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Change Detection of Surface Water in Remote Sensing Images 
Based on Fully Convolutional Network 
 
Ahram Song†, Yeji Kim†‡, and Yongil Kim†*   
 
 
 
 

ABSTRACT 
 

Song, A.; Kim, Y., and Kim, Y., 2019. Change detection of surface water in remote sensing images based on fully 
convolutional network. In: Lee, J.L.; Yoon, J.-S.; Cho, W.C.; Muin, M., and Lee, J. (eds.), The 3rd International Water 
Safety Symposium. Journal of Coastal Research, Special Issue No. 91, pp. 426-430. Coconut Creek (Florida), ISSN 
0749-0208. 
 
This study presents a new approach based on fully convolutional networks (FCN) to detect changes in surface water. 
The proposed method can be divided into three steps: (1) training the FCN using color-infrared (CIR) images from the 
Coastwide Reference Monitoring System (CRMS) dataset with two classes, such as water and land; (2) passing the 
multitemporal images respectively through the pre-trained FCN and generating a difference image (DI) from score 
maps of the last prediction layers; and (3) determining optimal threshold values using fuzzy entropy and discriminating 
between changed and unchanged pixels in the DI. This method has the advantage of effectively learning the spatial and 
spectral characteristics of water bodies from large remote-sensing datasets, and it would be helpful to analyze and 
monitor changes in newly obtained images without ground truth. The experimental results obtained using the 
multitemporal CRMS data demonstrated the effectiveness of this deep-learning approach for detecting changes in 
remote-sensing images, as compared other traditional methods for change detection. 

 
ADDITIONAL INDEX WORDS: Deep learning, surface water, change detection, fully convolutional network, 
CRMS dataset.   
 

 
INTRODUCTION 

Surface water includes oceans, rivers, lakes, and wetlands. 
Analysis of the spatial distribution of surface water and the 
assessment of any changes in surface water are crucial for 
watershed analysis, flood and drought mapping, and 
environmental monitoring (Rokni et al., 2015). Because remote-
sensing data have various spatial, spectral, and temporal 
resolutions and can be obtained from various sensors, such as 
satellites, unmanned aerial vehicles, and piloted airborne 
platforms, they have been widely used in recent years for surface 
change detection (Rokni et al., 2015; Xu, Lin, and Meng, 2017). 

Change detection is an important technique for many remote-
sensing applications, and a large number of methodologies for the 
change detection using remote-sensing images have been 
developed. In general, there are two major categories for change 
detection. The first one is a post-classification method that 
separately classifies different-time-phase images and compares 
the classification results to discriminate between changed and 
unchanged pixels. Although this method has the advantage of 
avoiding radiation effects, it is highly dependent on the accuracy 
of classification. The second one is a comparative analysis in 
which a difference image (DI) is constructed between target 
images, and then the changes are detected. In this case, the DI 
quality is very important to acquiring accurate change-detection 
results. The comparative analysis has been considered as the 

mainstream change-detection method, which has shown good 
performances in many studies (Gong et al., 2016). 

Regarding surface water change detection, post-classification 
methods have been generally used to detect changes in water 
bodies (Rokni et al., 2015). However, in many remote-sensing 
fields, it is hard to gain the prior knowledge that is required for 
supervised classification methods. On the other hand, the methods 
of comparative analysis, various water indices (Li et al., 2018; 
Rokni et al., 2015) and change vector analysis (CVA) (Sarp and 
Ozcelik, 2017) have been successfully applied to the detection of 
changes in surface water. However, because those methods are 
based on the spectral information of multiple bands, it is difficult 
to consider the spatial structure of surface water. 

Deep learning is the fastest growing trend in big data analysis 
and has extensively advanced the area of image segmentation. 
With the development of various sensors, remote-sensing data 
have been explosively collected, and data-based approaches are 
needed to effectively manage the large amounts of data, without 
prior knowledge. However, deep learning algorithms are rarely 
considered in surface water change detection. In many 
applications, renowned large datasets that consist of everyday 
pictures—such as ImageNet and PASCAL VOC2012—have 
been successfully used for the classification of remote-sensing 
data (Audebert, Le, and Lefèvre, 2016). However, there are some 
differences between the everyday pictures and remote-sensing 
data. First, everyday pictures only have red, green, and blue 
spectral information, whereas many remote-sensing data 
generally contain near-infrared (NIR) spectral information as well 
as red, green, and blue spectral information. In particular, the NIR 
region is useful to discriminate water bodies from other areas 
because water has the characteristics of high absorption in this 
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region. Second, each pixel of remote-sensing data has semantic 
meaning, whereas datasets containing general digital photos have 
meaningless backgrounds with a few foreground objects of 
interest (Long, Shelhamer, and Darrell, 2015). Therefore, weights 
are trained with a remote-sensing dataset instead of everyday 
pictures, in order to effectively classify surface water in remote-
sensing data with fully convolutional network (FCN). 

In this paper, a new approach based on FCN is introduced for 
the detection of surface water changes in multitemporal remote-
sensing images. FCN is state of the art in semantic segmentation, 
and they accept arbitrary sizes as input and retain spatial 
information by replacing the fully connected layers with 
convolutional layers. 

The proposed method can be divided into three steps: (1) 
training parameters of the proposed FCN using color-infrared 
(CIR) images of the Coastwide Reference Monitoring System 
(CRMS) dataset; (2) generating a DI from the score map by 
passing the target images through the pre-trained FCN; and (3) 
calculating the optimal threshold using fuzzy entropy and 
detecting changed areas. To demonstrate the effectiveness of the 
proposed method, we conducted the quantitative analysis of 
change detection using various evaluation criteria—such as post-
classification comparison (PCC) and the Kappa coefficient—with 
traditional change-detection methods. 

 
THEORETICAL BACKGROUND  

FCN Aarchitecture and Mechanism 
FCN assigns a label to every pixel by replacing the fully 

connected layer of convolutional neural networks with 
convolutional layers containing kernels that cover the entire input 
region. As a result, FCN can accept arbitrary sizes as input (fully 
connected layers require fixed sizes) and a classification network 
can output a heat map (Isikdogan, Bovik, and Passalacqua, 2017). 

The architecture of the FCN discussed in this paper is 
demonstrated in Figure 1. The proposed FCN has an encoder–
decoder structure that downsamples inputs and then upsamples 
them again, and it is mainly composed of three components: a 
convolution layer, a max-pooling layer, and a deconvolution layer. 

 
 

 
Figure 1. Overall architecture of the FCN. The blue line represents the 
process of prediction, and the red line represents the process of 
upsampling.

 
 
𝑟𝑟 × 𝑐𝑐 × 𝑠𝑠 represents the size of the feature map. 𝑟𝑟𝑙𝑙 and 𝑐𝑐𝑙𝑙 are 

the row and column, and 𝑠𝑠𝑙𝑙 is the number of feature maps in the 
layer 𝑙𝑙. 𝑥𝑥𝑖𝑖𝑙𝑙 ∈ ℝ𝑟𝑟𝑙𝑙×𝑐𝑐𝑙𝑙 is the 𝑖𝑖th feature map in layer 𝑙𝑙, so 𝑥𝑥𝑖𝑖𝑙𝑙+1 can 
be calculated through Equation (1) (Li et al., 2018): 

 

 𝑥𝑥𝑖𝑖𝑙𝑙+1 = 𝜃𝜃(∑ 𝑥𝑥𝑖𝑖𝑙𝑙 ∗ 𝑤𝑤𝑙𝑙+1 + 𝑏𝑏𝑙𝑙+1𝑖𝑖∈𝑠𝑠𝑙𝑙 )   (1) 
 
where ∗  is the convolution operation and 𝜃𝜃(∙)  denotes the 

activation function. In this paper, rectified linear units (ReLu) are 
used as the nonlinear activation function. 𝑤𝑤𝑙𝑙+1 and 𝑏𝑏𝑙𝑙+1 are the 
convolution kernels and bias of the layer 𝑙𝑙 + 1, respectively. The 
convolution layers extract multiscale features. First, a few layers 
extract general features that are not specific to a particular dataset; 
then, the high layers extract more abstract and complex features 
(Huang et al., 2016). 

The deconvolution layers enlarge the feature maps to generate 
dense feature maps that are the same size with input. 
Deconvolution is executed with bilinear interpolation or learned 
from the network as follows: 

 
𝑥𝑥𝑖𝑖𝑙𝑙+1 = 𝜃𝜃(∑ 𝑥𝑥𝑖𝑖𝑙𝑙 ∗ 𝑑𝑑𝑤𝑤𝑙𝑙+1 + 𝑑𝑑𝑏𝑏𝑙𝑙+1𝑖𝑖∈𝑠𝑠𝑙𝑙 )  (2) 

 
where 𝑑𝑑𝑤𝑤𝑙𝑙+1 and 𝑑𝑑𝑏𝑏𝑙𝑙+1 are the deconvolution kernel and bias 

of the layer 𝑙𝑙 + 1, respectively. 
Because the input image passes several convolution and 

pooling layers, the spatial information of feature maps is 
significantly reduced. Typically, the FCN uses skip connection, 
which integrates low- and high-layer prediction to obtain finer 
multiscale spatial features (Isikdogan, Bovik, and Passalacqua, 
2017). The FCN makes it possible to retain high-level semantic 
information through combining prediction by the low and high 
layers. The output number of the last convolution layer (also 
called the prediction layer) is equal to the number of classes to be 
discriminated. The feature maps of the prediction layer represent 
heat maps for all classes, and the pixel in feature map is the score 
of the corresponding class. In this paper, prediction layers were 
added after pool1 and conv9. The conv9 prediction was 
upsampled using the deconvolution layer with pixel stride of 2. 
Then conv9 upsampling and pool1 prediction were fused. The 
score map was generated by adding a deconvolution layer after 
the fusion feature. This process provides local information at a 
finer scale. 

In order to predict class distribution, the softmax function is 
performed on the score map and gives a distribution for each class. 
Then, the optimal 𝑤𝑤𝑙𝑙 , 𝑏𝑏𝑙𝑙 are determined through the minimization 
of the cross entropy loss: 

 
Loss = −1

𝑁𝑁
∑ ∑ [𝑦𝑦𝑖𝑖𝑖𝑖𝐾𝐾

𝑖𝑖=1
𝑁𝑁
𝑖𝑖=1 log𝑦𝑦�𝑖𝑖𝑖𝑖 + (1 − 𝑦𝑦𝑖𝑖𝑖𝑖)log (1 − 𝑦𝑦�𝑖𝑖𝑖𝑖)] (3) 

 
where N is the number of pixels in a patch, and K is the number 

of classes. 𝑦𝑦𝑖𝑖𝑖𝑖  denotes its label and 𝑦𝑦�𝑖𝑖𝑖𝑖  denotes the predicted 
label. 

The network parameters W = {𝑤𝑤𝑙𝑙 , 𝑏𝑏𝑙𝑙|𝑙𝑙 ∈ (1,2,⋯ , 𝐿𝐿)}  are 
updated using the stochastic gradient descent with momentum. L 
is the number of layers. In the 𝑡𝑡 th iteration, the network 
parameters are updated as follows (Fu et al., 2017): 

 
𝑊𝑊𝑡𝑡+1 = 𝑊𝑊𝑡𝑡 − ∆𝑊𝑊𝑡𝑡+1   (4) 

 
∆𝑊𝑊𝑡𝑡+1 = 𝜂𝜂 ∙ �𝑑𝑑𝑤𝑤 ∙ 𝑊𝑊𝑡𝑡 + 𝜕𝜕𝜕𝜕𝜕𝜕𝑠𝑠𝑠𝑠

𝜕𝜕𝑊𝑊𝑡𝑡
� + 𝑚𝑚 ∙ ∆𝑊𝑊𝑡𝑡  (5) 

 
where 𝜂𝜂  is the learning rate, and 𝑑𝑑𝑤𝑤  and 𝑚𝑚  are the weight 
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decay and momentum, respectively. 
 

METHODS 
Proposed Method for Change Detection 

In general, image registration between multitemporal images 
should be implemented before change detection because slight 
offsets could result significant errors. The procedure of the 
surface water change-detection method for remote-sensing data is 
shown in Figure 2. In the first step, the parameters in the FCN 
were trained on the CRMS dataset to distinguish water bodies 
from land surface. 

 
 

 
Figure 2. Change detection framework based on the proposed method.

 
 
For a wetland restoration effort, CMRS has taken CIR aerial 

photos at a resolution of 1 m and provided ground-truth maps for 
about 390 observation sites in Louisianan, USA. The CIR images 
were obtained from digital orthophoto quarter quadrangles 
produced by the United States Geological Survey every 3 years. 
The ground-truth map contained two classes: water and land. In 
the second step, multitemporal images passed through the pre-
trained FCN to generate the DI. Figure 3 shows the process of 
generating DIs from target images. Each image produced score 
maps, which were stacked heat maps, for water and land classes 
because the pre-trained network was classifying two classes. The 
value of pixels along the channel axis in the score maps represents 
the score of the corresponding class (Fu et al., 2017). For example, 
the water score map was equal to the quantity of the water class. 
Then, the DIs were generated by subtracting each score map. 

If the target images were different from those in the CRMS 
dataset and require new classes (beyond water and land), the pre-
trained FCN should be fine-tuned on these target images. Fine-
tuning is the process in which parameters of an already trained 
network are adapted for the new task. 

Finally, appropriate threshold values that distinguish the 
changed and unchanged pixels were determined using multi-level 
fuzzy entropy (Sarker et al., 2014), and the final output was a 
binary change map. 

 

 
Figure 3. Change-detection architecture of the proposed method. 

 
 

Quality Assessments of Change Detection 
There are various methods for evaluating change-detection 

accuracy. In this paper, the false-negative (FN) ratio, false-
positive (FP) ratio, overall error (OE), overall accuracy (OA), and 
Kappa coefficient were calculated. FNs refer to undetected 
changed pixels, and FPs are unchanged pixels that are wrongly 
detected as changed pixels. The OE and OA are given in the 
following equations: 

 
𝑂𝑂𝑂𝑂 = 𝐹𝐹𝐹𝐹 + 𝐹𝐹𝐹𝐹     (6) 

 
𝑂𝑂𝑂𝑂 = (𝑇𝑇𝑇𝑇+𝑇𝑇𝑁𝑁)

(𝑇𝑇𝑇𝑇+𝐹𝐹𝑇𝑇+𝑇𝑇𝑁𝑁+𝐹𝐹𝑁𝑁)
    (7) 

 
where 𝑇𝑇𝐹𝐹 stands for true positive, and the true-positive ratio is 

the number of pixels with detected changed regions in both input 
and ground-truth images. 𝑇𝑇𝐹𝐹 stands for true negative, and the 
true-negative is the number of pixels with detected unchanged 
regions in both input and ground-truth images. For effective 
change detection, the 𝐹𝐹𝐹𝐹:𝐹𝐹𝐹𝐹 ratio should be close to 0% and the 
𝑂𝑂𝑂𝑂  should be 100%. The Kappa coefficient is a measure of 
classification accuracy based on the difference between the error 
matrix and chance agreement. Kappa is a metric that compares an 
observed accuracy with an expected accuracy. 

 
Materials 

A total of 356 1000 × 1000-pixel CIR images from the CRMS 
dataset were used for training. Among them, 284 images were 
used as training sets and 72 images were used as validation sets. 
The input images and the corresponding ground-truth images 
were subset into smaller patches with 300 × 300 pixels in order 
to consider graphics processing unit (GPU) memory limitations. 

The basic parameters for the training network are batch size = 
1, base learning rate = 10−8 , 𝑚𝑚 = 0.99, 𝑑𝑑𝑤𝑤  = 0.0005, and the 
policy of the learning rate adjustment was selected to be “fixed.” 
The proposed method is implemented on the basis of the Caffe 
library, which is a representative deep learning framework, and is 
performed on a CentOS Linux operating system with an NVIDIA 
GeForce GTX 1080 GPU installed. 

 
RESULTS 

Multitemporal images of the CRMS dataset, which show the 
changes in sites 1 and 2 from 2005 to 2008, were not included in 
the training and validation sets. 

The experimental results for the proposed method were 
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compared with those of traditional change-detection methods—
such as CVA, principal component analysis (PCA), normalized 
difference water index (NDWI), and the FCN-PCC. Figures 4 and 
5 show multitemporal CIR images of sites 1 and 2 in 2005 and 
2008 and their score maps. Because vegetation generally has high 
reflectance in the NIR region, it appears red in CIR images, while 
water relatively black. The multitemporal images passed through 
the pre-trained network, and the score maps were produced 
(Figure4 and 5c–f). The score maps of water showed relatively 
higher pixel intensities on river areas than on land areas. On the 
other hand, the score maps of land have high pixel intensities in 
areas with bare soil and vegetation. The DI images were 
generated by subtracting the score maps generated in 2008 and 
2005.  

 
 

    
(a)                 (b)                 (c)                 (d) 

     
(e)                  (f)                   (g)                (h) 

 
Figure 4. The results of site 1. The CRMS multitemporal CIR images were 
acquired in (a) 2005 and (b) 2008. The score maps represent (c) water in 
2005, (d) land in 2008, (e) water in 2008, and (f) land in 2008. Relatively 
higher pixel intensities, which is close to white on the score maps. By 
subtracting each score map, the DIs of the (g) water class and (h) land 
class were generated. 

 
 

 

     
(a)                 (b)                 (c)                 (d) 

    
(e)                  (f)                   (g)                (h) 

 
Figure 5. The results of site 2. The CRMS multitemporal CIR images were 
acquired in (a) 2005 and (b) 2008. The score maps represent (c) water in 
2005, (d) land in 2008, (e) water in 2008, and (f) land in 2008. Relatively 
higher pixel intensities, which is close to white on the score maps. By 
subtracting each score map, the DIs of the (g) water class and (h) land 
class were generated. 

 

In each score map, the value indicating the corresponding 
component has a high positive value, and the opposite component 
has a high negative value. Therefore, the unchanged pixels have 
close to zero±σ  and close to grey on the DI images . On the 
order hand, the changed pixels have relatively extreme positive or 
negative values and close to white and black. For example, in the 
DI of water (Figure 4g), the pixels with high negative values were 
water in 2005 and land in 2008. On the other hand, the pixels with 
high positive values represent changes from land to water from 
2005 to 2008. 

The change-detection results were generated by the proposed 
method, and four comparative methods are presented in Figure 6 
and 7. The changed areas were determined on the basis of 
thresholds determined through fuzzy entropy. Although the CVA 
generally detected changed areas, there are many spot noises. 
This noise occurs because CVA and PCA directly calculate the 
reflectance of multispectral bands; thus, land areas containing 
other materials with dark reflectance, which are similar to that of 
water, could be misclassified as water. On the contrary, NDWI 
and FCN-PCC detected changed areas without spot noise. 
However, in general, misdetections occurred in the edges of the 
shoreline. 

The proposed method shows optimal results, as compared with 
traditional methods. This method could detect changed areas 
clearly, and spot noise is rarely presented. Through training on 
CIR images, the proposed method has the advantage of being able 
to learn the spatial structures of surface water, and it can consider 
spectral information at the NIR region, which is significant for 
water bodies. A quantitative comparison of the five methods is 
shown in Tables 1 and 2. In both cases, the proposed method 
shows the best results, with low FN and FP rates and low OE, and 
high OA and Kappa coefficients. 

 
 

    
(a)                  (b)                  (c)                  (d) 

  
(e)                  (f)  

 
Figure 6. Changes in site 1 from 2005 to 2008, generated using the 
methods of (a) ground truth, (b) CVA, (c) PCA, (d) NDWI, (e) FCN-PCC, 
and (f) the proposed method. 

 
 

CONCLUSIONS 
Not only spectral values but also spatial structures are crucial 

information for surface water change detection. This paper has 
presented a novel method for surface water change detection 
based on an FCN. The FCN was trained on the CRMS dataset and 
classified water bodies, distinguishing them from the background. 
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Then, the multitemporal images passed through the pre-trained 
FCN, and the score maps and DIs were generated. The 
experiments on the two sites demonstrated the effectiveness of the 
proposed method. Compared with traditional methods, the 
proposed method exhibits better performance. In conclusion, the 
proposed method has proven the effectiveness of detecting 
changes in surface water based on remote sensing images, which 
were collected from different area of test sites, by considering 
both the spectral values and spatial structures. Accordingly, the 
method may be useful in the management of big data and the 
monitoring of surface waters in other sites around the world. 
 

 

    
   (a)                  (b)                  (c)                  (d) 

  
(e)                   (f)  

Figure 7. Changes in site 2 from 2005 to 2008, generated using the 
methods of (a) ground truth, (b) CVA, (c) PCA, (d) NDWI, (e) FCN-PCC, 
and (f) the proposed method. 

 
 
Table 1. Change-detection results on site 1. 
 

Method 
(%) CVA PCA NDWI FCN-

PCC 
Proposed 
method 

FP 0.127  0.680  0.410  0.428  0.266  
FN 0.012  0.045  0.024  0.018  0.006  
OE  0.139  0.724  0.434  0.447  0.272  
OA 98.51  94.16  96.78  97.28  98.81  

Kappa 70.94  16.78  42.88  46.17  72.13  
 
Table 2. Change-detection results on site 2. 
 

Method 
(%) CVA PCA NDWI FCN-

PCC 
Proposed 
method 

FP 0.413  0.586  0.239  0.079  0.227  
FN 0.001  0.029  0.019  0.028  0.008  
OE  0.414  0.615  0.258  0.107  0.235  
OA 98.57  95.30  97.36  97.06  98.53  

Kappa 72.13  34.10  63.92  65.66  76.56  
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