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ABSTRACT 

Submerged aquatic vegetation (SAV) provides many critical ecosystem services, yet we 

lack basic information on SAV assemblages, biomass and diversity across expansive coasts such 

as the northern Gulf of Mexico (nGoM).  This research investigated SAV along the nGoM from 

2013-2015 examining (1) inter-annual variation in SAV assemblages and biomass across salinity 

zones and gulf coast eco-regions (Texas Mid-Coast, Texas/LA Chenier Plain, Louisiana Delta, 

MS/AL), (2) intra-annual variation in SAV assemblages and biomass across salinity zones, (3) 

response of two species, Ruppia maritima and Myriophyllum spicatum, to salinity and light 

regimes, and (4) estimated organic carbon stock and storage of SAV habitat soils across salinity 

zones.  Coast wide, there was no variation among years, but significant differences in biomass 

and diversity within zones and regions were observed.  Specifically, fresh zones and the 

Louisiana delta region had higher species diversity and contained more biomass than other 

zones and regions. Intra-annually, there were significant differences in SAV biomass and 

assemblages by salinity zone and month. Fresh/ intermediate zones contained more species 

and biomass than brackish/saline zones, and biomass was higher in summer months than 

winter months. Competitive relationships between co-occurring species were examined using 

M. spicatum and R. maritima growth response, under different salinity and light regimes. M. 

spicatum growth decreased with increasing salinity, while R. maritima growth was not 

impacted. R. maritima was also not impacted by light, while M. spicatum growth increased in 

high light. We observed strong competitive interactions; both species decreased in mixture and 

under no conditions was production in mixtures greater than monocultures.  We estimated 
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organic carbon stocks (Corg) within Mississippi River Delta Plain (MRDP) SAV habitat, out to the 

Chandeleur Islands, and found that MRDP  SAV Corg did not differ across salinity zones, but was 

greater than Chandeleur SAV Corg. MRDP SAV habitat (159,609 ha) contains greater than 3.2 * 

107 Mg of Corg, representing an unaccounted for reservoir of “blue carbon,” particularly when 

extrapolated across the Gulf Coast. These new data provide a better understanding of factors 

controlling SAV spatial distribution, temporal variation and ecosystem services, which helps 

managers prepare for coastal changes. 
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CHAPTER 1 
GENERAL INTRODUCTION 

 
Coastal ecosystems encompass a variety of habitats, which include mangrove forests, 

bald cypress-water tupelo swamps, fresh to saline marshes, seagrass meadows and non-marine 

submerged aquatic vegetation (SAV) beds. At the interface of terrestrial landscapes and oceans, 

SAV is dynamic and productive habitat, vulnerable to impacts (i.e. temperature) associated with 

global climate change.  

Non-marine SAV and seagrasses (collectively called SAV) are vascular plants rooted to 

water bottom sediments and generally grow completely submerged in water under anaerobic 

conditions. Seagrasses grow in coastal marine waters, while non-marine SAV occur throughout 

the remaining salinity zones (fresh, intermediate, brackish, saline). Seagrasses first appeared in 

the geologic record about 100 million years before present in the sub-class Alismatidae and 

today (along with non-marine SAV) exhibit extremely low taxonomic diversity (~ 60 species, 

collectively) compared to terrestrial vascular plants (Les et al. 1997). This lack of species 

diversity may be due in part to specific growing conditions, largely controlled by high incident 

light requirements. 

Geographic Distribution and Decline of SAV       

The total global areal extent of SAV is currently unknown, in part because of a lack of 

data about the spatial distribution of non-marine SAV.  Global research that has focused on the 

spatial distribution of SAV globally has focused specifically on seagrasses, and shows that these 

assemblages occur on all continents, except Antarctica, and occupy an estimated 300,000-

600,000 km2 of coastal aquatic habitats (Hemminga and Duarte 2000). Enhanced water clarity in 
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marine systems improves the accuracy of seagrass meadows aerial estimation using remote 

sensing techniques (Meyer and Pu 2012; Thorhaug et al. 2006; Yuan and Zhang 2008), and 

therefore, their spatial distribution is better understood. However, only 177,000 km2 of 

seagrass habitat is mapped because field assessments are geographically biased; most research 

occurring in the European Mediterranean Sea, Japan, and Australia and along the Atlantic and 

Gulf coast of North America (Mcleod et al. 2011).  Overall, t seagrass habitats have declined 

approximately 29% globally since the 1870s (Waycott et al. 2009) while the rate of seagrass 

habitat loss has increased since the 1940;, from less than 1% per year to ~ 7% per year 

(Fourqurean et al. 2003; Waycott et al. 2009). 

SAV Ecology  

The term ecosystem engineer applies to organisms that alter the environment by 

modulating the available resources (i.e. nutrients) for other community members (Jones et al. 

1994). Seagrasses are  ecosystem engineers; they are ecologically important (see below), and 

also physically alter the environment through nutrient cycling, removing sediment from the 

water column and carbon sequestration and storage  (Cuddington et al. 2009; Gutiérrez et al. 

2011).Furthermore, the role of non-marine SAV as ecosystem engineers is less understood.  

Yet,, studies show that they provide many of the same services as true seagrasses, including 

foraging habitat and refuge for invertebrates and fish (La Peyre and Gordon 2012; Thom et al. 

2004; King and Sheridan 2006; Blandon and zu Ermgassen 2014; Williams and Heck 2001), food 

for waterfowl (Bortolus et al. 1998; Miller et al. 1996; Plattner et al. 2010; Shaughnessy et al. 

2012; Url et al. 1991), improvement of water quality (DeBusk et al. 2011; Dierberg et al. 2005, 
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2002; Knight et al. 2003; Kosten et al. 2009) and shoreline stabilization (Gutiérrez et al. 2011; 

Hemminga and Duarte 2000; Thayer et al. 1975). 

Several environmental factors are used as predictors of SAV presence/absence, 

although they do not explain why SAV are absent in areas suitable for SAV colonization. Light 

attenuation values are co-related to water depth and clarity, and are recognized as the primary 

factor controlling SAV presence/absence ( Kemp et al., 2004). SAV require 10-20% of incident 

light at the leaf surface for growth and develop, compared to 0.5-2% for terrestrial plants and 

0.5-3% for benthic macro algae (Dennison et al. 1993). Species-specific SAV distribution and 

range are apparently largely dependent on latitude (Short et al. 2007) and salinity (Lirman et al. 

2008), and therefore are expected to be affected by global climate change.  

Global Climate Change Impacts on SAV  

Global climate change refers to an increase in the concentration of greenhouse gases in 

the atmosphere, including carbon dioxide (CO2) and methane (CH4). Since the Industrial 

Revolution, the concentration of CO2 in the atmosphere has increased from 280 to 400 parts 

per million (ppm) (Mcleod et al. 2011). Both CO2  and CH4 concentrations increase the trapping 

efficiency of energy in the atmosphere by deflecting thermal energy from the Earth’s surface 

back towards Earth, thereby increasing mean atmospheric temperature over time (Short and 

Neckles, 1999). Secondary impacts of climate change include sea level rise, higher ocean 

surface water temperature, increase in regional precipitation, and variable surface water 

salinity (IPCC 2013).  

The 5th Assessment of the International Panel on Climate Change (IPCC) states that 

mean atmospheric temperatures are most likely to increase in the range  of 1.1 and 6.4⁰C by 
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the end of the 21st century, with a  variability ranging from 1.8 to 4.0⁰C (IPCC 2013). This 

temperature increase is assumed to impact the distribution and function of most of the Earth’s 

ecosystems; terrestrial, coastal and oceanic. Increasing atmospheric temperature is associated 

with an increase in water temperature. For instance, ocean water temperatures have increased 

since 1850, especially in the northern hemisphere (IPCC 2013). Climate change is also expected 

to have a variable effect on surface water salinity. With increased precipitation, systems 

dominated by fresh water input may become fresher and coastal systems dominated by sea 

water may become more saline (IPCC 2013).As a result the distribution of SAV assemblages and 

overall standing stocks could be impacted, especially in intermediate-brackish habitats, though 

exactly how is unknown.  

Carbon Storage in SAV Habitats 

It is expected that soil organic carbon stocks and storage (blue carbon), one of the least 

investigated ecosystem services provided by SAV, will be impacted by climate change, although 

it is not clear how as we lack any current baseline information of organic carbon stocks in non-

seagrass SAV habitat soils. In coastal systems, blue carbon research has focused on cypress-

tupelo swamps, mangrove forests, marshes (Drake and Read 1981) and seagrasses habitats 

(Duarte et al. 2013; Fourqurean et al. 2012; Mcleod et al. 2011), but is lacking in SAV soils. 

Seagrass habitats efficiently store carbon because of low decomposition rates, high primary 

production and turnover rates, long term accumulation of detrital material and the external 

contribution of laterally imported organic matter. The long-term accumulation of detrital and 

imported organic matter contributes to the net reduction of CO2 and CH4 in the atmosphere 

(DeLaune and Lindau, 1987). Despite the limited number of studies, it is estimated that seagrass 
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carbon burial ranged from 45-190 g C m-2 yr-1, equivalent to 48-112 Tg C yr-1 globally. Although 

seagrasses occupy only 2% of the world’s oceans, this habitat can sequesters as much carbon as 

mangrove forests and salt marshes, widely present at different latitudes (Mcleod et al. 2011). 

Long term carbon burial in non-marine SAV is currently unknown, and seagrass habitat 

estimates underscore the need to examine the potential magnitude of carbon stocks and 

storage in non-marine SAV. 

SAV along the Northern Gulf of Mexico 

Coastal ecosystems are the cultural, economic and ecological backbone of the northern 

Gulf of Mexico (nGoM). SAV assemblages along this coastal region represent a significant and 

valuable habitat type extending inland in some areas over 200 km along a salinity gradient 

running from freshwater to saline environments.  Understanding changes in SAV assemblages, 

production and spatial distribution are of great interest to natural resource managers and 

researchers. Even as this habitat is an important food source for waterfowl and habitat for fish, 

and subsequently an important economic resource across the coast, few SAV coast wide spatial 

and temporal surveys have been conducted. Some research gaps include a lack of information 

on SAV presence, standing stock, assemblages, and carbon storage,. For example, along the 

nGoM, only one study has evaluated organic carbon stock in non-marine SAV habitats.  This 

study examined above and below-ground organic carbon content of SAV tissue in brackish 

marshes in the Lower Neches Wildlife Management Area near Port Arthur, Texas. Results from 

this work shows that SAV captured less carbon (100-300 g m-2) than adjacent emergent marsh 

vegetation (200-1,700 g m-2), although the study did not measure soil organic carbon stocks and 

laterally imported organic matter into soil pools (Madrid et al. 2012).  
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Similar to global studies, the majority of SAV research studies along the nGoM have 

focused mainly on seagrass assemblages. Research has documented the factors controlling 

seagrass assemblages, distribution and growth in meadows along the Texas coast, which are 

patchily dispersed and dominated by Halodule wrightii and Thallasium testudinum (Dunton 

1994; Kaldy et al. 2004; Lee and Dunton 1997; Tomasko and Dunton 1995). H. wrightii net 

primary production in coastal Texas ranges between 100-500 g m-2 yr-1 and growth rates are 4-7 

mm a day during the peak growing season (May-mid June).This production is controlled by light 

attenuation, and photosynthetically active radiation (PAR), as shown in three different Texas 

estuaries.  

Along the Mississippi/Alabama coast, Heck and others (2008) documented seagrass 

resilience after Hurricanes Ivan and Katrina and noted an increase in Ruppia maritima 

abundance. The role of seagrasses in coastal trophic interactions and food webs has also been 

investigated, and suggests that herbivory may be an important  factor influencing SAV 

assemblages along this coastal region (Williams and Heck 2001; Heck et al. 2008; Heck and 

Valentine 2006; Valentine and Heck 1999).  

In southeast Louisiana, east of the Mississippi River, research has identified the 

environmental drivers (hurricanes, salinity) behind shifts in SAV assemblages in Lake 

Pontchartrain, from Vallisnaria americana  dominance to R. maritima prevalence (Cho and 

Poirrier 2005). R. maritima in Lake Pontchartrain has two biomass production peaks throughout 

the growing season as a result of high surface water temperature and little competition (light, 

space, nutrients) from other species.  R. maritima peak biomass from May-November ranges 

from 155 to 489 gdw m-2 (roots and shoots). However, winter and summer storms (exposure) 
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inhibit R. maritima production rates. Poirrier and others (2007, 2009) have also documented 

changes in species assemblages and seagrass abundance landward of the Chandeleur Islands; 

the only area in coastal Louisiana with true seagrasses.  

Overall, information about the structural and functional properties of SAV west of the 

Mississippi River to Texas is lacking. Field surveys that focused on non-marine SAV distribution 

(Carter et al. 2009; Merino et al. 2009), did not report or discuss SAV biomass data, while 

research that documented SAV biomass were performed on small regional scales. Merino et al. 

(2009) sampled across four salinity zones (fresh, intermediate, brackish and saline) from south 

Florida to Texas and documented 20 different SAV and macro-algae species, 14 of which were 

observed more than once throughout the study (Merino et al. 2009). Merino et al. (2009) and 

Carter et al. (2009) did not sample interior marsh ponds, which are important SAV/waterfowl 

foraging habitat and an essential fish refuge. Thus, they may have underestimated SAV 

presence and/or density. Winslow (2003) documented SAV biomass in interior marsh ponds in 

Texas and Louisiana, but only in fresh water habitat. SAV biomass estimates in freshwater 

ponds are 262.3 ± 95.0 kg per ha-1, thus exceeding the 50 kg per ha-1 value of SAV biomass 

availability required to meet minimum waterfowl food requirements (Winslow 2003).  

In addition, in west Louisiana several studies investigated the relationship between SAV 

biomass and fish density. A study of brackish interior marsh ponds at the Rockefeller State 

Wildlife Refuge and the Sabine National Wildlife Refuge, LA , reported that locations with high 

SAV biomass supported higher fish population density (4x) than unvegetated marsh ponds (La 

Peyre and Gordon 2012). Kanouse et al. (2006) also found that fish density was positively 

related to SAV presence in brackish interior marsh ponds in Marsh Island, LA, while Hitch et al. 
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(2011) documented higher fish density with SAV presence in fragmented intermediate and 

brackish marsh ponds at Mandalay National Wildlife Refuge in southeast LA. Other studies have 

shown that hydrologically managed marsh ponds contained more SAV biomass than 

unmanaged ponds (17.2 g m-2 vs. 4.1 g m-2). These results suggest that water depth controlled 

SAV biomass; making SAV habitat suitable for management (Merino et al. 2005).  

  Although these studies have provided critical information about SAV spatial distribution, 

there is still a lack of understanding about the environmental factors responsible for SAV 

presence and biomass at larger scales. Light, water depth and clarity (transparency) are 

identified as factors controlling SAV presence, assembly, and spatial distribution (Kemp et al. 

2004; Koch 2001; Xu et al. 2011). Additionally, the interactions among  light, salinity and 

temperature and their impact on SAV abundance and productivity have also been 

demonstrated (Bintz et al. 2003; Doering et al. 2001; Fey and Cottingham 2012; French and 

Moore 2003; Lee et al. 2007; Lirman and Cropper 2003; Shields et al. 2011; Thorhaug et al. 

2006). Coastal waters along Mississippi, Alabama and southern Texas are dominated by tidal 

creeks and bays clear enough to sustain true seagrasses, while coastal Louisiana contains a 

large, shallow, subsiding coastal zone. West of the Mississippi River, up to eastern Texas, 

sediment in open water from rivers and coastal erosion reduces water clarity, likely precluding 

seagrasses in LA saline areas.  

Climate change is expected to have an acute impact on coastal habitats along the nGoM 

(Karl et al. 2009; Mitsch et al. 2013). Rising sea level and shifting isohalines are assumed to be 

the most consequential factors affecting aquatic habitats along the coast. SAV assemblages are 

particularly vulnerable (Neckles et al. 1997; Short and Neckles 1999). Climate change impacts 
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(i.e. increased precipitation, frequency of disturbance, rising sea level, increased runoff, 

changes in salinity and temperature) will affect the environmental drivers (light, depth, salinity, 

temperature, water quality) of SAV assemblages and their spatial distribution. Specifically how 

is unknown. Only a few studies have tested these variables in manipulative experiments and 

they focused on seagrasses, specifically. Olsen et al. (2012) investigated biomass production of 

Posidonia oceanica and Cymodocea nodosa in relation to increasing water temperature 

(increased from 27 to 32 ⁰C for both species), and found both inter- and intraspecies variability 

in biomass production and allocation. C. nodosa above and belowground biomass production 

increased from 28 to 31⁰C, and then decreased at 32⁰C, while P. oceanica aboveground 

biomass was not significantly affected by increasing water temperature. Bintz et al. (2003) also 

tested temperature and found decreasing Zostera marina density and biomass with increasing 

temperature and nutrient loading. Studies like these show that seagrasses are impacted by 

subtle shifts along environmental gradients; non-marine SAV may respond similarly although 

we need data to confirm this assumption. 

In Louisiana and across the nGoM, species specific biomass and its spatial distribution is 

of particular importance because of the complex, varied functions SAV species perform. An 

understanding of baseline species specific and regional biomass data, related to environmental 

variables will help in understanding SAV spatial distribution patterns, and enable predictive 

modeling of climate change and management impacts on SAV.   
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Research Objectives   

This project proposes to  

 (1) characterize SAV along salinity gradients, quantify SAV biomass and describe 

spatial and inter-annual variation in SAV across the nGoM 

 (2) describe important environmental drivers and SAV intra-annual variation in 

Barataria Basin, LA  

 (3) examine competitive interactions between two ubiquitous nGoM SAV species 

(Ruppia maritima, Myriophyllum spicatum), and  

 (4) quantify SAV an ecosystem service by determining organic carbon stocks and 

overall storage in deltaic LA SAV habitats. 

Study Area 

The study area encompasses coastal marshes and associated shallow water habitats of 

the nGoM from Mobile Bay, AL to Nueces River, TX (Figure 1.1). The project boundaries were 

defined by Omernik Level III Ecoregions (USEPA 2013). Clustered Omernik Level IV Ecoregions 

broadly replicate four areas of the Gulf Coast Joint Venture Initiative Areas (Coastal Mississippi-

Alabama, Mississippi River Coastal Wetlands, Chenier Plain, Texas Mid-Coast). The area 

encompasses approximately 1,200 km of coastal shoreline that is frequently impacted by 

tropical storms and hurricanes (Conner et al. 1989; Stone et al. 2005).  
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Figure 1.1. Study area along the northern Gulf of Mexico 

In 2010, the Deepwater Horizon oil spill discharged 4.1 million barrels of oil into the Gulf 

of Mexico, resulting in extensive damage to coastal habitats, marine wildlife and local 

economies (Reddy et al. 2012). Along this coast, habitats are structured by salinity gradients, 

largely controlled by freshwater inputs limited to precipitation and restricted inflow from major 

river systems (i.e. Mississippi River) and Greater Intracoastal Waterway (Conner et al. 2005). 

Habitats consist of a mosaic of diverse estuarine and coastal plain habitat types, ranging from 

forested swamps, to fresh through saline marsh, extensive shallow-water habitats with mud 

flats, oyster reefs, submerged and floating aquatic vegetation habitats, and barrier islands. 

Sampling Approach, Synopsis of Chapters and Hypotheses  

Objectives 1-3 will be addressed using a three tier approach (Neckles et al., 2012). The 

methodology focuses on three distinct spatial and temporal scales of data sampling. Tier 1 

sampling uses large study area, with numerous sampling locations, but infrequent (i.e. annual) 

data collection. Tier 2 sampling focuses on fewer sampling locations, but increases the 

frequency of data collection (i.e. quarterly, monthly). Tier 3 sampling uses greenhouse studies 
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or intensive field studies to clarify causal relationships identified in Tier 1 and Tier 2.This 

approach is an important component of this research; it emphasizes awareness of and the 

importance of scale. Biological and ecological processes simultaneously occur and show 

variability at different spatial and temporal scales. An awareness of this variability at different 

scales reduces individual bias. Further, observations at different scales clarify mechanistic 

relationships among factors contributing to observed patterns (Levin 1992). 

Tier 1 sampling will be used to accomplish objective (1), in Chapter 2 and Chapter 3. 

Chapter 2 will identify the environmental drivers of SAV assemblages and biomass distribution 

at the broadest scale, along a salinity gradient across coastal northern Gulf of Mexico. Chapter 

3 describes the spatial and temporal variation of SAV assemblages and biomass in greater 

detail, incorporating geographic differences. At this scale, emerging and/or dissipating patterns 

are often missed. Yet, broad patterns are useful, as long as it is recognized that they are 

snapshots of specific conditions at a specific time. The hypotheses are: 

 (1) species composition and diversity in SAV assemblages will vary across salinity 

zones and geographic regions  

 (2) SAV biomass abundance will be inversely related to increasing salinity and 

will also vary across geographic regions  

 (3) SAV biomass will vary interannually, throughout the duration of the study.   

               Tier 2 sampling will be used accomplish objective (2), in Chapter 4. In Chapter 4, I will 

use data (salinity, temperature, water level) collected from continuous data recorders to help 

illustrate and quantify the finer pattern and relationship between known environmental drivers 
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of SAV assemblages and potentially seasonally variable biomass production. The hypotheses 

are: 

 (1) SAV exhibits intra-annual variation, with two peaks of maximum biomass 

(spring, fall) 

 (2) SAV assemblages can be delineated into four groups (fresh, intermediate, 

brackish, saline) based on salinity zonation of emergent marsh vegetation.  

                 Tier 3 sampling will be used to accomplish objective (3) in Chapter 5. Chapter 5 will 

examine the relationship between commonly observed and co-occurring species from Tier 1 

and Tier 2 sampling, tested against environmental factors (salinity, light) that shape SAV 

assemblages. Data from this study can be used as a predictive tool to estimate SAV response to 

some of the major effects of global climate change.  The hypotheses are: 

 (1) in monoculture milfoil will be more productive at lower salinity and 

widgeongrass will be more productive at higher salinity, and both species will be 

less productive in low light.  

 (2) in mixture we expect widgeongrass will be more competitive at higher 

salinities and milfoil will be more competitive at lower salinities, and milfoil will 

be more competitive in low light. 

Objective (4) will be addressed in Chapter 6. Chapter 6 will quantify the contribution of 

SAV habitat soils to regional carbon stock and storage estimates. The hypotheses are: 

 (1) organic carbon stocks in SAV habitat soils will vary across salinity zones 

 (2)  organic carbon stocks will be highest in barrier island SAV habitat 
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CHAPTER 2 
ESTABLISHING A BASELINE OF ESTUARINE SUBMERGED AQUATIC VEGETATION 
ACROSS SALINITY ZONES WITHIN COASTAL AREAS OF THE NORTHERN GULF OF 

MEXICO 
 

  Coastal ecosystems are dynamic and productive habitats that are vulnerable to global 

climate change through changing precipitation patterns, increasing extreme weather and 

climatic events, and rising sea levels (Bindoff et al. 2007). Sea-level rise and changes in 

freshwater inflow from altered weather patterns have been identified as key drivers of change 

and stress associated with climate change (Karl et al. 2009, Sheets et al. 2012). Low-lying 

coastal areas such as the estuaries and coastal habitats of the northern Gulf of Mexico are 

particularly vulnerable because of locally high subsidence rates. Rising sea levels will likely alter 

water depths within the extensive shallow water habitats, while predicted changes in 

precipitation and weather patterns may impact freshwater inflow, altering salinity patterns 

within coastal areas (Bindoff et al. 2007).  Combined, predicted changes in water depths and 

salinity patterns will likely affect the quantity and characteristics of coastal marsh and shallow-

water communities (Harley et al. 2006).   

Within these coastal areas, submerged aquatic vegetation (SAV) habitats are likely to be 

particularly vulnerable to predicted changes as salinity and water depth are two of the key 

environmental drivers of SAV biomass standing crop, production, assemblage, and distribution 

(Orth and Moore 1988, Orth et al. 2006, Carter et al. 2009, Merino et al. 2009).  Changes in SAV 

habitat could have far-reaching consequences, as SAV are considered foundation species,  

This chapter, previously published as Eva R. Hillmann, Establishing a baseline of estuarine 
submerged aquatic vegetation resources across salinity zones within coastal areas of the 
northern Gulf of Mexico. (2016):3, 25–32, is reprinted here by permission of the Journal of 
Southeastern Assocciation of Fish  and Wildlife Agencies. 
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providing, and maintaining habitat for other organisms (Hemminga and Duarte 2000). 

Specifically, SAV provide important food and habitat resources for many dependent fish and 

wildlife species (Thayer et al. 1975, Williams and Heck 2001, Heck et al. 2003), improve water 

quality (Knight et al. 2003, Dierberg et al. 2005, Kosten et al. 2009) and contribute to shoreline 

stabilization (Gutierrez et al. 2011); therefore it is important to understand the potential effects 

of climate change on SAV habitats.  

Despite the importance of SAV habitats, distribution and occurrence of SAV species are 

not widely documented along the northern coast of the Gulf of Mexico (Handley et al. 2007, 

Carter et al. 2009, Merino et al. 2009).  Furthermore, relative abundance or extent of SAV 

across different coastal salinity zones (i.e., fresh, intermediate, brackish, salt) that may support 

different wildlife and fisheries species or communities is not widely documented. Several 

studies have identified water depth, water clarity and salinity as factors influencing SAV 

habitats (Cho and Poirrier 2005a, Carter et al. 2009). However, studies examining SAV 

distribution have documented high spatio-temporal variability in SAV and failed to find 

consistent factors that influence this variability (Merino et al. 2005), confounding any clear 

pattern over regional scales.  Furthermore, climatic cycles have also been found to potentially 

affect SAV (Cho and Poirrier 2005b), making it difficult to explain SAV distribution patterns  

locally or on a global scale, where an overall decline of coastal SAV has been noted (Short and 

Wyllie-Echeverria 1996).  

 Coastal ecosystems are the cultural, economic, and ecological backbone of the northern 

Gulf of Mexico.  Within this coastal region, SAV assemblages represent a significant and 

valuable habitat type extending inland in some areas over 200 km along a salinity gradient 
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running from saline to fresh environments (Sasser et al. 2014).  Biomass and species 

distribution of SAV have not been thoroughly studied and inventoried in this area (Merino et al. 

2009) despite their critical importance to fisheries and waterfowl management.  Thus, the 

objective of this project was to quantify SAV distribution, biomass and SAV assemblages across 

salinity zones in coastal northern Gulf of Mexico marshes.   

Methods 

Study area 

The study was conducted in coastal marshes of the northern Gulf of Mexico from 

Mobile Bay, Alabama, to Nueces River, Texas. Ecoregions that included coastal marshes and 

plains were used to define the boundaries for this project using Omernik Level III Ecoregions 

(USEPA 2013; Ecoregions 34g, 34h, 73n, 73o, 75a, 75k).   

Sampling design 

Within the study area, we randomly selected 12 sub-regions using a stratified random 

sampling design.  To achieve this, the study area was first divided into 43 sub-regions, which 

were represented by rectangles oriented North-South, and of equal East-West width.  Using a 

random number generator, we selected a total of 12 sub-regions (Figure 2.1).  We constrained 

our procedure to prevent the selection of adjacent sub-regions.  This approach allowed sites to 

cover the range of habitats across our entire study area, while ensuring the study was 

logistically feasible. 
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Figure 2.1. Map of study area from Nueces River, TX to Mobile Bay, AL.  A total of 384 sites, clustered in 
twelve sub-regions were sampled in 2013 and 2014 using stratified random sampling based on salinity 
zones (fresh, intermediate, brackish saline).  The inset on the bottom right represents an example of the 
salinity zone designations within one sub-region.  

To create a GIS-layer for potential SAV habitat within each sub-region, four spatial sub-

layers were developed using GIS Tools.  The first two sub-layers relied on the use of cloud-free 

Landsat and satellite imagery (1984-2011).  Images were stacked by path/row, with a minimum 

of 48 and a maximum of 124 images for any given path/row. The first sub-layer was created 

using an automated recognition of land-water classifications containing an SAV class.  When 

SAV habitat was indicated in more than 10% of the available imagery, then the pixel was added 

to the sub-layer.  For the second sub-layer, the stacked Landsat images were run through a 

maximum statistics tool and the output was run through an unsupervised classification on 

bands 4, 5, and 3.  Generally, SAV is more reflective in bands 4 and 5 compared to water (B. 

Couvillon, USGS, personal communication).  The output of the classification was coded into two 

classes: 1) possible SAV and 2) not SAV.  When pixels were classified as possible SAV for more 

than 10% of the available images, it was included in sub-layer 2. The third sub-layer relied on 
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National Wetlands Inventory data for the region.  We isolated all of the rooted vascular aquatic 

bed classes for the study area to create SAV Mask 3.  The fourth sub-layer was generated using 

the maximum extent of water, aquatic bed, and unconsolidated shore from the National Land 

Cover Dataset (1992, 2001, and 2006) and the Coastal Change Analysis Program (1996, 2001, 

2005 and 2006) datasets. Ponds less than 1011m-2 were deleted as they represent single pixels 

and often were not actually ponds.  

We combined the final output for each of the four sub-layers to create our final SAV 

mask using an “or” statement.  Where available, historic SAV geospatial data were used during 

the recoding process to help validate and refine the potential SAV mask.  Salinity zone 

designations (fresh, intermediate, brackish, saline) were based on long-term emergent marsh 

vegetation patterns, which reflect long-term mean salinity range (Visser et al. 2013).  These 

designations have been defined in Louisiana (Sasser et al. 2008), but were made using best 

professional judgment for Mississippi, Alabama and Texas for this project.  Sample sites were 

randomly generated, stratified by salinity zone, and replicated eight times within each salinity 

zone and potential SAV habitat within each sub-region (i.e., 4 salinity zones x 12 sub-regions x 8 

replicates = 384 sample sites x 3 subsamples x 2 years= 2304 samples).  

Field data collection 

All sampling occurred during the peak of the growing season, which was defined as mid 

June through early September. The order of sampling sub-regions was randomly determined 

each year.  Each site was sampled once in 2013 and again in 2014.  At each site, environmental 

and water quality variables, SAV presence, species composition and SAV biomass data were 

collected. Upon arrival at each site, water salinity (ppt, YSI-85, YSI Incorporated, OH), water 
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temperature (C, YSI-85, YSI Incorporated, OH), and turbidity (NTU-Hach 2100Q, Hach, CO) were 

sampled from the boat before disturbing the benthic sediments. After collecting water quality 

data, SAV was sampled by throwing a 0.25 m x 0.25 m, floating PVC quadrat haphazardly three 

times from the boat.  Within each quadrat, water depth was measured using a metric 

measuring stick randomly placed perpendicular and just touching the bottom (± 0.01 m).   

When SAV was found, all biomass in the quadrat was harvested down to the sediment 

surface. Samples were kept on ice and transported to the laboratory where they were stored at 

4⁰C until processing. In the lab, samples were washed to remove sediment, debris, and 

epiphytic material, and biomass was separated to species level.  Separated samples were dried 

at 60⁰C to a constant weight, which was then recorded (± 0.001 g).  

Analyses 

For all tests a significance value of p = 0.05 was used. Differences in environmental 

variables (salinity, temperature, water depth, turbidity) were tested across salinity zones using 

a generalized linear mixed model with a normal distribution and identity link function (Proc 

Glimmix, SAS Institute 2010). We examined the independent and interactive effects of year 

(2013, 2014) and salinity zone (fresh, intermediate, brackish, saline) on the independent 

environmental variables (salinity, temperature, water depth, turbidity), and included random 

effects of sub-region, and sub-region by zone interactions, accounting for replication within 

each salinity zone through a nested statement. The residual effect was the repeated measure of 

sampling the same site each year.  The SAV dataset was analyzed in its entirety for 

presence/absence by salinity zone using a chi-square test (SAS Institute 2010). Aboveground 

vegetation biomass of all sites (including zeroes) was analyzed using the same model as for 
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environmental variables, but using a negative binomial distribution to account for the over-

dispersion of data (McGarigal et al. 2013).  Lastly, we also analyzed the variation of SAV 

biomass across sites where SAV was present using a normal distribution model and identity link 

function as described above (Proc Glimmix, SAS Institute 2010).    

For examination of species-environment relationships, canonical correlation analysis 

(CCA) with backward selection was performed with CANOCO software (vers. 4.5; Wageningen 

UR, Netherlands; ter Braak and Smilauer 2002) to analyze the relationship between SAV 

biomass and environmental variables (salinity, water depth, and turbidity), combining 2013 and 

2014 data of all sample sites. The two years of data were combined to increase the number of 

samples per species and to focus on species-environment relationships. Species-specific 

biomass was log 10 (x +1) transformed for the CCA to improve normality, and rare species were 

down weighted. A Monte Carlo simulation test was used to determine statistical significance of 

canonical axes with 1000 simulations on the full model. 

Results 

Environmental variables 

Salinity differed significantly by year (F1, 356 = 20.67; p < 0.0001) and salinity zone (F3, 65 = 

53.85; p < 0.0001) with 2013 having slightly higher salinity as compared to 2014.  Fresh and 

intermediate salinity zones did not differ significantly in salinity, but were significantly lower 

than brackish sites, which were significantly lower than saline sites (Table 2.1).  Temperature 

differed significantly only by year, but the difference was likely not ecologically significant 

(0.7⁰C difference). Water depth differed significantly by year (F1, 355 = 10.61; p = 0.0012) with 

2013 having slightly greater water depths (0.51 m versus 0.47 m). Water depth also differed 
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significantly by salinity zone (F3, 63 = 3.96; p = 0.0119) with freshwater habitats being 

significantly deeper (0.63 m) as compared to saline, brackish and intermediate sites (<0.48 m). 

Table 2.1.  Mean (±SE) of environmental variables by salinity zone and year (2013, 2014).  
Ranges of reported values are indicated on the second line for each variable.  Different letters 
indicate statistically significant differences by salinity zone for each parameter (P < 0.05). 
 

  

2013 

  

 

Fresh Intermediate Brackish Saline 

Salinity (ppt)  3.92 (0.63)A 6.81 (0.76)A 11.1 (0.76)B 21.82 (0.87)C 

 

0.1-17.70 0.1-25.00 0-25.0 0-44.60 

Temperature (C) 30.29 (0.28)A 31.37 (0.17)A 31.79 (0.20)A 31.71 (0.18)A 

 

26.8-37.2 21.2-36.6 27.0-36.9 26.9 -35.4 

Turbidity (NTU) 52.3 (13.94)A 51.98 (8.85)A 58.2 (7.69)A 53.47 (5.15)A 

 

2.51-551.0 2.66-493.0 1.67-419.0 2.2 - 288.0 

Water Depth (m) 0.65 (0.04)A 0.52 (0.02)B 0.45 (0.02)B 0.44 (0.01)B 

 

0.04-1.40 0.07 -1.0 0.06-1.69 0.05-1.3 

  

2014 

  Salinity (ppt)  2.62 (0.51)A 5.12 (0.63)A 9.12 (0.64)B 20.96 (0.87)C 

 

0-16.2 0.2-27.4 0.02-24.7 0-39.0 

Temperature (C) 31.74 (0.32)A 31.78 (0.21)A 32.03 (0.17)A 31.64 (0.11)A 

 

28.1-35.9 27.4-36.6 26.9-38.3 26.9 -35.7 

Turbidity (NTU) 27.79 (4.36)A 49.35 (5.40)A 43.37 (2.95)A 46.18 (2.71)A 

 

4.96-198.0 1.24-254.0 5.66-157.0 5.39-184.0.0 

Water Depth (m) 0.61 (0.04)A 0.43 (0.02)B 0.44 (0.02)B 0.43 (0.01)B 

 

0.08-1.70 0.12 -0.86 0.08-1.3 0.08-1.0 
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Submerged aquatic vegetation  

All sampled sites. – Submerged aquatic vegetation was present at 38% of the sites 

sampled, which varied by salinity zone (chi-square = 19.58, p = 0.0002). SAV was found at only 

23% of saline sites but was found at more than 40% of the sites in the other salinity zones.  For 

all sites, including the zero values, there was a significant salinity zone effect for SAV biomass 

(F3, 29 = 23.63; p = 0.02). The saline zone had significantly lower biomass compared to the other 

zones in both 2013 and 2014 (Figure 2.2); mean biomass ranged from a low of about 10 g m-2 in 

2014 saline sites, to a high of about 80 g m-2 in 2014 freshwater sites.  There was no difference 

between years.  

 

Figure 2.2.  Total mean (± SE) SAV aboveground biomass across salinity zones and years for 
(top) all sites sampled, including sites with no SAV presence during sampling, and (bottom) only 
sites with SAV present.  Letters above bars denote significant differences in biomass between 
year and salinity zone.  
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Sites with SAV present. -- For sites with SAV present, there was a significant year by zone 

interaction (F3, 107 = 3.79; p = 0.01) with 2014 freshwater sites having significantly higher 

biomass (mean = 157.2 m-2, SE ±25.6 g m-2) as compared to all other single year and zone 

combinations (range: 38.6-83.9 g m-2; Figure 2.2).  In total, 14 species of SAV were collected 

over the two years of sampling.  Of these, twelve species of SAV were found in both 2013 and 

2014 (Table 2.2) with manatee grass (Syringodium filiforme) unique to 2013 and star grass 

(Halophila engelmannii) unique to 2014.  Eight of the 14 species comprised 97% of the SAV 

biomass, and all were found in both 2013 and 2014.  Over the two years of sampling, four 

species; coontail (Certophyllum demersum), Eurasian watermilfoil (Myriophyllum spicatum), 

widgeon grass (Ruppia maritima), and hydrilla (Hydrilla verticillata) accounted for 73% of the 

above-ground biomass collected.  Coontail, widgeon grass, and lesser pondweed (Potamageton 

pusillus) were collected across all four salinity zones. Hydrilla was collected only in fresh 

habitat; common water nymph (Najas guadalupensis) and wild celery (Vallisneria americana) 

were collected in all but saline habitat, while Eurasian watermilfoil was collected in all but fresh 

habitat (Table 2.2).  
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Table 2.2.  Interactive effect of salinity zone and year on mean aboveground biomass (±SE) standardized to g m-2 by species 
collected.  Percent (%) total indicates the amount of each species total biomass collected during the course of the study as a percent 
of the total aboveground biomass collected for all species. F = fresh habitat; I = intermediate habitat; B = brackish habitat; S = saline 
habitat.  
  

Species Total 
Cover 

           2013                 2014   

      F                    I                       B                  S                           F                       I                      B                   S 

Widgeon grass 25.7 4.8±2.4 11.8 ±6.7 11.1±4.8 1.0±0.5 6.9±4.2 2.4±1.1 12.3±4.0 0.9±0.6 

Hydrilla 18.6 18.0±8.3 - - - 41.9±12.9 - <0.05 - 

Coontail 16.3 12.1±6.4 0.7±0.3 1.2±0.6 <0.05 19.9±8.7 5.7±2.1 3.3±1.5 0.9±0.9 

Eurasian watermilfoil 12.4 - 3.7±1.5 6.7±2.1 <0.05     

Shoal grass 9.7 - - - 8.0±2.4 - - 0.1±0.1 5.7±2.0 

Lesser pondweed 6.0 9.6±5.6 1.4±1.3 0.2±0.2 0.8±0.7 4.4±2.1 0.5±0.3 0.1±0.1 - 

Common waternymph 4.9 0.4±0.3 <0.05 2.9±1.9 - 8.9±5.5 0.5±0.4 <0.05 - 

Sago pondweed 3.8 - 3.2±2.3 <0.05 - 5.5±3.4 1.3±1.2 <0.05 - 

Water star grass 0.9 1.8±1.8 - 0.5±0.5 - 0.2±0.2 <0.05 - - 

Wild celery 0.8 0.1±0.1 <0.05 0.2±0.2 - 0.7±0.6 0.6±0.6 0.2±0.2 - 

Turtle grass 0.6 - - - 0.6±0.6 - - - 0.2±0.2 

Star grass 0.1 - - - - - - - 0.2±0.2 

Carolina fanwort 0.1 0.3±0.3 - - - 0.1±0.1 <0.05 - - 

Manatee grass 0.1 - - - 0.1±0.1 - - - - 
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Species-environment relationship   

The CCA indicated a significant relationship between SAV species and environmental 

variables (F = 23.83, p = 0.002; Figure 2.3). The horizontal axis, which explained 16.0% of the 

variation in species assemblage (eigenvalue = 0.35) was highly correlated with salinity (r = 0.91) 

and distinguished true seagrass species, shoal grass (Halodule wrightii), star grass, manatee 

grass, turtle grass (Thalassia testudinum) from less salt-tolerant species. The vertical axis, which 

accounted for 3.7% of the species-environment variation (eigenvalue = 0.08), was associated 

with water depth (r = 0.50).  Hydrilla, Carolina fanwort (Cabomba caroliniana), star grass, and 

turtle grass were positively associated with water depth, while wild celery and common water 

nymph were negatively associated with water depth. 

 
Figure 2.3.  Canonical correlation analysis (CCA) of SAV species in relation to environmental 
variables (salinity, water depth, water turbidity). 

Discussion 

 In the northern Gulf of Mexico, extensive marsh loss is altering the distribution of 

shallow-water habitats (Couvillion and Beck 2013), which may be further compounded by 
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predicted effects of climate change on salinity and water depths (Harley et al. 2006). We found 

that submerged aquatic vegetation assemblage was partially driven by salinity and water depth, 

although overall biomass did not differ.  As recent sea-level rise models predict the probable 

conversion of fresh coastal marsh to more saline marsh and open water habitats (Sheets et al. 

2012), SAV are likely to be significantly impacted, altering the characteristics of SAV 

assemblages, and potential services provided.  These changes could alter food and habitat 

resources, affecting dependent faunal species (Junk et al. 2013, Úbeda et al. 2013).   

In general, SAV habitat is assumed to be valuable for invertebrate and fish species as it 

provides both refuge from predators and a rich source of food for estuarine nekton (Heck et al. 

2003).  Predicting the consequences of shifting SAV on nekton is somewhat complicated as past 

research has shown conflicting results.  For example, a number of studies in coastal areas have 

found that higher densities of SAV were associated with greater numbers of invertebrates, fish 

(Kanouse et al. 2006, King and Sheridan 2006, Rapoza and Oviatt 2015), and waterfowl 

(Hansson et al. 2010).  In contrast, there have been numerous suggestions that this positive 

association between SAV and nekton only holds true under specific conditions.  For example, 

SAV density and morphology have been found to influence habitat use of fish (Edgar and 

Klumpp 2003) and predator-prey dynamics of fish and invertebrates (Chesney et al. 2000, 

Canion and Heck 2009). Because SAV characteristics (i.e., biomass, density, and species 

assemblage) may be critical factors in assessing potential habitat and food availability, 

understanding primary environmental drivers of SAV assemblages and potential shifts under 

changing conditions is essential.   
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  While conversion of salinity zones from fresh to more saline may not necessarily alter 

total SAV biomass, changes in SAV assemblages will occur.  Lower SAV density, production, and 

changed assemblages could impact carbon sequestration and overall storage, refuge availability 

for invertebrate and fish species, and food resource availability for other wildlife (Dionne and 

Folt 1991, Edgar and Klumpp 2003, Hansson et al. 2010, La Peyre and Gordon 2012).  In this 

study, species assemblages varied by salinity zone and water depth. Only 3 of the 14 species 

were collected across the entire salinity gradient sampled (widgeon grass, coontail, and lesser 

pondweed) indicating that increasing salinity due to sea-level rise would result in altered SAV 

assemblages as species shifted to increasingly salt tolerant species. Based on our results, 

predictions of greater water depth and salinity throughout the coast will lead to a shift in SAV 

assemblages to more salt-tolerant species (Fulford et al. 2014). 

 As salinity and water depth are altered in fresh, intermediate, and brackish aquatic 

habitats, opportunistic species adaptable to a range of salinity conditions and able to grow in 

deeper waters are likely to expand into areas previously occupied by other species.  For 

example, hydrilla is a highly opportunistic and invasive species that primarily occurs in 

freshwater, similar to where it was found in this study.  In high-density patches, hydrilla has 

been shown to be associated with reduced densities of fish and invertebrates, altered fish diets, 

and reduced water quality (increased pH and surface water temperature) (Colon-Gaud et al. 

2004, Carniatto et al. 2014).  Similarly, previous studies have documented the expansion of 

widgeon grass into seagrass areas after salinity decreases following storm events (Fourqurean 

et al. 2003, Koch et al. 2007, Johnson et al. 2013).  This expansion could have consequences on 

overall system production, as widgeon-grass-dominated beds have been found to exhibit lower 
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peak biomass and productivity than those found in higher salinities that were dominated by 

turtle grass and eel grass (Zostera marina), a seagrass species commonly found along the 

Atlantic coast (Fourqueran et al. 2003). Furthermore, seagrass dependent fauna may have to 

adapt their home ranges or risk increased exposure to predators due to lower SAV density or 

changes in habitat structural morphology (Dionne and Folt 1991, Edgar and Klumpp 2003).         

Climate change models predict that sea levels will continue to rise with global climate 

change (Pachauri and Meyer 2014). The shallow waters of the Gulf of Mexico and locally high 

subsidence rates make the coastal marshes along the northern Gulf particularly vulnerable to 

rising sea levels; increasing salinity and water depth will be two of the most acute effects 

(Bindoff et al. 2007, Harley et al. 2012).  Several alternative changes in SAV assemblages are 

possible in response to predicted coastal changes.  Similar to other coastal habitats, migration 

of SAV may occur with a shift in location of these different salinity communities following the 

movement of isohalines (Neckles et al. 1997, Short and Neckles 1999).  If accompanied by 

significant sea-level rise, increased depths downstream, and barriers to migration upstream, 

this may result in a decline in overall SAV, or reduction in total area available for SAV habitats.  

If no barriers exist, SAV may continue to maintain themselves, or even expand simply with 

shifting locations, and into newly available areas from changes in coastal marsh availability.    

Understanding current SAV availability and distribution, and factors controlling these 

patterns is critical for natural resource managers to effectively predict and plan for changes to 

SAV across the coast, and their impacts on dependent faunal species.  In particular, in managing 

SAV as essential fish habitat for dependent faunal species, understanding key factors affecting 

the availability of specific SAV species and assemblages provides powerful information to 
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managers.  All SAV may not be equal in terms of fish habitat or provision of food resources (i.e., 

widgeon grass versus hydrilla); management can be focused to promote one species or 

assemblage of species over another depending on management goals (Blandon and zu 

Ermgassen 2014).  For example, management activities to maintain freshwater inflows within 

coastal estuaries experiencing increased salinities might be useful if managers want to focus on 

maintenance of a fresher community; alternatively, control of water depths through water 

management in many coastal interior ponds may help to maintain shallow-water species over 

more deep-water adapted species.  A better understanding of the current spatial distribution 

and environmental controls on key SAV species will help better prepare managers to focus 

management on desirable communities.  
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CHAPTER 3 
SPATIAL AND TEMPORAL VARIATION OF SUBMERGED AQUATIC VEGETATION 

ASSEMBLAGES AND BIOMASS ACROSS THE NORTHERN GULF OF MEXICO  
 

 Within the sub-tidal coastal zone, submerged aquatic vegetation (SAV)  provides many 

ecosystem services, which include foraging habitat and refuge for invertebrates and fish 

(Blandon and zu Ermgassen 2014; La Peyre and Gordon 2012; King and Sheridan 2006; Williams 

and Heck 2001), food for waterfowl (Shaughnessy et al. 2012; Plattner et al. 2010; Bortolus et 

al. 1998; Miller et al. 1996; Url et al. 1991), improving water quality (DeBusk et al. 2011; Kosten 

et al. 2009; Dierberg et al. 2005, 2002; Knight et al. 2003) and shoreline stabilization (Gutiérrez 

et al. 2011; Hemminga and Duarte, 2000; Thayer et al. 1975). As a result, SAV availability is 

frequently integrated into climate change and restoration models (Visser et al., 2013). 

However, along rapidly changing and expansive coasts, including large deltaic regions such as 

the northern Gulf of Mexico (nGoM), limited data are available to describe SAV assemblages, 

SAV temporal variation and spatial distribution, limiting our ability to accurately predict SAV 

availability and ecosystem services.  

 Across the nGoM, SAV exists in the shallow bays, bayous, canals and ponds that dissect 

the landscape (Poirrier et al. 2010; Carter et al. 2009; Merino et al. 2009; Handley et al. 2007). 

In this region SAV exists across salinity gradients from fresh to saline water  in mono-specific to 

multi-species beds (DeMarco et al. 2016; Hillmann et al. 2016; Merino et al. 2009). Coast-wide 

however, minimal data exist documenting SAV biomass and assemblage characteristics (i.e. 

diversity, number of species, evenness) and we lack estimates of overall habitat availability or 
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total standing stock throughout the region. Coastal habitat maps often provide only minimal 

guidance on SAV availability across the nGoM.  

Across the coast, a number of more local studies, both old and new,  have shown that 

climatic cycles and storms potentially impact SAV temporal variability (Poirrier et al. 2017; Cho 

and Poirrier 2005), and that salinity and water depth likely influence SAV biomass abundance 

and assemblages (Carter et al. 2009; Cho and Poirrier, 2005b, Penland and Hathaway 1938). 

Penland and Hathaway (1938) reported that water was deeper in fresh marshes than in salt 

marshes in southeast Louisiana (later confirmed by Snedden and Steyer (2013)), and broadly 

described the “aquatics,” including Ceratophylum demersum (coontail) in fresh waters, 

Myriophyllum pinacoides (Whorled watermilfoil) in brackish waters, and Ruppia maritima 

(widgeongrass/tassel pondweed) in saline waters. More recently, high spatio-temporal 

variability in SAV has been found. Chabreck (1971) reported that SAV coverage was inversely 

related to salinity, which may be attributed to salinity stress, light limitation and/or wave 

exposure. Despite local studies correlating SAV with some environmental factors, comparisons 

among studies have failed to identify consistent environmental predictors (i.e., Merino et al. 

2005, Cho and Poirrier et al. 2005).  Further, although enhanced water clarity in marine systems 

improves the accuracy of seagrass meadow aerial estimation using remote sensing techniques 

(Meyer and Pu 2012; Thorhaug et al. 2006; Yuan and Zhang 2008), these methods are not 

applicable in the river dominated, turbid waters of the nGoM. The lack of consistent patterns in 

factors controlling SAV, and limitations to estimating SAV spatial distribution, limit our ability to 

develop predictive models, or to map SAV across a broad scale.  Furthermore, high regional 
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variation in climate and environmental conditions makes it difficult to extrapolate the available 

data across the entire coast. 

 Coastal ecosystems are critically important to the functioning of coastal communities. 

Along low-lying coasts, SAV represents a significant and valuable habitat type vulnerable to 

global climate change, potentially resulting in shifting SAV assemblages. Restoration and 

industry also impact SAV habitats by altering environmental conditions (Peyronnin et al. 2017; 

Pulich and White 1991).  Coastal management benefits from robust models, and uses such 

models to plan for changing natural resource availability. The objective of this study was to 

describe spatial and temporal patterns of SAV assemblages (species, diversity, biomass) across 

salinity zones and geographic regions along the northern Gulf of Mexico; the goal was to 

provide critical data to (1) develop new SAV models, and (2) refine existing habitat maps, in 

order to better plan for, or mitigate against, changes to SAV availability. The hypotheses are 

that (1), species composition and diversity in SAV assemblages will be different across salinity 

zones and geographic regions, (2); SAV biomass abundance will be inversely related to 

increasing salinity and will also vary across geographic regions, and (3), SAV biomass will vary 

temporally, interannually, throughout the duration of the study.   

Methods 

Study area 

The study was conducted in coastal marshes of the nGoM from Mobile Bay, Alabama, to 

Nueces River, Texas (Figure 3.1). The area encompasses approximately 1,200 km of coastal 

shoreline that is frequently impacted by tropical storms and hurricanes (Conner et al. 1989; 

Stone et al. 2005). Along this coast, habitats are structured by salinity gradients, largely 
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controlled by freshwater inputs limited to precipitation and restricted inflow from major river 

systems (i.e. Mississippi River) and Greater Intracoastal Waterway (Conner et al. 2005). Habitats 

consist of a mosaic of diverse estuarine and coastal plain habitat types, ranging from forested 

swamps, to fresh through saline marsh, extensive shallow-water habitats with sediment 

bottoms, oyster reefs, submerged and floating aquatic vegetation habitats, and barrier islands. 

 

Figure 3.1. Locations of sampling sites across coastal northern Gulf of Mexico. 

We used Omernik Level III Ecoregions (USEPA 2013), which include coastal marshes, 

ponds, bayous, bays and plains, to define the boundaries for this project. For analysis we 

combined clustered Level IV Ecoregions and broadly characterized geographic regions across 

the study area (regions: coastal Mississippi/Alabama (MS/AL), deltaic Louisiana (LAdelta), 

Texas/Louisiana chenier plain (TX/LAchenier), mid-coast Texas (TXmidcoast). For a complete 
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description of this study sampling design and selection of sites please refer to Hillmann et al. 

(2017).  Across the entire study area, sample sites were stratified by region and by salinity zone 

(fresh, intermediate, brackish, saline).  Across the coast, we identified 12 areas for study; in 

each area, we selected 8 sample sites per salinity zone (12 areas x 4 zones x 8 sites x 3 years = 

1152 sample sites x 3 replicates = 3456 samples).  

Field data collection 

All sampling occurred during the peak of the growing season, which was defined as mid 

June through early September. The order of sampling was randomly determined each year.  

Each site was sampled once in 2013 and again in 2014 and 2015.  At each site, environmental 

and water quality data, SAV presence and species composition data, and SAV biomass were 

collected. Upon arrival at each site, water salinity (YSI-85, YSI Incorporated, OH), water 

temperature (oC, YSI-85, YSI Incorporated, OH), and turbidity (NTU-Hach 2100Q, Hach, CO) were 

sampled from the boat before disturbing the benthic sediments. After collecting water quality 

data, SAV was sampled by throwing a 0.25 m x 0.25 m, floating PVC quadrat haphazardly three 

times from the boat.  Within each quadrat, water depth was measured using a metric 

measuring stick randomly placed perpendicular and just touching the bottom (± 0.01 m).   

  When SAV was found, all aboveground biomass (AG) in replicate quadrats was 

harvested down to the sediment surface. Belowground biomass (BG) was collected at each site 

by coring 3 times to a depth of 30 cm just outside replicate quadrats using a 10 cm diameter 

PVC corer with plunger, because harvesting of AG biomass was found to disturb BG biomass. 

Samples were kept on ice and transported to the laboratory where they were stored at 4⁰C 

until processing.  
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Laboratory processing and calculations 

In the lab, AG samples were washed to remove sediment, debris, and epiphytic material, 

and biomass was separated to species level.  Separated AG samples were dried at 60⁰C to a 

constant weight, which was then recorded (± 0.001 g).  

Total and species specific AG biomass were calculated by summing species AG biomass 

by replicates and obtaining a mean (± SE) value by site. BG samples were rinsed on a 1.4 µm 

mesh screen to remove sediment and debris. Samples were separated into live and dead roots, 

dried at 60oC to a constant weight, and weight recorded (± 0.001 g). Mean total BG biomass 

values (±SE) were calculated by summing live and dead roots by replicate and averaging 

replicates by site. Total biomass was the sum of total AG and BG biomass.  

SAV standing stock was estimated by first calculating overall mean SAV biomass (g m-2, 

±SE), for all sites, including zero values, which was then converted to tonnes ha-1. This value was 

then multiplied across the extent of potential SAV habitat (100,276.2 ha) within the study area, 

and then extrapolated across potential SAV habitat across the nGoM (potential SAV habitat in 

study area equals approximately 28% of potential SAV habitat across nGoM). 

Analysis 

For all tests a significance value of p= 0.05 was used. Differences in environmental and 

water variables (salinity, temperature, water depth, turbidity) were tested across year, salinity 

zones, regions and their interactions using a generalized linear mixed model with a normal 

distribution and identity link function (Proc Glimmix, SAS Institute 2010). We examined the 

independent and interactive effects of year (2013, 2014, 2015) and salinity zone (fresh, 
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intermediate, brackish, saline) and region (MS/AL, LAdelta, TX/LAchenier, TXmidcoast) on the 

independent environmental variables (salinity, temperature, water depth, turbidity), and 

included random effects of polygon, and polygon by zone interactions and polygon by region 

interactions, accounting for replication within each salinity zone and region through a nested 

statement. The residual effect was the repeated measure of sampling the same site each year.  

The SAV dataset was analyzed in its entirety for presence/absence by salinity zone and region 

(SAS Institute 2010). SAV abundance (biomass standing stock) was characterized across all sites 

(including zeroes) and separately across only sites with SAV presence using the same model as 

for environmental variables, but using a log normal distribution to account for the over-

dispersion of data (McGarigal et al. 2013). SAV assemblage characteristics (diversity, richness, 

evenness) were analyzed at sites with SAV presence. Species diversity was calculated with 

Shannon-Wiener Diversity. 

Results 

Environmental variables 

Salinity differed significantly by year (F2,1124=36.27; p < 0.0001) and salinity zone 

(F3,1123=195.16; p < 0.0001) with 2015 having lower salinity compared to 2013 and 2014.  In all 

years fresh and intermediate salinity zones did not differ significantly in salinity, but were 

significantly lower than brackish sites, which were significantly lower than saline sites (Table 

3.1).  Temperature differed significantly only by year, but the difference was likely not 

ecologically significant (˂0.5 ⁰C difference). Water depth also differed significantly by year 

(F2,1125=4.15; p = 0.0160), however differences in depth between years fell within the expected 

tidal range of the region (0.47 m-0.52 m). Water depth also differed significantly by salinity 
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zone (F3,1124 = 32.23; p < 0.0001) with freshwater habitats being significantly deeper (mean 0.66 

m, S. E. 0.01 m) as compared to saline, brackish and intermediate sites (<0.48 m). 

Table 3.1. Environmental conditions (mean, ±SE) at sampling locations across coastal northern 
Gulf of Mexico within year and salinity zone. Different letters indicate statistically significant 
differences. 
 

 

Fresh Intermediate Brackish Saline 

  

                    

2013 

  Salinity   3.92 (0.63)A 6.81 (0.76)A 11.1 (0.76)B 21.82 (0.87)C 

Temperature (C) 30.29 (0.28)A 31.37 (0.17)A 31.79 (0.20)A 31.71 (0.18)A 

Turbidity (NTU) 52.3 (13.94)A 51.98 (8.85)A 58.2 (7.69)A 53.47 (5.15)A 

Water depth (m) 0.65 (0.04)A 0.52 (0.02)B 0.45 (0.02)B 0.44 (0.01)B 

  

                    

2014 

  Salinity   2.62 (0.51)A 5.12 (0.63)A 9.12 (0.64)B 20.96 (0.87)C 

Temperature (C) 31.74 (0.32)A 31.78 (0.21)A 32.03 (0.17)A 31.64 (0.11)A 

Turbidity (NTU) 27.79 (4.36)A 49.35 (5.40)A 43.37 (2.95)A 46.18 (2.71)A 

Water depth (m) 0.61 (0.04)A 0.43 (0.02)B 0.44 (0.02)B 0.43 (0.01)B 

  

                    

2015 

  Salinity  4.52 (0.90)A,B 3.39 (0.40)A 5.79 (0.56)B 11.31 (0.69)C 

Temperature (C) 31.81 (.34)A 32.00 (0.25)A 31.54 (0.20)A 31.57 (0.18)A 

Turbidity (NTU) 34.74 (7.51)A 64.14 (7.98)B 58.09 (5.46)A 54.28 (5.17)A 

Water depth (m) 0.68 (0.05)A 0.51 (0.30)B 0.50 (0.02)B 0.48 (0.02)B 
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Submerged aquatic vegetation 

SAV biomass.- For all sites, including the zero values, there was a significant salinity zone 

by region interaction for SAV total biomass (F9,1081=11.47; p< 0.0001), and a significant year by 

zone interaction (F11,440=4.99; p<0.0001), with no other significant factors or interactions.  For 

the zone by region interaction,  the fresh LAdelta region had significantly higher biomass 

compared to all other salinity zone and region combinations (Figure 3.2A); mean total biomass 

ranged from a low of about 1.4 gdw m-2 brackish TXmidcoast sites, to a high of about 149 gdw 

m-2 in fresh LAdelta sites.  For the significant year by zone interaction, the 2014 freshwater sites 

had significantly higher biomass (mean = 164.2 gdw m-2, SE ± 26.8 gdw m-2) as compared to all 

other single year and zone combinations (range: 42.7-107.9 gdw m-2).  

 

Figure  3.2. Mean total (above + belowground) submerged aquatic vegetation biomass (±SE) 
across salinity zones and regions. All sites including zeros (A) and sites excluding zeros (B) are 
shown. MS/AL = Mississippi/Alabama coastal marshes; LAdelta = Louisiana deltaic coastal plain; 
TX/LAchenier = Texas/Louisiana chenier plain, TXmidcoast = Texas midcoast 
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Figure  3.3. Mean total (above + belowground) submerged aquatic vegetation biomass (±SE) 
across salinity zones ( fresh, intermediate, brackish, saline) and years (2013, 2014, 2015) for all 
sites including zeros. 

SAV biomass was also analyzed to examine differences among sites with SAV present.  

For this analysis, there was a similar significant salinity zone by region interaction on total SAV 

biomass (F9,436=3.39; p=0.0005; Figure 3.2B). However, the difference occurred with the saline 

zone in the TXmidcoast region having the highest amount of total SAV biomass (mean 84.9 gdw 

m-2, SE ± 12.6 gdw m-2) compared to all other saline zone and region combinations.  Further, 

the fresh zone LAdelta (mean 164.5 gdw m-2, SE ± 19.4 gdw m-2) and TX/LAchenier (mean 127.6 

gdw m-2, SE ± 42.2 gdw m-2) had higher total SAV biomass than MS/AL and TXmidcoast, and did 

not differ from each other.  
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SAV assemblages.-In total 14 species of SAV were collected over the three years of 

sampling.  Of these, twelve species of SAV were found in all years (Table 3.2) with manatee 

grass (Syringodium filiforme) unique to 2013 and star grass (Halophila engelmannii) unique to 

2014.  Eight of the 14 species comprised 98% of AG SAV biomass, and all were found in all 

years.  Over the three years of sampling, five species; coontail (Certophyllum demersum), 

Eurasian watermilfoil (Myriophyllum spicatum), widgeon grass (Ruppia maritima), hydrilla 

(Hydrilla verticillata) and shoal grass (Halodule wrightii) accounted for 84% of the above-ground 

biomass collected.  Coontail, widgeon grass, and lesser pondweed (Potamageton pusillus) were 

collected across all four salinity zones. Hydrilla was collected only in fresh habitat, common 

water nymph (Najas guadalupensis), wild celery (Vallisneria americana) and sago pondweed 

(Stuckenia pectinata) were collected in all but saline habitat, while Eurasian watermilfoil was 

collected in all but fresh habitat (Table 3.2).  
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Table 3.2. Interactive effect of salinity zone and year on mean aboveground biomass (±SE) standardized to g m-2 by species collected. 
F= fresh habitat; I = intermediate habitat; B = brackish habitat; S = saline habitat.   RM=Ruppia maritime, HV= Hydrilla verticallata, 
CD=Ceratophyllum demersum, MS= Myriophyllum spicatum, HW= Halodule wrightii, PP= Potamogeton pusillus, NG= Najas 
guadalupensis, SP= Stuckenia pectinatus, HD= Heteranthera dubia, VA= Vallisneria americana, TT=Thalassia testudinum, HE= 
Halodule engelmanii, CC= Cabomba caroliniana, SF=Syringodium filiforme. 
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SAV diversity increased significantly by year, with the highest diversity in 2015 

(F2,455=5.10; p=0.0065; +0.12; Figure 3.3A). There was no significant year by salinity zone, year 

by region, or year by zone by region interactions. However, there was a significant species 

diversity interaction of salinity zone and region (F8,455=3.29; p=0.0012). First, LAdelta, 

TX/LAchenier and TXmidcoast fresh species diversity did not differ significantly from each other 

(range: 0.33-0.47), but differed and were greater than MS/AL fresh species diversity 

(mean=0.03, SE ± 0.03). Secondly, LAdelta and TXmidcoast intermediate salinity species 

diversity did not differ (range: 0.44-0.59), but were greater than MS/AL and TX/LAchenier 

intermediate species diversity (range: 0.02-0.12). Finally, LAdelta brackish species diversity was 

significantly greater (mean = 0.49, SE ± 0.06) than all other brackish region combinations 

(range: <0.02; Figure 3.3B). The largest diversity value, 2.0, was calculated for a brackish site in 

2015 in the LAdelta region that also contained the largest number of distinct SAV species 

observed at an individual site (7). The lowest diversity value, 0.0, was calculated for multiple 

sites with mono-specific SAV beds across all years, salinity zones and regions. 
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Figure 3.4. Mean Shannon-Wiener diversity (±SE) across year (5A), and salinity zones by region 
(5B) MS/AL = Mississippi/Alabama coastal marshes; LAdelta = Louisiana deltaic coastal plain; 
TX/LAchenier = Texas/Louisiana chenier plain, TXmidcoast = Texas midcoast.  Different letters 
indicate significant differences (p=0.05). 

 There was a significant interaction of salinity zone and region for the mean number of 

species observed (Table 3.3; F9,413=3.02,p=0.0017). All saline sites with species present, 

regardless of region, contained less than mean 1.2 (SE ± < 0.09) species per site. The highest 

mean number of species per site was 2.50 species, at intermediate TXmidcoast sites. Saline 

TX/LAchenier sites, brackish TXmidcoast sites, and fresh MS/AL sites were always mono-

specific. The largest range in number of species observed (1-7) occurred in brackish LAdelta 

sites. Species evenness was positively correlated to species diversity (R2=0.63). 

 
 
 
 
 
 
 
 



 

55 
 

Table 3.3. Submerged aquatic vegetation assemblage characteristics (diversity, number (#) of 
species, range, evenness) (mean, ± S.E.) across salinity zones (fresh, intermediate, brackish, 
saline) and regions (MS/AL= Mississippi/Alabama coastal marshes, LAdelta= Louisiana delta 
plain, TX/LAchenier= Texas/Louisiana chenier plain, TXmidcoast= Texas midcoast). 
  

 Shannon-Wiener #  species # species  Species evenness 
 diversity (0-4)  range       (0-1)   
Fresh     
MS/AL     0.00 (0.00) 1.00 (0.00)       1 0.00 (0.00) 
LAdelta     0.46 (0.06) 2.25 (0.15)     1-5 0.07 (0.01) 
TX/LAchenier     0.33 (0.11) 1.66 (0.19)     1-3 0.06 (0.02) 
TXmidcoast     0.33 (0.22) 1.88 (0.27)     1-5 0.06 (0.02) 
Intermediate     
MS/AL     0.02 (0.01) 1.09 (0.06)     1-2      <0.01  
LAdelta     0.44 (0.08) 1.97 (0.16)                  1-4            0.10 (0.02) 
TX/LAchenier     0.11 (0.03) 1.30 (0.09)             1-4    0.02 (0.01)  
TXmidcoast     0.59 (0.22) 2.50 (0.50)             2-3    0.14 (0.06)  
Brackish     
MS/AL     0.01 (0.01) 1.05 (0.05)             1-2                 <0.01  
LAdelta     0.49 (0.06) 2.25 (0.15)             1-7                0.13 (0.02)  
TX/LAchenier     0.01 (0.01) 1.02 (0.04)             1-2     0.02 (0.01)  
TXmidcoast     0.00    (-) 1.00    (-)                  1    0.00    (-)  
Saline     
MS/AL     0.10 (0.07) 1.13 (0.09)             1-2    0.02 (0.02)  
LAdelta     0.03 (0.03) 1.08 (0.08)             1-2        <0.01  
TX/LAchenier     0.00 (0.00) 1.00 (0.00)               1    0.00 (0.00)  
TXmidcoast     0.06 (0.02) 1.10 (0.04)             1-2    0.02 (0.01)  
     
          Standing stock.- Mean SAV biomass, including all sites with zero values was 0.33 tonnes 

ha-1. The study area is estimated to contain 33,091.1 tonnes of SAV standing stock at summer 

maximum, extrapolated across the entire nGoM, we estimated the coast contains 118,466.3 

tonnes of SAV standing stock at summer maximum. 

Discussion 

 Across the northern Gulf of Mexico, significant shallow water habitats exist and support 

valuable and unique assemblages of species. This study documented extensive submerged 

aquatic vegetation across the entire coast and identified “SAV hotspots” supporting significant 
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SAV assemblages and biomass. SAV hotspots and overall biomass appeared to be stable across 

years, with significantly greater SAV biomass located within the fresher salinity zones, and 

within the Louisiana deltaic system.  We estimated SAV standing stock across the coast 

(>118,000 tonnes) and believe it to be the first estimate of SAV biomass standing stock at this 

scale, specifically along the northern Gulf of Mexico coast.  

SAV is considered to be valuable habitat (Heck et al. 2003), and productive SAV beds are 

generally assumed to indicate healthy sub-tidal ecosystems (Li et al. 2007).  Observed SAV 

declines in the Chesapeake Bay region ( Stevenson et al. 2014; Kemp et al. 2004; Orth and 

Moore 1983) prompted decades of research resulting in significantly better understanding of 

SAV ecology, human induced impacts on SAV and the development of models which capture 

the amount of SAV biomass over broad regions and timescales (Moore et al. 2000). Similar 

declines in SAV have been observed in specific regions (i.e. Mobile Bay, Lake Pontchartrain, 

Chandeleur Islands, Galveston Bay, etc.) along the nGoM (Estes et al. 2009; Poirrier et al. 2009; 

Handley et al. 2007; Adair et al. 1994). Our research resulted in a coastwide database of 

baseline SAV assemblage and biomass data for the nGoM that can be used to track changes to 

this valuable natural resource (La Peyre et al. 2017).   

We identified several persistent “SAV hotspots” along the coast; areas appearing to 

maintain the overall stability of SAV biomass. Specifically, SAV biomass was three times higher 

in fresh SAV habitat compared to all other salinity zones. We observed not only more SAV 

presence at fresh sites, but also overall more SAV biomass. Fresh sites tended to be deeper, and 

these results extend the salinity/water depth relationship discussed in previous coastal surveys 

that focused primarily on emergent marsh vegetation (Snedden and Steyer 2013; Penfound and 
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Hathaway 1938) to SAV. Further,  freshwater SAV species  exhibit expansive growth forms 

(Barko et al. 1982), and are less exposed to disturbance and waves in protected ponds and 

bayous, likely explaining some of the observed differences in biomass between freshwater sites 

and other salinity zones. Commonly observed freshwater species (i.e. Hydrilla verticillata, 

Cabomba caroliniana, Heteranthera dubia) grow on strong stems towards light, profusely 

branching out just below the surface of the water. In contrast, saline sites were not as deep as 

fresh sites, and salt tolerant species like seagrasses (i.e. Halodule wrightii, Thalassia testudinum, 

Halodule engelmanii and Syringodium filiforme) have slender growth forms,  depend on light 

reaching plants on water bottoms, and are more exposed to disturbance and waves, possibly 

contributing to less biomass overall in the saline zones compared to the fresh zones across the 

nGoM.  

Across the coast, significant differences in SAV assemblages and biomass were also 

detected by region.  The Louisiana deltaic region held, on average, twice as much biomass as all 

other regions (LAdelta mean: 54.7 gdw m-2, SE ± 5.8; all other regions mean range: 19.1-23.3 

gdw m-2). In fact, biomass values were high across LAdelta fresh, intermediate and brackish 

habitats. The Louisiana deltaic region is strongly influenced by the Mississippi River, its 

distributaries, natural crevasses and river management. River management has resulted in 

extensive areas of fresh and low salinity shallow water habitat in the upper basins of the region, 

surpassing the areal extent of low salinity areas in other regions and providing ample habitat 

for freshwater SAV. The fresh zone in the LAdelta region contains persistent SAV beds which 

resulted in fewer sites with no SAV compared to the other regions. Emergent marshes in 

Louisiana are productive habitats, holding in the range of 199-900 g m-2 of vegetative biomass 
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(Delaune et al. 1979). Similarly, SAV habitats in Louisiana are extensive and contain substantial 

amounts of biomass. 

 Biomass was similar between the LAdelta and the TXmidcoast region when only sites 

with SAV presence were considered. Although the LAdelta region contained a large amount of 

SAV overall, and specifically in the fresh zone, robust seagrass beds (as in the TXmidcoast 

region) were absent in the LAdelta region.  As seagrass beds tend to form dense, large 

meadows, where they exist, they contribute large amounts of biomass in contrast to fresher 

SAV forms which can be patchier, and may consist of less dense or robust species.  The “saline” 

areas along Louisiana’s coast are heavily influenced by the Mississippi River; salinity is highly 

variable (https://www.lacoast.gov/crms_viewer2/), is influenced by freshwater discharge from 

the Mississippi River (https://waterdata.usgs.gov/nwis/annual/), and consequently below 10 

for extended periods of time during summer months. Additionally, coastal erosion and river 

water also limits light; conditions not favoring seagrass growth.  As a result, SAV in the saline 

areas of Louisiana’s coast is restricted to a few salt tolerant freshwater species (i.e. Ruppia 

maritima, Myriophyllum spicatum), limiting the extent of seagrass species compared to the 

MS/AL and Texas coastal regions.  The similarity in biomass when comparing “SAV present” 

sites is due to these robust seagrass meadows in saline Texas areas (Pulich 1985) compared to 

the more extensive fresher SAV across the LADelta lower salinity areas.  

As expected, species diversity was low in SAV habitats along the nGoM, and was similar 

to SAV assemblages elsewhere (Rybicki and Landwehr 2007; Hestir 2004; Kanouse et al. 2006; 

Pham et al. 2014). In this study 66% of SAV samples were mono-specific, and biomass was 

similar to reported values from other productive SAV habitats. We found no correlation 

https://www.lacoast.gov/crms_viewer2/
https://waterdata.usgs.gov/nwis/annual/
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between species diversity and biomass (r2= 0.02). For instance, although high diversity areas 

(i.e. fresh LAdelta region (number of species range: 1-5)) held the most biomass, certain low 

diversity areas (i.e. saline TXmidcoast (number of species range: 1-2) also contained significant 

biomass. Further, as species diversity increased from 2013 to 2015, overall biomass did not 

increase. 

 Despite significant differences in spatial distribution across salinity zones, and regions, 

temporal variation was limited.  Mean total biomass was similar across years although diversity 

increased slightly in 2014 and 2015. There was an increase in SAV biomass in 2014, in the fresh 

zone, possibly due to freshening from increased precipitation 

(https://www.srcc.lsu.edu/monthly_summaries) across the southeastern United States during 

spring months. We observed a more than two-fold increase of Hydrilla verticillata, a strictly 

freshwater species, in 2014. Ceratophyllum demersum, another common freshwater species, 

increased by nearly 50%. By 2015, fresh SAV returned to 2013 levels. No major storms passed 

over the study area from 2013-2015. Storm systems and hurricanes impact SAV abundance and 

spatial distribution, stirring up sediments, reducing light and uprooting plants (Orth et al. 2006). 

Other studies have discussed the impact storms have on SAV abundance across years (Poirrier 

2014), but the 3-year span of this study precluded us from detecting these trends because of a 

lack of major storms. 

 We calculated what we believe is a first estimate of SAV biomass standing stock at the 

scale of the nGoM. The potential SAV habitat area within our study area just exceeded 

100,276.2 hectares, which is approximately 28% of the potential SAV habitat area across the 

nGoM (irrespective of salinity zones or regions) and we estimated that this area contained an 

https://www.srcc.lsu.edu/monthly_summaries
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approximately 118,466.3 metric tonnes of SAV standing stock. These figures are proportionally 

comparable to standing stock in the Chesapeake Bay, where SAV biomass standing stock of 

approximately 25,000 tonnes over 30,000 hectares has been reported (Moore et al. 2000). Also 

important, these values highlight the substantial contribution SAV are to coastal ecosystems at 

regional scales along dynamic coasts (i.e. biomass, habitat, refuge, food).   

 In sub-tidal ecosystems along dynamic coasts, data on natural resource availability and 

distribution are critical for managers and scientists to predict and plan for shifting SAV. These 

shifts have the potential to impact an array of critical ecosystem services (Hershner and Havens 

2008). New data are needed to refine existing models and develop new models for the nGoM 

that estimate changes in overall SAV availability, particularly biomass standing stock, which is 

often under-reported. Global climate change, restoration, industry and development, all factors 

impacting SAV availability and abundance (Kemp et al. 2004), only increases the need for fully 

developed models. In particular, incorporating spatial differences across salinity zones and 

geographic regions refines models in novel ways and provides powerful information to 

managers.   

SAV assemblages varied by salinity zone and region; this finding enables the 

development of management goals targeted towards specific communities, zones or regions 

(Blandon and zu Ermgassen 2014).  For example, management activities to maintain freshwater 

inflows within coastal estuaries experiencing increased salinities might be useful if managers 

want to focus on maintaining a fresher community of species.  A better understanding of the 

current spatial distribution and inter-annual variation of sub-tidal SAV will help better prepare 

managers in light of potentially shifting submerged aquatic vegetation.  
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CHAPTER 4 
SALINITY AND SEASONS ARE INDICATORS OF COASTAL SUBMERGED AQUATIC 

VEGETATION VARIABILITY IN BARATARIA BASIN, LOUISIANA, USA 
 

Spatial environmental variation largely controls species distributions and abundances by 

delineating preferred habitats that structure communities (Austin 1985; Weiher and Keddy 

1995) Temporal environmental variation further shapes community structure and distribution 

(Wiens 2000; Hewitt et al. 2007). Describing ecological variation across multiple scales and 

identifying factors controlling change remains a critical need for predicting future community 

mosaics (Horne and Schneider 1995; Pickett and Cadenasso 1995; Santamaria 2002; Holt and 

Barfield 2003). Although ecological variation has been most studied in terrestrial systems 

(Pickett and Cadenasso 1995), there is also a growing body of research examining ecological 

variation in aquatic systems (Harrison 1982; Sfriso and Pier 1998; Chrysoula and Papastergiadou 

2007). 

Terrestrial and marine factors influence coastal areas, including the shallow water 

aquatic habits fringing tidal marshes. This confluence of factors alters surface water 

characteristics, including salinity, turbidity, light and nutrients.  Surface water characteristics 

vary at multiple spatial scales, across landscapes (Tomasko and Dunton 1995; Thrush 1999), and 

along gradients (depth, salinity) (Dayton et al. 1999; Rueda and Salas 2003; Young et al. 2014), 

affecting survival, reproduction and growth rates. In addition, water characteristics also 

fluctuate between (inter-annual) and within (intra-annual) years in response to climatic cycles, 

disturbance and watershed management (Miller et al. 1996; Kang and King 2013), further 

impacting the distribution and abundance of species.  
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Submerged aquatic vegetation (SAV) is critical in aquatic landscapes (Gutierrez et al. 

2011). SAV provide important ecological services, including food resources for waterfowl, 

refuge for invertebrates and fish (Hansson et al. 2010; Heck et al. 2003), nutrient cycling (Knight 

et al 2003), reduction of sediment re-suspension (Gutierrez et al. 2011) and organic carbon 

storage in bottom sediments (Chapter 5).  SAV vary along environmental gradients (i.e. salinity, 

depth, light) at multiple spatial (Hillmann et al. 2016; Kemp et al. 2004; Dunton 1994) and 

temporal scales.  SAV temporal variation (i.e. assemblages, diversity, biomass) results from 

changing surface water salinity and light conditions due to climatic patterns (precipitation, 

wind, storms) and human disturbances (Rooney and Kalff 2000; Correia et al. 2012), which vary 

inter-annually.  

Intra-annual variation of SAV is less understood, although general patterns of greater 

species diversity and biomass have generally been observed in summer months, with declines 

in winter months (Sayer et al. 2010; Cho and Poirrier 2005; Dunton 1994; Lefèvre and Bellwood 

2010).Reliance on remote sensing and modeling techniques that depend on assumptions and 

generalizations based on annual sampling (Yuan and Zhang 2008; Meyer and Pu 2012) may not 

accurately capture intra-annual SAV variability. Additionally, identifying the drivers of intra-

annual SAV variability, especially within rapidly changing coastal areas (i.e. southeastern 

Louisiana), enables more accurate modeling and predictions of changing SAV with climate 

change and restoration. 

In south Louisiana coastal habitats are structured along salinity gradients, largely 

controlled by freshwater inputs limited to precipitation, restricted inflow from the Mississippi 

River, its distributaries, wind and storms (Bianchi and Mead 2009).  Within this region SAV is a 
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foundation species, yet patterns of intra-annual variation of SAV within south Louisiana 

watershed basins has not been satisfactorily described. Joanen and Glasgow (1965) reported on 

two peaks of SAV biomass (spring and fall), which was related to observations of favorable 

water temperature. The idea of two SAV growing seasons was subsequently incorporated into  

regional SAV monitoring protocols for coastal restoration projects (Folse and West 2004). 

However, others regional studies have failed to detect seasonal patterns of maximum SAV 

abundance (Merino et al. 2005). This constitutes a critical data gap for comprehensive coastal 

resource management.  

The main objective of this study was to document intra-annual variation in SAV 

assemblages and SAV biomass along a salinity gradient at 16 sites located within Barataria 

Basin, Louisiana. The goals were to (1), quantify SAV biomass by species, and relate changes to 

water quality (salinity, temperature, water depth, PAR, chl a) over a 12 month period, and (2), 

identify species assemblages, and relate changes to water quality throughout the same time 

period. The hypotheses are that (1) SAV exhibits intra-annual variation, with two peaks of 

maximum biomass (spring, fall), and (2), SAV assemblages can be delineated into four groups 

(fresh, intermediate, brackish, saline) based on salinity zonation of emergent marsh vegetation.   

Methods 

Study area 

The study was carried out in Barataria Basin, Louisiana, a sub-estuary in southeast 

Louisiana that was once part of the Lafourche Delta complex of the Mississippi River (MR) 

(Figure 4.1). The basin is part of the Louisiana Coastal Plain, one of the largest areas of coastal 

wetlands in the United States, which has lost approximately 4877 km2 of land since the 1930s 
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due to management of the MR, oil and gas canals, subsidence, sea-level rise and tropical storms 

(Barras 2009; Deegan et al. 2012; Georgiou et al. 2017; Peyronnin et al. 2017). The basin 

encompasses approximately 1214 km2, and is bordered on the north and east by the MR, on 

the west by Bayou Lafourche and on the south by the Gulf of Mexico.  Within the basin, 

habitats are structured by salinity gradients, largely controlled by freshwater inputs limited to 

precipitation and restricted inflow from the MR and Greater Intracoastal Waterway (Conner et 

al 2005). Habitats consist of a mosaic of diverse estuarine habitat types, ranging from forested 

swamps, to fresh through saline marsh, extensive shallow-water habitats with sediment 

bottoms, oyster reefs, submerged and floating aquatic vegetation habitats, and barrier islands. 

 
Figure 4.1. Location of study sites distributed across Barataria Basin. Inset 1 (lower-left) shows 
the distribution of salinity zones across the basin. Inset 2 (upper-right) shows the location of 
Barataria Basin along the northern Gulf of Mexico. CRMS refer to Coastwide Reference 
Monitoring Stations.  
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  Sampling design 

Using a stratified sampling design, we selected 16 study sites stratified across a salinity 

gradient from fresh to saline marsh. Sites were located within 1 km of a coast-wide reference 

monitoring station (CRMS) (http://lacoast.gov/crms2/home.aspx) providing continuous and 

long-term water quality data (salinity, temperature, water level). Stratification along the salinity 

gradient was based on long term emergent marsh vegetation patterns which are used to 

identify marsh types (fresh, intermediate, brackish, saline; Visser et al. 2013).  Study sites were 

specifically targeted based on potential for SAV presence (Hillmann et al. 2016), with four sites 

selected per habitat type and sampled 7 times throughout 2015 (4 habitat types x 4 replicates = 

16 sample sites x 3 subsamples x 7 dates = 336 samples). Sampling occurred roughly bi-

monthly, starting in February and ending in December. The order of sampling sites was 

randomly determined each sampling effort.  At each site, environmental and water quality 

variables, SAV presence, species composition and SAV biomass data were collected following 

protocols below. 

Field data collection 

Upon arrival at each site, water salinity (YSI-85, YSI Incorporated, OH), 

photosynthetically active radiation (PAR; µmol m-3 s-1 , LI-1400, LI-COR, NE), dissolved oxygen 

(DO) (mg l-1, YSI-85, YSI Incorporated, OH), pH (Hach Pocket Pro+, Hach, CO), turbidity (NTU-

Hach 2100Q, Hach, CO), and water temperature (0C, YSI-85, YSI Incorporated, OH) were 

sampled off-bottom, from the boat before disturbing the bottom sediments. In addition, two 

water samples (for chlorophyll a analysis) were collected off-bottom at each site in 205 ml 

amber colored Nalgene bottles and placed on ice for chlorophyll a analysis. 
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After collecting water quality data, SAV was sampled by throwing a 0.25 m x 0.25 m, 

floating PVC quadrat haphazardly three times from the boat.  Within each quadrat, water depth 

was measured using a metric measuring stick randomly placed perpendicular and just touching 

the bottom (± 0.01 m). SAV presence/absence was recorded within each quadrat.  When SAV 

was present, all aboveground (AG) biomass within the quadrat was harvested down to the 

sediment surface. Belowground biomass (BG) was collected at each site by coring 3 times to a 

depth of 30 cm just outside replicate quadrats using a 10 cm diameter PVC corer with plunger, 

because harvesting of AG biomass was found to disturb BG biomass. All AG and BG samples 

were placed in individually labeled plastic bags, kept on ice and, along with all other samples, 

transported to the laboratory at Louisiana State University Agricultural Center where all 

samples were stored at 4oC until processing.  

In February 2015 only, one sediment core was collected at each site and used for 

determination of bulk density (BD; g cm-3) and organic matter (OM; %).  A 5 cm diameter PVC 

corer with a plunger was pushed into the sediment to a depth of 20 cm. Extracted sediment 

cores were placed into individually labeled plastic bags and stored on ice.  

Laboratory processing 

AG biomass samples were washed to remove sediment, debris, and epiphytic material, 

and biomass was then separated to species level.  Separated AG samples were dried at 60oC to 

a constant weight, and weight recorded (± 0.001 g). Total and species specific AG biomass were 

calculated by summing species AG biomass by replicates and obtaining a mean (± SE) value by 

site. BG samples were rinsed on a 1.4 mm mesh screen to remove sediment and debris. 

Samples were separated into live and dead roots, dried at 60oC to a constant weight, and 
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weight recorded (± 0.001 g). Mean total BG biomass values (±SE) were calculated by summing 

live and dead roots by replicate and averaging replicates by site. The root to shoot ratio (RSR) 

was determined by dividing the dry weight of total BG biomass by the dry weight of total AG 

biomass.   

Sediment cores (n=16) were dried at 60oC to a constant weight.  Dry weight was 

recorded (± 0.001 g) and used to calculate bulk density by dividing dry weight by the volume of 

sediment core. After drying and weighing, cores were homogenized using a mortar and pestle.  

To determine percent organic matter (OM), triplicate 4.0 g subsamples of each core were 

weighed out and burned at 550oC for 4 hours using the loss on ignition method (Heiri et al. 

2001). For chlorophyll a samples, under dim lights, a 50 mL water sample was filtered through a 

pre-weighed Whatman 47 mm glass fiber filter. The filter was placed in a labeled foil packet and 

stored at −20 oC until further processing at the Wetland Biogeochemistry Analytical Services 

Laboratory, at Louisiana State University, following EPA Method 445.0 for chlorophyll a. (Arar 

and Collins 1997). 

Analysis 

For all tests a significance value of p = 0.05 was used. Unless indicated differently, mean 

± standard error is reported.  Differences in environmental variables (salinity, water depth, PAR, 

DO,  pH,  turbidity, temperature, chl a) and soil properties (BD, OM) were tested across habitat 

type (habitat) and sampling months (month) using a repeated measures generalized linear 

mixed model with a Gaussian distribution and identity link function (Proc Glimmix, SAS Institute 

2010). We examined the independent and interactive effects of  month (February, April, May, 

July, August, October, December) and zone (fresh, intermediate, brackish, saline) on the 
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independent environmental variables (salinity, temperature, water depth, DO, turbidity, pH, 

PAR, chl a). The residual effect was the repeated measure of sampling the same site seven 

times throughout the year.   Total biomass and RSR were log transformed and analyzed using 

the same model as for environmental variables. 

For examination of SAV assemblage-environment relationships, canonical correlation 

analysis (CCA) with backward selection was performed with CANOCO software (vers. 4.5; 

Wageningen UR, Netherlands; (ter Braak and Smilauer 2002)) to analyze the relationship 

between SAV assemblages and environmental variables (salinity, water depth,  PAR, DO, pH, 

turbidity, chl a and temperature), for all sample sites separately for July 2015 and December 

2015. Assemblage-specific biomass was log 10 (x +1) transformed for the CCA to improve 

normality, and rare species were down weighted. A Monte Carlo simulation test was used to 

determine statistical significance of canonical axes with 1000 simulations on the full model. 

Results 

Water characteristics and soils 

Discrete salinity differed by habitat (F3,113= 26.75, p < 0.0001) (Table 4.1), month 

(F6,110=50.84, p<0.0001), and their interaction (F18,99=8.24, p<0.0001; Table 4.1, Figure 4.2). 

Salinity was lowest at fresh SAV sites which did not vary significantly throughout the year 

(month), while other habitats had higher salinities, with distinct seasonal patterns which 

included higher winter salinities, and low summer salinities (Appendix 1).  Water temperature 

ranged from 10.6⁰C to 34.4⁰C and differed by both habitat (F3,113= 7.07, p= 0.0046) and month 

(F6,110= 118.42, p < 0.0001), but not their interaction. Water temperature was significantly lower 



 

75 
 

at fresh sites compared to brackish and saline sites, and followed an expected annual trend 

with lower temperatures in winter as compared to summer months. 

Table 4.1.  Mean (±SEM) of environmental and soil properties by marsh type.  Ranges of 
reported values are indicated on the second line for each variable.  Different letters indicate 
statistically significant differences by marsh type for each parameter (p < 0.05). 

 



 

76 
 

 

Figure 4.2.  Mean daily salinity recorded at Coastwide Reference Monitoring Stations (CRMS) 
located within 1 km of study sites. CRMS stations were grouped by salinity zone designation 
(fresh, intermediate, brackish, saline) to show salinity variability by zone throughout the year.  

   Water depth differed significantly by habitat (F3,113= 3.76, p = 0.0413) and month (F6,110= 

15.22, p < 0.0001; Table 4.1), but not their interaction. Water depth was greatest in the fresh 

habitat (mean 0.87 m, SE ± 0.08), and significantly higher than in saline habitat (mean 0.48 m, 

SE ±0.08), and neither differed from intermediate or brackish habitats. Water depth was lowest 

in February (mean 0.36 m, SE ±0.04) compared to all other months, which did not differ from 

one another. Similarly, PAR differed by habitat (F3,113= 8.76, p = 0.0031) and month (F6,110= 3.05, 

p = 0.0102) only. PAR was highest in saline habitat (mean 748.62 µmol m-3 s-1, SE ±136.89) and 

different from PAR in the fresh, intermediate and brackish habitats, which did not differ from 

one another (range: 225.89 -293.64 µmol m-3 s-1). PAR was lowest in December (mean 116.98 

µmol m-3 s-1, SE ± 48.32) and highest in February (mean 826.85 µmol m-3 s-1, SE ± 226.41).  

Turbidity and chlorophyll a only differed significantly by month (turbidity: F6,110= 3.27, p = 
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0.0065; chl a: F6,110= 15.79, p < 0.0001).  Turbidity was significantly higher in February and April 

compared to May, and chlorophyll a was highest in April and lowest in May.    

Dissolved oxygen differed significantly by habitat (F3, 113= 8.36, p = 0.0036) and month 

(F6,110= 16.89, p < 0.0001) only. Dissolved oxygen was significantly lower (mean: 4.00 mg l-1, SE ± 

0.56) at fresh sites as compared to intermediate, brackish and saline sites, which did not differ 

from one another (range: 7.09-7.75 mg l-1). DO was significantly lower in May (mean: 4.31 mg l-

1, SE ± 0.56) as compared to February (mean: 8.65 mg l-1, SE ± 0.81). Similarly, pH differed 

significantly by habitat (F3,113= 6.42 H+, p = 0.0094) and month (F6,110= 9.05, p <0.0001), but not 

their interaction. pH did not differ among brackish and saline sites (range: 7.60-7.75 H+), but 

was significantly greater than fresh sites (mean: 6.94 H+, SE ± 0.15). Temporally, pH was lowest 

in May (mean: 6.68 H+, SE ± 0.27), and highest in October (mean: 8.21 H+, SE ±0.14).  

Sediment OM and BD were similar across all habitat types.  Mean OM was 36.2 %, SE ± 

4.9, and mean BD was 0.30 g cm-3, SE ± 0.04.  

SAV biomass  

Total biomass differed significantly by month (F6,110= 3.03, p = 0.0104) and habitat 

(F3,113= 9.07, p = 0.0020), but not their interaction.  May and July biomass (May mean: 63.78 g 

m-2, SE ± 21.84; July mean: 52.04 g m-2, SE ± 21.57) were significantly greater than December 

biomass (mean: 5.23 g m-2, SE ±2.90) (Figure 4.3), and this pattern was similar across the salinity 

gradient. Fresh (mean: 90.14 g m-2, SE ±19.8) and intermediate (mean: 60.47 g m-2, SE ±13.8) 

sites were similar and significantly greater than brackish (mean: 5.01 g m-2, SE ± 1.8) and saline 

(mean: 6.03 g m-2, SE ± 3.2) sites, which also did not differ from one another.  Number of 

species differed only by habitat (F1,115= 21.34, p = 0.0004). Fresh and intermediate sites 
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contained more species (mean: 1.65, SE ± 0.14) compared to brackish and saline sites (mean: 

0.43, SE ±0.07; Figure 4.5), and further analyses grouped the fresh/intermediate and 

brackish/saline results. SAV root: shoot (RSR) did not differ by habitat type, month or their 

interaction (Figure 4.4).   

 

Figure 4.3. Total submerged aquatic vegetation biomass by salinity zone (fresh, intermediate, 
brackish, saline) throughout the year. Peak biomass occurred in May and July. 
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Figure 4.4. Submerged aquatic vegetation root to shoot ratio by assemblage group. There were 
no significant differences between the fresh/intermediate group and brackish/saline group. 
 

SAV assemblages 

Ten species of SAV were identified across all habitat types throughout the year. 

Ceratophyllum demersum (coontail), Hydrilla verticillata (hydrilla), Najas guadalupensis (najas) 

and Myriophyllum spicatum (Eurasian water milfoil) were dominant among fresh and 

intermediate sites while Ruppia maritima (wigeongrass) and Eurasian milfoil were dominant at 

brackish and saline sites. 
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Figure 4.5.  Fresh/intermediate submerged aquatic vegetation assemblage in July (a) and 
December (b), and brackish/saline assemblage in July (c) and December (d). For both groups 
number of species and overall biomass decreased in December.  
  

Species – environment relationship 

The July CCA delineates SAV species into 3 subgroups controlled mainly by salinity and 

water characteristics. The first two axes of the July CCA explain 79.3% of the variation between 

SAV species that can be explained by the environmental variables (F = 7.047, p = 0.0020; Figure 

4.6). Axis one, which describes 44.6 % of the variation, largely differentiates between salt 

tolerant and freshwater SAV species.  Specifically, widgeongrass is strongly associated with high 

salinity in this study and is distinct from freshwater SAV species. The second axis of the July CCA 

describes 34.7 % of the variation and differentiates between two groups of freshwater SAV 

species along an axis largely controlled by water clarity (depth, PAR, chl a). Specifically, the first 
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group (hydrilla, Cabomba caroliniana (cabomba) and coontail), is associated with greater water 

depth and higher chl a concentration, which largely describes freshwater ponds found in the 

upper basin. The second group (southern najas, wild celery and Eurasian milfoil), is associated 

with low PAR and shallower water depth often found in the muddy, shallow aquatic conditions 

found throughout the middle basin. 

 

Figure 4.6. Canonical correlation analysis (CCA) of SAV species in relation to environmental 

variables (salinity, water depth, chl a, DO, PAR, pH) for July (left) and December (right). 

The December CCA provides very similar results to the July CCA, separating SAV species 

into 3 subgroups, although species differ slightly from the July CCA. Again, salinity and other 

water characteristics control species distribution along the axes. The first two axes explain 

55.1% of the explainable variation among SAV species (F = 28.1, p = 0.0020; Figure 4.6). The first 

axis is controlled by salinity, strongly associated with widgeongrass, and explains 29.6 % of the 

variation. The second axis explains 25.5% of the variation among species and separates 
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freshwater SAV species into the two groups. The axis is controlled by water clarity (depth, PAR, 

chl a) and also pH. Cabomba, hydrilla, wild celery and coontail are associated with deeper SAV 

sites, while southern najas and Eurasian milfoil are associated with low PAR, chl a, and pH. 

Discussion 

Unlike tidal marshes, submerged aquatic vegetation assemblages in Barataria Basin, 

Louisiana, USA, separated into two distinct groups: fresh/intermediate and brackish/saline. 

Salinity affected SAV assemblages (number of species, biomass) and was the primary 

environmental driver distinguishing the two groups from each other. Water clarity indicators 

(water depth, PAR, chl a) were secondary drivers of organization, specifically in the 

fresh/intermediate group in winter. Significant intra-annual variation in terms of biomass, and 

species composition occurred between summer and winter months, and indicated one 

prolonged peak of maximum SAV biomass from May through July, which was generally 

observed across the salinity gradient. Water characteristics are highly variable in estuarine 

environments, resulting in rapidly changing SAV assemblages throughout the year. Concurrent 

change in SAV biomass availability may directly impact dependent fish and waterfowl species. 

These data will enable better SAV management with improved SAV mapping and modeling.  

Coastal habitats in southeast Louisiana have historically been characterized based on 

emergent marsh vegetation and their salinity tolerances and adaptation to flooding (fresh, 

intermediate, brackish, saline; Visser et al 2013). For SAV, we identified two distinct SAV 

assemblages in Barataria Basin (fresh/intermediate (F/I) and brackish/saline (B/S)), suggesting 

that marsh type classification does not accurately describe submersed habitats. Another study 

characterizing SAV along the northern Gulf of Mexico identified 3 broad groups of SAV in river 
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deltas extending from Mobile Bay, Alabama to the Pearl River area of Mississippi (Cho and Biber 

2016). Groupings in that study were based on salinity and disturbance tolerance, with the third 

group including Halodule wrightii, a marine seagrass not observed in this study. Lack of marine 

seagrasses in this study may explain why only two SAV groups were identified in Barataria Basin 

compared to other watershed basins along the northern Gulf.  

The southern end of Barataria Basin is influenced by the Mississippi River; river water 

discharges into the open Gulf of Mexico, and is pushed back towards lower Barataria by 

currents and wind (Inoue et al. 2008).  Fresh and turbid water from the Mississippi River 

contributes to variable, but generally low mean (<15) salinity in the mid to lower basin (CPRA 

2017), and also decreases water clarity which likely contributes to the absence of marine 

seagrasses in the lower basin (Handley et al. 2007). The B/S assemblage dominated the lower 

basin, and included Eurasian watermilfoil and widgeongrass.  Eurasian watermilfoil and 

widgeongrass were observed together throughout the study, likely due to both species’ salinity 

tolerance compared to less salt tolerant species of the upper basin, and their association with 

the F/I group.   

Salinity was the principle environmental driver differentiating SAV assemblages, 

including number of species and SAV biomass. The F/I group contained more species compared 

to the B/S group, similar to past regional surveys and observations in other estuaries (Orth and 

Moore 1988; Dunton and Dunton 1990; Merino et al. 2009; Lopez-Calderon et al. 2010). For 

instance, the B/S group was dominated by just two species; in contrast, ten species were 

observed in the F/I group throughout the year. Higher salinity areas are often dominated by 

mono-specific beds or just a few species. For instance, two species, widgeongrass and Zostera 
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marina (eelgrass) are found in the saline Chesapeake Bay, (Patrick and Weller 2015), three 

species (Halodule wrightii (shoalgrass), Thalassia testudinum (turtlegrass), Syringodium filiforme 

(manateegrass)) dominate saline lagoons in Texas, and one species, widgeongrass, grows in 

some saline Mexican lagoons (Dunton 1996; Flores-Verdugo et al. 1988). According to previous 

SAV surveys along the northern Gulf, in Louisiana SAV diversity and biomass is often greater in 

fresh/intermediate compared to brackish/saline areas (Hillmann et al. 2016). Barataria SAV 

biomass follows a similar trend; the F/I assemblage contained more biomass, while B/S biomass 

was lower. Increasing salinities within generally fresher estuarine areas could shift the SAV 

assemblages from F/I to B/S.  

 Shifts in assemblages have implications beyond species composition.  For example, 

marine seagrasses often contain more biomass belowground than aboveground (Pulich 1985), 

with slender growth forms able to weather wave disturbance, and together these factors may 

contribute to greater seagrass bed stability overall. SAV further up-estuary is morphologically 

more complex, fragile, and  exhibit “flashy” growth patterns (Trebitz et al. 1993). Subsequently, 

freshwater SAV may be more susceptible to exposure and storms (DeMarco et al. in review), 

and possibly less effective at shoreline protection than their marine counterparts. For instance, 

one of the most common species in the freshwater SAV habitats, coontail, contributed 

significantly to total SAV biomass, despite no real root system (Mishra et al. 2006). Coontail was 

also observed within some B/S assemblages during low salinity summer months. The 

pervasiveness of coontail throughout the basin may even partially explain low Barataria SAV 

RSR (0.08 ±0.02) compared to SAV and seagrass RSR elsewhere, which typically ranges between 

1 and 5 (Dunton 1996).  
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The second most important factors separating SAV groups in Barataria Basin were other 

water characteristics related to water depth and light (PAR, chl a). These findings are similar to 

past studies that also found that water depth and light are important factors structuring SAV 

assemblages (Kemp et al 2004; Cho and Poirrier 2005b), but comparisons can be difficult 

because water depth and water clarity are both used as proxies for light, while some have 

taken direct measurements.  Interestingly, within the F/I assemblage, species divided into two 

subgroups, with some species more sensitive to light and water depth than others. For 

instance, our analyses consistently co-related cabomba and hydrilla, freshwater species 

identified with increasing water depth, indicating similar abilities to compensate for low light 

with structural adaptations (i.e. long stems), similar to widgeongrass in a recent greenhouse 

experiment, in which low light yielded sparser, yet longer plant stems (Chapter 5). Additionally, 

Eurasian watermilfoil and southern najas in Barataria also often co-occurred at sites with more 

light, similar to widgeongrass around the nearshore areas of Lake Pontchartrain, in the 

Pontchartrain Basin (Cho and Poirrier 2005a). However, salinity and light are highly variable 

throughout the year possibly affecting SAV presence, overall distribution and abundance. 

Strong intra-annual variation in SAV biomass and species composition may result from highly 

variable environmental conditions within the basin.  Specifically, salinity and light in coastal 

estuaries are controlled by a combination of factors, including freshwater inputs and marine 

forcing. Currently, freshwater input into Barataria Basin varies throughout the year, largely 

depending on river management and precipitation patterns (Conner and Day 1987). Moreover, 

freshwater inflow in springtime, as well as higher precipitation in summer months likely affect 

SAV distribution and biomass, and may increase the spatial extent of F/I assemblage further 



 

86 
 

down into the basin. However, reduced river flow in winter months coupled with strong 

southerly winds can increase salinities, and likely restricts some freshwater SAV to the upper 

basin. Variability of important forcing factors throughout the year may also partially explain 

observed “flashy” growth patterns of estuarine SAV. For instance, in this study several less 

common SAV species (stargrass, horned pondweed) observed during lower salinity summer 

months were absent during higher salinity winter months.  

SAV biomass also exhibited similar seasonal trends. We observed strong intra-annual 

variation in biomass; biomass was highest in early to mid summer and lowest in early winter. 

This pattern extended across the salinity gradient (fresh max: 149.06 gdw m-2 (May), fresh min: 

4.71 gdw m-2 (Dec); intermediate max: 83.03 gdw m-2 (May), intermediate min: 15.42 gdw m-2 

(Dec); brackish max: 8.84 gdw m-2 (May), brackish min: 0.0006 gdw m-2 (Dec); saline max: 16.71 

gdw m-2 (May), saline min: 0.84 gdw m-2 (Dec)).These results are similar to observations in 

other sub-tropical regions (Lirman et al. 2008), including other basins in coastal Louisiana (Cho 

and Poirrier 2005c), however similar, our results showed only one prolonged peak of maximum 

SAV biomass extending at least from May through July, 

Our findings are based on SAV assemblages in Barataria Basin, LA, and more study is 

needed to determine whether these patterns occur in less productive regions along the 

northern Gulf of Mexico. However, in this study SAV biomass was more than 10-fold greater in 

summer months compared to winter months, indicating potentially more habitat, refuge and 

food resource availability in summers for other community members (i.e. waterfowl, priority 

fish species).. SAV habitats continue to be impacted by climate change and river management 

(Merino et al. 2005; Kanouse et al. 2006), likely increasing variability of SAV.  
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Current climate projections along the northern Gulf predict increasing temperature and 

variable precipitation over the next 100 years (Keim et al. 2011), conditions likely to impact the 

intra-annual variability of SAV distribution and biomass. Temperature is expected to rise by 1.5 

⁰C, and precipitation is predicted to increase in summer months. This research indicates that 

wetter summers point towards an increase (distribution, biomass) of F/I SAV. However, higher 

temperatures could simultaneously increase evapotranspiration, thereby potentially limiting 

runoff (Keim et al. 2011).  Less runoff results in less freshwater input into upper Barataria Basin, 

possibly constricting the fresher areas and allowing the saltier areas to expand. Throughout the 

year biomass in the brackish/saline waters of southeast Louisiana is generally low (Roy 2006; 

Carter et al. 2009). However, an increase in the extent of B/S SAV habitat area simultaneously 

increases the amount of B/S SAV biomass, resulting in more food, habitat and refuge for species 

dependent on this habitat specifically. The impacts of proposed river management and marine 

forcing are similarly complex. 

  Proposed river management (i.e. diversion operation) and marine forcing (i.e. sea-level 

rise) also affect habitat conditions in waters throughout the basin. Barataria Basin has lost at 

least 17% of its land area over the past 100 years (Britsch et al. 1993; Couvillion et al. 2010). 

River diversions are considered an important tool for coastal restoration, moving freshwater, 

sediment and nutrients into estuaries in order to control salinity and build land (Das et al. 

2012). Hydrodynamic modeling shows river diversions strongly affecting conditions in the mid 

to lower basin by reducing salinity, likely increasing fresh/intermediate SAV habitat. However, 

marine forcing along coastal Barataria is strong due to the area’s proximity to the Gulf and even 

at maximum capacity, proposed river diversions are not expected to significantly alter salinity 
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regimes directly along the coast of Barataria Basin. On the other hand, hydrodynamic modeling 

outputs also show SLR impacting salinity in the upper and lower Breton Basin under baseline 

conditions of no diversion (Wang et al. 2017), potentially increasing brackish/saline SAV habitat.  

Predictions of changing SAV are difficult because change occurs at multiple scales 

(spatial, temporal) in the context of uncertain coastal restoration scenarios and climatic 

processes. It appears fresh/intermediate SAV habitat may increase in distribution and overall 

biomass abundance at least during some months of the year (summers) as a result of increased 

precipitation and proposed river management. Winter months are harder to predict. Despite 

marine forcing and SLR, expansion of brackish/saline habitats will likely only occur during 

extreme drought, or if river diversion operations cease altogether, because even small 

diversions maintain lower salinities.  
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CHAPTER 5 
EFFECTS OF SALINITY AND LIGHT ON GROWTH AND COMPETITION BETWEEN 

TWO CO-OCCURRING SPECIES OF SUBMERGED AQUATIC VEGETATION: 
MYRIOPHYLLUM SPICATUM L. AND RUPPIA MARITIMA L. 

 
Environmental gradients act as species filters, restricting community membership and 

defining habitat types by creating selective environments that affect species distributions and 

abundances (Austin 1985; Weiher and Keddy 1995). Along these gradients, competition among 

species shapes communities (Keddy et al. 1998). In contrast to organisms with mobility that can 

move when environmental conditions become stressful, plants undergo physiological changes 

in response to environmental stress and competition (Feder 2002), or die. While significant 

research has examined factors controlling plants across terrestrial landscapes (Brooker et al. 

2008), fewer studies have examined factors controlling aquatic plant assemblages distributed 

across submersed landscapes, particularly in estuarine environments (but see Koch 2001; 

French and Moore 2003; Kemp et al. 2004; Poirrier et al. 2009) 

Abundant and diverse submerged aquatic vegetation (SAV) exists across estuarine 

salinity gradients (Cerco and Moore 2001; Hillmann et al. 2016; Shields and Moore 2016).  

Within these coastal estuaries, SAV presence largely depends on favorable light conditions in 

water, specifically, enough light needs to reach SAV leaves for photosynthesis and subsequent 

growth (Kemp et al. 2004; Dennison et al. 1993; Koch 2001). While light availability critically 

controls SAV presence, which species persist is likely determined by both biotic and abiotic 

factors, including competition, salinity, substrate type, wave energy, and nutrients (Haller et al. 

1974; McCreary 1991; Adair et al. 1994; Kemp et al. 2004).  These factors have been shown to 

affect individual species differently, impacting growth rates, root to shoot ratio, growth 
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morphology, and stem densities, overall impacting SAV assemblages and their distribution 

(McCreary 1991; Doyle and Smart 2001; Zhu et al. 2008; Gustafsson and Bostrom 2011; Shields 

and Moore 2016).  Within coastal estuaries, salinity controls SAV directly through individual 

species tolerances to salinity, and indirectly, through impacts on competition outcomes 

(Borgnis and Boyer 2015; Shields and Moore 2016).  Understanding the dominant factors 

controlling SAV assemblages, including abundance and individual species’ distribution, provides 

critical information to inform models predicting changes in habitat availability.   

In southeast Louisiana, coastal estuaries are structured along salinity gradients, largely 

controlled by freshwater inputs limited to precipitation, restricted inflow from the Mississippi 

River, its distributaries, wind and storms (Bianchi and Mead 2009).  These estuaries consist of a 

mosaic of diverse estuarine habitat types, ranging from forested swamps, to fresh through 

saline marsh, extensive shallow-water habitats with sediment bottoms, oyster reefs, 

submerged and floating aquatic vegetation habitats, and barrier islands.  Of these habitats, 

submerged aquatic vegetation within the shallow-water areas provides critical habitat across 

the extensive shallow waters of these regions, extending from fresh to true saline conditions 

(La Peyre and Gordon 2012).  Some studies suggest that salinity structures SAV assemblages, 

while water temperature and light attenuation affect SAV distribution and abundance (Cho and 

Poirrier 2005), although this has only been shown in fresh to intermediate habitats.   Diverse 

SAV assemblages exist in the upper estuaries in fresh to intermediate salinity marsh areas 

(Poirrier et al. 2010), with fewer species down estuary (Hillmann et al. 2016).  Across the salinity 

gradient, changes in riverine inflow and precipitation would likely affect salinity and light 

availability which could influence not only SAV presence, but also SAV assemblages.  While 
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brackish assemblages contain select members from both freshwater and saline SAV 

assemblages, only a few of these species exist across the salinity gradient, and may potentially 

adapt to changing environmental conditions (Patrick et al. 2014; Hillmann et al. 2016).     

Across the estuarine salinity gradient,  Myriophyllum spicatum (Eurasian watermilfoil) 

and Ruppia maritima L. (widgeongrass) are ubiquitous species that dominate the less diverse 

SAV assemblages found in brackish to saline waters (Carter et al. 2009; Merino et al. 2009; 

Hillmann et al. 2016). However, as yet, not much is known about what specifically controls each 

of these species distribution and relative abundance. Further, does their co-occurrence increase 

overall SAV abundance (complementarity) or depress it?  

 Eurasian watermilfoil, henceforth milfoil, is a non-native species of SAV introduced into 

the United States through the Chesapeake Bay area in the 1880s (Nichols and Shaw 1986; Les 

and Mehrhoff 1999). Described as a salt tolerant freshwater species, milfoil is a perennial with 

whorled leaves and long stems. The species has relatively low light requirements (1-2% surface 

light) compared to other submersed plants (Wetzel and Grace 1978), and thrives in salinities 

from 0 to 10 (Haller et al. 1974). Milfoil spreads quickly through fragmentation of plant parts, 

and is considered a nuisance due to its aggressive growth, forming dense beds which choke 

waterways (Martin and Valentine, 2012). However, milfoil also increases fish abundances and 

forage for waterfowl, providing important ecosystem services (Madsen et al. 1995; Wicker and 

Endres 1995; Duffy and Baltz 1998). A recent year long survey across Barataria Basin, Louisiana, 

showed that in brackish habitat milfoil biomass was greater than all other SAV species 

combined (3.28 ±1.41 g m2), and was even 4 times greater than widgeongrass (0.82 ±0.39 g m2), 

the second most abundant SAV species observed in brackish waters (Hillmann et al. 2016).  
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  Widgeongrass grows as annual and perennial plants, with slender, branched leaves and 

shallow root systems (Kantrud 1991). Common in aquatic environments, widgeongrass has 

broad salinity tolerances (0->100; Kantrud 1991), and spreads through seed dispersal and 

adventitious roots (Kantrud 1991). Despite its environmental tolerances, widgeongrass 

occurrence is thought to be limited by water clarity, wave exposure (Dunton 1990) and salinity 

variability (Strazisar et al. 2015). Widgeongrass has been described as a disturbance tolerant 

species (Cho and Poirrier 2005; Johnson et al. 2003), but some research found widgeongrass 

limited by even more tolerant species (Strazisar et al. 2015). Salinity and light may be the two 

dominant abiotic factors restricting widgeongrass growth (Verhoeven 1979; Bonis et al. 1993; 

Adair et al. 1994), with competition from other species as a critical limiting factor (Verhoeven 

1979; Pulich and White 1991). Widgeongrass is highly valued for the refuge it provides for fish 

and invertebrates, and as food for waterfowl (Bortolus et al. 1998; Kanouse et al. 2006). Recent 

surveys indicate widgeongrass growing across the salinity gradient in southeastern Louisiana, 

and widgeongrass was found to be one of only a few species in brackish SAV habitat (Hillmann 

et al. 2016), and the only species observed in estuarine saline SAV habitat (Hillmann et al. 

2016).   

In southeast Louisiana milfoil and widgeongrass grow in both monospecific and mixed 

beds, often with one another.  However, whether their co-occurrence actually increases or 

inhibits overall SAV production is unknown. Further, salinity and light are predicted to change 

due to on-going and proposed river management operations, and climate change (i.e., Das et al. 

2012; Wang et al. 2016), and it’s unclear how changing environmental conditions will affect 

these species, or their competitive interactions within SAV habitats.  In particular, in this region 
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proposed river diversions divert fresh riverwater and sediment into upper estuaries, likely 

resulting in lowered salinity and increased turbidity across the estuarine gradient (Allison and 

Meselhe 2010; Wang et al. 2016),  potentially impacting SAV habitats. While some studies 

predict that freshwater aquatic habitats may expand, displacing brackish habitats and their 

species (Das et al. 2012), it is unclear exactly how brackish SAV species and assemblages will be 

impacted.  For instance, what affect will changing environmental conditions have on SAV 

abundance? Understanding how overall production is impacted along abiotic gradients will 

enable better prediction of shifting SAV habitats and result in more focused management 

decisions.   

As the two dominant aquatic plant species in southeast Louisiana estuarine waters, 

understanding how milfoil and widgeongrass respond to d salinity and light, as single species, 

and in competition with one another is critical to determining and predicting their distribution, 

SAV habitat availability, and productivity.  This study examines growth and competition 

between milfoil and widgeongrass in varying conditions of salinity and light.  Specifically, this 

research examines: a) what effect will different salinity and light regimes have on milfoil and 

widgeongrass growing separately in monoculture, and b) how will the different treatments 

affect species interactions when plants are grown in mixture?  The hypotheses are (1), in 

monoculture milfoil will be more productive at lower salinity and widgeongrass will be more 

productive at higher salinity, and both species will be less productive in low light. In mixture we 

expect (2) widgeongrass will be more competitive at higher salinities and milfoil will be more 

competitive at lower salinities, and milfoil will be more competitive in low light. This research 
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can provide critical information necessary to understand how SAV habitat may shift over time 

across this landscape.  

Methods 

This experiment was conducted in an indoor greenhouse located at Louisiana State 

University Agricultural Center (LSU) during the summer/fall of 2016. A factorial experiment of 

salinity (0, 5, 10, 15, 20), light intensity (50% ambient light, 20% ambient light), and species 

(milfoil, widgeongrass) in monoculture, and in mixture (at salinity of 0, 10, 20 and both light 

treatments), was used for a total of 26 treatment combinations. Each treatment combination 

was replicated three times for a total of 78 experimental units (pots; 10.0 cm diameter), which 

were placed into plastic, translucent tanks (0.7m × 0.35m × 0.4m) in a completely randomized 

design.  

Milfoil plants were collected from Fuci Bayou, LA, USA (29.504806, -89.668214; 1.0 

salinity) and widgeongrass plants were collected from the northern shore of Lake 

Pontchartrain, LA, USA, (30.261215, -89.956350; 3.0 salinity) on August 7 and 8, 2016. Sediment 

was also collected at both locations for use in the experiment. Plants and sediment were 

brought back to the LSU greenhouses in covered bins. Equal amounts of sediment from both 

sites were combined, homogenized and each pot was filled with approximately 450 ml of 

sediment. Plants of similar stem lengths (milfoil:  8.20 cm ±0.49; widgeongrass: 11.81 cm ±0.21; 

mean ± SE) and stem density (milfoil: 1.0 ± 0.0; widgeongrass: 8.95 ± 0.95; mean ±SE) were 

selected for the experiments. A subset of 10 plants from each species was sampled for initial 

dry weight values (milfoil: 0.13 gdw; SE ± 0.03; widgeongrass: 0.07 gdw; SE ± 0.01). One plant 
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was planted in each monoculture pot and one plant of each species was planted in each 

mixture pot.  

After planting, the pots were randomly placed into tanks which were filled with 

freshwater adjusted to a salinity of 10 using Instant Ocean Sea Salt (Instant Ocean, St. 

Blacksburg, VA. 24060). Pots were acclimated for 7 days prior to commencing the experiments.  

Starting on August 14, 2016, salinity was adjusted at a rate of 3 every 3 days until the target 

salinities were reached for each treatment.  Treatments were randomly assigned to tanks prior 

to adjustments. Water levels were maintained at 3 cm below the top of the tank, approximately 

15 cm above the top of the pot. Experiments were initiated on August 26, 2016 and run for 8 

weeks. A neutral density (50% light reduction) shade cloth was placed over the top of the low 

light treatment tanks to mimic natural high turbidity/reduced light field conditions. The low 

light treatment tanks maintained ~20% ambient light throughout the experiment, and high light 

treatment tanks maintained ~50% ambient light conditions. Light intensity (photosynthetically 

active radiation, PAR; µmol m-2 s-1) was monitored weekly throughout the experiment using a 

light intensity meter (LI-1400 LI-COR, NE). On the first day of the experiment, all stem lengths 

(cm), and stem densities (#) were measured for each pot and recorded.  Throughout the 

experiment, salinity, temperature (oC), and dissolved oxygen (mg L-1) were monitored every 3 

days using a handheld YSI 6000 (Yellow Springs Instrument, Inc.).  Salinity was adjusted as 

needed to maintain treatment target values.  

At the end of the experiment, all plant material was harvested and brought to the lab 

for measurements of stem length, stem density, and aboveground (AG) and belowground (BG) 

biomass. Biomass was determined by drying the plants at 60⁰C until a constant weight was 
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obtained (g DW). Total growth rate (TGR) was based on dry weights of total biomass (AG + BG). 

The average initial dry weight values calculated for each species were subtracted from final dry 

weight values and divided by the number of days in the experiment (gdw day−1). Root to shoot 

(RSR) was determined by dividing the BG biomass (gdw d-1) by the AG biomass (gdw d-1). Stem 

length growth rate (SLGR) was determined by subtracting initial stem lengths from final stem 

lengths and dividing by the number of days in the experiment (cm day-1). Stem density was 

determined at the end of the experiment by visually counting the number of vertical stems 

ascending from roots.  

 Competition among species was analyzed by calculating relative yielding (RY); relative 

yield totals (RYT) were used to determine species complementarity (an overall increase in 

productivity of bicultures compared to monocultures) (Hooper 1998; Shields and Moore 2016). 

In this study RY was based on TGR, and was determined by first calculating the expected mean 

of TGR for each species in monoculture across all treatments and treatment combinations. 

Next, the TGR of each species in mixture was calculated and this value was divided by the 

expected mean in monoculture, resulting in a ratio of yielding in monoculture versus biculture. 

Overyielding occurs when a species RY> 1 and underyielding occurs when RY< 1. Therefore, 

interspecific competition is considered strong when one species significantly over yields while 

the other under yields in mixture (Shields and Moore 2016), but can also occur if both species 

underyield.  RYTs were used to determine what effect competition had on overall SAV 

production, specifically, whether overall production increased and whether that was driven by 

both species (complementarity) or a single species (species identity). RYTs were calculated by 

averaging the RYs of each species in each treatment. When RYT > 1, species are considered 
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complementary as long as each species has an individual RYT > 1, likewise if RYT in monoculture 

was greater and different than RYT in mixture, species identity was considered to drive 

productivity (Gustafsson and Bostrom 2011; Shields and Moore 2016).  

For all tests a significance value of p < 0.05 was used. Data were tested for assumptions 

of normality (Shapiro–Wilk test statistic) and homogeneity of variance. Analyses of variance 

(ANOVA) was run for both species separately in monoculture for TGR, RSR, stem density, and 

SLGR, with salinity and light as fixed factors, and container as a random effect. Tukey’s HSD 

tests were run when significant differences were found.  Two-sample t-tests were run on TGR 

means of species in mixture and monoculture for all combinations of factors tested to 

determine whether species RY and RYTs differed from 1. All data analyses were performed in 

SAS 9.4 (SAS Institute 2010). Mean and standard error are reported unless indicated otherwise.  

Results 

Environmental variables 

Mean salinities remained consistent across all treatments with all salinity targets 

remaining ± 1 from the target salinity.   Mean measured ambient light inside the greenhouse 

throughout the experiment was 731.66, SE ± 132.04 µmol m-2 s-1. Mean high light in the 

experimental tanks was 353.58, SE ±124.21 µmol m-2 s-1 and mean low light was 149.99, SE ± 

47.41 µmol m-2 s-1 (Table 1). High light was consistently ~50% of ambient light and low light was 

consistently ~20% ambient light. Temperature remained constant across all tanks and days of 

the experiment (31.7 ± 0.10⁰C).   
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Table 5.1. Recorded environmental conditions. All mean values reported with ± SE Ambient 
light=atmospheric light measured inside greenhouse; high light= light just below surface water 
in tanks/no shade cloth; low light=light just below surface water in tanks/with shade cloth.  

 Water Characteristics 
 0 5 10 15 20 
salinity 0.91 ±0.21     

 

5.21 ±0.06 10.14 ±0.08 15.09 ±0.09 19.86 ±0.23 
DO mgl-3 7.57 ±0.26 

 
6.51 ±0.19 
 

6.14 ±0.17 
 

5.48 ±0.12 
 

5.20 ±0.12 
 temperature 

C 
31.6 ±0.23 
 

31.57 ±0.22 
 

31.85 ±0.23 
 

31.73 ±0.23 
 

31.74 ±0.23 
  Light 

              ambient     high                      low 
PAR  µmol m-2 s-1             731 ±132 
              
 

353 ±124 
 

                149  ±47 
  

Monocultures 

Salinity and light significantly affected milfoil growth (Figure 5.1, Figure 5.2). Salinity 

impacted TGR (F4,20= 22.57, p < 0.0001), stem density (F4,20= 5.01, p = 0.0058), and SLGR (F4,20= 

15.55, p < 0.0001), with higher TGR at 0 higher compared to all other salinities, which did not 

differ. Milfoil stem density and SLGR were also higher at 0 compared to 15 and 20.  Light 

impacted milfoil TGR and RSR. TGR was higher in high light compared to low light (high: 0.012 

gdw d-1 ± 0.004 SE; low: 0.007 gdw d-1 ± 0.004 SE) (F1,20=4.44, p=0.0480)., RSR also increased in 

high light (high: 0.79 ± 0.21 SE; low: 0.35 ± 0.06 SE) (F1,19= 7.33, p = 0.0139). The interaction of 

salinity and light did not have a significant effect on any factor tested for milfoil growth.  
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Figure 5.1. Total growth rate (TGR) and root to shoot ratio (RSR) of Eurasian milfoil (left; Figure 
5.1a and 1c) and widgeongrass (right; Figure 5.1b and 1d) in monoculture across all salinity and 
light treatments. Values are mean ± 1 SE, n = 3. Factors with significant differences are 
indicated in the upper-right of each graph. Not significant=nsd.  
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Figure 5.2. Stem length growth rate (SLGR) and stem density increase of Eurasian milfoil (left; 
Figure 2a and 2c) and widgeongrass (right; Figure 2b and 2d) in monoculture across all salinity 
and light treatments. Values are mean ± 1 SE, n = 3. Factors with significant differences are 
indicated in the upper-right of each graph. Not significant=nsd. 

Salinity had a significant impact only on widgeongrass stem density (F4,19= 3.34, p = 

0.0163), with greater stem density at 0 compared to 20 (Figure 5.2d). Neither light, nor the 

interaction of salinity and light had a significant effect on widgeongrass growth.  

Competition 

Interspecific competition was strong, although neither species significantly overyielded 

in mixture with the other species under any combination of salinity and light (Figure 5.3). Milfoil 
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in mixture underyielded at 20 in high light, while widgeongrass underyielded in mixture at 0 and 

10 salinity in high light. In low light milfoil underyielded at 0 and 10, widgeongrass underyielded 

at 10, and neither species overyielded. Although neither species overyielded in mixture, milfoil 

and widgeongrass both underyielded at 10 in low light. Competition did not increase overall 

biomass production; complementarity did not occur. 

 
Figure 5.3.Relative yield calculated based on total growth rate (TGR) for Eurasian milfoil and 
widgeongrass in all salinity and light treatments. High light treatment (353.6 ±124.2 µmol m-2 s-

1) on left panel, low light treatment (149.9 ±47.4 µmol m-2 s-1) on right panel. Dark grey is 
Eurasian milfoil, light grey is widgeongrass. Values are mean ± 1 SE, n = 3. A line is drawn across 
a relative yield of 1 which represents species performing equally well in mixture compared with 
monoculture. Stars indicate significant over- or underyielding. 

Discussion 

   Both species displayed a wide tolerance to salinity and light conditions which likely 

explains their ubiquitous presence across the estuarine salinity gradient.  Similar to past 

studies, both salinity and light were found to affect SAV growth (Moore and Wetzel 2000; Zhu 

et al. 2008; Shields et al. 2011).  Differences in milfoil and widgeongrass response to both 
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salinity and light however suggest potential different impacts on individual species abundance 

and dominance across the estuarine gradient with changing conditions.  Specifically, while 

widgeongrass growth rate was not affected by salinity, milfoil growth was significantly reduced 

with increasing salinity.  Similarly, widgeongrass was not affected by light availability, while 

milfoil displayed differences in TGR and biomass allocation with higher TGR in high light and 

lower RSR in low light.  For both species competition decreased yield in some, but not all 

salinity by light combinations compared to their monocultures. However, under no scenario did 

overall production increase in mixtures over monocultures, suggesting both species are 

affected by strong abiotic gradients which likely control these species growth across the 

estuarine landscape in competition.   

Salinity was a strong indicator of growth in milfoil monocultures. In fact,  similar to other 

biological indicators tested, milfoil TGR was 7-fold greater at 0 than at 20, which suggests that 

long term salinity increases will likely negatively impact milfoil abundance and restrict milfoil 

distribution. Light affected milfoil TGR and RSR, which decreased in low light (RSR: high 0.61 

±0.08; low 0.35 ±0.06), suggesting changes in biomass allocation and overall morphology could 

potentially impact erosion/wave abatement (shoots), and habitat provision (roots) provided by 

milfoil beds (Ward et al. 1984; Valinoti et al. 2011).  This growth difference was detected at 20% 

ambient light (~150 umol m-3 s-1); past studies have shown milfoil growing in 1-2% ambient light 

(Grace and Wetzel 1978) (~< 10 umol m-3 s-1), which matches observations from Louisiana 

where milfoil grew in 2.52-992.6 umol m-3 s-1 (Hillmann, Chapter 4). Understanding milfoil 

biomass allocation along light gradients provides more insight into how this species adapts to 

changing conditions. These results are consistent with other studies that show high milfoil 
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abundance in low light (Zhu et al. 2008), suggesting an advantage over other species in turbid 

waters, such as within disturbed and changing coasts, and deltaic environments.  

In contrast, widgeongrass growth was minimally affected by either salinity or light. Our 

findings agree with past studies that show widgeongrass growing best between 4-22 salinity 

(Kantrud 1991). Although 6-fold fewer widgeongrass stems were observed at 20 than 0, no 

other indicators were significantly affected. Pulses of freshwater have previously been shown 

to decrease widgeongrass growth rates (La Peyre and Rowe 2003), but sustained freshwater 

conditions as in this study do not appear to have negative effects on growth. Widgeongrass 

SLGR appeared to increase at higher salinities as overall stem density decreased, resulting in 

sparse plants with long stems. Studies examining widgeongrass and light have yielded 

inconsistent results, with widgeongrass at times performing better with high light, but also 

tolerating frequent periods of increased turbidity (see Kantrud 1991). Light had no affect on 

widgeongrass in monoculture in this study, which may be due to the range of light treatments 

used.  We mimicked the observed average high (353.58 ±124.21 µmol m-2 s-1) and low light 

(149.99 ± 47.41 µmol m-2 s-1) conditions recorded during previous field surveys in regional 

brackish habitats, which did not capture the extremes (range: 2.52-992.6 µmol m-2 s-1; 

Hillmann, Chapter 4).  In contrast, other studies  found differences in growth rates when the 

lower and higher limits of light availability were tested (i.e., Kemp et al. 2004).  It may be that 

the “extremes” of light availability affect SAV growth patterns, not more subtle differences 

within an expected range, which was the focus of this study. 

Salinity and light impacted both species in mixture compared to their monocultures. 

Competition altered the growth of both species at various combinations of salinity and light 
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conditions tested. Under no conditions were mixtures more productive than monocultures. 

Often, one species underyielded in mixture while the other species performed equally well in 

mixture as in monoculture. In only one instance (10, low light) did both species underyield, 

likely indicating direct competition for resources. Instead, density-dependent impacts related to 

the initial experimental design may be why no species significantly overyielded (Roush et al. 

1989).  Specifically, this study examined competition at densities of 20 plants m-2 (milfoil) and 

180 plants m-2 (widgeongrass), which is typical within these habitats. Lack of overyielding may 

be due to the density used, or the initial number of stems per plant (milfoil: 1.0 ± 0.0; 

widgeongrass: 8.94 ± 0.95; mean ± SE). At the species and assemblage level, some research has 

shown a negative correlation between SAV stem density and growth and biomass allocation of 

co-occurring species (Wolfer and Straile 2004).  While these findings were generated in a study 

using higher initial stem densities than this study (15 and 40 per pot versus 1 and 8), the 

suggestion is that initial low starting densities may result in a failure to reach density thresholds 

necessary to expose negative density dependent relationships between plant species. In our 

study the initial starting density for both species were within the reported range observed 

across the salinity gradient for these species. However, widgeongrass especially can reach stem 

densities that far exceed the initial conditions of this study (see Kandtrud 1991), and therefore 

it was difficult to identify a critical density threshold. Future studies may want to consider using 

multiple starting densities.   

Even so, on a larger scale (i.e. habitat level, landscape level) overall positive impacts are 

attributed to density dependent interactions (van der Heide et al. 2011). For instance, denser 

SAV beds retain more sediment and can improve light conditions, which promotes growth in 
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positive feedback loops. However, this study was not designed to capture density dependent 

effects at that level, and we can only infer that milfoil and widgeongrass result in similar 

feedback loops.  

We also may have failed to capture the competitive strategies that give individual 

species their competitive edge. For example, past studies suggest that milfoil thrives through its 

ability to easily spread, and establish across the landscape (Smith et al. 1991; Zhu and Georgian 

2014).  Its competitive ability appears linked to dispersal method, biomass allocation and timing 

of recruitment into communities (Smith et al. 1991).  Fragmentation of plant parts and dispersal 

along water currents enables milfoil establishment in aquatic habitats hospitable to SAV where 

milfoil can outcompete slower growing seed dispersed species. Within established beds of 

native SAV milfoil production is often depressed, failing to outcompete existing species 

(Madsen et al. 1995; Doyle and Smart 2001), similar to the results in this study. Dispersal 

method and timing of recruitment were not examined in this study. We planted one specimen 

from each species of comparable size together in pots, essentially negating the advantages of 

milfoil dispersal through fragmentation and timing of establishment. Under the conditions 

tested, milfoil growth was significantly impacted by the presence of widgeongrass, particularly 

at 20 in high light, and 0 and 10 in low light. However, under the other conditions milfoil growth 

was not depressed, and milfoil may continue to thrive as salinity and light are decreased from 

increasing river diversions and precipitation.  These continued changes likely provide new areas 

for SAV establishment well within the salinity and light tolerances of milfoil.   

Despite its ubiquitous nature widgeongrass is not considered a strong competitor, but 

rather an opportunistic, highly tolerant species (Verhoeven 1979; Pulich 1985; Strasizar et al. 
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2015). Other species better adapted to specific salinity regimes (i.e. freshwater SAV, seagrass) 

often outcompete widgeongrass under stable conditions (Montague and Ley 1993; Frankovich 

et al. 2012).  However, widgeongrass likely thrives across estuaries due to its broad tolerance to 

both salinity and light (Moore et al. 2014).  In fact, widgeongrass has been found to replace 

seagrass species such as Thalassia testudinum, Halodule wrightii, Syringodium filiforme and 

Zostera marina in areas with frequent disturbances (Johnson et al. 2003; Cho et al. 2009).  

Widgeongrass expansion has been hypothesized to be a result of its ability to tolerate broad 

salinity and light gradients, colonizing rapidly through sexual and asexual reproduction (Johnson 

et al. 2003; Cho and Poirrier 2005; Cho et al. 2009; Strazisar et al. 2013). Increased variation in 

salinity and light from river management, increased storms, and/or increased precipitation may 

ultimately favor widgeongrass as these abiotic factors impact species within estuarine areas, 

and support similar widgeongrass growth.  

Environmental conditions are changing in estuarine aquatic habitats as a result of 

climate change, human disturbance and restoration activities. In southeast Louisiana, the 

separate and combined effects from sea level rise, coastal land loss and river diversions impact 

salinity and light gradients (Das et al. 2012; Wang et al. 2014), and likely result in shifting SAV 

habitats, which are dominated by milfoil and widgeongrass. This greenhouse study highlights 

how abiotic factors may control individual species growth, and impact SAV assemblages 

through differential species responses, but also impact habitat characteristics through changes 

in species biomass allocation. Competition never increased overall production, in fact overall 

production decreased at 10, in low light. Depressed SAV  affects density dependent faunal 

species (i.e. waterfowl, fish, invertebrates), by disturbing habitats, reducing refuge areas and 
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food resources (Thayer et al. 1975; Hemminga and Duarte 2000; Williams and Heck 2001; Heck 

et al. 2008).  However, under most of the conditions tested species in mixture did not have a 

negative impact on overall production, suggesting that monospecific and multispecies SAV beds 

provide similar ecosystem services within the broader community. Understanding the critical 

environmental drivers of SAV provides for better estimations of changing SAV and predictions 

of density dependent species impacts. 
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CHAPTER 6 
ESTUARINE SUBMERGED AQUATIC VEGETATION BEDS PROVIDE SUBSTANTIAL 

CARBON STORAGE IN DELTAIC ENVIRONMENTS 
 

 Terrestrial and coastal ecosystems store significant amounts of organic carbon (Corg) 

within plant biomass and organic-rich soils, yet only a few ecosystems have Corg sequestration, 

stock and storage estimates (Keith et al. 2009; Mcleod et al. 2011). Sequestration occurs when 

atmospheric carbon dioxide (CO2) is taken up by vegetation through photosynthesis and 

subsequently stored in plant biomass, and soils, which provides potential short-term (plant 

biomass), and long-term (soils) storage of Corg. The ability of natural ecosystems to sequester 

and store organic carbon is a potential means of climate change mitigation (Pendleton et al. 

2012).   As a result, significant interest exists in not only understanding sequestration rates of 

Corg, but in quantifying Corg stocks and storage across a range of ecosystems to better 

understand the consequences of habitat shifts, loss, and restoration (Alongi et al. 2016; 

Pendleton et al. 2012).     

 Originally conceived for terrestrial forested systems (Schulze et al. 2000), Corg storage as 

a means to offset climate change has more recently been explored in coastal ecosystems 

(Chmura et al. 2003).  Referred to as blue carbon, coastal ecosystems (seagrass, salt marsh, 

mangrove) sequester Corg at estimated rates of > 110 Tg Corg yr-1 (Mcleod et al. 2011; Kennedy et 

al. 2010; Keith et al. 2009; Duarte et al. 2005).  In contrast to terrestrial ecosystems and oceans, 

which respectively store carbon primarily in live biomass and aerobic soils or dissolved within 

the water column (Grimsditch et al. 2013), coastal ecosystems store carbon primarily in organic-

rich anaerobic soils (Chmura et al. 2003; Kennedy et al. 2010; Mcleod et al. 2011).  Undisturbed, 
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these coastal soils may retain Corg on much longer time scales than terrestrial forests, acting as 

hotspots of carbon sequestration and storage (Laffoley and Grimsditch, 2009).   

 Current estimates of blue carbon stocks span a wide range (140 – 471 Mg C ha-1) (CEC 

2016), which likely reflects the diversity of environmental conditions across which these carbon 

stocks are generated.  Salinity, temperature, inorganic nutrients, as well as plant structural 

characteristics may affect organic matter production and accumulation through differences in 

productivity, particle trapping and sediment stabilization ( Potoutoglou et al. 2017; Armitage 

and Fourqurean 2016; Stockmann et al., 2013; Tilman et al. 2006; Craft and Campbell 2002; 

Jacoby and Jackson 2000; Enriquez et al. 1993; Valiela et al. 1976). Furthermore, environmental 

setting may have significant impacts on regional sediment accumulation, as water depths, 

subsidence rates, storm events and adjacent habitats may all influence accretion rates, as well 

as export and re-deposition of organic matter (Smith and Osterman, 2014; Lavery et al. 2013; 

Bernal and Mitsch 2012; van Katwijk et al. 2011; Mckee and Cherry, 2009;Turner et al. 2006;). 

For example, total carbon stocks in depressional wetlands (Ohio, U.S.A) were more than double 

the total carbon stocks found in nearby riverine communities (Bernal and Mitsch, 2012).  

Similarly, Corg stock estimates across a range of seagrass meadows were found to vary by as 

much as 18x, and these differences are postulated to result from species differences and 

environmental setting, such as depositional environment, water depth and grain size 

differences (Lavery et al. 2013).  Expanding our inventory of carbon stock estimates would help 

to better capture and understand controls on blue carbon.    

 Blue carbon stock and storage estimates remain largely limited to seagrass, salt marsh 

and mangrove ecosystems, despite other coastal habitats sharing similar characteristics, 
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including a potentially equivalent capacity to sequester and store Corg. High net primary 

production coupled with low decomposition rates, along with high allochthonous and 

autochthonous organic matter deposition contribute to greater Corg accumulation and storage 

in coastal ecosystems; these conditions extend up-estuary into brackish to fresh coastal 

vegetated systems (i.e., freshwater wetlands, submerged aquatic vegetation (SAV)) (Mitsch and 

Gosselink, 2000). In coastal marshes, studies examining short and long-term sequestration rates 

across fresh to saline marshes found similar carbon accumulation rates across marsh types 

(Baustian et al.2016; Nyman et al. 2006; Hatton et al. 1983; Smith et al. 1983). Similar to coastal 

marshes, SAV habitats extend from coastal fresh, intermediate, brackish and saline settings to 

seagrass meadows.  These habitats, which exist across extensive deltaic estuaries, may also 

contain substantial Corg stocks.   

 SAV exists extensively within the turbid, shallow water areas of coastal Louisiana 

(Hillmann et al. 2016), providing valuable habitat for fish and wildlife (Heck et al. 2003) along 

with other important ecosystem services (i.e., water quality (Knight et al. 2003); shoreline 

stabilization (Gutierrez et al. 2011)).  Along with a few seagrass species (Darnell et al. 2017), 

many non-seagrass SAV species are found across the estuarine gradient of the Mississippi River 

Delta Plain (MRDP) (Hillmann et al. 2016).  These SAV habitats support a diversity of species 

with varying structural and morphological characteristics, exist within anoxic soils, and, if 

extended out to the barrier islands, present a range of soil characteristics and environmental 

settings. However, non-seagrass SAV habitats are currently not included in estimates of blue 

carbon.  
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The objectives of this study were therefore to assess Corg stocks in SAV habitats along a 

salinity gradient, and estimate Corg storage in the top meter of SAV soils within the southeast 

Louisiana MRDP.  Specifically, we addressed the following questions: 1) how does soil Corg 

content differ among SAV habitats across the estuarine salinity gradient, 2) how do salinity and 

soil characteristics influence Corg stocks, and 3) what is the estimated Corg storage value of SAV 

habitats across the MRDP? The hypotheses are: 1) SAV habitat soil Corg will vary across the 

salinity gradient, and 2) barrier island SAV habitat soils will contain more Corg compared to all 

other SAV habitats.  

Methods 

Study area 

 The Louisiana coastal plain is a dynamic environment, characterized by chenier plains to 

the west and by deltaic watershed basins of the Mississippi River to the east.   The coastal plain 

has lost approximately 4,877 km2 of land since the 1930s due to management of the Mississippi 

River, oil and gas canals, subsidence, sea-level rise and tropical storms (Georgiou et al. 2017; 

Peyronnin et al. 2017; Deegan et al. 2012; Barras 2009).   

Within this area, the deltaic watersheds of the MRDP consist of 1.2 million hectares 

which are bounded by Vermilion Bay to the west and the Chandeleur Islands to the southeast 

(Couvillion et al. 2010; Penland and Suter 1988).  Habitats within the MRDP are structured by 

salinity (Visser et al. 2013) and sediment gradients, which are largely controlled by large-river 

inputs (Mississippi River to the east, Atchafalaya River to the west) (Bianchi and Meade 2009).  

The interior deltaic region consists of a mosaic of diverse estuarine habitat types, ranging from 

forested swamps, to fresh through saline marshes, extensive shallow-water habitats with 
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sediment bottoms, oyster reefs, submerged and floating aquatic vegetation habitats, and 

barrier islands.  The Chandeleur Islands is one such barrier island complex, formed by the 

reworked sediments of the abandoned St. Bernard Delta.  The barrier islands are in a 

transgressive phase and their footprint is primarily influenced by hurricanes and tropical storms 

(Fitzgerald et al. 2016; Bianchi and Meade 2009).  

Field data collection 

 Within the MRDP (Figure 6.1) we sampled twenty-five sites with SAV presence, stratified 

by salinity zones (fresh, intermediate, brackish, saline; henceforth habitat types) (Visser et al. 

2013) and located within previously identified potential SAV habitat areas  (Hillmann et al. 

2016). Twenty sites were co-located with Coastwide Reference Monitoring System (CRMS) 

stations (http://lacoast.gov/crms2/home.aspx) providing records of daily water quality 

conditions (salinity, temperature, water level) (CPRA 2017). We further divided the saline 

habitat into saline SAV and barrier island SAV sites. Barrier island SAV sites were all located near 

the Chandeleur Islands. Study sites were haphazardly selected from a set of previous field 

survey locations indicating SAV presence (Hillmann et al. 2017; La Peyre et al. 2017; Handley 

and Demay 2007). Due to logistical constraints, we ultimately included 5 sites each in fresh, 

intermediate and barrier island SAV habitat, 6 sites in brackish SAV habitat and 4 sites in saline 

SAV habitat. All sites were sampled once during 2015 or 2016. 
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Figure 6.1. Map of study area within the Mississippi River Delta Plain.  A total of 25 sites, 

distributed across submerged aquatic vegetation habitats (5 fresh, 5 intermediate, 6 brackish, 4 

saline, 5 barrier island) across three Mississippi River basins (Terrebonne, Barataria, 

Pontchartrain) were sampled once in 2015 to 2016.  The inset on the bottom right represents 

an example of the salinity stratification across the study area (Visser et al. 2013). 

Upon arrival at each site, water salinity (YSI-85, YSI Incorporated, OH), water 

temperature (oC, YSI-85, YSI Incorporated, OH), and turbidity (NTU-Hach 2100Q, Hach, CO) were 

sampled from the boat. After collecting water column data, a 0.25 m x 0.25 m floating PVC 

quadrat was thrown haphazardly three times from the boat.  Within each replicate, water 

depth was measured using a metric measuring stick (± 0.01 m) and percent total SAV cover and 

cover by species was then estimated using a modified Braun-Blanquet technique (Wikum and 

Stanholtzer 1978).  



 

126 
 

 All aboveground (AG) biomass within each replicate was harvested at the sediment 

surface, placed in labeled plastic bags and placed on ice in a cooler. Belowground (BG) biomass 

was collected using a soil corer (10 cm diameter x 30 cm depth). The BG core samples were 

rinsed in the field using a 1.0 mm mesh bottom bucket to remove most of the sediment and 

reduce bulk before being placed in labeled plastic bags and placed on ice. All samples were kept 

on ice and transported to the laboratory at Louisiana State University Agricultural Center (LSU) 

where they were stored at 4⁰C until further processing.  

Within SAV beds adjacent to each replicate AG quadrat, soil cores were collected in 

duplicate using PVC corers (5 cm diameter).  The corer was pushed in the soil to collect a 1 m 

core, or until refusal. The depths to which cores penetrated and the lengths of cores extracted 

were recorded in the field. Any attached AG SAV tissue was removed and extracted soil cores 

were then partitioned into 10 cm slices in the field, placed in individually labeled plastic bags, 

and transported on ice to LSU for processing.  

Laboratory processing and calculations 

 In the lab, AG samples were washed with tap water to remove sediment, debris, and 

epiphytes, and AG biomass was separated to species level.  Separated samples were dried at 

60⁰C to a constant weight, which was then recorded (± 0.001 g). BG biomass was washed over a 

1.4 mm sieve to further remove sediment and debris and dried at 60⁰C to a constant weight, 

which was then recorded (± 0.001).  AG and BG sample dry weights (per site)  were summed by 

replicate, averaged (per site) and mean total SAV biomass was converted to carbon equivalents 

assuming a carbon content of SAV biomass of 34% (live biomass carbon content (CCSAV) = (AG + 

BG tissue biomass) * 0.34; Mg C ha-1) (Duarte 1990).  This value is similar to CCSAV of SAV 
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biomass from a previous regional study (34.52%; Hillmann unpublished data). AG and BG 

biomass at barrier island SAV sites, where biomass samples were not collected, were estimated 

based on species-specific correlations between cover values and biomass from previous field 

surveys (Hillmann et al. 2017). 

 Sediment slices (n=330) were dried at 60⁰C to a constant weight, recorded (± 0.001 g), 

and used to calculate dry bulk density (BD; gdw cm-3) by dividing dry weight by volume of the 

slice, corrected for compaction. Specifically, slices from individual cores were corrected for 

minor compaction and expansion by applying a correction factor evenly across all 10 cm 

sediment slices in a core (Howard et al.2014). Soil compaction was < 1 % overall, but ranged 

between 10 % compaction and 10 % expansion for individual cores.  After drying and weighing, 

sediment slices were homogenized using a mortar and pestle.  To determine percent organic 

matter (%, OM), 4.0 g subsamples of each slice were weighed out and burned at 550oC for 4 

hours to calculate OM using the loss on ignition method (Heiri et al. 2001). To determine soil 

percent total carbon (%, TC) and percent nitrogen (%, TN), a second set of subsamples (0.011 - 

0.012 g) were weighed out, placed in tin packages and analyzed using an elemental analyzer 

(Wetland Biogeochemistry Analytical Services Laboratory, Louisiana State University, Baton 

Rouge, LA). To determine soil percent organic carbon (%, Corg), a third set of subsamples were 

weighed out (0.030-0.040 g), placed in silver packages and analyzed using HCl fumigation 

(Wetland Biogeochemistry Analytical Services Laboratory, Louisiana State University, Baton 

Rouge, LA) (Zimmerman et al. 1997). The percent inorganic carbon (IC) was determined by 

subtracting Corg from TC. 
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 To determine overall Corg stocks, the organic carbon content (CC) of each sediment slice 

was calculated from measured Corg and BD using the following equation (Campbell et al. 2015):  

CC sedX= Z sliceX * BDsliceX * (Corg sliceX /100);   

where X references the sediment slice (depth by site) and Z refers to thickness of slice (cm). To 

determine the Corg stock in the top 10 cm, 50 cm and 100 cm of soil, CCSED values were summed 

for each core to the appropriate depth.  For the 50 cm core sections and full 100 cm cores, 

regression analysis was used to extrapolate values down core when cores were not of sufficient 

length (i.e., < 50 cm or < 100 cm) to provide measured values (Appendix 2). When down core 

trends were not clear, we assumed a CCSED of 0 (23 of 50 cores), which likely resulted in an 

overall conservative estimate for CCSED stocks.  

Analysis 

 Differences in discrete water column characteristics (salinity, temperature, water depth, 

turbidity), soil characteristics (BD, OM, Corg, TN) and carbon content (CCSAV, CCSED) were tested 

across SAV habitats using a generalized linear mixed model with a lognormal distribution and 

identity link function (Proc Glimmix) (SAS 2013).  When significant differences were detected, 

these analyses were followed by post-hoc comparisons using the Tukey’s procedure (SAS 2013). 

Bulk density, OM, Corg, CCSAV, and CCSED (10, 50, 100 cm) were averaged across site replicates by 

SAV habitat, and this mean was used for all statistical tests as we were interested in between 

site and not within site variability.  Prior to comparing SAV habitats, all soil properties (BD, OM, 

Corg and N) were examined using Spearman’s correlation and regression analysis was used to 

examine the relationship between CCSED and SAV cover and CCSED and CCSAV (SAS 2013). Mean 
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and standard error are reported unless otherwise indicated.  For all tests a significance value of 

p = 0.05 was used.  

We examined differences in water (salinity), soil (BD, Corg) and vegetation factors (CCsav) 

and SAV habitat types with a correlation matrix on log10 transformed data using canonical 

correlation analysis (CCA) (ter Braak and Smilauer 2002). 

Results 

 Water column characteristics 

Discrete salinity differed significantly by SAV habitat types (F4, 20 =10.73, p<0.0001), with 

higher values at the barrier island SAV sites (15.6 ± 0.1), lower values at the freshwater SAV 

sites (0.1 ± 0.04) and no difference in mean salinity between intermediate, brackish and saline 

SAV sites (Table 6.1). Turbidity of surface waters ranged from a low of 1.10 NTU to a high of 

89.9 NTU, and there was a significant difference in turbidity between SAV habitats (F4, 20 =5.30, 

p=0.0045) with lower turbidity at fresh and barrier island SAV sites compared to saline sites, 

and brackish and intermediate sites being similar to all other sites.  Water depth across all 

locations ranged from 10 cm to 125 cm, with no significant differences in mean water depth 

between SAV habitat types. Temperature did not differ between habitats.  
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Table 6.1. Submerged aquatic vegetation (SAV) and mean values (± SE) of environmental conditions across habitats.  Fresh, 
intermediate, brackish and saline sites co-located with Coastwide Reference Monitoring System (CRMS) stations 
(http://lacoast.gov/crms2/home.aspx) (CPRA 2017). Mean salinity and 10-year range provided by CRMS hourly salinity data. SAV 
species names follow USDA naming conventions for vegetation (http://plants.usda.gov)  (USDA 2006). CEDE4=Cerataphyllum 
demersum, HEDU2=Heteranthera dubia, HYVU3=Hydrilla ventricillatta, MYSP2=Myriophyllum spicatum, RUMA5=Ruppia maritima, 
STPE5=Stuckenia pectinata, THTE6=Thalassia testudinum, VAAM3=Valisnaria americana. Species presence within SAV habitats is 
noted with an “X”.  
SAV habitat Core depth Water depth Turbidity Salinity Salinity Salinity CEDE4  HEDU2  HYVE3  MYSP2  NAGU  RUMA5  STPE15  THTE6  VAAM3  Total Cover %  

  cm cm NTU ppt 10-year range 10-year mean                                                         Presence/Absence range 

Fresh 82.7 ±3.92 83.1 ±19.94 7.83 ±4.53 0.2 ±0.04 0.0-10.9 0.2 ±0.05 X 

 

X 

 

X 

    

10-100 

Intermediate 59.3 ±8.39 43.3 ±11.3 31.22 ±15.20 3.7 ±1.48 0.1-29.22 4.1 ±3.0 X X 

 

X X X 

  

X 15-75 

Brackish 59.9 ±10.31 61.8 ±4.7 19.26 ±7.80 4.4 ±0.88 0.1-28.18 5.3 ±0.7 X 

  

X X X X 

 

X 5-95 

Saline 66.3 ±3.60 45.0 ±10.5 35.65 ±9.28 4.8 ±1.57 0.1-31.5 8.2 ±0.8 

   

X 

 

X X 

  

25-45 

Barrier Island 41.8 ±2.64 80.6 ±4.5 5.52±1.39 15.64±0.07      NA     NA           X   X   35-100 

 

 

http://lacoast.gov/crms2/home.aspx
http://plants.usda.gov/
http://plants.usda.gov/
http://plants.usda.gov/


 

131 
 

Vegetation 

SAV cover ranged from a low of 5% to a high of 100% across sites, with no difference in 

SAV cover by SAV habitat type.  In total, nine species of SAV, which includes one seagrass 

species, were identified across all 25 sampling sites, but species presence differed by habitat 

type (Table 6.1). Ceratophyllum demersum and Hydrilla verticillata were dominant in 

freshwater habitats, and were found at 4 out of 5 freshwater sites. Six SAV species were 

identified in both intermediate and brackish SAV habitat, but species composition differed. C. 

demersum, Myriophyllum spicatum, Najas guadalupensis and Ruppia maritima were frequently 

found at intermediate sites, while the dominant species at brackish sites were limited to M. 

spicatum and R. maritima. R. maritima also dominated the saline habitat sites and the barrier 

island sites. Thalassia testudinum, a true seagrass, was observed at 3 out of 5 barrier island 

sites.  The most frequently encountered species was R. maritima, which was found at 12 of 25 

sites.  

Soils 

Soil core depths ranged from a minimum of 31 cm to a maximum of 100 cm (Table 6.1).  

Spearman’s correlation indicated that Corg, OM and TN were positively correlated (r > 0.93). 

Further analysis occurred using only Corg and BD.  BD ranged from 0.07 to 1.76 gdw cm-3, and 

differed across SAV habitats (F4, 20 =14.11, p<0.0001). Specifically, barrier island SAV soils had 

significantly higher BD (1.46 cm-3 ± 0.05) compared to all other SAV sites (Figure 6.2A). BD was 

variable with depth (down core), with no clear trends among SAV habitats (Figure 6.2B).  
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Figure 6.2. Bulk density (gdw cm-1; mean ± 1 SE) across submerged aquatic vegetation (SAV) 

habitats within the Mississippi River Delta Plain (A). SAV habitat is defined by marsh zones 

determined by long-term salinity (Visser et al. 2013) as fresh, intermediate, brackish and saline 

interior deltaic habitat, and saline barrier island habitat. Different letters indicate statistical 

differences. The dotted lines indicate mean values, with solid lines representing median values.   

Down core profiles of soil bulk density (mean ± 1 SE) (B).  

Soil Corg differed across SAV habitats (F4, 20 = 28.80, p<0.0001) (Figure 6.3A), and ranged 

from a minimum below detection (< 0.02 %) to a maximum of 41.4 %. Intermediate SAV habitat 

had the highest mean Corg (24.3 ± 3.0%) which was statistically similar to fresh and brackish SAV 

habitat Corg. and greater than saline and barrier island habitat.  Fresh and brackish SAV habitat 

however did not differ from saline SAV habitat. In contrast, barrier island SAV habitat Corg was 

substantially lower (0.5 ± 0.1 %) compared to all other SAV habitats. Corg was variable with 

depth across all SAV habitats with no clear trends (Figure 6.3B). 
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Figure 6.3. Organic carbon (means ± 1 SE) across (A) submerged aquatic vegetation (SAV) 
habitats. Different letters indicate statistical differences. The dotted lines indicate mean values, 
with solid lines representing median values.   Down core profiles of organic carbon (mean ± 1 
SE) (B). SAV habitat is defined by marsh zones determined by long-term salinity (Visser et al. 
2013) as fresh, intermediate, brackish and saline interior deltaic habitat, and saline barrier 
island habitat. 

Organic carbon content  

Vegetation.- CCSAV ranged from 0.004 to 3.41 Mg C ha-1 and was significantly different 

across SAV habitat classifications (F4, 20 = 5.02, p=0.0058). Barrier island CCSAV was significantly 

greater than brackish CCSAV, but neither barrier island nor brackish CCSAV differed statistically 

from fresh, intermediate or saline CCSAV.  

Soils.- CCSED differed significantly by SAV habitat (F4,20 = 13.76, p<0.0001), with barrier 

island SAV soils storing significantly less carbon compared to all other SAV habitats, which did 

not differ from one another (Figure 4).  This pattern held true regardless of core length (i.e., 10, 

50, 100 cm) used for storage calculations, although absolute storage values calculated varied 

based on core lengths used (Figure 6.4).  There was no significant relationship between the 

percent cover of living plant biomass (or CCSAV) and CCSED (Figure 6.5). 
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Figure 6.4. Box plots of organic carbon stock (Mg C ha-1) in top 100 cm (A) of soil, top 50 cm (B) 
of soil and top 10 cm (C) of soil. Different letters indicate differences in means across habitats. 
Dotted lines indicate mean values. Black lines indicate median values 
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Figure 6.5. Relationship between submerged aquatic vegetation (SAV) cover and soil organic 
carbon stock across sites in SAV habitat areas. Fresh =    , Intermediate = O, Brackish = □, Saline 
= ∆, Barrier Island = X.  

Explanatory variables 

The first two axes of the CCA explain 81.1 % of the environmental variation in CCSED 

among SAV habitat types. Axis one, which explains 53.0 % of the variation, largely differentiates 

between high salinity and mineral sites from lower salinity and highly organic sites (F4, 20 =6.030, 

p=0.002; Figure 6.6).  Specifically, salinity and BD were correlated and positively associated with 

CCSED of barrier island SAV sites, while intermediate and most brackish and saline sites were 

highly associated with Corg. Axis two, which explains 28.7 % of the variation, differentiates 
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between fresh and intermediate sites. Fresh SAV habitat sites were not strongly associated with 

Corg, or any other environmental factor tested in this study.  

 
Figure 6.6. Canonical correlation analysis (CCA) biplot of soil properties, biomass carbon and 
water column characteristics (factors) against submerged aquatic vegetation (SAV) habitat 
types (vectors). The soil properties included bulk density and percent organic carbon (Corg). The 
water column characteristic was discreet salinity and biomass carbon was total carbon of SAV 
vegetation (CCSAV). Fresh habitat =    , intermediate habitat = O, brackish habitat = □, saline 
habitat = ∆, barrier island habitat = Χ. 

Discussion  

 Submerged aquatic vegetation habitat across the Mississippi River Delta Plain stored 

substantial amounts of organic carbon within their soils.  Across the salinity gradient, within 

interior deltaic SAV habitats, organic carbon stock in the top meter of soils averaged over 200 

Mg C ha-1.   In contrast, barrier island saline SAV habitat, located near the Chandeleur Islands, 
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contained less organic carbon stock (56.6 ± 10.4 Mg C ha-1), although all estimates were within 

the global range reported for seagrass (48-1,467 Mg C ha-1) (Fourqurean 2012; Duarte and 

Chiscano 1999).  The study area is largely influenced by freshwater from the Mississippi River 

and marine water from the Gulf of Mexico. Differences in salinity, SAV species composition and 

water depth did not appear to drive the differences between interior deltaic and barrier island 

sites in this study.  Instead, soil properties and environmental setting (i.e., interior marsh versus 

barrier island) may be more predictive of observed organic carbon stocks (Gullström et al. 

2017).  Extrapolating coastal ecosystem blue carbon estimates requires better understanding of 

factors that control organic carbon stocks across coastal habitats.  Incorporating non-seagrass 

SAV habitats in regional and global carbon stock estimates of estuarine environments would 

provide more accurate carbon stock estimates, better supporting coastal mitigation and 

restoration planning.  

 Coastal ecosystems store large amounts of carbon, but estimates of blue carbon have 

largely been limited to salt marsh, mangrove and seagrass habitats (Howard et al. 2017).  In this 

study, non-seagrass SAV habitat was found to contribute substantially to blue carbon, with 

interior deltaic SAV habitat storing 231.63 ± 19.53 Mg C ha-1, well above the global median for 

seagrass (139.7 Mg C ha-1) (Campbell et al 2015; Fourqurean 2012).  In contrast, lower storage 

was estimated for the barrier islands, the one location in this study where seagrass species are 

found (56.6 ± 10.4 Mg C ha-1).  Although lower than the global seagrass median, this storage is 

similar to that reported in seagrass meadows along the Arabian coast (49.1 ± 7.0 Mg C ha-1) 

(Campbell et al. 2015), the U.S. north Pacific coast (64.4 Mg C ha-1) (Fourqurean 2012; Kairis and 

Rybczyk 2010), the U.S. north Atlantic coast (48.7 Mg C ha-1) (Fourqurean 2012; Orth et al. 
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2006), and is complementary to the broader northern Gulf of Mexico (25.7 ± 6.7 Mg ha-1 (top 

20 cm)) (Thoroug et a. 2017).  In many of these studies, these lower estimates related to high 

mineral soils and species composition of the specific sites examined (i.e., less robust species) 

(Campbell et al. 2015).   

A combination of factors, including the balance between biomass production and 

microbial decomposition, high inputs of Corg (autochthonous and allochthonous), and anoxic 

soils, control soil characteristics and contribute to carbon storage in coastal ecosystems (Alongi 

et al. 2016; Duarte et al. 2013; Mcleod et al. 2011; Kennedy et al. 2010).  Additionally, in 

estuarine environments, salinity often controls species composition, and affects plant 

productivity and decomposition (Staag et al. 2017; Mcleod et al. 2011; Mitsch and Gosseling 

2000). In coastal marshes, studies suggest slower production and decomposition rates at 

fresher sites compared to more saline sites (Williams and Rosenheim 2015; Craft2007), or no 

effect (Craft 2007; Neubauer et al. 2005).  However, recent surveys of SAV across the salinity 

gradient along the northern Gulf of Mexico found significantly greater standing stock of SAV in 

fresh compared to more saline sites (Hillmann et al. 2016; Hillmann et al. 2017), suggesting 

higher rates of production, which may contribute to autochthonous organic matter available for 

burial. This may also partially explain the difference between Corg in the interior deltaic sites 

versus the more saline barrier island sites.   Similar to our findings across the interior SAV 

deltaic sites, past studies in coastal Louisiana marsh have failed to detect a salinity gradient 

effect (Baustian et al. 2017; Nyman et al. 2006; Hatton et al. 1983; Smith et al. 1983).  Better 

understanding of production and decomposition rates in these habitats may help clarify factors 
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that influence burial rates and lead to a better understanding and estimations of organic carbon 

stocks.   

Allochthonous organic matter and particle trapping efficiency within interior deltaic SAV 

habitats may have a greater impact on soil characteristics than production and decomposition 

of in situ SAV biomass. Seagrass canopies attenuate wave energy, impact water currents and 

directly filter suspended sediments from the water column (Duarte et al. 2013; Hendriks et al. 

2008; Fonseca and Cahalan 1992; Gambi et al. 1990), and the effect of seagrass canopies on 

water is amplified in shallow water where more of the water column is occupied by seagrass 

biomass (Granata et al. 2001).  Further, wave attenuation subsequently prevents re-suspension 

of sediments (Duarte et al. 2013), impacting soil properties and leading to carbon preservation. 

Similar processes affect soil properties further up the estuary (Ward et al. 1984).  In particular, 

interior deltaic SAV habitats are located within a mosaic of extensive productive marsh, and 

materials exported from these marshes are likely a major contributing source of organic carbon.  

Furthermore, these interior sites are in more protected, closed waters, as compared to the 

barrier island SAV habitats in this study, where Corg may be more easily exported to marine 

waters.   

Differences in soil properties between the interior deltaic and barrier island sites may 

further elucidate differences in retention of organic carbon.  Specifically, barrier island BD (1.47 

± 0.07 gdw cm-3) was 5 times higher than interior deltaic BD (0.31 ± 0.02 gdw cm-3).  The barrier 

island BD values are similar to some of the seagrass sites reporting lower Corg and OM (Duarte 

et al. 2013;Krause-Jensen et al. 2012).  While past studies have demonstrated increasing BD 

with salinity (Baustian et al. 2017; Hansen and Nestlerode 2014; Craft 2007), our study of sub-
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tidal SAV beds did not find differences across the interior deltaic salinity gradient, although the 

salinity gradient in this region was low (from 0-15), and thus impacts on production and 

decomposition may have been minimal.   

Across SAV habitats within the MRDP, soil Corg followed similar trends to BD; weak 

differences across the salinity gradient within the interior deltaic habitats, but significant 

differences between interior deltaic (15.3 ± 0.7 %) and barrier island SAV habitat (0.5 ± 0.1 %).  

These soil property differences likely reflect to some degree the availability and source of 

organic matter, with barrier island SAV located adjacent to a more mineral environment, and 

lacking the substantial adjacent marsh production compared to the interior deltaic SAV.  

Adjacent to SAV beds, eroding marshes throughout the MRDP interior may be a major 

contributing source of organic carbon, especially considering that the Corg content in interior 

deltaic SAV soils was approximately 4 times the amount in barrier island SAV soils, despite 3 

times more Corg stocks derived from barrier island CCSAV than interior deltaic CCSAV.  Regardless, 

Corg bound in SAV biomass throughout the MRDP (0.02 Tg or 20 Gg of Corg, 1-2%) was minimal 

compared to soils, with carbon allocation between soil and live biomass similar to patterns 

observed globally in seagrasses; with live seagrass biomass accounting for only 1-5 % of the 

total seagrass carbon pool (Fourqurean 2012).   

Among seagrasses, the largest organic carbon stocks have been found in seagrass 

meadows dominated by long lived, robust species along the Mediterranean, western Australian 

and Indo-Pacific coasts (Fourqurean 2012).  For example, Posidonea oceanica optimizes carbon 

storage because of its robust growth and extensive roots (Mcleod et al. 2011). Similar findings 

in freshwater wetland communities support the concept that community type influences 
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organic carbon stocks (Bernal and Mitsch 2012).  The efficiency of organic carbon storage in 

both the interior deltaic and barrier island SAV systems in this study further support the 

contention that habitats dominated by small bodied species may also function to store carbon 

within coastal systems (Campbell et al. 2015).  While this region supports year-round 

production of SAV (Hillmann et al. 2017), and although not explicitly examined here, the 

balance of Corg likely comes from vegetative slowing of wave energies and subsequent trapping 

of sediments and detritus from adjacent marsh communities due to SAV structure while in situ 

biomass may directly contribute less to overall carbon storage than allochthonous organic 

matter production from adjacent habitats, further, environmental setting may determine CCSED 

preservation.  

  Environmental setting influences organic carbon stocks, and may be critical in 

determining long-term storage. For example, Zostera marina thrives in Danish estuarine bays 

with extensive meadows retaining autochthonous Corg as the environmental setting limits 

carbon export into marine waters (Röhr et al 2016). Similarly, within freshwater wetlands, 

isolated wetlands were found to store more than twice the amount of Corg as compared to 

riverine wetlands (Lavery et al. 2013).  Within interior deltaic habitats in the MRDP, SAV grow in 

protected waters that trap and retain both SAV detritus and allochthonous organic matter from 

the highly productive adjacent marshes.  In contrast, the barrier island SAV does not contain 

extensive marshes and continually shifts due to direct storm impacts, as well as the islands’ 

transgressive movement towards the mainland (Fitzgerald et al. 2017; Penland and Suter 1988).   

Higher Corg stock within the interior deltaic sites may reflect potentially longer residence 

times, higher sedimentation rates, and less frequent erosional events than the barrier island 



 

142 
 

setting, which further determines whether a habitat may function as long-term storage of 

carbon (Rohr et al. 2016; Mitsch and Gosselink 2000; Hedges and Keil 1995).  While carbon 

stored in MDRP marshes may be lost through marsh erosion (DeLaune and White 2012), some 

of this carbon may actually be retained and preserved in soils of the extensive shallow-water, 

and fringing submerged aquatic vegetation beds.  Within the MRDP, despite substantial erosion 

of coastal marshes, long term carbon storage may be occurring due to retention below the fair-

weather wave base (Allison et al. 2007; Corbett et al. 2006; Wright and Nittrouer 1995), and the 

impact on regional carbon budgets will be clarified as more complete records of sedimentation 

and carbon stocks are captured (Ward et al. 2017).  The actual fate of marsh detritus and 

sediments from eroding marshes in this region, including the impacts of large storm events, 

could critically affect carbon stocks, long-term carbon storage (Delaune and White 2012), and 

regional carbon budgets.   

 Submerged aquatic vegetation habitat throughout the MRDP is estimated at 159,609 

hectares (La Peyre et al. 2017), with approximately 25% of the habitat area, or 39,902 ha, 

supporting SAV at any one time suggesting a potential of 9.2 x 106 Mg of Corg or 9.2 Tg of Corg in 

the top meter of SAV habitat soils.  This represents a conservative estimate, as interior deltaic 

SAV beds within this setting tend to be temporally and spatially heterogeneous, and Corg was 

not related directly to SAV cover during this study.  SAV are sensitive to changes in the 

environment that affect light penetration and water quality (Dennison et al. 1993), including 

direct exposure to storms (Harrison 1982), and therefore exhibit ‘boom or bust’ growth 

patterns (Li et al. 2007; Trebitz et al.1993). These cycles of precipitous increase in SAV density, 

followed by declines occur in time and space resulting in the entire 160,000 ha SAV habitat area 



 

143 
 

within the MRDP potentially storing Corg at the quantities captured at sites in this study.  While 

our site selections were restricted to areas likely to support SAV, during this study, sites ranged 

from less than 5% to 100% cover of SAV. Ultimately, the percent cover was not related to 

measured C stock.  Subsequently, the regional SAV soil organic carbon pool (storage) may be as 

high as 3.2 x 107 Mg of Corg or 32 Tg of Corg. This represents a substantial and as yet 

unaccounted for pool of stored blue carbon, particularly when these numbers are extrapolated 

across the Gulf Coast, and globally into other extensive deltaic SAV habitats. 
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CHAPTER 7 
CONCLUSIONS 

 
Within the sub-tidal zone submerged aquatic vegetation (SAV) provides many critical 

ecosystem services and grows along salinity gradients from fresh to saline waters. Despite its 

importance, valuable information is lacking about SAV assemblages, biomass, standing stock 

and diversity, across spatial and temporal gradients, along expansive coasts such as the 

northern Gulf of Mexico. I surveyed potential SAV habitat along the nGoM from June to 

September in a 3-year study (2013-2015), across salinity zones (fresh, intermediate, brackish, 

saline) and geographic regions (coastal Mississippi/Alabama, Louisiana delta, Texas/Louisiana 

chenier plain, Texas mid-coast). Inter-annual variation was low; there was no difference in total 

SAV biomass across years. However, I identified 2 “SAV hotspots” within the study area; (1) 

more SAV biomass in the fresh salinity zone compared to all other zones, and (2) more SAV 

biomass standing stock in the Louisiana delta region compared to all other regions.  I calculated 

what I believe is a first estimate of SAV biomass standing stock at the scale of the nGoM and 

estimated that the nGoM holds more than 118,466 tonnes of SAV standing stock at summer 

maximum. These are new data that provide a better understanding of the current spatial 

distribution and inter-annual variation of SAV which provides baseline data for managers in 

light of potentially shifting SAV assemblages.  

Previous studies have indicated that salinity, water depth, and water clarity are key 

predictors of SAV assemblages, but we lack data and understanding of what controls SAV 

presence and biomass throughout the year.  I documented SAV assemblages, biomass and local 

water characteristics (salinity, water depth, photosynthetically active radiation, dissolved 
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oxygen, water pH) bi-monthly, at sixteen sites, stratified by salinity zones in Barataria Basin, 

Louisiana over a 12 month period.   Ceratophylum demersum and Myriophylum spicatum were 

the most abundant SAV species observed, however, only Ruppia maritima was found across the 

salinity gradient. Throughout the year, fresh and intermediate salinity sites contained more SAV 

species and biomass than brackish and saline sites. One prolonged peak of maximum  SAV 

biomass was detected (May through July), while lowest total SAV biomass occurred in 

December. Temperature and turbidity were similar across all sites however salinity, water 

depth, and light varied temporally at individual sites, and spatially  among sites, with brackish 

and saline sites being exposed to the greatest range of mean bimonthly values throughout the 

year.  Predictive models based on annual sampling likely capture only a small fraction of the 

variability and diversity in SAV assemblages and biomass across salinity gradients along the 

northern Gulf of Mexico. Further, these data indicate that salinity in Barataria Basin, LA groups 

SAV into two assemblages (fresh/intermediate (F/I); brackish/saline (B/S)). Understanding 

variation is key to successful management, and more precise models enable natural resource 

managers to more precisely predict effects of climate change and restoration on SAV and their 

associated fish and wildlife.  

In southeast Louisiana highly variable and saline estuarine water restricts SAV 

membership in assemblages to just a few species. In this region the two dominant and most 

common SAV species observed are Myriophyllum spicatum (Eurasian watermilfoil) and Ruppia 

maritima L. (widgeongrass). Growing across the estuarine gradient, these species exist across a 

wide range of salinity and light conditions, and their growth and presence may be impacted by 

both these abiotic conditions as well as competition.  I planted Eurasian milfoil and 
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widgeongrass in a greenhouse designed to test growth and competition under a range of 

salinity (0, 5, 10, 15, 20) and light (high: 50% ambient light;  low: 20% ambient light). In 

monoculture, Eurasian milfoil was sensitive to salinity, decreasing in total growth rate (TGR) 

(salinity 0: 0.03 ± 0.003 g day-1; salinity 20: 0.003 ± 0.0009 g day-1), stem density (#) (0: 4.66 

±0.95; 20: 1.0 ±0.44) and stem length growth rate (SLGR) (0: 0.47 ± 0.059 cm day-1; 20: 0.029 ± 

0.016 cm day-1) with higher salinity. In contrast, only widgeongrass stem density was sensitive 

to salinity (0: 41.0 ±14.05 #; 20: 6.83 ±2.38 cm day-1). Light impacted Eurasian milfoil root to 

shoot ratio (RSR); high light resulted in higher RSR (high: 0.62 ± 0.08, low: 0.35 ±0.06) in milfoil, 

but did not affect widgeongrass growth. There were no significant interactions of salinity and 

light for either species in monoculture. I observed strong interspcific competition. Both species 

significantly underyielded in mixture at various combinations of salinity and light, but neither 

species ever overyielded., and overall production in mixture was never greater than in 

monocultures These results suggest that strong abiotic gradients (salinity and light) may control 

these species growth across the estuarine landscape.  As both coastal restoration and climate 

change may impact salinity gradients and water clarity within coastal estuaries, these results 

provide critical inputs to enable natural resource managers to better plan for changes in SAV 

distribution. 

Tidal marshes, mangroves, and seagrass capture and retain organic carbon (Corg) playing 

significant roles in the global carbon cycle.  Across estuaries SAV provides similar ecosystem 

services as those habitats, however, their capacity for Corg storage has not been quantified.  I 

estimated Corg stocks in SAV habitat in the Mississippi River Delta Plain (MRDP), from coastal 

freshwater to saline marsh (interior deltaic), out to the Chandeleur Islands (barrier island).  
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Interior deltaic SAV bed Corg stocks did not differ across the salinity gradient, but were greater 

than at barrier island sites (interior deltaic: 231.6 ± 19.5 Mg Corg ha-1; barrier island: 56.6 ± 10.4 

Mg Corg ha-1). Similarly, soil Corg estimates for interior deltaic SAV sites (15.3 ± 0.7 %) was greater 

than barrier island SAV estimates (0.5 ± 0.1 %).  Differences in soil properties and 

environmental setting likely contributed to these differences.  Interior deltaic SAV soils (organic 

matter (OM), %: 33.9 ± 1.3; bulk density (BD), gdw cm-3: 0.31 ± 0.02), were possibly impacted by 

in situ SAV production, and externally, by adjacent marshes.  In contrast, barrier island SAV soils 

were more mineral (OM, %: 1.4 ± 0.1; BD, gdw cm-3: 1.6 ± 0.07), and exist adjacent to shifting 

barrier islands.  Estimates of interior deltaic SAV habitat across the MRDP (159, 609 ha) suggest 

that Corg storage is potentially greater than 3.2 * 107 Mg. This represents an unaccounted for 

pool of blue carbon, particularly when these values are extrapolated across the Gulf Coast, and 

globally into other deltaic SAV habitats. 
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APPENDIX 1. COPYRIGHT INFORMATION 

 

 

 

 



 

156 
 

APPENDIX 2. MEAN (±SEM) OF ENVIRONMENTAL VARIABLES BY MARSH TYPE. 
 

    Fresh   
 

 

salinity  

February 

 

0.2 ±0.0  

    April 

 

0.2 ±0.03  

    May 

 

0.2±0.03  

   July 

  Fresh 

0.2±0.03  

August 

 

0.2±0.0  

October           

December 

 

0.2±0.03           

0.4±0.20  

depth  

PAR  

0.43±.09  0.77±.13  1.05±0.15  0.95±.30  0.87±.15  0.99±0.15        

1.1±.25  PAR 804± 276  202±109  102±19.6  216±194  2.9±1.4         -                  

36.6±34.4  turbidity  36.2±18.1  39.7±23.8  18.5±15.7  25.5±17.9  42.6±20.7  44.9±33.6        

46.8±26.3  temp 13.9 ±0.5  22.7±2.4  27.3±0.9  28.5±0.9  27.3±1.4  23.9±0.4          

18.7±1.7  DO  5.42±1.1  5.32±1.1  2.70±1.2  3.75±1.3  2.50±1.4  2.70±1.4          

5.23±1.7  pH 

cla  

5.83±0.5 

2.91±0.60  

7.12±0.2 

10.66±5.26  

6.77±0.3 

0.29±0.12  

7.36±0.1 

2.47±1.04  

7.47±0.2 

8.46±1.74  

7.44±0.2          

6.86±0.2  

4.62±0.15        

4.20±1.35  

                                                 Intermediate  
salinity  0.7±0.17  0.4±0.06  0.3±0.08  0.2±0.06  0.3±0.03  1.3±0.39          

1.3±0.23     depth  0.42±0.08  0.72±0.10  0.70±0.08  0.61±0.08  0.57±0.02  0.69±0.03        

0.61±0.08  PAR  568±256  218±51.8  187±62.5  281±143  360±161  227±122          

157±103  turbidity  56.9±24.4  46.8±13.6  11.5±3.5  28.6±9.4  35.2±18.2  15.5±5.4          

30.9±4.2  temp  14.7±1.7  25.3±0.3  27.8±0.5  30.9±1.3  29.8±0.4  26.1±0.85        

21.4±0.9  DO  11.73±2.0  8.67±1.2  3.43±1.4  4.96±1.4  6.18±0.9  5.85±1.4           

9.10±0.9  pH 

cla  

7.89±0.7 

3.35±1.55  

8.18±0.3 

12.96±6.13  

5.68±0.6 

0.56±0.25  

7.94±1.1 

2.78±0.28  

7.54±0.5 

3.24±0.93  

7.99±0.3           

7.64±0.2  

3.37±1.03         

6.69±2.10  

                                                     Brackish  
salinity  5.5 ±1.2  4.8 ±1.1  2.7±0.4  2.0±0.4  4.6±0.6  7.6±1.4          

9.3±2.1  depth  0.30±0.1  0.73±0.1  0.74±0.1  0.40±0.1  0.47±0.2  0.37±0.1        

0.39±0.1  PAR   418± 335  237±174  234±157  325±310  222±193  417±281        

156±33.3  turbidity  39.5±7.6  38.9±4.6  22.2±2.3  39.8±14.3  27.3±3.6  23.6±5.8        

19.6±4.9  temp  15.9 

±1.08  

26.9±0.16  30.6±0.81  31.4±0.6  29.9±0.5  25.8±1.9        

21.3±0.7  DO  8.73±1.12  8.33±0.19  5.44±0.76  7.36±0.22  6.57±0.9  9.74±0.3        

7.92±0.8  pH 

cla  

7.75±0.7 

4.37±0.45  

7.58±0.1 

18.23±3.10  

6.69±0.6 

0.72±0.11  

8.26±0.1 

7.78±1.52  

7.80±0.2 

12.63±2.95  

8.59±0.1        

7.52±0.2  

7.72±1.32     

7.10±2.71  

                                                        Saline  
salinity  13.8±1.3  9.6±1.3  5.7±0.4  4.5±0.58  6.7±0.84  13.3±0.93     

13.9±1.2  depth  0.28±0.04  0.56±0.11  0.42±0.04  0.50±0.07  0.51±0.03  0.32±0.04     

0.48±0.03  PAR  1414±746  609±211  663±227  325±159  534±158  1139±160            -  
turbidity  25.8±4.8  28.9±4.57  22.9±2.30  34.4±4.4  23.1±4.9  33.0±8.5       

11.2±1.9  temp  20.9±0.9  27.5±0.6  30.6±1.1  31.8±0.6  29.8±0.7  25.4±0.9       

16.7±0.4  DO  8.75±0.6  6.80±0.3  5.40±0.8  6.58±0.7  4.05±0.6  8.20±0.6       

10.85±0.4   pH 

cla  

7.82±0.1 

3.56±0.50  

7.07±0.1 

12.24±1.35  

7.58±0.1 

0.45±0.16  

7.82±0.1 

7.58±1.11  

6.90±0.7 

3.75±0.65  

8.54±0.1       

7.73±0.1  

6.33±1.14    

2.45±0.41  

Units: depth (m), photsynthetically active radiation (PAR, µmol m-2 s-1, turbidity (NTU), temp 
(temperature, ⁰C), DO (dissolved oxygen, mgl-3), pH (+H).     
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APPENDIX 3. ABOVEGROUND (AG) AND BELOWGROUND (BG) BIOMASS OF 

SUBMERGED AQUATIC VEGETATION, BARATARIA BASIN, LA. 
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APPENDIX 4. FREQUENCY COUNT OF COMPLETE CORES VERSUS CORES WITH 

EXTRAPOLATED DATA 
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