
ORIGINAL RESEARCH
published: 20 November 2018
doi: 10.3389/fevo.2018.00179

Frontiers in Ecology and Evolution | www.frontiersin.org 1 November 2018 | Volume 6 | Article 179

Edited by:

Steven Bouillon,

KU Leuven, Belgium

Reviewed by:

Kelin Hu,

The Water Institute of the Gulf,

United States

Kevin Yeager,

University of Kentucky, United States

Joe Baustian,

The Nature Conservancy, Australia

*Correspondence:

Terrence A. McCloskey

tmccloskey@USGS.gov

Specialty section:

This article was submitted to

Conservation,

a section of the journal

Frontiers in Ecology and Evolution

Received: 07 May 2018

Accepted: 19 October 2018

Published: 20 November 2018

Citation:

McCloskey TA, Smith CG, Liu K-B and

Nelson PR (2018) The Effects of

Tropical Cyclone-Generated

Deposition on the Sustainability of the

Pearl River Marsh, Louisiana: The

Importance of the Geologic

Framework. Front. Ecol. Evol. 6:179.

doi: 10.3389/fevo.2018.00179

The Effects of Tropical
Cyclone-Generated Deposition on
the Sustainability of the Pearl River
Marsh, Louisiana: The Importance of
the Geologic Framework

Terrence A. McCloskey 1*, Christopher G. Smith 2, Kam-biu Liu 3 and Paul R. Nelson 4

1Cherokee Nation Technology Solutions, U.S. Geological Survey, Wetland and Aquatic Research Center, Baton Rouge, LA,

United States, 2U.S. Geological Survey, St. Petersburg Coastal and Marine Science Center, St. Petersburg, FL,

United States, 3Department of Oceanography and Coastal Sciences, Louisiana State University, Baton Rouge, LA,

United States, 4 Independent Researcher, Tampa, FL, United States

Shoreline retreat is a tremendously important issue along the coast of the northern Gulf

of Mexico, especially in Louisiana. Although this marine transgression results from a

variety of causes, the crucial factor is the difference between marsh surface elevation

and rising sea levels. In most cases, the primary cause of a marsh’s inability to keep up

with sea level is the lack of input of inorganic material. Although tropical cyclones provide

an important source of such sediment, little effort has been made to determine the

point of origin of the deposited material. In this study we use sedimentary, geochemical

and biogeochemical data to identify the bed of the Pearl River and/or Lake Borgne as

the source of a ∼5 cm thick clastic layer deposited on the surface of the Pearl River

marsh on the Louisiana/Mississippi border. Radiochemical chronologies and sedimentary

evidence indicate that this layer was associated with the passage of Hurricane Katrina

in 2005. As this material would otherwise have been lost to the system, this deposition

indicates a net gain to marsh surface elevation. Accretion rates, determined from 137Cs

and 14C profiles and the use of the Katrina layer as a stratigraphic marker, indicate

that short-term (∼50 years) rates are as much as an order of magnitude higher than

the long- term (1000s of years) rates. We suggest that the marsh’s geologic setting

in an incised river valley with steep vertical constraints and a large fluvial discharge,

promotes rapid accretion rates, with rates accelerating as the sea moves inland, due

to extended hydroperiods and the input of clastic material from both the marine and

terrestrial sides. These rates are especially large when compared to accretion occurring

in the more common open marshes fringing the Gulf that lack fluvial input. The difference

is particularly large when related to marsh recovery/regrowth following the deposition of

thick hurricane-generated clastic layers. Given the number of similar incised river valleys

along the Gulf Coast, we believe that understanding the processes controlling marsh

accretion in such environments is essential in evaluatingmarsh sustainability on a regional

basis.
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INTRODUCTION

Sea level variability is a major concern globally. Along the
northern coast of the Gulf of Mexico relative sea level rise
(rSLR) has resulted in severe coastal erosion and rapid land
loss (Day et al., 2007). Between 1932 and 2010 the state of
Louisiana lost ∼4,800 km2 of land (Couvillion et al., 2011),
with projected loss of up to ∼13,500 km2 by 2100 (Blum
and Roberts, 2009; Moser et al., 2014). This loss of land
has already resulted in significant landward migration of the
population and infrastructure (Dalbom et al., 2014; Lam et al.,
2016; Cai et al., 2018; Colten et al., 2018), including current
government-subsidized resettlement of a threatened community
Simms, 2018). The landward migration is characterized by
the replacement of coastal marshes with open water. The
resulting changes in bathymetric and topographic conditions
and increased fetch can significantly increase both the wave
power and storm-surge height associated with tropical cyclones,
thereby increasing the vulnerability of inland areas (Young and
Verhagen, 1996; Marani et al., 2011; Leonardi et al., 2016; Twilley
et al., 2016; Karimpour et al., 2017), and a reduction in ecological
services (Costanza et al., 2006; Peterson et al., 2008; Craft et al.,
2009). Modeling studies generally predict an increase in both
the number of intense storms and the maximum intensity of
future tropical storms under global warming (Bender et al., 2010;
Murakami et al., 2012; Emanuel, 2013; Holland and Bruyere,
2014), highlighting a large potential future increase in the societal
costs of coastal erosion.

By accreting upward, coastal marshes can maintain a fairly
stable elevation relative to sea level, until the rate of rSLR
surpasses their rate of surface elevation increase (accretion
rate minus subsidence rate). Vertical accretion in marsh
environments is dependent upon both allochthonous sediment
input and autochthonous biomass accumulation (Reed, 1990).
Biomass-based accretion can track sea level during moderate
rates of rSLR; however, there is an upper limit beyond which
marshes will not be able to keep up (Morris et al., 2002, 2016).
As a result, mitigation schemes aimed at reducing future losses
are commonly based on increasing sediment supply, principally
inorganic sediments (mud, sand), to the deteriorating marshes
(CPRA, 2007, 2012, 2013, 2016; Day et al., 2007). Although
a current debate concerns the relative importance of marine-
generated sediment (delivered by tropical cyclones) vs. fluvially-
delivered terrestrial material (Turner et al., 2006, 2007; Törnqvist
et al., 2007; Tweel and Turner, 2012, 2014; Smith et al., 2015),
the value of mineral deposition in mitigating the negative effects
of rSLR rise is treated as a given (Delaune et al., 1978; Blum
and Roberts, 2009; Allison and Meselhe, 2010; Day et al., 2011;
Stralberg et al., 2011; Allison et al., 2012; Kemp et al., 2016).

Mineral sediments delivered to coastal marshes by tropical
storms can contribute to marsh sustainability in a number of
ways, including increasing surface elevation, providing essential
nutrients, and reducing phytotoxicity (Guntenspergen et al.,
1995; Turner et al., 2006; McKee and Cherry, 2009; Tweel and
Turner, 2012, 2014). However, in open marshes fringing the
coast, the sudden increase in surface elevation associated with
the deposition of a thick clastic layer by a tropical cyclone

may not be entirely positive (Osgood et al., 1995). In coastal
marshes, vegetation type and biomass levels are highly dependent
on the inundation regime, which is controlled by elevation
(Eleuterius and Eleuterius, 1979; Rasser et al., 2013). As a result,
not only can the deposition of a thick clastic layer kill vegetation,
but it can also retard/prevent subsequent organic accretion,
and thereby eliminating/reducing organic accumulation and
vertical accretion until sea level rises sufficiently to increase the
hydroperiods (Langlois et al., 2001; Stagg and Mendelssohn,
2010, 2011; Walters and Kirwan, 2016).

Incised river valleys are common geologic features along the
Gulf of Mexico from Texas through the Florida panhandle.
During the last oceanic lowstand Gulf Coast rivers formed
braided channels, incising and widening their river valleys long
distances upstream from the coast, which was far seaward of
its present position. Rising Holocene sea levels then pushed
sediments landward, filling and leveling the valleys as the bayhead
deltas migrated upstream (Kindinger et al., 1994; Saucier, 1994;
Greene, 2006; Yeager et al., 2012; Anderson et al., 2016). Marshes
occupying these coast-perpendicular incised valleys are usually
wide and flat, constrained by steep topographic gradients along
both flanks. They are generally fresher and have a steeper salinity
gradient than the more common coast-parallel fringing marshes
situated along the coastal plain. Although spatially extensive,
these environments have been largely ignored in regards to
coastal retreat and their response to tropical cyclone-generated
deposition. In this study we investigate accretion rates from the
Pearl River (Louisiana) bayhead delta and compare recent (∼ last
50 years) accretion rates to rates observed throughout much of
the Holocene.

Study Site
The Pearl River, located along the border between Louisiana
and Mississippi (USA), is one such valley, which during the
Wisconsin glaciation incised a channel∼ 75m below present sea
level in a valley ∼14 km wide (Frazier, 1974; Yeager et al., 2012)
before entering the sea ∼145 km south of the current mouth
(Kindinger et al., 1994). The river currently drains ∼22,000 km
2 in Mississippi and Louisiana; reaching the Gulf of Mexico at
the border between those two states (Figure 1). Average daily
discharge is 373 m3/s, the fourth largest volume for the eastern
Gulf of Mexico (Ward et al., 2005). Average annual precipitation
near the coast is 163 cm/year (Green, 2000). Approximately
75 km upstream from the present mouth the river diverges into
two main channels, the East and West Pearl rivers, that flow
through their respective sides of the 5–12 km wide valley. The
oligohaline Pearl River marsh, which fills the valley floor, is
dominated by very diverse, heavily-vegetated swamps, marshes,
floodplains and a maze of interconnected channels (Ward et al.,
2005). Surface elevations are low, ranging from 24 to 42 cm
NAVD88 for the five CRMS sites (https://lacoast.gov/crms_
viewer/Map/CRMSViewer), and from 23 to 43 cm NAVD88, for
our marsh sampling sites. Human hydrological modification has
been restricted almost entirely to the two major channels. The
river drains into Lake Borgne, separated from the main Gulf of
Mexico by the remnants of the St. Bernard lobe, an abandoned
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delta of theMississippi River that was active from∼4,000 to 1,000
years ago (Otvos and Giardino, 2004; Rodgers et al., 2009).

On August 29, 2005 Hurricane Katrina, a very large tropical
cyclone, made landfall in the Pearl River marsh as a category 3
hurricane with a maximum sustained wind speed of 105 knots
and a pressure of 928mb. The storm tracked due north across
the eastern edge of the marsh (Figure 1), producing a recorded
storm surge of 4.87m just west of the mouth of the East Pearl
River (Knabb et al., 2005).

METHODS

Field Methods
We extracted one long (690 cm) and seven short (∼40 cm)
sediment cores and 23 surface sediment samples from the Pearl
River marsh. The surface samples were collected along two
coordinated coast-perpendicular transects (marsh surface and
river/estuary bed) down the salinity gradient, beginning at the
upland forest and finishing in Lake Borgne, and a single (marsh
surface) coast-parallel transect along the lower edge of the marsh
(Figure 1). For both sample types, ∼25 cm3 of the surface
material was collected in sterile plastic bags, which were then
sealed and labeled. Marsh surface samples were obtained by
scrapping the top∼1-cm of surface sediments with a spoon. The
riverine/estuarine samples similarly represent the top ∼1-cm of
sediments occurring at the water/sediment, scrapped from the
top of materials collected from a ponar grab deployed over the
side of the boat.

Five of the short cores (PR102D, PR107D, PR108D, PR109D,
PR110D, PR11D) were collected along the same coast-parallel
transect as the surface samples, ∼1 km inland. Cores were
extracted at the same sites as the surface samples, and received
the same numerical designation, with the sample type indicated
by the last letter; “S” formarsh surface sample, “D” for short cores
and “R” for long cores. For example, surface sample PR102S,
short core PR102D and long core PR10R were all extracted
within a radius of 2-3m at site PR102. Short core PR112D was
collected on the coast and PR102D was collected was ∼7 km
inland. All seven short cores were collected by a “sharpshooter”
shovel as∼40 cm long slabs, which were then placed horizontally
on PVC boards, sliced into rectangular shapes, wrapped in plastic
and labeled. The long core (PR102R) was collected within a
meter of the short core PR102D by a Eijkelkamp Peat Sampler
with a 5.08 cm (inside diameter) hemispherical barrel. The core
consists of Seventeen 50 cm segments, with a minimum 10-
cm overlap between segments. Overlaps between core segments
were resolve by a matching of loss-on-ignition values and
visual inspection. At all sites photographs were taken in the
four cardinal directions, and such salient physical, hydrological
and geomorphological features as changes in topography or
vegetation, the presence/absence of water bodies or channels,
evidence of disturbance, distance to streams or open water, were
recorded. Locations and elevations for all sites were determined
by Ashtech Proflex differential GPS (dGPS) receivers. All cores
were photographed in the field and stored in ice chests during
field work and transport, and then stored in temperature-
controlled core lockers after transport to the laboratory.

Laboratory Analyses
Water and organic content were determined for all surface
samples, and at 1-cm resolution for the long and short cores,
following the procedures of Liu and Fearn (2000) (methodology
summarized in the Supplementary Material S1). Dry bulk
density was determined for all surface samples and at 1-cm
resolution for short core PR102D, as described in the associated
Data Release (McCloskey et al., 2018b). Elemental concentration
data was collected with an Innov-X Delta Premium DP-4000
handheld X-ray fluorescence (XRF) unit on all surface samples,
all short cores and long cores PR102D and PR102R at the Global
Change and Coastal Paleoecology Laboratory of Louisiana State
University. Two readings were taken of each surface sample;
these were then averaged. The cores were analyzed at 2-cm
resolution, except in locations of interest, where readings were
taken at 1-cm resolution. The XRF device analyzes each sample
across three frequencies for 30 s per frequency, recording counts
per second (cps) for over 30 elements. CPS are converted
to parts per million (ppm) through calibration with certified
standards NIST 2710a and 2711a. We report data for S, Cl, K,
Ca, V, Cr, Mn, Fe, Co, Zn, Br, Rb, Sr, Zr, and the Br/Cl and
Ti/Br ratios. We note that XRF is a semi-quantitative technique,
producing relative rather than absolute values unless calibrated
with quantitative geochemical techniques (such as ICP-MS).
Because the recorded values remain the same relative relationship
with absolute values, the shape of the downcore elemental profiles
are valid, however, concentration comparison between elements
must be used with caution (Brand and Brand, 2014; Young et al.,
2016).

Four samples of terrestrial plant material were selected from
long core PR102R to develop the multi-millennial chronology.
Approximately 1–2 cm3 of bulk sediments were removed from
interior locations in the core sections and passed through
a 63-micron sieve to remove silt and clay. Plant fragments
were selected from the remaining material under a dissecting
microscope after being washed in de-ionized water. This material
was dried and sent to the National Ocean Sciences Accelerator
Mass Spectrometry (NOSAMS) Laboratory at Woods Hole
Oceanographic Institution for radiocarbon dating. Radiocarbon
dates were calibrated to calendar years, and median dates
provided by Calib 7.1 (http://calib.qub.ac.uk/calib/calib.html)
based on the Reimer et al. (2013) data set. BACON 2.2 age-
modeling software (http://chrono.qub.ac.uk/blaauw/bacon.html)
was used to display the results.

Grain size analysis was performed on the short core PR102D
using a Coulter LS 200 particle-size analyzer. Two subsamples
were prepared from homogenized material taken at 1-cm
resolution down the length of the core. After removing organic
material with hydrogen peroxide, a minimum of three runs
was performed on each subsamples. The GRADISTAT software
program (Blott and Pye, 2001) was used to calculate the size
distribution, mean grain size, sorting, skewness, and kurtosis for
each sample. Classification of sediment texture, automatically
generated by GRADISTAT, was based on Folk (1954).

Sediments from the short core PR102D were measured for
short-lived, atmospherically-derived radionuclides to provide
chronology data (time and accretion rates) for the last 50 to
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100 years. The procedures follow that of Smith et al. (2013) and
is detailed in McCloskey et al. (2018b). Briefly, the core was
sectioned at 1-cm (0–28 cm) and 2-cm (30–40 cm) intervals. The
mass of each section was recorded prior to (wet) and after (dry)
drying the sample at 60◦C for 48 to 72 h. The dry samples were
homogenized with a porcelain mortar and pestle, packed into

air-tight containers, and allowed to age for approximately 30
days to allow daughter (222Rn) and granddaughter radioisotopes
(214Po, 214Bi) to reach secular equilibrium with the parent
isotope 226Ra. Following the aging procedure, each dried sample
(section) was measured for 210Pb (photopeak 46.5 keV), 226Ra
(via the granddaughter isotopes, photopeaks 295.7, 352.5, and

FIGURE 1 | Location map. Study site showing location of marsh (green dots) and estuarine (black dots) surface samples. Site of example core PR10-2D and long

cores PR102R and Li-1994 is marked by the red dot (left). The black line marks the path of the eyewall of Hurricane Katrina. Figure on top right displays the locations

of samples from the n-s estuarine transect (left), n-s marsh transect (middle) and w-e marsh (right); inset on bottom right shows the location of the larger figure (red

rectangle) in relation to the northern Gulf Coast. Base map: Esri, DigitalGlobe, GeoEye, Earthstar Geographics, CNES/Airbus DS, USDA, USGS, AEX, Getmapping,

Aeogrid, IGN, swisstop, and the GIS User Community.

FIGURE 2 | Elemental concentration data. Concentration profiles (left) profiles and PCA biplots (right) are displayed for surface samples. Both estuarine and marsh

samples are arranged vertically along their respective north-south transects. Data for the samples along the west-east marsh transect are not shown.
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609.3 keV), 137Cs (photopeak 661.7 keV), and 40K (photopeak
1460.8 keV) on a low-energy, planar-style high purity germanium
gamma-ray spectrometer (Canberra, Inc). All samples were
corrected for self-absorption following the procedure of Cutshall
et al. (1983), using a sealed 238U source with unattenuated
count rates that are 500, 5000, 22000, 22000, and 25000 times
greater than sample count rates for photopeaks 46.5, 63.3, 295.7,
352.5, and 609.3 keV, respectively. Efficiencies for U-Th series
radionuclides were determined using the IAEA (International
Atomic Energy Agency) RGU-1 standard. Following guidelines
by McCurdy et al. (2008), maxima values of sample-specific
critical limits for (ssLc) for all samples analyzed for photopeaks
46.5, 295.7, 352.5, 609.3, 661.7, and 1460.8 keV, were 4.9, 3.12,
1.77, 2.52, 1.51, and 21.7 Bq/kg, respectively.

Following the guidelines of Swarzenski (2015) and Corbett
and Walsh (2015) and references therein (not repeated here),
we evaluated the utility of the Constant Rate of Supply (CRS),
Constant Flux: Constant Sedimentation (CF:CS), and Constant
Initial Concentration (CIC) models to establish chronology from
excess 210Pb (210Pbxs) data. Details of these models and the
underpinning assumptions can be found in the reviews by
Swarzenski (2015) and Corbett and Walsh (2015). For the CRS
and CF:CS models, mass depth (g/cm2) were used to consider
autocompaction based on the suggestion of Binford (1990) and
Appleby (2001). Additionally, 137Cs occurrence in sediment
were compared with historical 137Cs fluxes. 137Cs, an artificial
nucleotide associated with above-ground nuclear explosions and
the release from nuclear reactors (Ferreira et al., 2016), was not
detectable in the atmosphere prior to 1954, with atmospheric
concentration reaching a maximum ∼1963, after which levels
declined rapidly as a result of the Nuclear Test Ban Treaty (Zhang
et al., 1990; Walling and He, 1999).

Sediment samples were collected from all surface samples and
18 intervals (2-cm resolution from 1 to 10, 17 to 38 cm; 1-cm
resolution 10 to 15 cm) down short core PR102D and measured

for bulk concentration and stable isotope composition of total
organic carbon (TOC, δ

13C) and total nitrogen (TN, δ
15N).

The dried, homogenized samples were divided into two parts,
with one portion, placed in small silver capsule and fumigated
with hydrochloric acid to remove inorganic carbon, used for the
determination of TOC and associated δ

13C, and the untreated,
portion used for the determination of TN and associated δ

15N.
These samples were sent to the U.S. Geological Survey (USGS)
Reston Stable Isotope Laboratory, where they were processed
under the standard protocol described in Révész et al. (2012)
(methodology summarized in the Supplementary Material S2).
Isotopic abundances are reported as per mil (‰) and follow
standard reporting practice with references for δ

15N and δ
13C

being air and VPDB, respectively.
Principal Component Analysis (PCA) was performed on all

surface and short core PR102D samples for both the XRF
and carbon/nitrogen data. We used standardized and centered
variables, entered into the C2 v1.75 software program (https://
www.staff.ncl.ac.uk/stephen.juggins/software/C2Home.htm).

Hurricane tracks were downloaded from the NOAA
Historical Hurricane Tracks website (https://coast.noaa.gov/
hurricanes/).

RESULTS

Surface Samples
There are significant differences between the sedimentological
features of the marsh and river/estuarine sample sets; both wet
and dry bulk densities were lower, and water and organic content
higher for the marsh than the estuarine samples. Dry bulk
densities ranged from 0.09 to 0.31 g/cm3 for the marsh samples
(average 0.18 g/cm3) and from 0.25 to 1.39 g/cm3 (average 0.71
g/cm3) for the estuarine samples. Water and organic content
averaged 4.4 and 36.6% for the marsh samples and 1.7 and 6.6%
for the estuarine samples (Table S1).

FIGURE 3 | Biogeochemical (carbon and nitrogen) data. Concentration profiles (left) profiles and PCA biplots (right) are displayed for surface samples. Both estuarine

and marsh samples are arranged vertically along their respective north-south transects. Data for the samples along the west-east marsh transect are not shown.
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The elemental data exhibit recognizable spatial trends. For
the estuarine samples the relative concentrations increase
downstream by > 30%, for K, Cr, Fe, Zn, and Zr and more
than 200% for Cl, Ca, Mn, Rb, and Sr. For the marsh samples,
the relative concentrations decrease downstream by >60% for
Ti, Cr, Mn, Fe, and Co and >25% for V, Co, and Rb, while Cl,
Zr, and Sr increase slightly downstream, and Br concentrations
spike in the middle of the transect (Figure 2). Except for Br,
which shows the reverse trend, concentrations are significantly
higher for all elements in the estuarine than marsh samples.
The PCA biplots of elemental concentrations neatly separates the
two sample types along PCA1, the first (primary) component,
which explains 72% of the variance. With the exception of one
marsh and one estuarine sample, all estuarine samples exhibit
positive values for PCA1 (corresponding to high concentrations
of S, Cl, K, Ca, Ti, V, Cr, Mn, Fe, Co, Zn, Rb, Sr, Zr, Pb, and
low concentrations of Br) and all marsh sample exhibit negative
values (Figure 2).

The biogeochemical constituents of both the estuarine and
marsh sediments vary spatially, yet are distinct from one another.
(Figure 3, Table 1). For example, the average TOC and TN
percentages are substantially different between marsh (16.38
and 1.03, respectively) and estuarine sediments (2.52 and 0.17,
respectively). Spatially, TOC and TN in estuarine sediment
decrease linearly downstream (5.01 to 0.58%, 0.24 to 0.06%,
respectively), while TOC and TN in marsh sediment reach
maxima at intermediate sites (28.2 and 2.12%, respectively). For
both sediment types, TN has a very strong linear relationship
with TOC (r2 = 0.93 and 0.69, for the estuarine and marsh
samples respectively). Downstream, the TOC/TN ratio decreases
for the estuarine samples (20.88 to 9.67), while increasing for
the marsh samples. Isotopically, the δ

13C signature of estuarine
sediments are highly variable along the transect (−21.34 to
−24.55 ‰), while δ

15N generally becomes heavier downstream
(1.76 to 4.51‰). In contrast, δ13C signature of marsh sediment
tends to become heavier downstream and δ

15N has no general
trend. Based on PCA analysis, TOC and TN concentration are the
biogeochemical variables that most fully distinguish the marsh
and estuarine sediment samples (Figure 3).

Cores
Six of the seven short cores extracted from the southern end of the
marsh display a distinct inorganic (low water and organic values)
interval several centimeters below the modern marsh surface.
The depth and thickness varies among the cores (Figure 4).
The top of the layer occurs at an average of 10 cm (7, 9,
10, 10, 12, and 13 cm) in the six cores, and bottom at an
average depth of 14 cm (12, 13, 13, 15, 16, and 17 cm). This
layer has many features that distinguish it from the embedding
organic matrix. As displayed by the example core, PR102D
(Figure 5), the interval presents visually as a ∼6-cm thick gray
clay/silt/sand layer, classified as “sandy mud” (Folk, 1954), that
completely separates the organic material below from similar
material above. Buried grass rhizomes and unsprouted seeds,
which do not penetrate the clastic layer, are often encountered
immediately below the layer (Figure S1). The clastic layer is
marked by heavier (higher wet and dry bulk densities), larger

TABLE 1 | Carbon and nitrogen data for surface samples.

Sample Type δ 13C TOC TOC/TN δ 15N TN

(name) (‰) (%) (‰) (%)

PR00 Estuarine −21.34 5.01 20.88 1.76 0.24

PR01 Estuarine −28.16 2.63 13.84 4.32 0.19

PR02 Estuarine −21.11 5.79 17.03 1.68 0.34

PR03 Estuarine −18.94 2.39 14.94 2.36 0.16

PR04 Estuarine −26.83 2.6 13.68 3.95 0.19

PR05 Estuarine −20.51 2.63 12.52 2.75 0.21

PR06 Estuarine −25.1 2.22 13.88 3 0.16

PR07 Estuarine −25.87 1.04 11.56 4.23 0.09

PR08 Estuarine −24.29 0.33 8.25 4.35 0.04

PR09 Estuarine −24.55 0.58 9.67 4.51 0.06

Average (estuarine) 2.52 0.17

PR100 Marsh −29.04 6.6 12.22 5.79 0.54

PR101 Marsh −28.96 10.1 13.47 2.6 0.75

PR102 Marsh −24.84 28.2 13.3 1.1 2.12

PR103 Marsh −25.64 15.4 13.16 2.42 1.17

PR104 Marsh −23.52 16.9 16.9 1.64 1

PR105 Marsh −24.09 19.6 14.41 2.44 1.36

PR106 Marsh −21.41 27.4 24.68 0.89 1.11

PR107 Marsh −20.45 9.99 15.86 2.95 0.63

PR112 Marsh −25.23 13.24 22.44 1.64 0.59

Average (marsh) 16.38 1.03

(increased mean grain size), better sorted andmore finely skewed
material (Figure 5), marked by distinct isotopic and geochemical
signatures. Isotopically, the material displays positive shifts in the
stable isotopes, δ13C and δ

15N, and negative shifts in TOC, TN
and the TOC/TN ratio (Figure 6). Chemically, the clastic interval
has higher concentrations of S, Cl, K, Ca, Ti, V, Cr, Mn, Fe, Co,
Zn, Rb, Sr, and Zr, and lower concentrations of Br, resulting in
low Br/Cl and high Ti/Br ratios (Figure 7). Stratigraphic and
elemental profiles for the other five cores display extremely
similar patterns (Figure S2).

Radiochemistry
The ages of the four AMS radiocarbon-dated samples from
the long core PR102R are in stratigraphic order, with the
uppermost, taken from a depth of 75 cm, producing a post-
modern (>1950 AD) age. Samples from 196, 389 and 587 cm
produce radiocarbon ages of 1,320 ± 15, 3,130 ± 20, and
4,470 ± 20 years, respectively, resulting in an extrapolated
basal date of 6070 cal yr BP. These values and their
calibrated date ranges and median probability age are shown in
Table 2.

Gamma-emitting radioisotopes 137Cs, 210Pb and 40K,
measured in Becquerels per kilogram (Bq/kg) (Figure 7), were
measured in PR012D. Specific activity of 137Cs is quantitatively
observed (i.e., above a minimum detection limit of 2.2 ± 0.9
Bq/kg) throughout the core, however it reaches a peak of 73.81
± 2.90 Bq/kg at 37.5 cm. This falls within the range of peak-1963
137Cs activities (70 to 84 Bq/kg) recorded from studies conducted
in salt marshes along the Louisiana coast (Terrebonne, Barataria,
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FIGURE 4 | Water (blue) and organic (green) content of the seven short sediment cores. Significant dips in the water and organic content, indicating clastic input,

occur ∼ 10 cm depth in all but core PR11D. Average carbon percentage of the ten estuarine (yellow line) and thirteen marsh surface samples (red line), are

superimposed on the graph of PR102D for comparison. Note the close match between organic content values for estuarine samples (yellow line) and clastic intervals

(dips), and marsh surface samples (red line) and organic intervals.

FIGURE 5 | Sedimentary parameters of core PR102D. The light gray band at 10–15 cm of core PR102D corresponds to distinct changes in several sedimentological

parameters, including skewness, sorting, and kurtosis, as well as larger mean grain size, and increased density and sand percentage.

and St. Bernard basins) (Milan et al., 1995). This strongly
suggests that 37.5 cm represents the year 1963.

The 210Pb profile deviates significantly from an idealized
radioactive-decay profile and at the base of the core has total
210Pb (63.9 ± 4.5 Bq/kg) in excess of supported 210Pb (22.2 ±

1.47 Bq/kg). The deviation of the 210Pbxs profile is most notable
between 9 and 20 cm, with activity in this zone much lower than
the overlying and underlying sediment. Below 20 cm, 210Pbxs
activity demonstrates a quantitative log-linear relationship with
both depth (r2 = 0.989) and mass-depth (r2 = 0.968). Like
210Pbxs, the

40K profile has two dominant zones (0–20 cm and
below 20 cm) with gradients at the upper and lower boundaries

of each zone. In the lower zone, 40K is roughly half the
activity (mean 203 Bq kg−1) of the upper zone (mean = 350 Bq
kg−1). The zone of high 40K, a commonly-used proxy for clay
concentration (Preston et al., 2013), coincides with the zone of
low (below the expected values for simple radioactive decay)
210Pbxs zone; these zones also roughly correspond to the higher
wet and dry bulk density regions of PR102D (Figure 7).

Chronologic results from the CIC or CRS models applied
to the 210Pbxs data were either unattainable or incomplete
due to the complex nature of the 210Pb distribution, down-
core sediment variability (clastic layer), and the incomplete
210Pbxs inventory. However, applying the CF:CS model and its
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FIGURE 6 | Biogeochemical (carbon and nitrogen) profiles for core PR102D. The light gray band at10–15 cm of core PR102D corresponds to distinct changes,

including heavier δ13C and δ15N, a lower TOC/TN ratio, and reduced levels of TOC and TN.

FIGURE 7 | Elemental and radiochemical profiles of core PR102D. The light gray band at 10–15 cm of core PR102D corresponds to distinct changes in both

elemental and radiochemical parameters, including increases in the concentration of a range of elements (mostly metals), and a decrease in Br (left). Within the band,
226Ra (supported 210Pb) increases slightly while excess 210Pb displays a prominent dip (center right). This dip is paralleled by the total 210Pb curve, and mirrored by

the 40K curve; below ∼28 cm 137Cs steadily increases downcore until peaking at a depth of 37.5 cm (far right).

assumptions to the 210Pbxs profile from ∼20 cm to the base of
the core provide a mass accumulation rate of 0.72 kg/m2 /y and a
corresponding accretion rate of 0.41± 0.10 cm/y. In comparison
and assuming, conservatively, the 137Cs peak corresponds to
1963, mass accumulation rates post-1963 are 1.5 kg/m2/y and
vertical accretion is 0.71 cm/y.

DISCUSSION

Clastic Layer
Distinguishing Features
The prominent gray clastic layer present in six of the seven short
cores clearly represents a depositional environment distinctly
different from both the overlying and underlying organic

matrix. Visually, the organic material directly beneath this
layer, consisting of large, horizontally-oriented, relatively fresh,
easily-identifiable marsh plant fragments (Figure S1), closely
resembles the organic material that occurs above the clastic
interval extending to the mash surface. The sharpness of the
clastic layer’s bottom contact indicates the rapidity of the
change in depositional environments, as does the presence
of smothered seeds and grass rhizomes, which suggest that
the overlying sediments were deposited over a short enough
time span to prevent germination/sprouting (Langlois et al.,
2001). The dramatic compositional (organics to clastics) and
geochemical changes (increased concentrations of alkali, alkaline
and transition metals, and decreased concentrations of bromine)
suggest an altered source of the material. This is supported by
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TABLE 2 | Radiocarbon and calibrated dates for cores PR102 and Li-1994.

Sample ID Depth (cm) Depth (midpoint) Type Lab # 14C age ± cal BP Probability

distribution

Med. prob.

PR102R 75 75 Plant/wood OS-122840 >Modern – – – –

PR102R 196 196 Plant/wood OS-122841 1320 15 1187–1203 0.103 1275

1241–1249 0.027

1255–1293 0.87

PR102R 389 389 Plant/wood OS-123014 3,130 20 3258–3290 0.164 3361

3329–3396 0.836

PR102R 587 587 Plant/wood OS-122842 4470 20 4979–5010 0.061 5191

5035–5083 0.191

5102–5139 0.117

5162–5282 0.631

Li-1994 25–26 25.5 Plant/wood Beta-65439 210 60 0–43 0.137 192

58–325 0.796

375–429 0.067

Li-1994 73–74 73.5 Plant/wood Beta-65440 1050 70 794–1090 0.953 968

1108–1146 0.033

1159–1172 0.014

Li-1994 117–132 124.5 Plant/wood Beta-60235 1240 60 1007–1025 0.023 1173

1053–1290 0.977

Li-1994 267–275 271 Plant/Wood Beta-65441 2730 70 2744–2991 1 2840

Li-1994 471–472 471.5 Plant/Wood Beta-60236 4490 60 4891–4900 0.006 5145

4911–4927 0.012

4959–5313 0.982

Li-1994 736–746 741 Plant/Wood Beta-60237 5830 90 6414–6428 0.008 6637

6432–6806 0.959

6812–6853 0.033

suppressed 210Pb activity levels, presumably resulting from the
remobilization of previously deposited material or material from
where atmospheric 210Pb is diluted, in either case reflecting
an allochthonous source for these sediments (Figure 7). The
increase in density and grain size suggests a more energetic
transport process. Taken together, these features indicate a rapid
deposition of allochthonous clastic material under high-energy
conditions. As the isotopic changes (heavier δ

13C and δ
15N,

decreased TOC/TN ratio, lower TOC and TN) are exactly the
changes documented as occurring during marine intrusions
along the northern Gulf Coast (Lambert et al., 2008; Das
et al., 2013), and the complete burial of plant cover resembles
documented effects of hurricanes (Guntenspergen et al., 1995),
the most likely source of this anomalous material is transport by a
large storm surge associated with a tropical cyclone. As the 137Cs
chronology indicates that 1963 correlates approximately a depth
of 37.5 cm, the causative storm must have occurred sometime
after that year.

Candidate Events
Twelve tropical storms have passed with 150 km of the site
at hurricane strength since 1963. Their tracks (Figure 8) and
important parameters (Table 3) are presented below. Because the
National Hurricane Center records storm data at 6 h intervals

(https://coast.noaa.gov/hurricanes/) Table 3 provides data from
three data points for each storm; the point which occurs closest
to our site, and the points immediately preceding it (seaward),
and immediately following (landward). Storm surge heights from
adjacent coastal areas are listed as reported. Note: locations,
measurement units, terminology, and methodology are variable;
detailed information can be found in the references. Further,
location-specific information was provided by height estimates
from storm surge maps created from NOAA’s Sea Lake and
Overland Surge from Hurricane (SLOSH) model (https://www.
nhc.noaa.gov/surge/slosh.php), which recreates storm surge
heights for historical storms.

Storm surges recorded along the LA-MS coast for these 12
cyclones can be divided into three groups; Low (Bob, Cindy,
Danny, Florence, Frederic, and Georges, with listed maximum
surge heights <6 feet), Medium (Betsy, Elena, Gustav and Isaac,
with heights of 7–12 feet), and High (Camille and Katrina, with
heights>24 feet). However, large differences in surge heights can
occur over short distances. Track location is a very important
factor, as the cyclonic nature of hurricanes, tend to drive water in
the direction of forward movement in their right front quadrant,
and in the opposite direction in the left front quadrant. At Pearl
River, this means that for north-moving storms, surge heights
will be greater for storms passing to the west than to the east.
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FIGURE 8 | Tracks of all tropical cyclones passing within 150 km of the study site (yellow dot) since 1963 at hurricane strength (64 knots) or above.

So, although Hurricane Camille and Hurricane Katrina both
recorded storm surges >24 feet at Pass Christian, MS, SLOSH
indicates that storm surge heights at the mouth of the Pearl
River were ∼8-10 feet for Camille which passed to the east and
∼ 20 feet for Katrina which passed to the west (Figure S3). As
a result, at our location Hurricane Katrina’s storm was by far
the largest since 1963. Additionally, Katrina’s large extent and
duration as a category 5 storm produced large swells for an
extended period of time, including the largest significant wave
height (55 feet) ever measured up to that time by a National
Data Buoy Center buoy (Knabb et al., 2005). It seems likely,
therefore, that Hurricane Katrina should have left the largest
post-1963 sedimentary signature, and is the event most likely to
have generated the clastic layer at 10–15 cm in PR102D.

Radiochemical Chronology
That Hurricane Katrina is the causative agent of this clastic
layer is supported by the radiochemistry data. Although the
maximum 137Cs activity at 37.5 cm falls within the low end
of the range of observed maximum activity documented by

Milan et al. (1995), the depth-integrated (0–38 cm) inventory of
PR102D (∼1090 Bq/km2) is higher than the post-1963 inventory
range observed by Milan et al. (1995) (inventory of 1330–
1520 Bq/km2 in ∼1995 or equivalently 850–960 Bq/km2 in
2015). Restricting 137Cs integration to 20–38 cm (i.e., below the
clastic layer) in PR102D provides an inventory (940 Bq/km2),
much closer to those observed across coastal Louisiana. These
observations support our previous assumption that the peak
activity at a mid-point depth of 37.5 cm is conservatively the
1963 peak, and that the inventory below the clastic unit is
comparable to regional inventory pre-dating ∼1995, indicating
that the sediments starting at the bottom of the clastic layer were
deposited by 1995 at the earliest, and that the inventory added to
the top of the core (0–20 cm) was reworked sediment deposited
since that time.

Using dates of 1963 for 37.5 cm and 1995 for 20 cm yields
yields a vertical accretion rate of 0.54 ± 0.02 cm/year for the
interval. However, this is noticeably higher than the 210Pbxs-
calculated accumulated rate (log-linear fit with r2 of 0.989
for depth and 0.968 for mass-depth) for the same interval,
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which produces a vertical accretion rate of 0.41 cm/year, or
2.43 year/cm. Applying this accumulation rate to the material
accumulated starting at 37.5 cm (2.44 year/cm × 17.5 cm)
indicates 42.6 years of accumulation at cm 20, or the year 2005
(1963 + 42 year). Therefore, we can confidently say that the
placement of the clastic layer at and above 20 cm in the core
post-dates 1995 based on independent measurements in a nearby
region, and that internally the closest match would have occurred
circa 2005. This, of course, is the year in which Katrina passed
over the marsh.

Sedimentary Correlations
Attributing the clastic layer to Hurricane Katrina is further
supported by comparison with sedimentary parameters
documented in previously published studies. Both Reese et al.
(2008) and McKee and Cherry (2009) collected event layer
material from the Pearl River marsh within months of the
passage of Katrina, Yeager et al. (2012) extracted cores from the
marsh in 2008, and Bera et al. (2018) collected cores from St
Louis Bay, ∼25 km to the east, in 2010–2011. Reese et al. (2008)
identified the Katrina layer on the basis of clastic content and
grain size, classifying the Katrina layer as a silty or medium loam,
dominated by silts and fine-grained sands, generally with an
organic content of ∼10% or less, marking the most distinctive
dip in the LOI curve within the core. All of these characteristics
closely match those occurring in the PR102D clastic layer. Both
McKee and Cherry (2009) and Bera et al. (2018) identified
the Katrina sediments on the basis of elevated sand content,
increased grain size, heavier bulk density, and reduced levels
of organic carbon, again matching the characteristics of the
PR102D clastic layer. Yeager et al. (2012) identified the Katrina
layer based on reduced organic content. Significantly, the 210Pb
profiles of a St Louis Bay core (Bera et al., 2018), and core
PR102D are remarkably similar, both marked by unexpectedly
low values in their respective event layers, below which the values
increase to the levels occurring above the event layer, before
decreasing in the expected manner (Figure S4).

Due to these previous identifications of the Katrina layer
as a readily-recognizable stratigraphic unit, the sedimentary
and radioisotope match with the published data and our
radiochemical chronology, we feel fully justified in identifying
the clastic layer in PR102D, and by stratigraphic inference, the
corresponding layers in the other five PR short cores, as having
been deposited by Hurricane Katrina.

Published work indicates that organic material was deposited
above the event layer, beginning almost immediately post-storm,
and continuing thereafter. Reese et al. (2008) found that the
Katrina layer was overlaid by a 1–2 cm thick organic clay layer,
which they attributed to post-event settling. McKee and Cherry
(2009) studied the accumulation of overlying organic marsh
material throughout the following year(s), while, Bera et al.
(2018) describe a 4 cm organic layer above the Katrina layer from
their marsh core.

The possibility exists that Hurricanes Gustav and Isaac,
the two hurricanes that generated medium-sized storm surges,
and occurring post-Katrina in 2008 and 2012, respectively,
contributed material to the event layer. However, the description

of a capping organic layer, already 1–2 cm thick a few months
after the passage of Katrina (Reese et al., 2008), and the continued
organic accretion, documented by both Bera et al. and McKee
and Cherry, appears to eliminate this possibility, as no organic
intervals occur within the event layer. Although erosion from
either of the storms could have removed this material, this did
not seem to have occurred in the St Louis Bay cores, recovered
in 2010–2011, after the passage of Gustav in 2010. Additionally,
the smooth bell-shaped curves exhibited by the sedimentary,
geochemical and biogeochemical curves representing the event
layer argue against the identification of the layer as a mixture
of materials deposited by a series of storms. Excursions in
the biogeochemical curves, similar to, but smaller than those
occurring from 10 to 15 cm, occur at a depth of 5 cm (Figure 6),
matched by dips in the LOI curves in the top ten cm in several
cores (Figure 4)(core PR108D) may, in fact, represent these
storms. Given the distance of PR102 inland (>6 km from the
small front bay and >7.5 km from Lake Borgne), surges from
those two storms were likely not capable of leaving significant
sedimentary footprints at the site. The same is likely the case
for Hurricane Ivan, a powerful storm that crossed the Alabama
coast just beyond the 150 km radius in 2004, the year before
Katrina, with a surge height measured at 3.4 feet at Waveland,
MS (Stewart, 2004).

Erosion
Hurricanes, of course, often result in large-scale erosion of
marshes (Reed, 1990; Van de Plassche et al., 2006; Howes et al.,
2010). However, several lines of evidence suggest that erosion
was minimal at our sites, especially PR102. Large unsprouted
seeds and grass rhizomes were found just below the bottom of
the Katrina layer (Figure S1) in several cores. As it seems likely
that the smothering of such seeds and especially rhizomes only
affected the near surface zone; seeds and rhizomes deeply buried
in the soil should have either sprouted or rotted, suggesting that
significant amounts of surface material was not removed. The
relative paucity of organic material in the event sediments (8% in
the center of the layer, which may include post-depositional root
intrusion) (McKee and Cherry, 2009) suggests that little organic
material was entrained in the storm surge, at least at this location,
Additionally, as within the event layer itself, the smooth form of
several of the analytic curves, especially the biogeochemical ones
(Figure 6) beginning from ∼20 cm to the bottom of the event
layer suggest the completeness of the record (no sudden jumps
in the curves). It is possible that the attenuation of wave energy
due to the distance inland and the thick vegetation cover at the
site (current conditions shown in Figure S5) prevented erosion
of the surface sediments, with the main sedimentary effect at the
site being burial.

Sediment Provenance
Elemental Concentration
Given the importance of the elevational effects of storm-
deposited materials effects on the long-term viability of a marsh,
it is important to determine the origin of the material. Along
the northern Gulf of Mexico, storm-generation vertical accretion
often results from the re-deposition of material eroded from
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TABLE 3 | Storm data for tropical cyclones passing within 150 km of the study site after hurricane strength or above since 1963.

Name Station Date Pressure

(mb)

Wind speed

(kts)

Designation Storm surge

(Location) (Height) (Reference)

Betsy Seaward 9/10/1952 941 135 H4 Bay St. Louis, MS 7 feeet above normal Sugg, 1966

Closest 9/11/1952 948 90 H2 Pascagoula, MS 7.4 feeet above mean low

water

Landward 9/12/1952 965 65 H1 – –

Bob Seaward 7/11/1979 986 65 H1 Rigolets, LA 3.8 feet Hebert, 1980

Closest 7/11/1979 992 40 TS Bay St. Louis 5.0 feet above normal

Landward 7/12/1979 998 30 TD Gulfport, MS 6.3 feet

Camille Seaward 8/18/1969 N/A 140 H5 Pass Christian, MS 24.6 feet Simpson et al., 1970

Closest 8/18/1969 900 150 H5 Ocean Springs, MS 15 feet

Landward 8/18/1969 N/A 115 H4 – –

Cindy Seaward 7/6/2005 994 50 TS Rigolets, LA 4.7 feet above normal Beven et al., 2008

Closest 7/6/2005 995 45 TS Gulfport, MS 5.5 feet above normal

Landward 7/6/2005 998 40 TS – –

Danny Seaward 7/17/1997 989 65 H1 Rigolets, LA 1.01m above NGVD Rappaport, 1998

Closest 7/18/1997 990 70 H1 – –

Landward 7/18/1997 988 70 H1 – –

Elena Seaward 9/2/1985 959 100 H3 Ocean Springs, MS 2.4m above normal Case, 1986

Closest 9/2/1985 959 100 H3 Harrison County CD, MS 1.8m above normal

Landward 9/2/1985 990 60 TS – –

Florence Seaward 9/10/1988 984 70 H1 Rigolets, LA 0.9m above normal Lawrence and Gross, 1989

Closest 9/10/1988 988 60 TS Pass Christian, MS 1.6m above normal

Landward 9/10/1988 998 30 TD – –

Frederic Seaward 9/13/1979 946 115 H4 Gulfport, MS 3.0 feet above mean sea

level

Hebert, 1980

Closest 9/13/1979 955 95 H2 Pearlington, MS 3.3 feet above mean sea

level

Landward 9/13/1979 975 65 H1 – –

Georges Seaward 9/28/1998 964 90 H2 Pass Christian, MS 2.0m above normal Pasch et al., 2001

Closest 9/28/1998 964 90 H2 Bay St Louis, MS 1.8m above normal

Landward 9/28/1998 984 65 H1 Lake Borgne-Bayou

Bienvenu, LA

2.3m above normal

Gustav Seaward 9/1/2008 955 95 H2 Lake Borgne-Bayou Dupre,

LA

9.50 feet above normal

(estimated)

Brown et al., 2010

Closest 9/1/2008 954 95 H2 Rigolets, LA 5.0 feet above normal

(estimated)

Landward 9/1/2008 958 85 H2 Waveland, MS 9.89 feet above normal

Isaac Seaward 8/29/2012 968 65 H1 Hancock County, MS 9–11 feet above normal Berg, 2013

Closest 8/29/2012 973 60 TS Pearl River, Highway 90, LA 9.3 feet above NGVD

Landward 8/30/2012 977 55 TS – –

Katrina Seaward 8/29/2005 923 110 H3 Pass Christian, MS 27.8 feet above normal Knabb et al., 2005

Closest 8/29/2005 928 105 H3 – –

Landward 8/29/2005 948 80 H1 – –
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the edges of the marsh (either ocean and/or river edges) onto
the marsh surface (Goodbred, 1994; Goodbred and Hine, 1995;
Barras, 2006; Törnqvist et al., 2007; Turner et al., 2007). In such
cases vertical accretion results from landward translation and
likely represents net loss.

We have applied PCA analysis to the elemental concentrations
of core PR102D in order to elucidate the question of sediment
provenance, with the biplot of the first two principle components
(which together account for 81.3% of the variability) providing
a means of examining the relationship between chemical
composition of the sediments and core depth (Figure 8). Core
PR102D can be divided into three stratigraphic units; the pre-
storm organic material from 40 to 16 cm, the clastic Katrina
layer from 15 to 10 cm, and the post-event organic layer from
9 cm to the surface. The drivers of the first component, which
explains 59.8% of the variability, are high concentrations of
Ti, K, Fe, Sr, and Ca (high scores) and Br (low scores). All
samples from both the top and bottom organic units, having
low component scores, cluster to the left on the biplot, while
the high-score event samples lie to the right. High scores for the
second component, which accounts for 21.5% of the variability,
are associated with large concentrations of Cl and S, while low
sores are associated with higher concentrations of Br and Ca.
Because Cl and S are marine indicators, higher concentrations
can be used to indicate increased marine influence (Goff et al.,
2012; Liu et al., 2014; Bianchette et al., 2017; McCloskey et al.,
2018a). Notably, there is a large movement in the direction of
S and Cl at the interface between the underlying organics and
the bottom of the event layer (from 17 to 15 cm). By the middle
of the layer (11, 12 cm) the elemental concentrations (Figure 7)
and PCA biplot (Figure 9) indicate large concentrations of Ti, K,
Fe, Sr, and Ca and decreasing concentrations of S and Cl. The
shift back to organics at the top of the event layer (from 10 to
9 cm) is marked by a movement toward Br and away from Ti,
K, Fe, Sr, and Ca, nearly the reverse of the shift from organics
to clastics at the bottom of the event layer. This strong near
mirror-image shift in sample position on the biplot occurs across
the transect (Figure S6). This not only highlights the anomalous,
(allochthonous) nature of the clastic layer, but the movements
along the Cl and S vectors at the initiation of deposition strongly
suggests a marine source. This is further supported by the event
layer’s low Br/Cl ratio (Figure 7), which estimates the relative
strength of fresh and marine input, (lower values corresponding
to increased marine influence) (Liu et al., 2014; McCloskey et al.,
2018a).

Extending the analysis to include the surface sample data
and additional cores provides information in regard to sediment
provenance (Figure 10). The combined biplots (surface and core
data) are nearly identical in terms of both the strength and
direction of the defining vectors and the amount of explained
variability (76.1, 75.6, and 70.4% respectively) for PR102D,
PR108D, and PR112D. In all three cores, the first component
sample scores are positively related to the concentrations of Co,
Zn, Fe, Cr, Pb, V, Zr, Rb, Sr, Ca, and K and negatively related
to the concentration of Br. Second component sample scores
are positively related to the concentration of Mn and negatively
related to the concentrations of and S and Cl. Samples from the

organic sections of the cores cluster with the marsh samples in
the second and third quadrants of the biplots, while the event
layer samples group with the estuarine samples in the first and
fourth quadrants. These patterns are evident across the transect,
suggesting that thematerial deposited byHurricane Katrinamore
closely resembles material from the river bed/estuarine bottom
than from the marsh surface. Subtler affinities can also be noted.
The first component scores for the bottom samples collected
in the open water of Lake Borgne (PR08, PR09) (Figure 10)
are much higher than the event layer samples scores, which
plot closer to the riverbed samples. This suggests that the
event material more closely resemble sediments from the river
channel than from the open water. Second component scores are
generally lower for the event layer samples than for even the open
water estuarine samples. Because low values on this component
are correlated with high S and Cl concentrations, this possibly
marks the sediments as more saline than the Lake Borgne
samples. Given that the salinity in the open Gulf of Mexico
(∼36 ppt) (http://www.ncddc.noaa.gov/website/DataAtlas/atlas.
htm?plate=Salinity%20-%20Mean), is higher than at PR09 (17.
9 ppt), our farthest offshore sample, this suggests a possible
association with offshore waters.

The marsh and river/estuarine environments appear to
have contrasting sources of sediments (Figures 2, 3). For the
estuarine samples the concentrations of nearly all elements
increase downstream, while TOC, TN and the TOC/TN ratio
decrease, suggesting that the source of the inorganic estuarine
material is offshore and the source of the organic material
is terrestrial. The increase in downstream δ

15N values for the
estuarine samples likely results from remineralization as nitrogen
moves up the food chain. For the marsh samples, elemental
concentrations generally decrease downstream, suggesting a
terrestrial source of inorganic sediments, likely delivered by
fluvial flooding. The exception is Cl, likely derived from marine
waters. The high TOC/TN observed throughout the marsh
sites (12.2–24.7), especially downstream (15.9–24.7) favor a
downstream transition from a C3-dominated environment
to one with organic contributions from either C4 plants or
phytoplankton (Cloern et al., 2002), in agreement with the
general vegetation gradient observed in the field (decrease in
freshwater woody plants and increase in salt-tolerant grasses).
These results suggest that the estuarine and marsh sedimentation
systems normally operate separately, with the marsh receiving
little clastic input from marine sources under normal
conditions.

The overlap between the TOC/TN, d13C, and d15N values
for the marsh and estuarine samples, combined with their
sometimes anti-phase spatial relationship, complicates the use of
the biogeochemical data as a means of determining provenance.
Although the TOC and TN values in the event samples closely
resemble estuarine material (while varying markedly from the
marsh samples), the δ

13C, δ
15N values and TOC/TN ratios are

ambiguous. The PCA biplot of the surface sample and core
data (Figure 11) suggests that the event layer samples, although
loosely grouped with estuarine samples, likely contains marsh
material as well. However, this organic material may result from
the post-depositional intrusion of roots as plants recolonize the
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FIGURE 9 | PCA biplot of concentrations of selected elements for core PR102D. Samples from the light brown clastic interval (red dots) plot apart from the organic

material that comprises underlying (blue dots) and overlying (yellow dots) material, due primarily to increased concentrations of Ti, K, Fe, Sr, Ca, Cl, and S, and

decreased concentrations of Br. Arrows mark the vector movement at the bottom (blue) and top (red) of the clastic interval. Numbers indicate the depth of the median

point of each sample.

FIGURE 10 | PCA of concentrations of selected elements. PCA biplots for surface samples and cores PR102D, PR108D and PR112D. Note the similarity in

ordination space between (1) the elemental concentrations of samples from the clastic layer in cores (red dots) and the estuarine surface samples (black dots), and (2)

samples from the organic layer in cores (yellow and blue dots) and the marsh surface samples (green dots). Data from the west-east marsh transect samples are

included in the biplots.
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FIGURE 11 | Biogeochemical (carbon and nitrogen) profiles and associated PCA biplots for core PR102D and surface samples. Surface sample data are arranged

spatially, as in Figure 2. Similar TOC and TN values drive the grouping of the estuarine samples with the core clastic layer samples in quadrants 3 and 4, and the

marsh samples with the samples from the organic intervals on the core in quadrants 1 and 2 on the PCA biplot. Data from the west-east marsh transect samples are

included in the biplot.

FIGURE 12 | Cartoon of theoretical control exerted by geologic framework over marsh accretion. The bottom displays the potential effect of excessive

hurricane-generated overwash deposits on marsh growth in locations lacking fluvial input (Stagg and Mendelssohn, 2010, 2011; Walters and Kirwan, 2016). In this

scenario the increase in platform elevation reduces the hydroperiod enough to prohibit the recovery and regrowth of marsh vegetation. The location remains barren

until sea level rises sufficiently to increase hydroperiods beyond the minimum threshold. This process is irrelevant in incised river valleys where fluvial systems with

large hydraulic heads can continue to inundate the marsh platform despite thick hurricane-generated overwash deposits (top).

surface, with McKee and Cherry (2009) documenting 25 g/m2 of
root accumulation in the storm layer.

We suggest that the sedimentary, biogeochemical and
elemental evidence all indicate that the intermediate unit is
allochthonous, composed of large-grained clastic sediments
sourced from the river channels or the adjacent estuary.

Combining this information allows us to develop a rather
detailed picture of both the deposited material itself and
the associated depositional processes. The sediment itself
is visually distinct. It is a gray sandy mud, with high

concentrations of S, Cl, K, Ti, V, Cr, Mn, Fe, Co, Zn, Rb,
Sr, and Zr, and low levels of Br heavier δ13C and δ15N
isotopes, and lower TOC, TN, and TOC/TN ratios. The
material, although primarily consisting of material resuspended
from the nearshore estuarine bottom and/river channels
includes low concentrations of marsh material, some of
which may have been introduced post-depositionally. The
transporting mechanism was the storm surge associated with
Hurricane Katrina, possibly including an open marine water
component.
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Biogeochemical Effects of the Event Layer
As with the elemental and sedimentary data, core PR102D
can be divided vertically into three distinct units based on
the biogeochemical profiles (Figure 6). The upper and lower
biogeochemical units are quite similar with respect to TOC and
TN concentration. However, the δ

13C signature is quite different
in the top and bottom sections of the core, with the upper marsh
resembling the intermediate clastic unit (Figure 6). Although
microbial processing of the organic carbon during burial could
explain the difference, the effect is thought to be small (Khan
et al., 2015). The dissimilarity between the δ

13C of the modern
marsh and underlying marsh may result frommechanical and/or
chemical causes. The TOC, TN, 210Pb, and 40K (probably
representing clay concentration) profiles all show evidence of
mixing (gradual secular change), perhaps indicating that the
clastic deposit was originally thicker and that sediment has been
vertically reworked, probably through bioturbation. Under this
scenario, the heavier δ

13C signature in the near-surface material
merely reflects the vertical diffusion of the event layer material.
Another possibility is that significant change in the biological
assemblage occurred at this site, as occurred in Louisiana
marshes following Hurricane Andrew (1992) (Guntenspergen
et al., 1995). These changes could be driven either by the vagaries
of vegetative recolonization, or as a result of altered edaphic
conditions, as the mineral sediment likely increased soil aeration
and the availability of essential nutrients. Whatever the cause of
the altered isotopic signature, the marsh quickly re-established,
and, as evidenced by increasing TOC and TN values, began
to again accumulate organic matter, with the allochthonous
material driving increased production, as occurred at the adjacent
site where standing live biomass and the accretion rates both
increased relative to pre-storm values (McKee and Cherry, 2009).

Accretion Rates
The depth of the Hurricane Katrina layer provides a means
of directly determining the accretion that occurred in the 10
years between the passage of the storm (August 2005) and the
extraction of the cores (September 2015). The top of the Katrina
layer occurs at depths of 7, 9, 10, 10, 12, and 13 cm in the six
cores, or an average of 10 cm, yielding an average accretion rate
of ∼1 cm/year, reduced to 0.8 to 0.9 cm/year if the overlying
1–2 cm thick organic clay layer, representing post-event settling
(Reese et al., 2008) is attributed to the storm. If the Katrina layer
itself is included, average accretion since 2005 is 1.4 cm/year,
as the bottom of the layer occur at an average depth of 14 cm.
The postmodern radiocarbon date (>1950 AD) at 75 cm from
our long core PR102R yields a minimum accretion rate of 1.15
cm/year for the last 65 years, while the 137Cs profile for PR102D,
which indicates that the oldest possible date at 37.5 cm is 1963,
produces a minimum accretion rate of 0.71 cm/year. Accretion
rates from a transect of cores extracted in 2008 within a few
100m of PR102D are between 0.4 and 0.7 cm/year (Yeager
et al., 2012). Together these rates narrowly bracket the accretion
rates recorded from the five Coastwide Reference Monitoring
System (CRMS) (Figure S7) stations situated in the Pearl River
marsh (https://lacoast.gov/crms/), which range from 0.56 to 1.28
cm/year (Table S2).

Although these accumulation rates are above the rate of local
relative sea level rise (0.47 cm/year at New Canal, La; and
0.41 cm/year at Bay Waveland, MS) (http://tidesandcurrents.
noaa.gov/sltrends/sltrends.html), this does not insure that the
Pearl River marsh will maintain its elevation above sea level.
Accretion does not directly correspond to surface elevation
increase, as subsidence can lower the platform upon which the
marsh is accreting. As a result, even marshes with extremely
high accretion rates can experience submergence under rapid
subsidence (Nyman et al., 1993). Because CRMS station use a rod
surface elevation table (RSET), driven to refusal in the underlying
substrate (below the marsh sediments), to measure both surface
elevation changes and accretion rates, shallow subsidence rates
can be calculated. (See Figure S7, or Stagg et al., 2013 for detailed
explanation of CRMS operational processes). These records show
that all five Pearl River CRMS stations display positive surface
elevation changes, with accretion rates surpassing subsidence
rates (Table S2). Submerged vulnerability index (SVI) values
are also calculated for each station. Index values, based on
the relationship between surface elevation change, measured
water level and sea level rise rates, project the vulnerability
of submergence for each site. Values range from 0 to 100,
representing the percentage of time each site will be above water
level during the following five years. All of the Pearl River
sites have high SVI values, indicating a high probability for the
continued existence of the marsh.

The sustainability of the marsh at our site has been aided
by the sediments deposited by Hurricane Katrina. Beyond the
immediate benefit of increased surface elevation, the addition
of such elements as Fe and Mn may aid plant growth over a
longer period (Gambrell and Patrick, 1978; McKee and Cherry,
2009). If, as our evidence indicates, this material originated in
the river/estuarine bottom, this represents a net gain at our site,
as this material would otherwise never have entered the marsh
platform. As a marsh as a whole, the overall net gain/loss depends
on the balance between deposition and erosion, which we have
not assessed, and which will, of course, vary between storms.

Recent Acceleration of Accretion Rates
This high potential for the long-term survival of the Pearl
River marsh is driven by the high current accretion rates.
However, we find that long-term sedimentation rates are as
much as an order of magnitude lower than current accumulation
rates. Sedimentation rates were calculated for both a published
core (Li-1994) extracted ∼600m from PR102 by Li (1994),
covering the period from ∼200 to 6700 calendar year before
present (BP) and the long core PR102R, with dated material
extending to >5,000 BP. Plotting the PR102R data with the
postmodern date of 1950AD as the surface level, the chronologies
for the two cores are nearly identical (Figure S8), indicating
strong replicability/validity of the data. Sedimentation rates were
calculated between each set of radiocarbon dates for both cores.
These rates range from 0.06 to 0.25 cm/year, with an overall
average of 0.11 cm/year for Li-1994, and from 0.9 to 0.11 cm/year,
with an overall average of 0.10 cm/year for PR102R.

Several possible explanations for the large discrepancy
between modern and long-term rates exist. Lithologic changes,
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reflecting significant changes in the depositional environment,
can result in vastly different sedimentation rates. However this
does not explain the high modern rates for these cores. Although
the gross lithologic change from clay to peat occurs at ∼ 450 cm
in Li-1994, the sedimentation rate decreases immediately above
that point„ with the core’s lowest rate (0.06 cm/year) occurring
in the organic section from ∼1100 to 200 BP. The same clay to
peat transition occurs ∼ 215 cm depth in PR102R, with a rate of
0.10 cm/year between that point (median date 1,275 BP) and the
postmodern sample.

Anthropogenic activities (deforestation, land clearing,
urbanization, construction, etc.) can increase sediment delivery
to downstream sites. However, the impact of these processes,
although unquantified by us, are likely minor at our site as
the Pearl River basin remains relatively undeveloped; 58%
is forested and 12% is wetlands, with only 25% agricultural
and 2% urban/suburban (Ward et al., 2005). Agricultural
activity, through the release of fertilizer, can potentially increase
productivity downstream, thereby leading to an uptick in organic
accumulation rates. However, the δ

15N profile suggests that this
is not occurring here, as the δ

15N value for the marsh sites,
especially PR100, the most upstream site, and therefore the most
likely to be affected by agricultural runoff, has δ

15N values higher
than those associated with commercial fertilizers, which typically
fall within a narrow range around 0, with 80% measuring
between −2 and 2‰ (Bateman and Kelly, 2007). However,
the level and direction of fractionation by the macrophytes is
unknown. In any event, the 33,000-acre Ross Barnett Reservoir
upstream of the East/West River split has likely reduced both
sediment and nutrient supply to the marsh since its construction
in the 1960s (Cooper and Knight, 1985).

Growth faults (coast-parallel-extensional faults at continental
margins), may have contributed to the increased rate by
increasing accommodation space. But, not only has the growth
fault adjacent to PR102D been active for at least the last 3,700
years, the recorded slip rates (0.1 cm/year over the last 1,300
years, and 0.02 cm/year over the last 3,700 years) (Yeager et al.,
2012) are too low to significantly drive the acceleration of
the accretion rate. Autocompaction, the reduction in sediment
volume resulting from the weight of the overlying material, is
another possible explanation for the low sedimentation rates in
the lower sections of the cores. This also seems insufficient to
explain the rate changes, as autocompaction rates are generally
on the order of∼0.01–0.06 cm/year (Horton and Shennan, 2009;
Brain et al., 2012), with higher rates occurring where thick clastic
layers compress the underlying peat (Törnqvist et al., 2008),
which is the reverse of the Pearl River stratigraphy. Applying
the correction for autocompaction (following the procedures of
Bird et al., 2004), to PR102R only increases the overall accretion
rate from 0.10 to 0.13. Due to the lack of detailed lithologic
information we were not able to perform autocompaction
corrections for Li-1994.

These mitigating processes, even combined, are insufficient to
explain the largemodern jump in accretion rates, which has likely
occurred fairly recently. Both our study and that by Yeager et al.
(2012), found that accretion rates were higher when calculated
from the ∼50 year 137Cs chronology than when calculated
from the ∼100 year 210Pb chronology, perhaps indicating rate

accelerating within very recent times. For PR102R, there has been
a notable increase in accretion rates during the last century with
rates of 0.1 to 0.13 cm/year for the period 1,275 BP to early/mid
Twentieth century, 0.41 to 0.71 cm/year for mid to late Twentieth
century, and > 1 cm/y since roughly the start of the Twenty-First
century.

The geologic framework of the Pearl River valley offers
a possible explanation for the recent increase in accretion
rates. This hypothesis is based on the idea that rising sea
levels, combined with high riverine discharge, have increased
hydroperiods across the marsh, resulting in lusher vegetation
(Nyman et al., 2006), increased biomass and rapid organic
deposition. Elevated sea levels have driven increased marine
flooding across the marsh, with, due to the lateral topographic
constraints and the large hydrological head, no decrease
in freshwater flooding from the Pearl River. This bimodal
inundation increases marsh accretion in a number of ways.
Inorganic deposition is increased due to delivery of mineral
sediments from both the up- and down-stream sources, while
flocculation spikes as a result of the increased mixing of fresh
and marine waters. Plant growth is encouraged by increased
hydroperiods, with the fluvial input eliminating/reducing
hypersaline conditions.

This hydrological framework is especially important as it
relates to the effects of large storms. Studies (Stagg and
Mendelssohn, 2010, 2011;Walters and Kirwan, 2016) have shown
that thick clastic deposition can negatively affect marsh vegetative
growth by reducing hydroperiods. While this is an important
control on accretion in marshes located along the open coast, it
is irrelevant in incised river valleys such as Pearl River. Fluvial
input, and therefore, sufficient soil moisture, will continue in such
locations despite large increases in marsh surface elevations, due
to the hydrologic head associated with continental watersheds. In
such areas, unlike fringing marshes with little or no fluvial input,
vertical accretion resulting from the reestablishment, growth and
deposition of organic material can continue unabated even after
the deposition of thick storm layers. A diagram depicting this
process is displayed in Figure 12.

It is likely that similar conditions exist within the numerous
incised river valleys intersecting the northern Gulf of Mexico.
These sedimentological and hydrological parameters, which
differ significantly from those occurring in the more commonly
studied fringing coastal marshes, likely result in a unique set
of responses to sea level rise. This emphasizes the need to
better understand the processes controlling marsh development
for such environments and further refine sea-level acceleration
thresholds that can result in baywide backstepping (e.g.,
Rodriguez et al., 2010; Simms and Rodriguez, 2014, 2015).
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