes with each classification
• 343 sites over 9 years of CRMS data
• Quantitatively determined breaks in dendrogram
• Groups named after dominant species but include more than the dominant
• Each cell in the SOM has a defined species composition
• Size of black dots represent the number of samples in the training data set
Species composition of each class

Numbers represent mean % relative cover of 7 most abundant taxa in each class

<table>
<thead>
<tr>
<th>Maidencane</th>
<th>Three-square</th>
<th>Rosean Cane</th>
<th>Paspalum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Panicum hemitomon</td>
<td>34</td>
<td>27</td>
<td>71</td>
</tr>
<tr>
<td>Leersia hexandra</td>
<td>11</td>
<td>19</td>
<td>5</td>
</tr>
<tr>
<td>Eleocharis</td>
<td>7</td>
<td>5</td>
<td>3</td>
</tr>
<tr>
<td>Typha</td>
<td>5</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>Thelypteris palustris</td>
<td>4</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>Alternanthera philoxeroides</td>
<td>4</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>Typha</td>
<td>4</td>
<td>4</td>
<td>2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Wiregrass</th>
<th>Bulltongue</th>
<th>Needlerush</th>
<th>Buhrush</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spartina patens</td>
<td>65</td>
<td>16</td>
<td>54</td>
</tr>
<tr>
<td>Distichlis spicata</td>
<td>7</td>
<td>11</td>
<td>15</td>
</tr>
<tr>
<td>Schoenoplectus americanus</td>
<td>5</td>
<td>7</td>
<td>8</td>
</tr>
<tr>
<td>Schoenoplectus robustus</td>
<td>3</td>
<td>4</td>
<td>8</td>
</tr>
<tr>
<td>Ipomoea sagittata</td>
<td>2</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>Lythrum lineare</td>
<td>2</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>Spartina alterniflora</td>
<td>2</td>
<td>3</td>
<td>2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Brackish Mix</th>
<th>Oystergrass</th>
<th>Saltgrass</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spartina alterniflora</td>
<td>53</td>
<td>93</td>
</tr>
<tr>
<td>Spartina patens</td>
<td>20</td>
<td>4</td>
</tr>
<tr>
<td>Juncus roemerianus</td>
<td>10</td>
<td>1</td>
</tr>
<tr>
<td>Distichlis spicata</td>
<td>7</td>
<td>1</td>
</tr>
<tr>
<td>Schoenoplectus robustus</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>Avicennia germinans</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>Iva frutescens</td>
<td>2</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Buhrush</th>
<th>Wiregrass</th>
<th>Buhrush</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spartina alterniflora</td>
<td>24</td>
<td>16</td>
</tr>
<tr>
<td>Distichlis spicata</td>
<td>15</td>
<td>13</td>
</tr>
<tr>
<td>Spartina patens</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>Spartina alterniflora</td>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td>Spartina patens</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Schoenoplectus robustus</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>Iva frutescens</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Juncus roemerianus</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>
Louisiana’s top 25 species

- Maidencane
- Needlerush
- Roseau Cane
- Brackish Mix
- Bulrush
- Saltgrass
- Bulltongue
- Paspalum
- Wiregrass
- Three-Square
Visser Classes (20 total)

Wiregrass Oystergrass Cattail Bulltongue Brackish Mix

Congruence to Previous Classifications
2007 Heli data

Roseau Cane Maidencane Needlerush Paspalum Saltgrass

- Bulltongue
- Cattail
- Roseau Cane
- Needlerush
- Paspalum
- Saltgrass
- Wiregrass
- Oystergrass
- Brackish Mix
FIGURE 1 Location of 343 sites where vegetation cover, salinity, and water level were collected. Color indicates vegetation community type, as classified by the self-organizing map, based on taxa composition observed during the 2013 Coastwide Reference Monitoring System (CRMS) vegetation survey.
FIGURE 7 Self-organizing map classification of species cover data from 2013 helicopter-based vegetation surveys conducted at 4,215 locations across coastal Louisiana (Sasser et al., 2014)
• CRMS3565 temporally stable community composition vs CRMS0400
• CRMS0225 (2008-2009) indication that a community shift is under way but not yet crossed a distinct boundary.
Classified samples (n ≈ 4000) from helicopter surveys

Used a portion of the classified samples as training data for supervised classification of multispectral satellite imagery (Sentinel)

Preliminary analysis suggest classification by remote sensing may obtain correct classification rates approaching 80%

Technique should allow for annual mapping at 10m resolution
Assessing the Efficacy of Coastal Wetland Planning, Protection and Restoration Act (CWPPRA) Restoration Projects Intended to Create or Sustain Land

• 1984-2018 satellite imagery to assess the land building & land sustaining effects of constructed CWPPRA projects
• ~ 200 observations per project (cloud free dates)
• Fractional estimates of land, water, and aquatic vegetation for each pixel
• Adjusted for expected effects of intra-annual water level variation on land area
• Compared pre- and post-construction land area estimates and change rates
• Results summarized by project and project type
• Original project boundaries created some analysis issues (ex., too big or too small)
• Will not assess Hydrologic Restorations
 ➢ unless primarily intended to build/sustain land (ex. Crevasse management)
Pre-construction Rate:
35.78 acres/13 years = +2.75 acres/year

Post-construction Rate:
373.16 acres/20 years = +18.66 acres/year

ΔLand Change Rate:
18.66 - 2.75 = 15.91 acres/year

ΔLand Area Change attributable to project:
15.91 acres/year x 20 Years = \(318.11\) acres
Paper in development
Couvillion et al.
Marsh Creation
• Expected manuscript submission this summer
• Each project output will be presented in tabular form
• Figures for each project will be available in science base
• This effort highlights the importance of drawing boundaries that reflect project influences
• Redrew boundaries where it was appropriate or used revised project boundaries ex., barrier island rollback
• Potential future opportunity to refine WVA benefit calculations
• Full annual budget approved through FY20
• $10M annual approval starting in FY21
• Projected annual deficit $1M - $3.6M in subsequent 5 years
• Plan to submit proposal to NRDA LA-TIG for funds from the Monitoring and Adaptive Management budget
• Implemented cost cutting measures and are exploring others
Cost Cutting Mechanisms
Floating Marsh Redesign

- Redesigning M01 set up for floating marshes
 - Reduce size, clogging, impact on vegetation and mat buoyancy
- Removed sondes at floating sites in Feb 2019
- Experimenting with new design and cheaper equipment starting summer 2019 at 4 sites
- Anticipate redeployment throughout network late 2019
Cost Cutting Mechanisms
Use of surrogate sondes

- Analyzed 9 yrs of water data--daily mean salinity and water level
- 21 station pairs provided statistically equivalent data
- Considered whether removing of 1 station in each pair would impact ability to assess existing or future restoration areas.

- Reduced selection to 10 pairs for further consideration
- Compared tidal amplitudes within 10 pairs, no real differences (<1/4 inch)
- Calculated percent time flooded at proposed eliminated station using “real” station data and surrogate station data
- If mean annual percent time flooded error was ≥ 5% between real and surrogate data, the station was not consideration for removal
Cost Cutting Mechanisms
Use of surrogate sondes

• Recommend eliminating 7 stations effective October 1, 2019
• Standard language will be added to the CIMS database, CRMS charting, & mapping viewer to notify users of the change
• CRMS0000-H0X will indicate a sonde that has been eliminated where surrogate data is being served in the database for the eliminated station’s temperature, salinity, and water level.
• Site-specific flooding will be calculated for the -H0X station using the observed marsh elevation at the CRMS site.

<table>
<thead>
<tr>
<th>Basin</th>
<th>Station_ID for elimination 10/1/2019</th>
<th>Station_ID of surrogate 10/1/2019</th>
</tr>
</thead>
<tbody>
<tr>
<td>BA</td>
<td>CRMS0176-H01</td>
<td>CRMS0174-H01</td>
</tr>
<tr>
<td>BA</td>
<td>CRMS0253-H01</td>
<td>CRMS0220-H01</td>
</tr>
<tr>
<td>TE</td>
<td>CRMS2881-H01</td>
<td>CRMS0411-H01</td>
</tr>
<tr>
<td>ME</td>
<td>CRMS1409-H01</td>
<td>CRMS0553-H01</td>
</tr>
<tr>
<td>ME</td>
<td>CRMS1446-H01</td>
<td>CRMS0590-H01</td>
</tr>
<tr>
<td>CS</td>
<td>CRMS2154-H01</td>
<td>CRMS0661-H01</td>
</tr>
<tr>
<td>CS</td>
<td>CRMS2156-H01</td>
<td>CRMS0669-H01</td>
</tr>
</tbody>
</table>
Cost Cutting Mechanisms
Adjust Hydro Servicing Schedules

- Reducing the frequency of servicing could reduce costs
 - reduce field labor
 - equipment rental (boats)
 - decrease number of records processed
- Need to balance reducing cost and data quality
- Current CRMS contract states sondes must be serviced every 60 days (approximately 6 times per year) - averaging ~ 40 day deployments
- Average has been >8 visits per year (~3500 trips per year)
Cost Cutting Mechanisms
Adjust Hydro Servicing Schedules

Draft results, manuscript in prep

- Analyzed 12 years of hydro data to:
 1. Determine the effects of maintenance interval on probability of missing records
 2. Determine the effects of maintenance interval on probability of data adjustment
 3. Quantify the magnitude of adjustment (given that one occurred)

Using raw sonde data and ground truth values during servicing for water elevation and salinity.
5 trips per year spaced evenly equals 73 days

Analytical tools have a 70% hydro completeness threshold

>110 days lost is problematic

Next CRMS contract (Jan. 2021) plan to increase the maintenance interval & set a max # of trips/site/yr
Potential Cost Cutting Mechanisms
Reduce Annual Vegetation Effort

• Contractor labor costs could be reduced if less effort was required for annual vegetation sampling. Goal would be to increase number of full sites sampled per day and therefore we would have to remove 4 or 5 stations per site.

• We analyzed the effect of removing between 1 and 5 vegetation stations for several vegetation metrics.

• For each CRMS site, we calculated the metric using 10 stations and then for the subset of remaining stations (i.e., 9, 8,…,5) using all combinations of station removal.
Potential Cost Cutting Mechanisms
Reduce Annual Vegetation Effort

Metrics analyzed:

• The probability that the dominant spp was correctly identified in the subset of stations
• Proportion of species from full sample observed
• An index of similarity (Jaccard)
• Difference in total cover
• Difference in Shannon diversity index
Potential Cost Cutting Mechanisms
Reduce Annual Vegetation Effort

Probability that reducing allows us to correctly identify the most dominant species in the full sample.

We would be wrong on the dominant species 20%.

Correctly ID’ing dominant is important to classify wetland type.

Changes in sampling could be mistaken for actual community change.
Potential Cost Cutting Mechanisms
Reduce Annual Vegetation Effort

Proportion of species presence/absence in the full dataset that we observe when we leave out stations.

Likely to miss 20% of species presence which has direct implications for site classification.
Species composition in the full dataset that we observe when we leave out stations.

The community we would see is 25-40% different to the one we would get with 10 plots.
Potential Cost Cutting Mechanisms
Reduce Annual Vegetation Effort

Difference in total cover (regardless of species).

Total cover has been shown to the best predictor of future transition to open water.

Losing precision in the estimates will directly effect our understanding of which sites are most vulnerable.
Potential Cost Cutting Mechanisms
Reduce Annual Vegetation Effort

• Results for some metrics are concerning (i.e., Probability of correctly ID’ing dominant, similarity, & total cover)

• Major changes to vegetation sampling would influence how the data are used for interpretation and decision making

• Need to balance potential cost reduction vs data reduction influences on ecological assessment and modeling
• We currently measure RSET and Accretion every spring and fall.

• We use those data to generate Elevation Change and Accretion Rates.
 • Used in SVI and determine restoration influence on the marsh surface

• We considered whether or not we get the same Elevation Change Rate if we only collected data in one of the two seasons.
Some basins show a clear seasonal pattern where elevations are lower in the Spring and higher in the Fall (Upper ME, TE and BA).

The processes that drive this seasonality are not well understood.

Measuring $1x/yr$ will not capture the process in the CRMS surface elevation data.
Sampling in spring OR fall would give the same general information about site surface elevation change.

- Sites with high elevation gain rates still have high elevation change rates and vice versa.
- Some sites with low elevation change rates see their sign flip (13 Spring Only; 21 Fall Only)
• Spring Only measurements are slightly higher than current rates (mean 0.3 mm/yr) and Fall Only measurements are slightly lower than current rates (-0.2 mm/yr).

• Starting elevation in the spring is lower than starting elevation in the fall.
 • Spring Only would provide a higher elevation change rate from a lower starting point.
 • Fall Only would provide a lower elevation change rate from a higher starting point.
Potential Cost Cutting Mechanisms
RSET Sampling Modifications

• Programmatically we are using linear regression to determine elevation change rates.

• Using both spring and fall data provides the best fit.

• However, if we have to choose Spring or Fall Only sampling, then we should choose the season with the best linear regression fits.

• Spring Only has lower Std Error and smaller P-values than Fall Only.

<table>
<thead>
<tr>
<th>Data Set</th>
<th>N Sites minimum Std Err</th>
<th>N Sites P value (<0.05)</th>
</tr>
</thead>
<tbody>
<tr>
<td>BOTH</td>
<td>285</td>
<td>223</td>
</tr>
<tr>
<td>FA</td>
<td>4</td>
<td>189</td>
</tr>
<tr>
<td>SP</td>
<td>18</td>
<td>211</td>
</tr>
</tbody>
</table>
• We can estimate elevation change rates with one measurement per year.

• Spring would be better than fall because it is closest to using all of the data and has the best regression fits.

• Access restrictions occur at many sites during the fall.

• We will be unaware of whether or not sites continue to show a seasonal pattern or develop a seasonal pattern.
Update Coastwide Aerial Photography

• Coastwide high resolution aerial photography was collected in fall of 2018.

• Data are currently being QA/QC’d

• August 2019, anticipated delivery to USGS

• Project specific land/water analyses have been prioritized and will start as soon as the data are available.

• 2021 and 2024 coastwide collections are last in programmatic budget with the intent of using data from a constellation of satellites thereafter
Questions??

CRMS help at

CRMS@usgs.gov

Sarai Piazza
piazzas@usgs.gov